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1 Aix Marseille Univ, Univ Toulon, CNRS, CPT, Marseille, France

Abstract

This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in

the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the

different models and the Hamiltonian structures. The review focuses on results obtained during

the last decade, but a few classical results are also described, in order to illustrate connections

with the most recent developments. With the hope of making the review accessible not only to

specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian for-

malism for continuum models is provided. Subsequently, we review the Hamiltonian formulation

of models based on the magnetohydrodynamics description, including those based on the adiabatic

and double adiabatic closure. It is shown how Dirac’s theory of constrained Hamiltonian systems

can be applied to impose the incompressibility closure on a magnetohydrodynamic model and

how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is

amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence

of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and

models assuming cold ions and different closures for the electron fluid are discussed. Hamilto-

nian models relaxing the cold-ion assumption are then introduced. These include models where

finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models.

Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of mag-

netic reconnection are illustrated. The last part of the review concerns recent results based on the

derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of

parent kinetic models. Identification of such closures for fluid models derived from kinetic systems

based on the Vlasov and drift-kinetic equations are presented, and connections with previously

discussed fluid models are pointed out.
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I. INTRODUCTION

Considerable progress in the understanding of the dynamics of liquids, gases and plasmas

was obtained by making use of fluid models based on the Eulerian point of view. In such

models, the behavior of liquids, gases and plasmas is described in terms of a finite set of

macroscopic variables, depending on spatial coordinates and time. Various approaches, in

particular, were followed, over the years, in order to derive closed fluid models for plasmas.

Since the pioneering works of Chapman and Enskog in 1916 [1] and Grad [2], a consider-

able effort was made in order to derive fluid models for gases and plasmas, starting from

kinetic equations. The latter form of models describes the dynamics of out-of-equilibrium

gases and plasmas in terms of distribution functions. Supposing that the gas or plasma

under consideration is composed by N species of particles, with N a positive integer, the

distribution function fα(x,v, t), with α = 1, · · · ,N numbering the species, is a function of

spatial coordinates x, velocity coordinates v and time t. Although in many applications the

dependence on some coordinates can be ignored, in general one considers a gas or a plasma

occupying a volume of space described by three coordinates x = (x, y, z), that we suppose

to be Cartesian. The particle velocity space, on the other hand, is described by velocity

coordinates v = (vx, vy, vz). The physical interpretation of the distribution function fα is

then the following: the quantity fα(x,v, t)dxdydzdvxdvydvz corresponds to the number of

particles of the species α contained, at the time t, in the volume dxdydzdvxdvydvz centered

on the point (x,v) in a six-dimensional space; x indicates a point in the space occupied by

the gas or the plasma, and v indicates the particle velocity. Kinetic models describe then

the evolution of the distribution functions associated with the different particle species. As

a prototypical example of kinetic model we can consider the following transport equation,

that we take in the following form:

∂fα
∂t

+ v · ∇fα +
Fα(x)

mα

· ∂fα
∂v

=
N∑
β=1

Cαβ(fα, fβ), (1)

where Fα is a space-dependent external force acting on the α-th particle species, mα is

the mass of the particle of species α and Cαβ are operators, that we leave unspecified,
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that account for the collisions between particles of species α and β. The second term in

Eq. (1), on the other hand, accounts for temporal variations of the distribution function

due to the free flow of particles. The derivation of fluid models from a kinetic model,

as described in ordinary textbooks on gas dynamics and plasma physics, proceeds with

the introduction of the moments of the distribution functions. In the case of distribution

functions fα(x,v, t) defined as above, given a non-negative integer S, a moment of order S

is a weighted average of a polynomial Bα(v) of degree S in velocity space, i.e. a quantity of

the form
∫
d3v Bα(v)fα(x,v, t), where

Bα(v) =

s1∑
i1=0

s2∑
i2=0

s3∑
i3=0

aαi1i2i3v
i1
x v

i2
y v

i3
z , (2)

with aαi1i2i3 constant coefficients and s1, s2 and s3 three non-negative integers such that

s1 + s2 + s3 = S.

Moments are related to macroscopic fluid variables. In particular, the zeroth order mo-

ment corresponds to the particle density nα of the species α, i.e.

nα(x, t) =

∫
d3v fα(x,v, t). (3)

The three components vαx, vαy, vαz of the velocity vector field vα(x, t), in the Eulerian point

of view, of the fluid associated with the species α are related to the first order moments by

nα(x, t)vαi(x, t) =

∫
d3v vifα(x,v, t), i = x, y, z. (4)

The scalar pressure pα(x, t) of the particles of species α, on the other hand, involves second

order moments according to the definition

pα(x, t) =
1

3
mα

∫
d3v |v − vα(x, t)|2fα(x,v, t). (5)

The components qαx, qαy, qαz of the heat flux (density) vector field qα(x, t), finally, are related

to third order moments by

qαi(x, t) =
1

2
mα

∫
d3v (vi − vαi(x, t))|v − vα(x, t)|2fα(x,v, t), i = x, y, z. (6)
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The fields nα,vα, pα and qα represent customary macroscopic variables in terms of which

fluid models are formulated. We remark that the definitions (3), (4), (5) and (6) are those

commonly adopted for plasma variables, which might differ from those adopted in the case

of mixtures of neutral gases [1].

From the definitions (3), (4), (5) and (6) it follows that such macroscopic variables can

be expressed in terms of the particular choice of moments

Ps1s2s3(x, t) =

∫
d3v vs1x v

s2
y v

s3
z fα(x,v, t). (7)

Evolution equations for the moments Ps1s2s3 (and, consequently, for the fluid variables) can

be obtained from the kinetic equations. We consider, as extremely simplified example, the

case of the transport equation (1) in the absence of forces and collisions, i.e. for Fα = Cαβ =

0. From Eq. (1), after multiplying each term of the equation times vs1x v
s2
y v

s3
z and integrating

over velocity space, one then immediately obtains

∂Ps1s2s3
∂t

+
∂Ps1+1s2s3

∂x
+
∂Ps1s2+1s3

∂y
+
∂Ps1s2s3+1

∂z
= 0. (8)

It follows from Eq. (8) that the evolution of a moment of order S requires the knowledge

of moments of order S + 1. Equation (8) leads then to an infinite hierarchy of evolution

equations. Obtaining a closed fluid model evolving a finite number of macroscopic variables,

requires then reducing the above infinite hierarchy to a finite set of equations. This can

be achieved by assuming a closure relation. Fixing an order of moment S, supposed to

account for the number of fluid variables that one considers appropriate for the phenomenon

to describe, assuming a closure relation amounts to imposing a relation between moments of

order S+1 and lower order moments. For instance, it turns out that, in order to derive a fluid

model adopting as dynamical variables only nα,vα and pα, one can assume a closure relation

qα = Q(nα,vα, pα), where Q is, in general, an operator, acting on the lower-order moments.

In this way, evolution equations for the moments of order higher than two will no longer

be required to determine the evolution of nα,vα and pα. Although extremely simplifed,

the example of Eq. (8) is sufficient to introduce the closure problem, which manifests itself
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already with the sole presence of the free flow term in the parent kinetic equation (1). Clearly,

the problem becomes of interest when physically more realistic kinetic models are adopted

as parent models for deriving fluid models. In particular, in the case of plasmas, which

is the case of interest in the present article, the forces Fα acting on particle populations,

often cannot be assumed to be external but they depend on electromagnetic fields, whose

evolution is in turn affected by the motion of the charged particles composing the plasma.

Parent kinetic equations are then typically coupled with Maxwell’s equations governing the

electromagnetic fields.

Evidently, in deriving a fluid model for plasmas through a closure procedure, a crucial

question concerns how to determine the closure relation. One straightforward possibility

is to postulate an equation of state motivated by the knowledge of some features of the

physical process under consideration. For instance, if the characteristic time scale of the

process involved is much shorter than the characteristic time of heat transfer, heat flux

can be neglected and an adiabatic equation of state relating the pressure with the density

and the entropy could be adopted. Although convenient for some applications, such an

approach can become insufficient, for instance, if details on heat transport are important for

the fluid model. More rigorous approaches based on systematic derivations of higher-order

moment closures were followed, leading to remarkable results. Closed set of fluid equations

in collisional plasmas close to equilibrium were derived following an asymptotic procedure

in the classical works of Refs. [3, 4]. We indicate Ref. [5] for further references about the

considerable amount of results on the derivation of fluid equations for classical transport in

plasmas.

Another criterion adopted to determine advanced closure relations consists of incorporat-

ing kinetic effects in the fluid model, in particular at the level of the linear theory. This led

to the development of so called Landau-fluid models [6–11]. In these models, the closure is

designed in such a way that the linear dispersion relation approximates that of the parent

kinetic model, and in particular it accounts for a kinetic, wave-particle effect, such as Lan-

dau damping. A fluid closure including wave-particle effects also in the nonlinear regime
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was proposed in Ref. [12, 13]. Non-dissipative closures for the linearly unstable modes of

the heat flux were presented in Ref. [14] and were shown to be able to reproduce nonlinear

behavior of the parent kinetic model undergoing an ion temperature gradient instability.

The emergence of gyrokinetic models (see, e.g. Ref. [15]), initially motivated by the

investigation of low-frequency plasma turbulence in tokamaks, led to plasma descriptions

based on distribution functions defined over a reduced set of coordinates, i.e., fewer than

the six coordinates considered, for instance, in the example of Eq. (1). Fluid models were

then derived also adopting the gyrokinetic equations as parent kinetic model and leading to

the so-called gyrofluid models [16]. Because of the presence, in the gyrokinetic equations,

of operators accounting for the average of fields over the orbit of a charged particle around

the magnetic field, closure problems for gyrofluid models possess the intricacy of involving

all moments of the distribution function with respect to the magnetic moment coordinate.

A number of closed gyrofluid models [17–25] were proposed, most of them including also

Landau-fluid effects. We remark that the gyrofluid closures in Ref. [24] were designed in

order to guarantee energy conservation in the absence of dissipative terms.

A further customary approach in deriving fluid models for plasmas, consists of taking al-

ready closed fluid models as parent models and then performing operations on these, in order

to obtain simpler fluid models, specifically adapted to describe the phenomenon of interest.

Such operations can be, for instance, the asymptotic expansion of the equations of motion

of the parent model in terms of a small parameter, as is done for deriving the low-β reduced

magnetohydrodynamics (MHD) equations [26]. The drift approximation (see. e.g. Ref.

[27]), valid for phenomena with characteristic frequency much lower than the ion cyclotron

frequency, is another common procedure followed to derive reduced fluid models. Classi-

cal examples of such models include the Hasegawa-Mima [28] and the Hasegawa-Wakatani

equations [29], as well as several other models discussed in this review such as those of Refs.

[6, 30–32]. Also, simplified models can be derived by truncating a parent fluid model with

a lower-order closure, based on a phenomenological argument (for instance, imposing an

isothermal closure into a model evolving temperature fluctuations). With such a procedure
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one can derive, for instance, the models described in Refs. [33–35]. MHD models can also

be derived using multiple-fluid systems as parent models. For MHD models, the closures

can be analogous to those adopted for ordinary fluids (as in the barotropic and incompress-

ible case), or influenced by the presence of the magnetic field, as is the case of the double

adiabatic MHD closure [36].

Certainly, the derivation of fluid models for plasma has a long history and an enormous

literature is available on the subject. Nevertheless, in spite of the considerable progress made

in this field, some aspects still received relatively little attention and leave open questions.

One such aspect concerns the impact that closure relations can have on some structure that

the parent model might possess, such as for instance a Hamiltonian structure.

Indeed, ultimately, the behavior of classical plasmas consists of the dynamics of charged

particles interacting with electromagnetic fields. Such a system possesses a Hamiltonian

structure descending from an action principle [37]. In practice, currently adopted models

are derived from parent (kinetic or fluid) models which in general do not have a Hamilto-

nian structure and contain dissipative terms, such as for instance viscosity in fluid models

or collisional terms in kinetic models. When such terms are omitted from the parent model,

the resulting model is supposed to possess a Hamiltonian structure, reminiscent of the fun-

damental Hamiltonian character of the underlying microscopic particle dynamics. The dis-

sipationless limit of the parent model would then possess a total conserved energy, and, in

general, a noncanonical Hamiltonian structure, which is the typical situation for continuum

models in Eulerian variables (see, e.g. Refs. [38, 39] as well as Sec. II). For noncanonical

Hamiltonian systems, in addition to energy conservation, the associated dynamics will be

constrained also by the conservation of Casimir invariants. It is then desirable that also in

the derived fluid model it is possible to clearly identify dissipative terms, in the absence of

which, the model possesses a Hamiltonian structure. Dissipative terms could then of course

be reintroduced a posteriori to complete the modelling. It is however, often the case that

the impact of the closure on the structure of the derived fluid model, whether this is derived

directly by closing a kinetic system or from operations performed on a parent fluid model,
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is not known. In particular, it is often not clear whether the derived fluid model possesses

a Hamiltonian structure, once the terms that, supposedly, lead to dissipation, have been

removed. We point out that the knowledge of the Hamiltonian structure of a fluid model

in the non-dissipative limit is not only important from a fundamental point of view. An

unconscious non-Hamiltonian character of the model in its non-dissipative limit might, for

instance, lead to physically questionable instabilities [40]. The knowledge of the Hamiltonian

structure, on the other hand, leads to an unambiguous identification of the energy of the

system, an essential information for investigating, for instance, energy transfers in turbulent

plasmas. In addition to the knowledge of the energy, the knowledge of the Casimir invariants

can provide further conserved quantities to be used for checking the quality of numerical

simulations. A further application of the Hamiltonian structure is related to stability anal-

ysis, in particular by means of the Energy-Casimir method (see, e.g. Refs. [38, 41] as well

as Refs. [42–45] and references therein), which applies namely to noncanonical Hamilto-

nian systems. The noncanonical Hamiltonian approach is also relevant for the equilibrium

statistical mechanics approach to two-dimensional turbulent flows [46]. We mention also a

recent application of the Hamiltonian formalism for the derivation of nonlinear waves and

a subsequent application for the analysis of turbulence in the solar wind [47, 48]. These

arguments motivate an effort toward the identification of Hamiltonian structures in fluid

models for plasmas. This subject has now a history lasting almost four decades and had

a fundamental breakthrough in 1980 with the discovery of the noncanonical Hamiltonian

structure of the ideal adiabatic MHD equations [49]. This result was followed by a series

of works concerning the derivation of Hamiltonian structures for various fluid models for

plasmas, that will be cited and, to some extent, described in this article. These concerned

refined versions of MHD theories, reduced models for strongly magnetized plasmas, mod-

els accounting for finite-Larmor-radius (FLR) effects and gyrofluid models. Different fluid

closure schemes have been shown to be compatible with a Hamiltonian structure in the

non-dissipative limit.

In spite of the progress made on the subject during the last decades, however, still a num-
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ber of important problems are open and systematic ways for deriving closures guaranteeing

a Hamiltonian structure are still under development.

The purpose of this article is to review the results obtained in the identification and/or

derivation of Hamiltonian structures of fluid models for plasmas in the absence of dissipation.

We will consider, on one hand, models derived from parent fluid models assuming a certain

closure relation and for which the Hamiltonian structure was found a posteriori, or obtained

by construction. On the other hand, we will also present results concerning the derivation

of closures, from parent kinetic models, which guarantee a Hamiltonian structure in the

resulting fluid model.

The review focuses essentially on the results obtained during the last ten years. Never-

theless, some older results, such as for instance the Hamiltonian formulation of adiabatic

MHD, reduced MHD or of the four-field model with magnetic curvature, are also described,

as we thought they could be propaedeutical to and show interesting connections with the

more recent results.

Given that the development of the subject of research treated in this article was, so far,

essentially on the theoretical side, the review presents theoretical, and, mostly analytical

results. A clear deficiency of this article is then the lack of contact with experimental

results. In this respect, a few perspectives are mentioned at the end of Sec. VI.

In the hope of making this review self-contained and accessible to a reader possibly

unfamiliar with the subject, the article begins in Sec. II with a short introduction to

the Hamiltonian formalism for continuum models for plasmas. Basic mathematical tools

subsequently used in the article are recalled and illustrated with the example of the model

for a barotropic fluid. Section III deals with Hamiltonian MHD models. Starting with the

classical result on adiabatic MHD, it is then shown how the double-adiabatic closure also

admits a Hamiltonian formulation and how one can impose the incompressibility closure,

while preserving a Hamiltonian structure, by means of Dirac’s theory of constraints. The

Section concludes illustrating the Hamiltonian structure of an extended version of MHD,

accounting for two-fluid effects, with a barotropic closure. Section IV reviews results on
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reduced fluid models, which apply to weakly nonlinear plasmas in the presence of a magnetic

field with an intense component along one direction. Various reduced drift-fluid models,

valid on scales larger than the ion Larmor radius and characterized by different closures, are

presented and their Hamiltonian structures are discussed and compared. Subsequently, it

is shown how the gyromap technique can help in adding ion FLR effects to a Hamiltonian

cold-ion model, while preserving a Hamiltonian structure. The final part of the Section is

devoted to gyrofluid models and illustrates, in particular, a recent five-field and a six-field

Hamiltonian gyrofluid models. Connections with previous Hamiltonian gyrofluid models

characterized by other closures are discussed. Sections III and IV concern Hamiltonian fluid

models derived from parent fluid models, in most cases postulating a closure relation and

reconstructing the Hamiltonian structure a posteriori, or, as is the case for the incompressible

closure for MHD with Dirac’s constraints and the gyromap for reduced models, obtaining

the Hamiltonian structure by construction. In Sec. V, on the other hand, we present recent

results concerning strategies to derive, from the Hamiltonian structure of parent kinetic

models, closures yielding a Hamiltonian structure in the resulting fluid model. Applications

to models derived from Vlasov and drift-kinetic systems are illustrated and connections

with previously discussed models are shown. Section VI is devoted to conclusions and

perspectives. An Appendix illustrating the proof of the Jacobi identity for the Poisson

bracket of the barotropic fluid model complements the review.

II. HAMILTONIAN DESCRIPTION OF CONTINUUM MODELS FOR PLAS-

MAS : TECHNICAL PRELIMINARIES

The purpose of this Section is to provide a concise introduction to the basic concepts and

tools in the Hamiltonian formulation of continuum models for plasmas, the use of which

will be frequently made in this article. This Section is meant just to provide a practical

introduction limited to the class of models described in the article. Consequently, it is by

no means complete, and emphasis is more on a working knowledge than on rigor. More

general, rigorous and detailed expositions of the subject can be found, for instance, in Refs.
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[38, 39, 50]. This Section can of course be skipped by the reader already familiar with the

subject.

A. Hamiltonian basics

The fluid and kinetic models treated in this article will be systems of partial differential

equations of the form

∂χi
∂t

= Fi(χ1, · · · , χN), i = 1, · · · , N. (9)

In Eq. (9), χ1, · · · , χN (where N is a non-negative integer) form a set of field variables

χi(z(i), t), with i = 1, · · · , N , depending on time t and on coordinates describing points

z(i) ∈ D(i) ⊆ Rn(i) . On the right-hand side of Eq. (9), F1, · · · , FN indicate, in general,

nonlinear integro/differential operators, acting on the field variables. In this context, typ-

ical examples of field variables will be the components of the electromagnetic fields, the

distribution functions appearing in kinetic models, or the macroscopic fluid variables, such

as, for instance, density or pressure, involved in fluid models. Because the same model can

involve fields depending on different sets of coordinates (typically the distribution functions

depending on velocity and spatial coordinates and the fluid variables, as well as the electro-

magnetic field, depending on the spatial coordinates only), the index (i) was added to the

set of coordinates. We will assume that the first M fields of each model (with 0 ≤M ≤ N)

depend on spatial and velocity coordinates, denoted as zx,v, and that the remaining N −M

fields depend only on the spatial coordinates, denoted as zx . We can then write z(1) =

z(2) = · · · = z(M) ≡ zx,v and z(M+1) = z(M+2) = · · · = z(N) ≡ zx. Consequently, we also have

D(1) = D(2) = · · · = D(M) ≡ Dx,v ⊆ Rm+n and D(M+1) = D(M+2) = · · · = D(N) ≡ Dx ⊆ Rn,

where m and n are non-negative integers and where we indicated with Dx,v the domain of

the spatial and velocity coordinates and with Dx the domain involving the spatial coordi-

nates only. Note that Dx,v will always be of the form Dx,v = Dx × Dv, where Dv is the

domain of the velocity coordinates. The results presented in this review, can be formulated

with Dx ⊂ Rn a compact, boundary-less (periodic) domain. Specific choices of the domain
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will be indicated in some cases, though. We will also set Dv = Rm. For instance, the

one-dimensional Vlasov-Ampère system, which will be treated later, evolves two fields: the

distribution function χ1 = f(x, v, t), for which z(1) = zx,v = (x, v) ∈ [0, 1] × R ≡ Dx,v, and

the electric field χ2 = E(x, t), for which z(2) = zx = x ∈ [0, 1] ≡ Dx. In most of the cases

treated in this article, however, the set of coordinates will be the same for every field of a

given model.

At this point it is convenient, for a given system of the form (9), to denote with P the

space of functions in which the field variables belong. An element χ ∈ P will then consist

of an N -tuple χ = (χ1, · · · , χN). We will denote by F(P ) the set of functionals F : P → R.

We say that a system of the form (9), defined over a space of field variables P is Hamil-

tonian, if there exists a Poisson bracket { , } : F(P ) × F(P ) → F(P ) and a Hamiltonian

functional H ∈ F(P ) such that the system (9) can be cast in the form

∂χi
∂t

= {χi, H}, i = 1, · · · , N. (10)

We recall that a Poisson bracket is an operator satisfying the four following properties:

(i) bilinearity: {F,G+H} = {F,G}+ {F,H}, {F +G,H} = {F,H}+ {G,H},

{λF,G} = {F, λG} = λ{F,G},

(ii) antisymmetry: {F,G} = −{G,F},

(iii) Leibniz identity: {FG,H} = F{G,H}+ {F,H}G,

(iv) Jacobi identity: {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0,

where λ is a constant and F,G and H are generic elements of F(P ).

Because a Poisson bracket acts on two functionals of χ ∈ P and yields again a functional

of χ ∈ P , an immediate consequence of Eq. (10), is that it must be possible to express

the field variables χ1, · · · , χN themselves, as functionals over P . This is accomplished by
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writing

χi(zx,v, t) =

∫
Dx,v

dm+nz′x,v δ(z
′
x,v − zx,v)χi(z

′
x,v, t), i = 1, · · · ,M (11)

χi(zx, t) =

∫
Dx

dnz′x δ(z
′
x − zx)χi(z

′
x, t), i = M + 1, · · · , N (12)

where δ(z′(i) − z(i)), for i = 1, · · · , N , is a Dirac delta.

More generally, the functionals of the field variables, such as the Hamiltonian, that will

be involved in our context, can be written in the form

F (χ1, · · · , χN)

=

∫
Dx,v

dm+nzx,v fx,v(zx,v, χ1, · · · , χN , ∂zx,vχ1, · · · , ∂zxχN , ∂zx,vzx,vχ1, · · · , ∂zxzxχN , · · · )

(13)

+

∫
Dx

dnzx fx(zx, χM+1, · · · , χN , ∂zxχM+1, · · · , ∂zxχN , ∂zxzxχM+1, · · · , ∂zxzxχN , · · · )

where fx,v and fx are operators acting on the field variables, on their derivatives of any order

and on the coordinates.

On the other hand, the Poisson brackets for Hamiltonian continuum models for plasmas

typically possess the form

{F,G} =

〈
δF

δχ

∣∣∣J δG
δχ

〉
, (14)

where J is a matrix operator referred to as Poisson operator and where we introduced the

inner product (corresponding, in general, to the pairing between a vector space and its dual)

< f |g >=
M∑
i=1

∫
Dx,v

dm+nzx,v figi +
N∑

i=M+1

∫
Dx

dnzx figi (15)

with f and g indicating two N -tuples f = (f1(zx,v), · · · , fM(zx,v), fM+1(zx), · · · , fN(zx))

and g = (g1(zx,v), · · · , gM(zx,v), gM+1(zx), · · · , gN(zx)).

In Eq. (14) we indicated with δF/δχ the N -tuple

δF

δχ
=

(
δF

δχ1(zx,v)
, · · · , δF

δχM(zx,v)
,

δF

δχM+1(zx)
, · · · , δF

δχN(zx)

)
, (16)

where δF/δχi(z(i)) is the functional derivative of the functional F , with respect to the field

χi, at the point z(i) (at a fixed time t). The functional derivative is defined from the following
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expression

lim
ε→0

F (χ1, · · · , χi + εδχi, · · · , χN)− F (χ1, · · · , χi, · · · , χN)

ε
≡
∫
D(i)

dn(i)z(i)
δF

δχi(z(i))
δχi,

(17)

where δχi = δχi(z(i)) is an arbitrary perturbation vanishing at the boundaries of D(i). Note

that in the above definition we have omitted the explicit dependence of the fields and of the

perturbations on the time t, which here plays the role of a fixed parameter.

As an example, consider the above mentioned one-dimensional Vlasov-Ampère system,

with the space of functions P consisting of the pairs (f, E), where both f and E possess

periodic boundary conditions over [0, 1] for the spatial coordinate x, and where f vanishes for

|v| → ∞. We consider then, as example, the functional (of no particular physical meaning)

F (f, E) =

∫ 1

0

dx

∫
R
dvfE +

1

2

∫ 1

0

dx

(
∂E

∂x

)2

. (18)

According to the expression (17), obtaining the functional derivative with respect to E(x),

requires determining

lim
ε→0

F (f, E + εδE)− F (f, E)

ε
=

∫ 1

0

dx

∫
R
dv f(x, v, t)δE(x, t) +

∫ 1

0

dx
∂E

∂x

∂δE

∂x
. (19)

In order to cast the latter expression in the form of the right-hand side of Eq. (17), we

can perform an integration by part on the last term of Eq. (19) (taking into account that

boundary terms vanish) and then rewrite the resulting expression as

lim
ε→0

F (f, E + εδE)− F (f, E)

ε
=

∫ 1

0

dx

(∫
R
dvf − ∂2E

∂x2

)
δE. (20)

From Eq. (20) we can then extract the expression for the functional derivative, which reads

δF

δE(x, t)
=

∫
R
dvf(x, v, t)− ∂2E

∂x2
(x, t). (21)

In (21) we have made explicit the dependence on the coordinates as well as on time, although

we stress again that, in evaluating the functional derivatives, t plays the role of a fixed

parameter. From the definition, it follows also that the functional derivative of F with

respect to f(x, v) is given by

δF

δf(x, v, t)
= E(x, t). (22)
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A fundamental relation which follows from Eqs. (11) and (17) is given by

δχi(z(i), t)

δχj(z′(j), t)
= δijδ(z

′
(j) − z(i)). (23)

A further fundamental tool concerning functional derivatives is the chain rule that is em-

ployed when it is needed to express a functional derivative in terms of a new set of vari-

ables. Let us consider a functional F̄ (χ̄) expressed in terms of a new set of field variables

χ̄ = (χ̄1(zx,v), · · · , χ̄M ′(zx,v), χ̄M ′+1(zx), · · · , χ̄N ′(zx)) ∈ P ′. The elements of the space of

functions P ′ are N ′-uples with M ′ functions depending on zx,v and N ′ −M ′ functions de-

pending on zx, and, in general M 6= M ′ and N 6= N ′ (the case where P 6= P ′ will be the case

treated in Sec. V, where it will be required to change from the space of distribution functions

to the space of moments). The old variables χ and the new variables χ̄ are assumed to be

related to each other by

χ̄i = Oijχj, i = 1, · · · , N ′, (24)

where Oij are the components of a, possibly nonlinear and noninvertible operator O : P →

P ′. We indicate by F (χ) the functional F̄ expressed in terms of the old variables. Scalar

invariance clearly implies

F (χ) = F̄ (χ̄), (25)

and 〈
δF

δχ

∣∣∣δχ〉 =

〈
δF̄

δχ̄

∣∣∣δχ̄〉′ , (26)

where the prime on the right-hand side indicates that the inner product is taken as defined

in Eq. (15) but with M and N replaced by M ′ and N ′, respectively. In Eq. (26), the

variations δχ = (δχ1, · · · , δχN) and δχ̄ = (δχ̄1, · · · , δχ̄N) are related by

δχ̄i = Oijδχj, i = 1, · · · , N ′, (27)

where Oij indicate the components of a now linear operator O : P → P ′, obtained from the

linearization of Eq. (24) for small variations δχ̄ of χ̄ and δχ of χ. Upon using Eq. (27) and

Eq. (26) one obtains 〈
δF̄

δχ̄

∣∣∣Oδχ〉′ = 〈O† δF̄
δχ̄

∣∣∣δχ〉 , (28)
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where O† : P ′ → P is the adjoint of the operator O. From Eqs. (26) and (28), it follows

then that

δF

δχ
= O†

δF̄

δχ̄
, (29)

which expresses the chain rule relating the functional derivatives with respect to the old

variables, to those with respect to the new variables.

In order to illustrate further properties that will be used thorughout the article, we note

that, from Eqs. (10), (14) and (23), it follows that, for a Hamiltonian system, the evolution

equation for the ith field can be written as

∂χi
∂t

= J ij
δH

δχj
, (30)

where summation over the repeated index j is understood, and where we indicate by J ij the

components of the matrix operator J . By using the chain rule and integrating by parts one

obtains that, for functionals of the form (13), the following relations hold

∂F

∂t
=

∑
i=1,··· ,M

∫
Dx,v

dm+nzx,v
δF

δχi

∂χi
∂t

+
∑

i=M+1,··· ,N

∫
Dx

dnzx
δF

δχi

∂χi
∂t

=
∑

i=1,··· ,M
j=1,··· ,N

∫
Dx,v

dm+nzx,v
δF

δχi
J ij

δH

δχj
+

∑
i=M+1,··· ,N
j=1,··· ,N

∫
Dx

dnzx
δF

δχi
J ij

δH

δχj
(31)

= {F,H},

where, for the last step, we made use of Eq. (30). From Eq. (31), and from the antisymmetry

of the Poisson bracket, it follows then that

∂H

∂t
= {H,H} = 0, (32)

which expresses the fundamental fact that, for Hamiltonian systems, the Hamiltonian (func-

tional, in this context) is a conserved quantity, reflecting the conservation of the total energy

of the system.

Having introduced basic definitions and tools for Hamiltonian continuum models, the

natural question, relevant to our context, could be : when does a given model of the form

(9) possess a Hamiltonian structure ? In general, no systematic procedure exists to answer
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such question, which is what makes the subject complex and, at the same time, interesting.

Related to this question are the remarks that follow, with which we touch upon an important

feature characterizing the Hamiltonian structures of fluid models for plasmas, i.e. their

noncanonical Poisson brackets.

We recall that, according to the above definition of Hamiltonian system, the Hamiltonian

structure for system of evolution equations of the form (9), for a certain set of field variables,

consists of two elements: the Hamiltonian functional and the Poisson bracket. In the problem

of identifying the Hamiltonian structure of a (possibly Hamiltonian) given model, Eq. (32)

implies that the Hamiltonian functional has to be sought for among the quantities conserved

by that model. Because the Hamiltonian expresses the total conserved energy of a physical

model, an amount of physical intuition could help in identifying the Hamiltonian functional

of a given model. The identification of the corresponding Poisson bracket, on the other hand,

can be a much less intuitive process, in general. Indeed, one could consider the canonical

Poisson brackets for field theories. For instance, assuming M = 0, N = 2 and Dx = R3 as

domain, one can consider the Poisson operator (which, in such nondegenerate case, is also

referred to as cosymplectic form)

J =

 0 1

−1 0

 , (33)

leading to the canonical Poisson bracket

{F,G} =

∫
R3

d3x

(
δF

δχ1

δG

δχ2

− δF

δχ2

δG

δχ1

)
. (34)

At each point x ∈ R3, the field χ1 is said to be canonically conjugate to the field χ2. Note

that, the discrete version of Eq. (34), where fields are replaced by 2n functions of time

(q1, · · · , qn, pi, · · · , pn) writes

{f, g} =
n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (35)

for two functions f = f(q1, · · · , pn), g = g(q1, · · · , pn). The operation (35) corresponds to

the Poisson bracket used in classical mechanics to describe the evolution of the positions
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q1, · · · , qn of n particles and of the corresponding canonically conjugate momenta p1, · · · , pn,

in the case when particles are subject to a potential depending on the positions.

It is relatively easy to verify that the operation (34) satisfies the above four properties

of a Poisson bracket. On the other hand, the set of operations satisfying such properties is

much larger, Indeed, as assumed above, the Poisson operator J can in principle depend on

the fields, their derivatives and the coordinates. In particular, Poisson brackets can exist,

for which it is not possible to identify, globally on the phase space, pairs of canonically

conjugate variables, as it happens in canonical field theories, or, at the discrete level, in the

above example encountered in classical mechanics. It turns out that, indeed, Hamiltonian

continuum theories for plasmas formulated from the Eulerian point of view, such as those

treated in this article, are characterized by noncanonical Poisson brackets. The origin for

the appearance of such a noncanonical Hamiltonian structure resides in the nature of the

transformation mapping the fields expressed in terms of Lagrangian coordinates to the fields

in Eulerian coordinates. This transformation maps the canonical Poisson brackets expressed

in terms of Lagrangian coordinates, to the noncanonical Poisson brackets written in Eulerian

coordinates, and provides an example of reduction by symmetry. The subject is described in

detail in Refs. [38, 39, 51–53]. In Sec. II B 1 the reduction from the canonical Poisson bracket

in Lagrangian coordinates to the noncanonical Poisson bracket in Eulerian coordinates will

be reviewed in the case of a barotropic fluid.

Given their noncanonical nature, the identification of Poisson brackets for fluid or kinetic

plasma models can in general be a difficult task, in particular as far as the the verification

of the Jacobi identity is concerned.

One of the main features of noncanonical Hamiltonian systems is that the associated

dynamics takes place on surfaces, denoted as symplectic leaves, that foliate the phase space.

The existence of symplectic leaves is associated with the presence of so-called Casimir in-

variants, characterizing noncanonical Hamiltonian systems. In our context, the phase space

of a Hamiltonian continuum model corresponds to the above mentioned space of functions
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P . Casimir invariants are elements C(χ1, · · · , χN) ∈ F(P ) such that

{C,F} = 0, ∀F ∈ F(P ). (36)

Thus, Casimir invariants commute, through the Poisson bracket, with any other functional

of the field variables. In particular they commute with the Hamiltonian functional. From

Eq. (31) it follows then that, for a Casimir invariant C

∂C

∂t
= {C,H} = 0, (37)

which proves the fact that C is an invariant of motion.

The existence of Casimir invariants is related to the property of Poisson operators of

noncanonical Poisson brackets of possessing a non trivial kernel. It can be seen, on the

other hand, that a canonical Poisson bracket such as (34), only possesses trivial invariants,

not depending on the field variables.

For applications, the importance of Casimir invariants for fluid and kinetic models is asso-

ciated mainly with the constraints that they impose on the dynamics and on the possibility

they offer for investigating equilibria and stability [38, 39].

B. Example: barotropic fluid

Before moving to Hamiltonian fluid models for plasmas, we find it convenient to consider

a Hamiltonian model of fluid mechanics, in order to illustrate with an example the concepts

previously introduced in this Section. More precisely we will describe the Hamiltonian

structure of the non dissipative equations for a three-dimensional barotropic fluid, which are

given by

∂ρ

∂t
= −∇ · (ρv), (38)

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p(ρ). (39)

In Eqs. (38)-(39) ρ(x, t) is the mass density, v(x, t) is the velocity field and p(ρ) is the

pressure, which, for a barotropic fluid, only depends on the density. Note that, with a slight
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abuse of notation, here we indicated with v the velocity vector field which is a function

of x and t. The same symbol is used in the present article also to indicate a point in the

particle velocity coordinate space. Depending on the context, we think it should be possible

to easily distinguish which is the meaning of the symbol, without leading to confusion.

Equations (38) and (39) represent the continuity equation and the evolution equation for

the velocity vector field. With reference to the framework described following Eq. (9), the

model (38)-(39) corresponds to the situation where N = 4, with the four field variables given

by χ1 = ρ, χ2 = vx, χ3 = vy, χ4 = vz, with vx, vy and vz indicating the three components of

the velocity vector field. All four fields depend on spatial coordinates and not on velocity

coordinates, therefore we are in the case M = 0, and we consider the situation where

zx = (x, y, z) ∈ Dx ≡ [0, 1] × [0, 1] × [0, 1]. We assume also that the fields behave at the

boundaries of Dx in such a way that boundary terms vanish when integrating by parts (an

hypothesis that will be tacitly assumed throughout the whole article). The elements of the

space of functions P , in this case, will consist then of 4-uples (ρ,v) defined over Dx and

satisfying the prescribed boundary conditions.

The model (38)-(39) possesses a Hamiltonian structure (see, e.g. Refs. [38, 49]) consisting

of the Hamiltonian functional

H(ρ,v) =

∫
Dx

d3x
(ρ

2
v2 + ρU(ρ)

)
, (40)

and of the Poisson bracket

{F,G} = −
∫
Dx

d3x

(
Fρ∇ ·Gv −Gρ∇ · Fv +

∇× v

ρ
·Gv × Fv

)
, (41)

where the subscripts over functionals indicate functional derivatives, so that, for instance,

Fρ ≡ δF/δρ.

In Eq. (40) we indicated with U(ρ) the internal energy per unit mass of the fluid, a

prescribed function of the mass density, which, in general, is related to the pressure by

p = ρ2∂U

∂ρ
. (42)
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In more general discussions of barotropic fluids, such as those of Refs. [38, 50], the internal

energy is assumed to depend also on the specific entropy. In the context of the present

example we prefer to simplify the model and omit the dependence on the specific entropy.

Such dependence, on the other hand, will be included in the adiabatic and double adiabatic

MHD models discussed in Secs. III A and III C.

It can be verified that the functional H is conserved by Eqs. (38)-(39). Indeed, such

functional represents the total energy of the fluid given by the sum of the kinetic and of the

internal energy, corresponding to the first and second term on the right-hand side of Eq.

(40), respectively.

The functional derivatives of H with respect to the field variables can be calculated to

give

Hρ =
v2

2
+ U + ρU ′, Hv = ρv, (43)

where the prime denotes derivative with respect to the argument of the function.

Making use of Eq. (23) and of integration by parts one can then see that the model

equations (38)-(39) can be written in the Hamiltonian form

∂ρ

∂t
= {ρ,H}, ∂v

∂t
= {v, H}, (44)

with H and { , } given by Eqs. (40) and (41), respectively.

Clearly, a fundamental point concerns the capability of the bracket (41) of satisfying the

four properties of a Poisson bracket. Whereas it is rather straightforward to show that the

bracket (41) satisfies bilinearity, antisymmetry and the Leibniz identity, a much less trivial

point concerns the Jacobi identity. Although strategies exist in order to derive Poisson

brackets for Hamiltonian models (see, e.g. Refs. [37–39, 54, 55]), for a good fraction of

the Hamiltonian models reviewed in this article ansätze for the Hamiltonian functional and

the Poisson bracket were proposed, and the properties of the Poisson bracket were checked

a posteriori. In particular, as far as the verification of the Jacobi identity is concerned, a

result presented in Ref. [56], greatly simplifies the, otherwise usually extremely lengthy,

calculations. Indeed, from the expression of the Jacobi identity (iv) and from Eq. (14),
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it emerges that the direct verification of the Jacobi identity requires calculating functional

derivatives of the form

δ{F,G}
δχ

=
δ

δχ

 ∑
i=1,··· ,M
j=1,··· ,N

∫
Dx,v

dm+nzx,v
δF

δχi
J ij

δG

δχj
+

∑
i=M+1,··· ,N
j=1,··· ,N

∫
Dx

dnzx
δF

δχi
J ij

δG

δχj

 . (45)

The Lemma proved in Ref. [56] implies that, when evaluating the functional derivatives of

the form (45) in the expression {F, {G,H}}+{G, {H,F}}+{H, {F,G}}, only the variations

due to the dependence of J on the field variables have to be taken into account. The

remaining contributions (i.e., in the case of Eq. (45), those due to the dependencies of F

and G on the field variables) indeed cancel each other, due to the skew-symmetry of J (which

is required by the antisymmetry of the Poisson bracket).

Further simplifications in the verification of the Jacobi identity can occur if one is able

to find a new set of field variables, in terms of which the Poisson bracket takes a simplified

form. If the change of variables is invertible, verifying the Jacobi identity for the bracket in

its simplified form, is equivalent to verifiying it in its form expressed in terms of the original

set of variables. In this example, a natural invertible (given that ρ > 0) change of variables

is the following:

ρ̄ = ρ, M = ρv, (46)

where the new variables are (ρ̄,M) and where, in particular, we replaced the velocity field

with the momentum density M. Making use of the functional chain rule (29) we obtain the

expressions

δF

δv
= ρ̄

δF̄

δM
,

δF

δρ
=

M

ρ̄
· δF̄
δM

+
δF̄

δρ̄
, (47)

which, when inserted into (41), upon making use of vector identities, yield

{F,G} = −
∫
Dx

d3x (ρ (FM · ∇Gρ −GM · ∇Fρ) + M · (FM · ∇GM −GM · ∇FM)) . (48)

In Eq. (48) we omitted the overbar symbol on the quantities related to the new field

variables. The expression (48) corresponds to the Poisson bracket for a barotropic fluid but

expressed in terms of mass and momentum densities. In the Appendix A we show how
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the verification of the Jacobi identity proceeds for such bracket (and consequently for the

bracket (41)). We remark that, in terms of the new variables, the Hamiltonian (40) becomes

H(ρ,M) =

∫
Dx

d3x

(
M2

2ρ
+ ρU(ρ)

)
, (49)

and the model equations generated by the bracket (48) and the Hamiltonian (49) read

∂ρ

∂t
= −∇ ·M, (50)

∂M

∂t
= −∇ ·

(
M

M

ρ
+ pI

)
, (51)

where I is the identity matrix.

To conclude, we remark that, starting from the definition (36) and using integration by

parts, Casimir invariants C for the barotropic fluid bracket (41) have to satisfy

∇ · Cv = 0, ∇Cρ +
∇× v

ρ
× Cv = 0. (52)

Solutions of this system are given by

C1 =

∫
Dx

d3x ρ, C2 =

∫
Dx

d3xv · ∇ × v, (53)

which correspond to the total mass and to the total helicity, two quantities which are indeed

well known to be conserved by an inviscid barotropic fluid.

1. Derivation of the Eulerian noncanonical Poisson bracket from the canonical Poisson bracket

in the Lagrangian description

As mentioned above in Sec. II, the noncanonical character of Poisson brackets for fluid

theories expressed from the Eulerian viewpoint, emerges as a consequence of a reduction pro-

cess occurring when moving from the canonical description in terms of Lagrangian variables

to the description in terms of Eulerian variables.

We illustrate how this process occurs in the above treated case of a barotropic fluid. The

following description includes also the derivation of the fluid equations of motion from an

action principle. The subject is described in various references such as Refs. [38, 51].
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We find it useful to introduce the subject by recalling basic notions about canonical

Hamiltonian systems with a finite number of degrees of freedom.

As is well known, the canonical equations for a Hamiltonian system with N degrees of

freedom, are given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, · · · ,N , (54)

and can be expressed in the form

q̇i = {qi, H}, ṗi = {pi, H}, i = 1, · · · ,N , (55)

whereH(q, p) is the Hamiltonian function (where we introduced the symbols q = (q1, · · · , qN ), p =

(p1, · · · , pN )) and { , } is the canonical Poisson bracket defined as

{f, g} =
N∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (56)

for two functions f and g.

Eqs. (54) can be obtained from the N , second-order Lagrange’s equations

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, · · · ,N , (57)

which, in turn, are obtained as extremals of the action functional

S[q] =

∫ t1

t0

dt L(q, q̇). (58)

In (57) and (58), the function L(q, q̇) is the Lagrangian of the system, where t0 and t1

indicate two instants of time. The notation S[q] is to indicate that the value of the action S

depends on a path q. This path must belong to the class of curves q(t) such that q(t0) = q̄0

and q(t1) = q̄1, with q̄0 and q̄1 fixed values of q determining the end conditions.

For physical systems, the Lagrangian function usually takes the form

L = T − V, (59)

where T and V indicate the kinetic and potential energy of the system, respectively.
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The canonical Hamilton’s equations (54) can be obtained from Lagrange’s equations by

introducing the canonical momenta

pi =
∂L

∂q̇i
, i = 1, · · · ,N , (60)

and the Hamiltonian function H as Legendre transform of the Lagrangian in the following

way (provided one is able to express q̇ in terms of q and p, which leads to the issue of the

convexity of the Lagrangian L with respect to the variable q̇):

H(q, p) =
N∑
i=1

piq̇i − L(q, q̇). (61)

The above construction can be extended to the case of a field theory, in which the Lagrangian

becomes a functional of field variables. In the context of fluid models, this is the case when

the fluid motion is described in terms of Lagrangian variables. In the Eulerian description,

adopted for the models treated in this review, field variables are functions of coordinates

fixed in space. The fluid motion is then described by measuring how quantities vary in time

at fixed positions in space. According to the Lagrangian viewpoint, on the other hand, the

fluid motion is described in terms of trajectories of the flow q = q(a, t), which gives the

position, at time t, of the infinitesimal fluid element, which was at the position a at t = 0

(the condition q(a, 0) = a is thus implied).

The map q : Dx → Dx is assumed to be invertible and differentiable as many times as

required.

The evolution of the trajectories of the infinitesimal fluid parcels is determined by equa-

tions of motion that can be obtained as Lagrange’s equations following from a variational

principle, as above described. However, in this case the dynamical variables q depend on

the continuous label a ∈ Dx. Consequently, they are treated as field variables and the La-

grangian takes the form of a functional. Such functional, however, in the case of a barotropic

fluid, is still of the form (59). In particular, the kinetic and potential energy contributions T

and V correspond to the first and second term of Eq. (49), although expressed in Lagrangian

variables. We proceed then namely with expressing T and V in Lagrangian variables, be-

ginning with the latter.
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To this purpose, we introduce the relation

ρ(x, t) =

∫
Dx

d3a δ(q(a, t)− x)ρ0(a), (62)

which permits to express the mass density in the Eulerian representation, in terms of La-

grangian variables. In Eq. (62), ρ0(a) indicates the distribution of mass density at t = 0

and attributes a value of density to each value of the label a associated with an infinitesimal

fluid element.

The relation (62) can be written in another remarkable form. A property of the Dirac

delta is indeed that

δ(q(a, t)− x) =
δ(a− q−1(x, t))

J (a, t)|a=q−1(x,t)

, (63)

where J (a, t) = det(∂qi/∂aj) is the determinant of the Jacobian of the map q(a, t) at a

fixed t. Inserting (63) into (62) yields

ρ(x, t) =
ρ0(a)

J (a, t)
|a=q−1(x,t). (64)

Because J is the Jacobian of the transformation q(a), a volume element d3a is mapped into

a volume element d3x = d3q = J d3a. Using this relation in (64) yields

ρ(x, t)d3x = ρ0(a)d3a, (65)

which, correctly implies that the total fluid mass
∫
Dx
d3x ρ(x, t) remains constant. Using

(64), we can rewrite the potential energy in terms of the Lagrangian variables q(a, t) (and

possibly of their derivatives with respect to time or to the parameter a). Clearly, the

coordinates x will not appear in this representation, and the integrals will be taken with

respect to the parameter a instead. Thus, we obtain

V (q) =

∫
Dx

d3a ρ0(a)U(ρ0/J ). (66)

Note that the dependence on q enters through the dependence of J on ∂qi/∂aj.

Concerning the kinetic energy, we note that the Eulerian velocity field is related to the

flow q by
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v(x, t) = q̇(a, t)|a=q−1(x,t). (67)

Consequently, the kinetic energy in Lagrangian variables reads:

T (q) =
1

2

∫
Dx

d3a ρ0q̇
2. (68)

The Lagrangian functional then reads

L(q, q̇) =

∫
Dx

d3a

(
1

2
ρ0q̇

2 − ρ0(a)U(ρ0/J )

)
, (69)

and the action is

S[q] =

∫ t1

t0

dt

∫
Dx

d3a

(
1

2
ρ0q̇

2 − ρ0U(ρ0/J )

)
. (70)

We are now in the position for deriving Lagrange’s equations from the action (70) following

the procedure described above for a finite-dimensional system.

More precisely, Lagrange’s equations can be found as extremals of S, by setting its first

variation δS equal to zero:

δS(q; δq) ≡
∫ t1

t0

dt

∫
Dx

d3a
δS

δqi(a, t)
δqi(a, t) (71)

=

∫ t1

t0

dt

∫
Dx

d3a δql

[
−ρ0q̈l − Apl

∂

∂ap

(
ρ2

0

J 2

∂U

∂
(
ρ0
J

))] , (72)

where sum over repeated indices is understood and whereApl = (1/2)εlrsεpmn(∂qr/∂am)(∂qs/∂an)

is the cofactor of the matrix element ∂ql/∂ap. For obtaining (72), we made use of the rela-

tions

∂J

∂
(
∂qi
∂aj

) = Aji (73)

and

∂Aji
∂aj

= 0, i = 1, 2, 3. (74)

Lagrange’s equations deriving from (72) are then given by

ρ0q̈l + Apl
∂

∂ap

(
ρ2

0

J 2

∂U

∂
(
ρ0
J

)) = 0, l = 1, 2, 3. (75)
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After multiplying Eq. (75) times ∂ql/∂ai and using the relation

∂ql
∂ai

Apl = J δpi , (76)

one obtains

ρ0q̈l
∂ql
∂ai

+ J ∂

∂ai

(
ρ2

0

J 2

∂U

∂
(
ρ0
J

)) = 0, (77)

which is the dynamical equation for a 3D adiabatic fluid in Lagrangian variables. In Eulerian

variables, Eq. (77) corresponds to Eq. (39).

The Hamiltonian formulation in Lagrangian variables can then be obtained first by in-

troducing, analogously to Eq. (60), the conjugate momenta

πi(a, t) =
δL

δq̇i
= ρ0q̇i, i = 1, 2, 3, (78)

and then performing a Legendre transform. The Hamiltonian functional is obtained by

extending Eq. (61) to the continuum case and corresponds to

H(π,q) =

∫
Dx

d3a

[
πlq̇l −

(
1

2
ρ0q̇

2 − ρ0(a)U(ρ0/J )

)]
(79)

=

∫
Dx

d3a

(
π2

2ρ0

+ ρ0U

)
. (80)

The canonical Poisson bracket

{F,G} =

∫
Dx

d3a (Fq ·Gπ − Fπ ·Gq), (81)

together with the Hamiltonian (79), yields then the Hamiltonian system

q̇i = {qi, H} =
πi
ρ0

, (82)

π̇i = {πi, H} = −Api
∂

∂ap

(
ρ2

0

J 2

∂U

∂
(
ρ0
J

)) , (83)

for i = 1, 2, 3. In particular, from the relation (76), it follows that Eq. (83) is equivalent to

Eq. (77). From the Lagrangian viewpoint, then, the field equations describing the dynamics

of a barotropic fluid, are a canonical Hamiltonian system in infinite dimensions. As above

anticipated, the occurrence of a noncanonical structure in the Poisson bracket (48), emerges
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then as a consequence of the transformation from the Lagrangian to the Eulerian variables.

Such transformation is given by

ρ(x, t) =

∫
Dx

d3a δ(q(a, t)− x)ρ0(a), (84)

M(x, t) =

∫
Dx

d3a δ(q(a, t)− x)π(a, t). (85)

Eq. (84) corresponds to the already introduced Equation (62),whereas Eq. (85) relates

the fluid momentum M(x, t) in Eulerian variables, to the Lagrangian variables π(a, t) and

q(a, t). The bracket in terms of the Eulerian variables can be obtained, as above explained,

by applying the functional chain rule. The variations of the Eulerian fields are given by

δρ = −
∫
Dx

d3a ρ0(a)
∂

∂xl
δ(x− q(a, t))δql, (86)

δMm =

∫
Dx

d3a

(
δ(x− q(a, t))δπm − πm

∂

∂xl
δ(x− q(a, t))δql

)
, m = 1, 2, 3, (87)

leading to

δF =

∫
Dx

d3x

[(
−δF̄
δρ

∫
Dx

d3a ρ0(a)
∂

∂xl
δ(x− q(a, t))

− δF̄

δMm

∫
Dx

d3a πm
∂

∂xl
δ(x− q(a, t))

)
δql −

δF̄

δMm

∫
Dx

d3a δ(x− q(a, t))δπm

]
=

=

∫
Dx

d3a

(
δF

δqi
δqi +

δF

δπs
δπs

)
, (88)

for functionals F and F̄ satisfying F (q,π) = F̄ (ρ,M). The transformation from Lagrangian

to Eulerian variables in the functional derivatives gives

δF

δqi
=

∫
Dx

d3x

(
ρ0

∂

∂xi

δF̄

δρ
+ πm

∂

∂xi

δF̄

δMm

)
δ(x− q(a, t)), (89)

δF

δπi
=

∫
Dx

d3x
δF̄

δMi

δ(x− q(a, t)) =
δF

δM ′
i

, (90)

for i = 1, 2, 3. In Eq. (90), the prime on M ′
i , indicates that M ′

i depends on the parameter a.
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Making use of the expressions (89) and (90) into Eq. (81) one obtains

{F,G} =

∫
Dx

d3a

(
δF

δqi

δG

δπi
− δF

δπi

δG

δqi

)
=

∫
Dx

d3a

[∫
d3x

(
ρ0

∂

∂xi

δF̄

δρ
+ πm

∂

∂xi

δF̄

δMm

)
δḠ

δM ′
i

δ(x− q(a, t))

−
∫
Dx

d3x

(
ρ0

∂

∂xi

δḠ

δρ
+ πm

∂

∂xi

δḠ

δMm

)
δF̄

δM ′
i

δ(x− q(a, t))

]
= −

∫
Dx

d3x
(
ρ
(
F̄M · ∇Ḡρ − ḠM · ∇F̄ρ

)
+ M · (F̄M · ∇ḠM − ḠM · ∇F̄M)

)
. (91)

where use was made of integration by part. Removing the overbars from the functionals in

Eq. (91), one obtains namely the noncanonical Poisson bracket (48) for a barotropic fluid.

The transformation from Lagrangian to Eulerian variables is an example of reduction, a

procedure which permits to obtain, from a Hamiltonian system, another Hamiltonian system

with a smaller number of variables, by using symmetries of the initial system.

The case of the barotropic fluid treated above, in particular, falls in the category of

reduction on the dual of a semidirect product Lie algebra [51, 52, 57]. The symmetry group

consists of a group of diffeomorphisms on Dx, depending also on the parameter ρ0(a). The

invariance of the Hamiltonian in Lagrangian coordinates with respect to such group, leads to

the existence of a Hamiltonian reduced system, corresponding to that in Eulerian variables.

The noncanonical reduced system (48) is defined on s∗, corresponding to the dual of the Lie

algebra of the semidirect product group S = Diff(Dx)sΥ(Dx), where we indicated with

Diff(Dx) and Υ(Dx), the group of diffeomorphisms on Dx and the space of functions on Dx,

respectively.

The above derivation of the noncanonical Hamiltonian structure of a fluid model in Eu-

lerian variables, from an action principle in terms of Lagrangian variables, can be extended

to the case of various fluid plasma models. In particular, recent developments include the

derivation of noncanonical Hamiltonian structures for inertial MHD [55], gyroviscous MHD

[58, 59], extended MHD [54, 60] and relativistic MHD [61]. In spite of such progress, however,

action principle derivations for the vast majority of Hamiltonian fluid models for plasmas

are still lacking. In particular, this gap concerns most of the gyrofluid and drift-fluid models

30



treated in Secs. IV and V.

Alternatively, a canonical Hamiltonian description, in Eulerian variables, can be obtained

“inflating” the space of dynamical field variables by introducing Clebsch potentials [38].

Examples of such an approach to plasma fluid models include reduced MHD [62], ideal and

Hall MHD [63, 64], where in the latter reference, a Lagrangian approach in terms of Clebsch

variables is proposed.

III. MHD MODELS WITH HAMILTONIAN CLOSURES

The MHD description, according to which plasma is treated as a single conducting fluid, is

very frequently adopted for modelling large scale phenomena of laboratory and astrophysical

interest. In this Section, we review various closures that lead to non-dissipative MHD models

possessing a Hamiltonian structure.

In order to simplify the notation, we will not indicate the domain of the integrals and the

arguments of the functional derivatives. Because the Section will consider only fluid models,

by the notation of Sec. II, we have M = 0 and the domain is Dx = [0, 1]× [0, 1]× [0, 1] with

periodic boundary conditions.

A. Adiabatic MHD

A fundamental breakthrough concerning the Hamiltonian formulation of continuum

plasma models came with the results presented in Refs. [49, 56]. In these references, it

was shown that the equations of ideal MHD for a plasma following an adiabatic equation

of state, admit a Hamiltonian formulation. Such equations, in standard normalized Alfvén
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units, are given by

∂ρ

∂t
+∇ · (ρv) = 0, (92)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p− 1

ρ
(∇×B)×B = 0, (93)

∂B

∂t
−∇× (v ×B) = 0, (94)

∂s

∂t
+ v · ∇s = 0, (95)

where ρ is the plasma mass density, v the velocity field, B the magnetic field and s the

entropy per unit mass. The pressure p is still related to the internal energy by Eq. (42).

However, here it is assumed that the internal energy depends on the entropy as well, so

that U = U(ρ, s). In particular, a “local” temperature T of the plasma could be defined by

the relation T = ∂U/∂s. The adiabatic assumption, by definition, neglects the heat flow.

Clearly, the following discussion includes the barotropic closure as a particular case, which

is retrieved by assuming U = U(ρ).

In addition to the continuity and velocity equations (92) and (93), the system includes

also the induction equation (94) and the evolution equation for the entropy (95). Note

that the entropy is simply advected by the flow. This is a consequence of having neglected

the dissipation in the model and of having assumed an adiabatic closure, so that no heat

can be exchanged between different portions of plasma. In the Lagrangian description, this

corresponds to assuming the entropy per unit mass be a function of the particles labels [38].

Following Ref. [56], we recall that, in terms of the set of field variables (ρ,v,B, s), the

system (92)-(95) admits a Hamiltonian formulation with Hamiltonian functional

H(ρ,v,B, s) =

∫
d3x

(
ρ

2
v2 + ρU +

B2

2

)
, (96)

and Poisson bracket

{F,G} = −
∫
d3x

(
Fρ∇ ·Gv −Gρ∇ · Fv +

∇× v

ρ
·Gv × Fv

+
∇s
ρ
· (FsGv − FvGs) +

1

ρ
(Fv · [∇GB]−Gv · [∇FB]) ·B (97)

+B ·
([
∇
(
Fv

ρ

)]
·GB −

[
∇
(
Gv

ρ

)]
· FB

))
,
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where a · [M] ·b ≡ aiMijbj (with sum over repeated indices understood), for two vector a,b

and a matrix M.

Assuming ∇ · B = 0, the Hamiltonian (96) and the Poisson bracket (97) yield namely

Eqs. (92)-(95).

We remark that the Hamiltonian (96) has the same form of the Hamiltonian (40), but

with the additional contribution of the last term, corresponding to the magnetic energy.

Also, the Poisson bracket (97) can be seen as the sum of the Poisson bracket (41), with the

terms corresponding to the second and third line of Eq. (97), which introduce the evolution

of the magnetic field and of the entropy.

The Poisson bracket (97) admits the following family of functionals

C =

∫
d3x ρf(s), (98)

as Casimir invariants. In Eq. (98), f is an arbitrary function. Among such functionals we

recognize the total mass
∫
d3x ρ and the total entropy

∫
d3x ρs. Casimir invariants for the

Poisson bracket of adiabatic MHD in terms of the magnetic vector potential are discussed

in Refs. [41, 65, 66].

The extension from the MHD to the multi-fluid Hamiltonian description of plasmas fol-

lowing adiabatic equations of state was carried out in Ref. [67].

A formulation of the Poisson bracket for adiabatic MHD in terms of the magnetic vector

potential was given in Ref. [68].

B. Incompressible MHD : Dirac bracket

A further closure, which is commonly adopted in the MHD description, corresponds to

incompressibility, i.e. assuming that the velocity vector field satisfies ∇ · v = 0. This is,

for instance, appropriate [69], for slow phenomena, if the characteristic plasma velocity is

much lower than the characteristic sound speed or Alfvén speed, depending on whether the

plasma has β � 1 or β � 1, respectively, where we indicated with β the ratio between

the characteristic internal pressure and magnetic pressure. In particular, we will consider
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the case in which not only v is divergence-free but also the mass density is uniform and

constant.

A procedure for imposing the incompressibility closure on Hamiltonian adiabatic MHD,

so as to preserve the Hamiltonian character of the model, making use of Dirac’s theory

of constrained Hamiltonian systems was presented in Ref. [70]. The general theory of

constrained Hamiltonian systems formulated by Dirac is described in References such as

[71–74], and a previous application to fluid models for plasmas can be found in Ref. [75].

Here we simply sketch the main ideas about the procedure and we refer to the aforementioned

publications for complete descriptions of the theory.

As mentioned above, Dirac’s theory applies when it is needed to enforce constraints into

a Hamiltonian system, in such a way that the constrained system remain Hamiltonian.

Essentially, Dirac’s theory provides a procedure to build a constrained Hamiltonian system

possessing, as Hamiltonian, the Hamiltonian of the unconstrained system, but a new Poisson

bracket (which we refer to as Dirac bracket) which accounts for the imposed constraints.

In the context of a system of partial differential equations with field variables depending

on a coordinate x, such as Eqs. (92)-(95), one can consider imposing K local constraints

φα(x) = 0, with α = 1, · · · , K ( global constraints, which are independent of x, could be

imposed as well but are less pertinent to the present scope ). Such constraints, in general,

contain operators acting on the field variables.

The Dirac bracket is constructed from a Poisson bracket { , }, first by determining the

matrix C, whose elements are defined by

Cαβ(x,x′) = {φα(x), φβ(x′)}. (99)

Note that Cαβ(x,x′) = −Cβα(x′,x). Subsequently, one determines (if they exist) the inverse

elements C−1
αβ (x,x′) defined from the relations∫

d3x′C−1
αβ (x,x′)Cβγ(x

′,x′′) = δαγδ(x− x′′), (100)

so that C−1
αβ (x,x′) = −C−1

βα (x′,x).
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If all the elements C−1
αβ (x,x′) exist, so that the matrix C is invertible in the sense described

above, then the Dirac bracket { , }∗ is defined by

{F,G}∗ = {F,G} −
∫
d3x

∫
d3x′ {F, φα(x)}C−1

αβ (x,x′){φβ(x′), G}. (101)

It can be shown that the expression in Eq. (101) satisfies all the four properties of a Poisson

bracket.

Moreover, making use of Eq. (100), it is relatively easy to see that the local functionals

φα(x) are Casimir invariants for the Dirac bracket. Therefore, the constraints φα = 0, for

α = 1, · · · , K are all automatically satisfied by a dynamics generated with the Dirac bracket

(101). Denoting by H(χ1, · · · , χN) the Hamiltonian functional of the unconstrained system,

the Hamiltonian constrained equations of motion will be generated by the Dirac bracket

(101) and the Hamiltonian functional H, and they will read

∂χi(x)

∂t

= {χi(x), H} −
∫
d3x′

∫
d3x′′ {χi(x), φα(x′)}C−1

αβ (x′,x′′){φβ(x′′), H}, i = 1, · · · , N.

(102)

In Eq. (102) we found it useful to emphasize the specific local dependence of the field

variables and of the functions φα.

The first term on the right-hand side of Eq. (102) corresponds to the term generat-

ing the dynamics of the unconstrained system, whereas the second term is the additional

contributions accounting for the constraints.

In case the K constraints do not yield an invertible matrix C, then further secondary

constraints have to be added. Such secondary constraints can be found from the condition

that the primary K constraints be preserved by the dynamics.

Considering now the specific case of incompressible MHD, we impose as primary con-

straint φ1(x) = ρ(x) − ρ0 = 0, where ρ0 is a uniform constant. Using the bracket (97) it

follows that C11(x,x′) = 0, so that the corresponding matrix C is not invertible and sec-

ondary constraints must be introduced. From the continuity equation it follows that the
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first constraint is preserved by the dynamics, i.e. ∂tφ1(x) = 0, if ∇ · v(x) = 0. Conse-

quently we set as secondary constraints φ2(x) = ∇ · v(x) = 0 (actually, the constraint is

that ∇ · v be time-independent and ∇ · v = 0 is the particular initial condition of interest

for incompressibility). This leads to

C11(x,x′) = 0, C12(x,x′) = ∆δ(x− x′),

C21(x,x′) = −∆δ(x− x′), C22(x,x′) = ∇ · (ρ−1(∇× v)×∇δ(x− x′)).
(103)

It is now possible to find the inverse elements, which read

C−1
11 (x,x′) = ∆−1∇ · (ρ−1(∇× v)×∇∆−1δ(x− x′)), C−1

12 (x,x′) = −∆−1δ(x− x′),

C−1
21 (x,x′) = ∆−1δ(x− x′), C22(x,x′) = 0.

(104)

Making use of the inverse elements (104), from Eq. (101) it is now possible to construct the

Dirac bracket, which, after some rearrangements, can be formulated as

{F,G}∗ =

∫
d3x (ρ−1(∇× v) · (F̄v × Ḡv)− ρ−1∇s · (FsḠv − F̄vGs)

− (ρ−1F̄v · [∇GB]− ρ−1Ḡv · [∇FB]) ·B−B · ([∇(ρ−1F̄v)] ·GB − [∇(ρ−1Ḡv)] · FB)).

(105)

In Eq. (105) we introduced the constrained functional derivatives F̄v, defined as F̄v = P ·Fv,

where P is the projector on the space of divergence-free vector fields. Such projector acts

on a generic vector field a as P · a = a−∇∆−1∇ · a. It is easy to verify that ∇ · (P · a) = 0

and that P2 = P .

By comparing Eq. (105) with Eq. (97) one realizes that the Dirac bracket for an incom-

pressible plasma corresponds to the Poisson bracket for an adiabatic plasma, but with the

functional derivatives replaced by the constrained functional derivatives. The possibility of

expressing a Dirac bracket with the same Poisson form of the original system, but using

constrained functional derivatives, was shown in Ref. [76].

The equations of motion resulting from the Dirac bracket (105) and the Hamiltonian (96)
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correspond to

∂v

∂t
+ (v · ∇)v +∇p− (∇×B)×B = 0, (106)

∂B

∂t
−∇× (v ×B) = 0, (107)

∂s

∂t
+ v · ∇s = 0, (108)

where one clearly supposes that the initial conditions satisfy ∇ · v = 0.

In Eq. (106) the pressure corresponds to

p = −v
2

2
−∆−1∇ · ((∇× v)× v) + ∆−1∇ · ((∇×B)×B). (109)

Unlike the adiabatic case, in the incompressible case, the pressure does not follow from the

evolutions of the density and of the internal energy, but evolves in such a way that the

condition ∂t∇·v = 0 is satisfied at all times. We also remark that, because of the constraint

ρ − ρ0 = 0, the mass density is no longer a dynamical variable, so that the set of field

variables for incompressible MHD reduces to (v,B, s).

The family of Casimirs (98) of adiabatic MHD degenerates then into the family

C =

∫
d3x f(s), (110)

with f arbitrary function. Also, the role of the internal energy term in the Hamiltonian (96)

becomes superfluous, and the dynamics is generated by the kinetic and magnetic energy

only.

C. Double adiabatic closure

For nearly collisionless plasmas in the presence of a strong magnetic field, anisotropy

in the pressure tensor can become significant. An anisotropic extension of the adiabatic

closure of Sec. III A is provided by the well known double adiabatic closure presented by

Chew, Goldberger and Low in Ref. [36]. The equations of the MHD model with double
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adiabatic closure can be written as

∂ρ

∂t
+∇ · (ρv) = 0, (111)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇ · p− 1

ρ
(∇×B)×B = 0, (112)

∂B

∂t
−∇× (v ×B) = 0, (113)

∂s

∂t
+ v · ∇s = 0. (114)

Equations (111)-(114) coincide with Eqs. (92)-(95), apart from the closure term. Indeed,

the gradient of the scalar pressure of Eq. (93) is replaced by the divergence of the pressure

tensor p in Eq. (112). The pressure tensor is defined as

p = p⊥I +
p‖ − p⊥
B2

BB, (115)

where p⊥ and p‖ indicate the pressures perpendicular and parallel to the magnetic field,

respectively. Supposing that two relations

f⊥(p⊥/(ρB), s) = 0, f‖(p‖B
2/ρ3, s) = 0 (116)

exist, for two functions f⊥ and f‖, then the perpendicular and parallel pressures obey the

evolution equations

d

dt

(
p⊥
ρB

)
= 0,

d

dt

(
p‖B

2

ρ3

)
= 0, (117)

where d/dt = ∂t + v · ∇ is the time derivative in a frame moving with the bulk plasma

velocity.

The MHD system with double adiabatic closure is also amenable to a Hamiltonian for-

mulation, which was provided in Ref. [56]. Eqs. (111)-(114) can indeed be generated from

the same Poisson bracket (97) of adiabatic MHD and from the Hamiltonian (96) but upon

extending the dependence of the internal energy U to the amplitude of the magnetic field,

so that U = U(ρ, s, B). Introducing the relations

p⊥ = ρ2∂U

∂ρ
+ ρB

∂U

∂B
, p‖ = ρ2∂U

∂ρ
, (118)
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one obtains namely the MHD system with the double adiabatic closure. Because adiabatic

and double adiabatic MHD share the same Poisson bracket, they also share the same Casimir

invariants. We remark that a Hamiltonian relativistic extension of the double adiabatic MHD

system was presented in Ref. [77].

D. Barotropic extended MHD

The usual MHD description is valid on scales L� di � de, where di and de correspond

to the ion and electron skin depths, respectively. The fluid description of phenomena such

as turbulence and magnetic reconnection can, however, often require the investigation of

smaller scales. Then more refined versions of MHD become desirable. In Ref. [78], a model,

which we denote as extended MHD, was presented. This model, like MHD, still assumes

quasi-neutrality, but it accounts also for terms depending on ion and electron inertia, the

remnants of the two-fluid description from which MHD is derived. Extended MHD provides

a generalization of MHD, that applies also to characteristic scales L ∼ de. Although the

derivation of extended MHD dates back to more than half a century ago, the investigation

of its conservation laws and Hamiltonian structure in the non-dissipative limit, is recent.

Energy conservation properties for extended MHD were indeed described in Ref. [79] and

its Hamiltonian formulation was presented in Ref. [80]. The extended MHD model treated

in Ref. [80] assumes a barotropic closure, thus showing that the Hamiltonian character of

barotropic MHD survives an extension accouting for electron and ion scales. In normalized

Alfvén units, with lenghts normalized by L, the barotropic extended MHD model reads

∂ρ

∂t
+∇ · (ρv) = 0, (119)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p− 1

ρ
(∇×B)×B∗ + d2

e∇
(

(∇×B)2

2ρ2

)
= 0, (120)

∂B∗

∂t
−∇× (v ×B∗) + di∇×

(
∇×B

ρ
×B∗

)
− d2

e∇×
(
∇×B

ρ
×∇× v

)
= 0, (121)

where

B∗ = B + d2
e∇×

(
∇×B

ρ

)
. (122)
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In Eq. (121) one can find the contributions due to ion and electron inertia, associated with

the constants di and de, respectively. These lead to a generalized Ohm’s law, for which the

magnetic flux is no longer frozen into the plasma. The contributions associated with de in

the velocity equations guarantee energy conservation. In the limit de = di = 0 we recover

the barotropic limit of Eqs. (92)-(95) with p = p(ρ). In the limit de = 0, on the other hand,

one retrieves barotropic Hall MHD.

The Hamiltonian structure of Eqs. (119)-(121) can be formulated adopting (ρ,v,B∗) as

set of dynamical field variables. The Hamiltonian functional is given by

H(ρ,v,B∗) =

∫
d3x

(
ρ

2
v2 + ρU +

B2

2
+ d2

e

(∇×B)2

2ρ

)
, (123)

where U = U(ρ) is the internal energy and where B has to be intended as the result of a

symmetric operator acting on B∗. In particular, one has HB∗ = B.

The Poisson bracket for barotropic extended MHD, on the other hand, reads

{F,G} = −
∫
d3x

(
Fρ∇ ·Gv −Gρ∇ · Fv +

∇× v

ρ
·Gv × Fv

−
(

B∗

ρ
· (Fv × (∇×GB∗)) +

B∗

ρ
· ((∇× FB∗)×Gv)

)
+di

(
B∗

ρ
· ((∇× FB∗)× (∇×GB∗))

)
−d2

e

(
∇× v

ρ
· ((∇× FB∗)× (∇×GB∗))

))
.

(124)

In the limit de = di = 0, the Hamiltonian (123) and the Poisson bracket (124) reduce to

those of Ref. [49] for ideal MHD in the barotropic limit. In the limit de = 0, on the other

hand, one retrieves the Hamiltonian structure of Hall MHD [64, 81, 82]. An action principle

derivation of the extended MHD Poisson bracket was provided in Refs. [54, 60].

If one is allowed to introduce an extended vector potential A∗, such that B∗ = ∇×A∗,

the Poisson bracket (124) admits three independent Casimir invariants, which can be written

as

C1 =

∫
d3x ρ, C± =

∫
d3xP∗± · (∇×P∗±). (125)

In Eq. (125), the vector fields P∗± indicate generalized canonical helicities and are defined
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by

P∗± = v + λ±A∗, (126)

where the constants λ± correspond to λ± = (−di ±
√
d2
i + 4d2

e)/(2d
2
e). The topological

meaning of the invariants C± was investigated in Ref. [83].

The Hamiltonian formulation of the relativistic versions of extended MHD was recently

presented in Ref. [61]. In Ref. [84], on the other hand, it was shown that the two-dimensional

incompressible reduction of extended MHD still preserves a Hamiltonian structure. Here,

the two-fluid nature of the corresponding Casimir invariants was described in the small mass

ratio limit d2
e/d

2
i � 1. On the other hand, as pointed out in Ref. [80], taking de → 0 (i.e.

taking the limit from extended to Hall MHD) or setting de = 0 and taking di → 0 (i.e. taking

the limit from Hall MHD to ideal MHD), leads to singularities in the Casimir invariants C±.

With regard to the limit toward ideal MHD, we recall that it implies the removal of

a singular perturbation, associated with the ion skin depth di. Indeed, as pointed out in

Ref. [85], the removal of two-fluid effects which occurs in ideal MHD, leads to a qualitative

change in the system. This reflects, for instance, in the equilibrium equations for the 2D

incompressible case which, in ideal MHD, exhibit the Alfvénic singularity when v = ±B.

This corresponds to a change in the character of the equations from elliptic to hyperbolic.

Hall MHD, on the other hand, admits two branches of equilibrium solutions, one of which,

existing only for di 6= 0, has no singularities. This allows for a smooth transition from sub-

Alfvénic to super-Alfvénic flows. Also, assuming a decomposition of the equilibrium fields

in the form

v = ẑ ×∇φ(x, y) + vz(x, y)ẑ, B = ∇ψ(x, y)× ẑ + bz(x, y)ẑ, (127)

it turns out that, for ideal MHD, at equilibrium one has

φ = G(ψ), (128)

where G is an arbitrary function. This implies that the perpendicular velocity is collinear

with the perpendicular magnetic field at equilibrium. With regard to Hall MHD, one of the
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two branches of equilibrium solutions exhibits the same feature. On the other hand, for the

regular branch, the equilibrium flow must satisfy

φ = Y (ψ)− dibz, (129)

where Y is an arbitrary function. The presence of the Hall term allows then also for flows

and magnetic fields not collinear in the perpendicular plane.

This difference between ideal and Hall MHD in the equilibrium configuration reflects

the difference in the corresponding Casimir invariants. Indeed, equilibrium equations for

noncanonical Hamiltonian systems can be obtained by extremizing [38, 41] the functional

H +
∑

iCi, with H indicating the Hamiltonian and Ci the Casimir invariants of the corre-

sponding system. Equilibrium equations such as (128) and (129) depend then on the Casimir

invariants of the system. In Ref. [85] is it shown how such equilibrium relations emerge also

from integration of the hyperbolic equations of the equilibrium system. Finally, we remark

that interesting relations between the Poisson brackets for extended MHD, Hall MHD and

inertial MHD (which corresponds to the extended MHD system with di = 0) were presented

in Ref. [86].

IV. LOW FREQUENCY REDUCED FLUID MODELS WITH QUADRATIC NON-

LINEARITIES AND STRONG GUIDE FIELD ASSUMPTION

Although fluid models such as MHD or two-fluid plasma equations offer simplifications

with respect to the original Vlasov-Maxwell system, they still consist of sets of nonlinear

equations evolving a relatively high number of field variables. Further simplifications for

specific applications are then desirable. Motivated mainly by the need to describe the low-

frequency dynamics of tokamak plasmas, a number of reduced fluid models were derived in

the last decades. These models evolve N fluid field variables (χ1, · · · , χN) with N typically

less than the number of field variables involved in ordinary fluid models (note, for instance,

that N = 8 for adiabatic MHD in Sec. III A). These reduced models also assume the

presence of a magnetic field B = B0 + B̃, with |B0| � |B̃|, where B0 is a time-independent
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component and B̃ is a time-dependent perturbation. This assumption serves to model the

presence of a strong guide field in one direction, as it occurs for instance with the toroidal

component of the magnetic field in tokamaks. Variations along the direction of the guide

field are assumed to be much weaker than the variations in the plane perpendicular to B0. In

general, the field variables will correspond to time-dependent fluctuations of physical fields.

Their amplitude will be supposed to be small with respect to a time-independent equilibrium

value. Time variations are also supposed to be slow, with respect to a characteristic time

scale. In this Section we will consider for simplicity reduced models formulated in a slab

geometry with a Cartesian coordinate system and assume that the strong guide field is in

the z direction. Assuming that the field variables χ1, · · · , χN are normalized, and that time

and distances are also normalized with respect to characteristic time and length scales, the

above assumptions, characterizing the reduced field models treated in this Section, can be

formulated more quantitatively in the following way:

∂t ∼ ∂z ∼ χ1 ∼ χ2 ∼ · · · ∼ χN ∼ ε� 1,

∂x ∼ ∂y ∼ 1.
(130)

All the reduced models considered in this article retain only quadratic nonlinearities, that is

terms of order ε2, on the basis of the ordering (130) (we remark, however, that the derivation

of the low-β reduced MHD model treated in Sec. IV A 1 does not require all the assumptions

of Eq. (130)).

The term reduced associated with the fluid models treated in this Section refers then to a

number of simplifying assumptions (low frequency, weak nonlinearities and weak gradients

along the guide field direction). On the other hand, although reduced in this sense, such

models, as will be seen in this Section, are amenable to several extensions, which make them

a valuable and relatively simple tool for implementing, for instance, finite Larmor radius

effects, higher order closures and gyrofluid descriptions.

Because we are still dealing with purely fluid models, we will consider the case M = 0

and, in general, the same spatial domains of Sec. III, although, in some cases, when referring

to the two-dimensional geometry, we could consider, as domain of the spatial coordinates of
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the fields, Dx = [0, 1]× [0, 1] with periodic boundary conditions [87].

With regard to the Hamiltonian structure, all such reduced models share a common form

of Hamiltonian functional and Poisson bracket, in the appropriate set of field variables. In

particular, Hamiltonian functionals are quadratic forms

H(χ1, · · · , χN) =< χ|Hχ >=
N∑

i,j=1

∫
d3xχiHijχj, (131)

where H is a linear, typically symmetric operator, with elements Hij, with i, j = 1, · · · , N .

The Poisson brackets, on the other hand, are of the general form

{F,G} =
N∑

i,j,k=1

W ij
k

∫
d3xχk[Fχi

, Gχj
] +

N∑
i,j=1

Aij
∫
d3xFχi

Gχj

∂z
, (132)

where W ij
k and Aij are constants, and where we introduced the canonical bracket

[f, g] =
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
, (133)

for two functions f and g. Poisson brackets of the form (132) can be built by extending

Lie-Poisson brackets built on the dual of a Lie algebra [88]. In particular, the set of smooth

functions on Dx, equipped with the Lie bracket (133), forms a Lie algebra that can be used

as starting block to build Poisson brackets of the form (132). Not all the operations of

the form (132) are Poisson brackets, though. Indeed, whereas bilinearity and the Leibniz

identity are automatically satisfied, antisymmetry and the Jacobi identity impose restrictions

on the coefficients W ij
k and Aij. The results presented in Refs. [88, 89] provide, however, a

practical procedure to verify if bilinear operations of the form (132) are Poisson brackets.

Such procedure begins with considering the form (132) with Aij = 0 for all i and j, therefore

considering only the first term on the right-hand side of Eq. (132). Restricting to a two-

dimensional (2D) domain, this term can serve to build the Poisson bracket for the two-

dimensional reduction of the model, where the derivatives along the guide field (i.e. along

z) are totally neglected. In this limit, Ref. [88] shows that antisymmetry is verified if and

only if W ij
k = W ji

k for all i, j, k. Moreover, it also shows that the Jacobi identity is satisfied

if and only if the N matrices W (j), defined by

[W (j)]ik = W ij
k , j = 1, · · · , N, (134)
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pairwise commute. Once it is verified that set of coefficients W ij
k satisfy these properties,

antisymmetry of the total bracket (132) is guaranteed if Aij = Aji, for all i and j, and the

Jacobi identity is verified if the coefficients W ij
k and Aij satisfy the relations

ArsW ij
r = ArjW si

r = AriW js
r , (135)

where the sum over the repeated index r is understood.

This suggests an effective procedure for identifying a Hamiltonian structure for a given

reduced fluid model, one that was actually often adopted for the reduced models presented in

this Section. Indeed, if a conserved functional of the form (131) is found for a given model,

this can be used as candidate Hamiltonian. Combining this functional with a bracket of

the form (132), one can see if the model equations can be obtained from the expression

(10). If this is the case, then the above described results of Refs. [88, 89] can be used to

check that antisymmetry and the Jacobi identity are satisfied, or to constrain the choice of

the coefficients W ij
k and Aij (there could be different sets of coefficients yielding the same

equations of motion using the same Hamiltonian and, among these one should find the set

for which the Jacobi identity is satisfied).

Different closures have been adopted in order to obtain reduced models and, due to the

relative simplicity of such models, a number of sophisticated closure relations were tested

on reduced models. In the next part of the Section we review reduced models with different

closure schemes, for which the existence of a Hamiltonian structure has been proved.

A. Drift-fluid models

In this part of the Section we treat reduced models that, contrary to finite-Larmor-radius

and gyrofluid models, neglect electron and ion finite Larmor radius effects. Such “drift-fluid

models” can be formally derived from plasma two-fluid equations by means of so-called drift

approximation [6, 30, 31, 90].
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1. Low-β reduced MHD

Although originally derived by means of an asymptotic expansion from MHD [26], we find

it is more reasonable to include low-β reduced MHD in the category of drift-fluid models,

in the sense that its equations can be formally obtained as a limit of fluid models derived

from the drift approximation. This model represents a paradigmatic and relatively simple

example of Hamiltonian reduced fluid model, in the sense described above.

In a simplified slab geometry, the low-β reduced MHD equations read

∂ψ

∂t
+ [φ, ψ] +

∂φ

∂z
= 0, (136)

∂ω

∂t
+ [φ, ω] +∇‖∆⊥ψ = 0, (137)

where the operators ∆⊥ and ∇‖ are defined by

∆⊥f =
∂2f

∂x2
+
∂2f

∂y2
, ∇‖f = −[ψ, f ] +

∂f

∂z
, (138)

for a function f . In Eqs. (136)-(137), the scalar fields ψ(x, t) and φ(x, t) correspond to

the magnetic flux function and to the stream function, and are related to the magnetic and

velocity fields by the relations B = ∇ψ × ẑ + B0ẑ and v = ẑ ×∇φ, respectively, where B0

is the amplitude of the guide field, which is uniform and constant, and ẑ is the unit vector

along the z direction (analogous notation will be used for unit vectors along x and y). The

field ω = ẑ · ∇× v = ∆⊥φ, on the other hand, corresponds to the vorticity. From Ampère’s

law it also follows that ∆⊥ψ is related to the parallel current density J by the relation

J = −∆⊥ψẑ. At the level of approximation at which the low-β reduced MHD equations are

valid, the closure corresponds to that for a planar incompressible fluid. The simplifications

introduced by the reduction are, however, evident if one compares Eqs. (136)-(137) with

the incompressible full MHD equations (106)-(108).

The Hamiltonian formulation of Eqs. (136)-(137) dates back to Ref. [62]. Adopting

(ψ, ω) as set of field variables, the Hamiltonian of the model is given by

H(ψ, ω) =
1

2

∫
d3x (|∇⊥φ|2 + |∇⊥ψ|2), (139)
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where we introduced the perpendicualr gradient operator∇⊥ defined by∇⊥f = ∂xfx̂+∂yfŷ.

Making use of an integration by parts it can be seen that the Hamiltonian (139) has the

form (131). The form (139), on the other hand, is more perspicuous from the physical point

of view, for it shows that the total conserved energy is given by the sum of the kinetic

and magnetic energies, corresponding to the first and second term of (139), respectively

(the contribution of the uniform and constant guide field component is irrelevant for the

expression of the total energy).

The Poisson bracket, on the other hand, reads

{F,G} =

∫
d3x

(
ω[Fω, Gω] + ψ([Fψ, Gω] + [Fω, Gψ]) + Fω

∂Gψ

∂z
+ Fψ

∂Gω

∂z

)
, (140)

and is clearly of the form (132).

Upon integrating by parts and making use of the symmetry of the operator ∆⊥, with

the prescribed boundary conditions, one obtains that Hω = −φ and Hψ = −∆⊥ψ. One

can then verify that the Hamiltonian (139) and the Poisson bracket (140) yield namely Eqs.

(136)-(137).

Casimir invariants of the Poisson bracket (140) are given by

C1 =

∫
d3xψ, C2 =

∫
d3xω, (141)

corresponding to total magnetic flux and vorticity, respectively. From the point of view

of the Casimir invariants a more interesting situation occurs in the two-dimensional limit.

Indeed, if one restricts to a domain described by coordinates x = (x, y) ∈ Dx ⊆ R2, so

that, in practice, the terms in (140) involving partial derivatives along z are absent, Casimir

invariants evolve to two infinite families, given by

C1 =

∫
d2x C(ψ), C2 =

∫
d2xωG(ψ), (142)

where C and G are arbitrary functions. We remark that C1 expresses magnetic flux conser-

vation, wheres C2 includes the cross-helicity as a particular case.

The emergence of infinite families of Casimir invariants when imposing translational
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symmetry along the z direction is a feature common to all the reduced models treated in

this Section.

2. Isothermal two-field model with electron inertia

Motivated by the investigation of magnetic reconnection driven by electron inertia, the

following two-field reduced model was proposed [91–93]:

∂ψe
∂t

+ [φ, ψe]− ρ2
s[ω, ψ] +

∂

∂z
(φ− ρ2

sω) = 0, (143)

∂ω

∂t
+ [φ, ω] +∇‖∆⊥ψ = 0. (144)

In Eqs. (143)-(144), ψe = ψ−d2
e∆⊥ψ corresponds to the electron canonical momentum, and

de and ρs indicate the normalized electron skin depth and sonic Larmor radius, respectively.

In dimensional form, these two constants correspond to de = c(me/(4πn0e
2))1/2 and ρs =

c(TeM/(e2B2
0))1/2, where c is the speed of light, me and M the electron and ion mass,

respectively, e the proton charge and n0 and Te the uniform equilibrium particle density and

electron temperature. It follows then that the terms associated with the coefficients d2
e and

ρ2
s in Eqs. (143)-(144) are proportional to the electron mass and temperature, respectively.

Comparing Eqs. (143)-(144) with Eqs. (136)-(137), one sees that the isothermal model with

electron inertia can be formally seen as an extension of reduced MHD accounting for effects

of electron inertia and temperature. The stream function φ in the model (143)-(144) can

actually be identified with a normalized electrostatic potential and corresponds to the stream

function of the E×B velocity. Both models are valid in the low-β approximation, although

one should not forget that, in spite of the formal correspondences between the two models,

reduced MHD was obtained from the MHD description, whereas the isothermal model with

electron inertia is actually a two-field reduction of a more general three-field model [30],

derived from the two-fluid plasma description in the drift approximation. In particular, for

such two-field model, the β parameter refers only to the electron internal pressure, for ions

are assumed to be cold.

The closure of the model consists indeed in imposing isothermal electrons, cold ions and
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a proportionality between electron density and E × B vorticity fluctuations. In the cold

electron limit ρs = 0, one retrieves the so called inertial MHD [55, 94]. The terms associated

with electron inertia, on the other hand, break the magnetic frozen-in condition and allow

for magnetic reconnection. If such terms are neglected, the magnetic field is again frozen-in

but in a velocity field given by the sum of the E×B and electron diamagnetic velocities.

The Hamiltonian structure of the model consists of the Hamiltonian functional

H(ψe, ω) =
1

2

∫
d3x (|∇⊥φ|2 + |∇⊥ψ|2 + d2

e|∆⊥ψ|2 + ρ2
sω

2), (145)

and of the Poisson bracket

{F,G} =

∫
d3x

(
ψe([Fψe , Gω] + [Fω, Gψe ]) + ω(d2

eρ
2
s[Fψe , Gψe ] + [Fω, Gω]) + Fω

∂Gψe

∂z
+ Fψe

∂Gω

∂z

)
.

(146)

In the expression for the Hamiltonian one can notice the additional contributions due to

the parallel kinetic energy and to the internal energy, corresponding to the third and fourth

terms of Eq. (145), respectively.

Concerning the Poisson bracket, C1 =
∫
d3xψe and C2 =

∫
d3xω are Casimir invariants

for (146). As above anticipated, in the two-dimensional limit, two infinite families of Casimir

invariants emerge, corresponding to

C1 =

∫
d2x C+(G+), C2 =

∫
d2x C−(G−) (147)

where C± are arbitrary functions and where we introduced the fields

G± = ψe ± deρsω. (148)

By making use of the functional chain rule described in Sec. II, one can see that the two-

dimensional version of the Poisson bracket (146), when expressed in terms of the fields

(G+, G−), instead of (ψe, ω), takes the simplified form

{F,G} = 2deρs

∫
d2x (G+[FG+ , GG+ ]−G−[FG− , GG− ]). (149)

A generic feature of the class of Hamiltonian reduced fluid models treated in this Section is

the existence of linear combinations (in this case, the fields G±) of the original field variables,
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in terms of which the Poisson bracket reduces to its simplest form. We refer to such field as

to normal fields. Normal fields are typically suggested, as in this case, by the expression of

the Casimir invariants. An important feature of normal fields is that they also simplify the

model equations, putting in evidence properties of the model otherwise difficult to perceive

in the original formulation. In the specific case, the model equations (143)-(144), when

written in terms of the normal fields in the 2D limit, read

∂G+

∂t
+ [φ+, G+] = 0, (150)

∂G−
∂t

+ [φ−, G−] = 0, (151)

where

φ± = φ± ρs
de
ψ. (152)

The reformulation of the model in terms of normal fields shows that the model actually

expresses the advection of two Lagrangian invariants (the normal fields G±) by means of

generalized incompressible velocity fields v± = ẑ×∇φ± associated with the stream functions

φ±. Topological conservation laws then exist, which are alternative to that associated with

the magnetic frozen-in condition and that is violated by electron inertia. More precisely, in

this case, by virtue of Eqs. (150)-(151), the contour lines of the normal fields G± will not

be allowed to reconnect during the evolution of the system. This argument was used in a

number of numerical investigations [91, 92, 95–98] of magnetic reconnection, to explain the

formation of small scale structures and the saturation of magnetic islands in a dissipationless

process.

3. Four-field model with electron inertia

A Hamiltonian extension of the two-field model of Sec. IV A 2, accounting for a more

refined closure and including parallel ion velocity is given by the following system, which we
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denote as the four-field model with electron inertia (FFEI) :

∂ψe
∂t

+ [φ, ψe] + dβ∇‖Z +
∂φ

∂z
= 0, (153)

∂ω

∂t
+ [φ, ω] +∇‖∆⊥ψ = 0, (154)

∂Z

∂t
+ [φ, Z]− cβ∇‖v − dβ∇‖∆⊥ψ = 0, (155)

∂v

∂t
+ [φ, v]− cβ∇‖Z = 0. (156)

The 2D version of this model was derived in Ref. [31] and its 3D extension in Ref. [89].

Two additional field variables appear, with respect to the two-field model (143)-(144). The

field v corresponds to the parallel bulk velocity. On the other hand, in order to understand

the meaning of the field Z, one has to recall that, in this four-field model, the magnetic

field is assumed to be of the form (up to terms of the order ε2) B = B0ẑ +∇ψ × ẑ + cβZẑ.

Consequently Z represents a perturbation of the magnetic field along the direction of the

guide field. This perturbation is multiplied times a constant coefficient cβ, defined as cβ =√
β/(1 + β), where β is associated with the equilibrium electron pressure. The second

coefficient appearing in the system is dβ = dicβ.

With regard to the closure relation, FFEI still assumes cold ions as does the two-field

model. On the other hand, it goes beyond the isothermal closure for the electron fluid.

Indeed, in normalized units, the model assumes electron pressure is of the form p = p0+B0p1,

where p0 is the constant uniform equilibrium pressure and p1 = p1(x, t) is a time dependent

pressure perturbation, supposed to satisfy an adiabatic equation of state. The pressure

perturbation field is, however, eliminated, by imposing the pressure balance relation p1 '

−cβZ. We remark that, contrary to the two-field model, here the value of β is not restricted

to be much less than unity. On the other hand, for β � 1, one has cβ ∼
√
β and dβ ∼ ρs.

The terms proportional to cβ can then be neglected at the leading order. This leads to

a decoupling of the parallel velocity equation (156). Also, the solution Z = −ρsω can be

taken for Z. The two remaining equations (153)-(154), with Z replaced by −ρsω correspond

namely to Eqs. (143)-(144). This shows how the two-field isothermal model can be formally

retrieved from the low-β limit of FFEI.
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The closure adopted for FFEI still allows for a Hamiltonian formulation of the model.

In the 2D limit this was found in Ref. [99], whereas the 3D extension was provided in Ref.

[89].

The Hamiltonian functional is given by

H(ψe, ω, Z, v) =
1

2

∫
d3x (|∇ψ|2 + |∇φ|2 + d2

e(∆⊥ψ)2 + v2 + Z2), (157)

with the last two terms indicating the additional contributions due to the parallel velocity

and to the parallel magnetic perturbations coupled with the pressure fluctuations.

For the 2D limit, we report the expression of the Poisson bracket of Ref. [99], which reads

{F,G} =

∫
d2x (ω[Fξ, Gξ]ω + ψe[Fξ, Gξ]ψe + Z[Fξ, Gξ]Z + v[Fξ, Gξ]v) , (158)

where

[Fξ, Gξ]ω = [Fω, Gω],

[Fξ, Gξ]Z = [FZ , Gω] + [Fω, GZ ]− dβde2[Fψe , Gψe ]

+ cβde
2([Fv, Gψe ] + [Fψe , Gv])− α[FZ , GZ ]− cβγ[Fv, Gv],

[Fξ, Gξ]ψe = [Fψe , Gω] + [Fω, Gψe ]− dβ([FZ , Gψe ] + [Fψe , GZ ])

+ cβ([Fv, GZ ] + [FZ , Gv]),

[Fξ, Gξ]v = [Fv, Gω] + [Fω, Gv]

+ cβde
2([FZ , Gψe ] + [Fψe , GZ ])− cβγ([Fv, GZ ] + [FZ , Gv]) ,

(159)

with α = dβ + cβde
2/di, γ = de

2/di.

The corresponding 2D Casimir invariants are given by

C1 =

∫
d2x ζC(D) , (160)

C2 =

∫
d2xK(D) , (161)

C± =

∫
d2xG± (T±) , (162)
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where

D = ψe + div , (163)

ζ = ω +
Z

α
, (164)

T± = ± di
2cβd3de

(
diD − d2v ∓ ddeZ

)
, (165)

with d =
√
d2
i + d2

e, whereas C, K and G± are arbitrary functions.

The 2D verson of FFEI, adopting as dynamical variables the normal fields, reads

∂D

∂t
+ [φ,D] = 0, (166)

∂ζ

∂t
+ [φ, ζ]− 1

d2
[D,ψ] = 0, (167)

∂T+

∂t
+ [φ+, T+] = 0, (168)

∂T−
∂t

+ [φ−, T−] = 0, (169)

where ϕ± = φ± (cβd/de)ψ are generalized stream functions specific to this four-field model.

We remark that in this case, unlike the two-field model, not all the equations turn into

advection equations. Equation (166) expresses the conservation of the ion parallel canonical

momentum D. Equation (167) is not an advection equation and governs the evolution of the

generalized vorticity ζ. Equations (168)-(169), on the other hand, generalize the advection

equations (150)-(151) to a larger range of values for β.

We take advantage of the normal fields ζ, D, T±, suggested by the expressions for the

Casimir invariants (160)-(162), in order to write the 3D Poisson bracket in the more compact

form

{F,G} =

∫
d3x
(
ζ[Fζ , Gζ ] +D([FD, Gζ ] + [Fζ , GD]) + T−[FT− , GT− ]

+T+[FT+ , GT+ ] + Fζ
∂

∂z
GD + FD

∂

∂z
Gζ

+
d2
i

2cβd3de
FT+

∂

∂z
GT+ −

d2
i

2cβd3de
FT−

∂

∂z
GT−

)
. (170)

Results of numerical simulations of magnetic reconnection based on the 2D limit of the

model were presented in Ref. [89].
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Figure 1. Contour plots of the fields ω (left column) and Z (right column) at t = 50 (top row)

and t = 70 (bottom row) Alfvén times. The plots refer to a low-β, large di regime, with cβ =

0.01, dβ = 0.24, de = 0.24. In this regime, vorticity perturbations are proportional to parallel

magnetic perturbations (after E. Tassi, P. J. Morrison, D. Grasso, F. Pegoraro, Nucl. Fusion, 50,

034007 (2010)).

From Fig. 1 it follows that, as expected, in the low-β regime (but still with finite dβ, which

means relatively large di), the dynamics of vorticity and parallel magnetic perturbations are

similar and follow the behavior dictated by the isothermal two-field model. Flucutations

begin with concentration around the magnetic island separatrices and, at later times, they

tend to propagate inside the island. In a higher-β regime with smaller di, on the other hand,

the qualitative behavior of the Z differs evidently from that of ω, as shown in Fig. 2. The

vorticity indeed exhibits very thin vertical jets aligned with the resonant line x = 0 which

propagate against each other and form mushroom-shaped structures centered at the y = 0

line. Similar structures had been observed in previous simulations of the two-field model

[93, 100] at low-β but when ρs ≈ 0. The four-field model then shows that such structures

can manifest themselves not only at low-β but also at larger β, provided that dβ is finite. On

the other hand, parallel magnetic perturbations tend to concentrate around the magnetic
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Figure 2. Contour plots of the fields ω (left column) and Z (right column) at t = 40 (top row)

and t = 55 (bottom row) Alfvén times. The plots refer to a higher-β and lower di regime, with

respect to Fig. 1. The values of the parameters are cβ = 0.3, dβ = 0.72, de = 0.24. In this regime,

vorticity perturbations detach from parallel magnetic perturbations (after E. Tassi, P. J. Morrison,

D. Grasso, F. Pegoraro, Nucl. Fusion, 50, 034007 (2010)).

island separatrices and form small scale structures inside the island. Such differences in the

dynamics of ω and Z can be conveniently reinterpreted in terms of normal fields. Indeed,

one has the relations

Z = −cβd
2

di
(T+ + T−), ω = ζ + T+ + T−. (171)

The low-β high di regime corresponds to the case where ζ, which is equal to zero at the

initial condition, does not grow. Indeed, from Eq. (167), it follows that, for large di (and

therefore large d), the last term of the equation, which would allow ζ to grow, gives a

negligible contribution. Therefore, if ζ ≈ 0, from Eq. (171) it follows that both Z and ω are

proportional to T+ + T−. In the second regime, with higher β and smaller di, ζ is allowed

to grow. It is namely the generalized vorticity ζ which accounts for the thin stuctures

observed in the contour plots of the vorticity. Depending on the region in the parameter

space, different closures are then approached, leading to different qualitative behaviors in
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the vorticity and parallel magnetic perturbations.

4. Four-field model with magnetic curvature

We find it convenient to conclude the part of this Section devoted to Hamiltonian reduced

drift-fluid models with a further four-field model which, although not recent, played an

important role in the development of later Hamiltonian reduced models. In our context, it

also serves as basis for useful remarks and comparisons with other models.

The model under consideration, which we refer to as four-field model with magnetic

curvature (FFMC) is given by the following system:

∂ψ

∂t
+ [φ, ψ]− δ∇‖p+

∂φ

∂z
= 0, (172)

∂ω

∂t
+ [φ, ω] +∇‖∆⊥ψ + [h, p] = 0, (173)

∂p

∂t
+ [φ, p] + β∇‖v + 2δβ∇‖∆⊥ψ − 2β[h, φ− δp] = 0, (174)

∂v

∂t
+ [φ, v] +

1

2
∇‖p = 0. (175)

In Eqs. (172)-(175) p indicates the normalized electron pressure fluctuations, v the parallel

ion velocity, whereas h accounts for the curvature of the guide field at the lowest order, and

the expression h(x) = x can be taken, with x mimicking the radial coordinate of toroidal

geometry. The expression for the constant δ is given by δ = di/2. Although in this model an

evolution equation for the pressure appears, the pressure balance argument of the model of

Sec. IV A 3 still applies, so that Eq. (174) can be replaced by an equation for the evolution

of the parallel perturbation of the equilibrium magnetic field.

The model (172)-(175) is a cold-ion limit of the four-field model derived in Ref. [6]. Its

Hamiltonian structure was given in Ref. [101]. After defining the field p̄ = p + 2βh, one

can choose (ψ, ω, p̄, v) as set of dynamical field variables. In terms of these, the Hamiltonian

structure of the model consists of the Hamiltonian functional

H(ψ, ω, p̄, v) =
1

2

∫
d3x

(
|∇ψ|2 + |∇φ|2 + v2 +

(p̄− 2βh)2

2β

)
, (176)
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and of the Poisson bracket

{F,G} =

∫
d3x (ω[Fω, Gω]

+ψ([Fω, Gψ] + [Fψ, Gω] + 2δβ([Fψ, Gp̄] + [Fp̄, Gψ])− β([Fp̄, Gv] + [Fv, Gp̄]))

+p̄([Fω, Gp̄] + [Fp̄, Gω] + 2δβ[Fp̄, Gp̄])

+v([Fω, Gv] + [Fv, Gω]) + 2δβ

(
Fψ
∂Gp̄

∂z
+ Fp̄

∂Gψ

∂z

)
+Fω

∂Gψ

∂z
+ Fψ

∂Gω

∂z
− β

(
Fp̄
∂Gv

∂z
+ Fv

∂Gp̄

∂z

))
.

(177)

Casimir invariants correspond to

C1 =

∫
d3x ζ, C2 =

∫
d3xD, C3 =

∫
d3x p̄, C4 =

∫
d3xψ, (178)

where we define

ζ = ω − p̄

2δβ
, D = ψ + 2δv. (179)

Note that in Eq. (179) we voluntarily used the same symbols for the fields adopted in Eqs.

(163) and (164). Indeed, ζ and D are analogous quantities in the two models, indicating the

generalized vorticity and the parallel ion canonical momentum. In the 2D limit the Casimir

invariants are given by the four infinite families

C1 =

∫
d2x ζC(D), C2 =

∫
d2xK(D), (180)

C3 =

∫
d2x p̄S(ψ), C4 =

∫
d2xG(ψ), (181)

and the normal fields (D, ζ, p̄, ψ) evolve according to

∂D

∂t
+ [φ,D] = 0, (182)

∂ζ

∂t
+ [φ, ζ]− 1

4δ2
[D,ψ] = 0, (183)

∂p̄

∂t
+ [φ, p̄]− β[D, v]− 2δβ[ψ,∆⊥ψ] + 2βδ[h, p̄] = 0, (184)

∂ψ

∂t
+ [φ̄, ψ] = 0, (185)

where we introduced φ̄ = φ − δp, corresponding to the stream function of a velocity field

given by the sum of the E×B and electron diamagnetic velocity.
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It is interesting to compare, in particular in the light of their Hamiltonian structures and

conservation properties, the four-field model FFEI of Sec. IV A 3 with FFMC in the 2D limit.

The model equations differ only by a few terms. In particular, if electron inertia corrections

are removed from FFEI (by setting de = 0), one formally obtains FFMC in the limit of

straight and uniform equilibrium magnetic field (i.e. h = 0), provided that in the latter one

performs the replacements: β → 2c2
β, δ → di/2, p → −2cβZ. In particular, the inclusion

of terms associated with magnetic curvature, do not alter the form of the Poisson bracket

and of the Hamiltonian, so that all the related considerations for the FFMC can be made,

without loss of generality, by taking the limit h = 0 and, consequently, p̄ = p. In spite

of the apparently little differences introduced in the model equations by electron inertia,

qualitative differences appear in terms of Casimir invariants and evolution of normal fields.

Indeed, electron inertia introduces a significant number of additional terms in the Poisson

bracket (158). As a consequence, the families of Casimir invariants C3,4 differ qualitatively in

the two models. In FFMC, the magnetic frozen-in condition holds, which is reflected in the

existence of the Casimir invariants C3,4. Indeed, C4 expresses magnetic flux conservation.

On the other hand, taking into account that pressure perturbations are proportional to

parallel magnetic perturbations by virtue of the pressure balance, both C3 and C4 (choosing

S(ψ) = ψ) contribute to the conservation of the total magnetic helicity
∫
d3xA ·B, where

A is the magnetic vector potential. Inclusion of electron inertia breaks these conservation

laws and, similarly to what occurred with the two-field model, replaces them with alternative

topological conservation laws associated with the normal fields T±. Two advection equations,

Eqs. (168) and (169) take the place of the advection equation (185) and of the evolution

equation (184). A similar feature occurs when moving from low-β reduced MHD to the two-

field model of Sec. IV A 2. The appearance of the two advection equations (150)-(151) is

indeed a consequence of the inclusion of electron inertia and finite electron temperature (this

latter contribution, had already a counterpart in FFMC, represented by the third term in

Eq. (172), so that, between the two four-field models, the qualitative change in the Casimir

invariants was due to the addition of electron inertia only). We remark, however, that, an
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ordering which systematically neglects electron Larmor radius effects while retaining electron

inertia, would imply a low β, and consequently, as above discussed, a three-field reduction

of FFEI, with a decoupling of Eq. (156) [102].

We mention also that a relevant limit of FFMC consists of setting δ = 0, which yields

the equations of compressible reduced MHD [6], the Hamiltonian structure of which was

discussed in Refs. [88, 101, 103].

Further connections between the normal fields for drift-fluid reduced models and closures

will be discussed in Sec. V B 2.

B. Adding ion finite Larmor radius effects while preserving a Hamiltonian struc-

ture : the gyromap

The reduced fluid models treated in Sec. IV A all possess a Hamiltonian structure, but

they neglect, by taking the zero-thermal Larmor radius limit, phenomena occurring on

the thermal ion Larmor radius scale. Clearly, this imposes limitations on the range of

applicability of such models. More general closures accounting for FLR effects would then

be desirable. A procedure, now denoted as the gyromap, was first proposed in Ref. [104],

in order to add ion FLR effects to cold-ion Hamiltonian models, in such a way that the

resulting model still possess a Hamiltonian structure. In Ref. [58] the origin of the gyromap

procedure from an action principle perspective is discussed. In Ref. [101], the gyromap

was applied in order to build a Hamiltonian FLR version of the cold-ion model FFMC. We

report the resulting model, with a slight change in the notation with respect to Ref. [101].

∂ψ

∂t
+ [φ, ψ]− δ∇‖p+

∂φ

∂z
= 0, (186)

∂W

∂t
+ [ϕ,W ] +∇‖∆⊥ψ + (1 + τ)(1 + ρ2

i∆⊥)[h, p]

− δτ(∇⊥ · [p+ 2βh,∇⊥ϕ] +
1

2
ρ2
i∆⊥[p+ 2βh,W ]) + ρ2

i∆⊥∇‖
(

∆⊥ψ +
v

2δ

)
= 0, (187)

∂p

∂t
+ [φ, p] + β∇‖v + 2δβ∇‖∆⊥ψ − 2β[h, φ− δp] = 0, (188)

∂v

∂t
+ [φ, v] +

1

2
∇‖(p+ τ(p− δβW ))− ρ2

i [v,∆⊥(ϕ− δτp)]− 2ρ2
i

δ
[v, h] = 0. (189)
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In Eqs. (186)-(189), τ = Ti/Te indicates the ratio between the uniform equilibrium tem-

peratures of the ion and electron populations, whereas ρi = δ
√
τβ =

√
Ti/M/(ωciL) is the

normalized ion thermal radius, with ωci indicating the ion cyclotron frequency referred to

B0. The field variable W is defined by W = ∆⊥ϕ, where the generalized stream function ϕ

satisfies

(1 + ρ2
i∆⊥)ϕ = φ+ δτp. (190)

In the cold-ion limit, corresponding to τ = ρi = 0, one retrieves FFMC, as expected.

The Hamiltonian structure of Eqs. (186)-(189), obtained from the gyromap procedure, was

provided in Ref. [101] and we report it here. The Hamiltonian functional reads

H(W,ψ, p, v) =
1

2

∫
d3x

(
|∇⊥ψ|2 + |∇⊥ϕ|2 + v2 + (1 + τ)

p2

2β

)
. (191)

Note that it possesses the same form of the Hamiltonian (176) of FFMC, with the additional

contribution of the ion pressure and the replacement of the electrostatic potential with the

generalized stream function. The Poisson bracket is given by

{F,G} =

∫
d3x

(
ξ(Fξ, Gξ] + 2δ2τβ[Fv, Gv])

+ψ([Fξ, Gψ] + [Fψ, Gξ] + 2δβ([Fψ, Gp̄] + [Fp̄, Gψ])− β([Fp̄, Gv] + [Fv, Gp̄]))

+p̄([Fξ, Gp̄] + [Fp̄, Gξ] + 2δβ[Fp̄, Gp̄]− δτ [Fv, Gv])

+v([Fξ, Gv] + [Fv, Gξ])

+ Fξ
∂Gψ

∂z
+ Fψ

∂Gξ

∂z
+ 2δβ

(
Fψ
∂Gp̄

∂z
+ Fp̄

∂Gψ

∂z
)− β(Fp̄

∂Gv

∂z
+ Fv

∂Gp̄

∂z
)

)
,

(192)

where we introduced the field variable ξ = W − (δτ/2)∆⊥p and where p̄ is defined as in Sec.

IV A 4. Casimir invariants in the 2D limit are given by

C1 =

∫
d2x p̄C(ψ), C2 =

∫
d2xK(ψ), (193)

C± =

∫
d2xG±(2δβv + βψ ±

√
2ρi(2δβW − ρ2

i∆⊥p− p̄)), (194)

where C,K and G± are arbitrary functions. Note that the Casimir invariants (193) share the

same structure of the Casimir invariants (180) of FFEI. The role of the parallel canonical

ion momentum D in the latter (where D is a Lagrangian invariant due to the cold-ion
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hypothesis) is played in C1 and C2 of Eq. (193) by ψ, which is a Lagrangian invariant of the

former model due to the assumption of neglecting electron inertia. Both models then possess

families of invariants C± which are corresponding generalizations of the families (147) of the

two-field isothermal model. The four 3D Casimir invariants of the bracket (192) correspond,

as already seen with previous models, to integrals of the four normal fields that can be

identified from Eqs. (193)-(194).

Recently [105], an FLR model for interchange instability, corresponding to a two-field

electrostatic reduction of Eqs. (186)-(189), was derived in two alternative ways: by apply-

ing the gyromap procedure from a cold-ion model and by asymptotic expansion from the

Braginskii equations [4]. This confirmed that all the FLR corrections introduced by the

gyromap correspond to a consistent ordering. In order to illustrate the basic ideas underly-

ing the gyromap procedure, we summarize its application in Ref. [105], because, although

less general than the original application of Ref. [101], it possesses the advantage of being

simpler, still containing the main ingredients.

The starting point is the cold-ion two-field model

∂ω

∂t
+ [φ, ω] + [h, n] = 0, (195)

∂n

∂t
+ [φ, n] + [φ, h]− [n, h] = 0, (196)

which could formally be obtained as a 2D reduction of the FFMC neglecting the evolutions

of the magnetic field and of the parallel velocity, replacing the pressure perturbations in

favor of the density perturbations n and setting β = 1/2 and δ = 1 (different normalizations

are adopted in the two models, so that replacements in the values of the coefficients has only

a formal utility). The model (195)-(196) can be obtained from the Hamiltonian

H(ω, n) =
1

2

∫
d2x (|∇φ|2 + n2), (197)

and the Poisson bracket

{F,G} =

∫
d2x ((n+ h)([Fn, Gn] + [Fn, Gω] + [Fω, Gn]) + ω[Fω, Gω]). (198)
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The gyromap provides a prescription to build new Hamiltonian and Poisson bracket, where

the FLR model equations can be obtained from, so that the resulting FLR model is Hamil-

tonian by construction.

The FLR Hamiltonian is assumed to be given by

H(W,n) =
1

2

∫
d2x ((1 + τ)n2 + |∇ϕ|2). (199)

The Hamiltonian (199) is built form the cold-ion Hamiltonian (197) by adding the contribu-

tion (associated with τ) due to the ion internal energy, and by replacing the kinetic energy

term with the second term on the right-hand side of Eq. (199), which depends on a new

stream function ϕ. A new field variable W was also introduced, which is related to the new

stream function by W = ∆⊥ϕ. The relation between the new variables and the old ones is

left unspecified at the moment and will be retrieved a posteriori.

An auxiliary variable ξ is now introduced and defined by W = ξ + τ∆⊥n/2. The crucial

point here is that the shift τ∆⊥n/2 is half the first order of the normalized parallel component

of the curl of the magnetization velocity ∇×Υ/n, where we indicated Υ = −nTiẑ/B0 the

magnetization [27]. This is namely the shift required in order to yield the FLR corrections.

One then writes the same Poisson bracket (198) of the cold-ion model, in terms of new

field variables (N, ξ):

{F,G} =

∫
d2x ((N + h)([FN , GN ] + [FN , Gξ] + [Fξ, GN ]) + ξ[Fξ, Gξ]). (200)

Considering the change of variables (N, ξ) → (n,W ), one can, by making use of the func-

tional chain rule, write the bracket (200) in terms of the variables (n,W ):

{F,G} =

∫
d2x ((n+ h)([Fn + (τ/2)∆⊥FW , GW ] + [FW , Gn + (τ/2)∆⊥GW ]

+[Fn + (τ/2)∆⊥FW , Gn + (τ/2)∆⊥GW ]) + (W − (τ/2)∆⊥n)[FW , GW ]) .

(201)

From the Poisson bracket (201) and the Hamiltonian (199), we obtain the equations of

motion for the FLR model. In particular, the continuity equation reads

∂n

∂t
+ [ϕ+ (τ/2)∆⊥ϕ, n+ h]− (1 + τ)[n, h] = 0. (202)
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Because we require, on physical grounds, that the continuity equation should not be affected

by leading order FLR corrections, we impose that the new continuity equation (202) coincide

with its cold-ion counterpart (196). This provides the relation(
1 +

τ

2
∆⊥

)
ϕ = φ+ τn, (203)

between the new stream function ϕ and the variables n and φ.

The evolution equation for the FLR-corrected vorticity W , on the other hand, is given

by

∂W

∂t
+ [ϕ,W ]− (1 + τ)

(
1 +

τ

2
∆⊥

)
[n, h]− τ∇⊥ · [n+h,∇⊥ϕ] +

τ 2

4
∆⊥[W,n+h] = 0. (204)

Using Eqs. (202), (203) and (204) one obtains, up to the normalization, a 2D electrostatic

reduction of Eqs. (187)-(188). We remark that an important point in obtaining the Poisson

bracket (201) is that it was obtained from the cold-ion bracket, which, by hypothesis, is

a Poisson bracket. Consequently, the FLR -corrected bracket is also a Poisson bracket,

which avoids, in particular, complicated verifications a posteriori of the Jacobi identity.

We observe, however, that the application of the gyromap to obtain the entire four-field

model (186)-(189) contained an additional complication due to the FLR-corrections for the

dynamics parallel to the guide field, which implied a modification of the cold-ion bracket,

before applying the mapping involving the magnetization velocity.

Finally, we remark that examples of Hamiltonian reduced fluid models including FLR

effects are described also in Refs. [104, 106, 107].

C. Gyrofluid models

Although the gyromap offers a procedure to implement ion FLR corrections while preserv-

ing a Hamiltonian structure, such corrections are typically restricted to the limit k⊥ρi � 1,

where k⊥ represents the characteristic wavenumber of the perturbations on the plane per-

pendicular to the equilibrium guide field. Modelling fluctuations on smaller scales, such

that k⊥ρi ∼ 1, is, however, well known to be important for tokamak plasma turbulence
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(see, e.g. Ref. [108]). Such scales play an important role in determining the turbulent

spectrum of astrophysical plasmas [109]. At the level of the kinetic description, gyrokinetics

offers a valuable tool for investigating phenomena occurring at the ion gyroradius scale (see,

e.g. Ref. [15]). The quest for more tractable, although less complete, models still valid at

the ion gyroradius scale, motivated the derivation of fluid reductions of gyrokinetic models,

denoted as gyrofluid models [16]. Contrary to ordinary fluid models, which are derived by

considering moments of the particle distribution functions, gyrofluid models evolve moments

of the gyrocenter distribution functions. Such distribution functions describe the states of

populations of gyrocenters, whose coordinates evolve in a reduced phase space, obtained

by asymptotically eliminating the dependence on the gyration angle from the original six-

dimensional particle phase space. The evolution of the gyrocenter distribution functions is

governed namely by the gyrokinetic equations.

With respect to drift-fluid or FLR models, such as those treated in Secs. IV A and IV B,

gyrofluid models are valid in the regime k⊥ρi ∼ 1, at the expense of being formulated in terms

of gyrocenter fluid moments, which, possibly, offer a less immediate physical interpretation,

with respect to ordinary fluid moments. The transformation from gyrocenter to particle

moments can be carried out explicitly, in some cases, as for instance in the k⊥ρi � 1 limit

[16].

Highly nonlinear gyrofluid models were formulated also in recent years (see, e.g. Ref.

[25]). For such models, however, no Hamiltonian structure is known, to the best of our

knowledge. On the other hand, a number of Hamiltonian gyrofluid models were derived, in

particular in the last decade, in the reduced framework consistent with the ordering (130).

In the following we discuss first a family of Hamiltonian gyrofluid models characterized

by an isothermal closure on the electrons. Subsequently, we consider a recent Hamilto-

nian gyrofluid models accounting for parallel temperature and heat flux electron fluctua-

tions. In all such models, only the ion population is described in terms of gyrofluid mo-

ments. For the electrons, gyroradius effects are neglected, assuming that ρe � ρi, with

ρe = (Te/Ti)
1/2(me/M)1/2ρi indicating the electron thermal gyroradius. Also, in all these
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models, a low-β limit is assumed and parallel magnetic perturbations are neglected, i.e.

Z = 0.

In this Section, we restrict to the case of periodic boundary conditions on bounded

domains, so that fields can be represented in Fourier series.

1. Gyrofluid models with isothermal electrons

Historically, a precursor of the family of existing Hamiltonian reduced gyrofluid models,

can be found in Ref. [110]. It consists of a two-field model evolving the parallel electron

canonical momentum and a vorticity-like field (proportional to the electron density fluctua-

tions). Ion gyro-effects are included in the quasi-neutrality relation by making use of a Padé

approximant for the gyroaverage operator. The electron fluid is supposed to be isothermal.

In more recent years, progressive extensions of this model, with different closures for the

ion fluid, were formulated, all possessing a Hamiltonian structure. In Ref. [34] a three-field

model including also ion gyrocenter density fluctuations was proposed. In Ref. [111], a

four-field model was presented, which accounts also for parallel ion dynamics and magnetic

curvature. Finally, Ref. [33], describes a five-field model which includes also ion parallel

temperature fluctuations. All such models can be derived as truncations of the electromag-

netic gyrofluid model of Ref. [21]. Also, all these models assume an isothermal closure for

the electron fluid. With regard to the closure on the gyroaverage operator for the ion fluid,

the expression introduced in Ref. [19] was adopted in all models. Moreover, all such mod-

els, unlike the various drift-fluid models presented in Sec. IV A, possess similar Hamiltonian

structures, in the sense that the corresponding Casimir invariants are associated with normal

fields that obey advection equations in the 2D limit, and that the Hamiltonian functionals

are built by adding quadratic energy contributions as the number of fields increases. There-

fore, in order to avoid redundancies in the exposition, we describe explicitly only the most

recent five-field model of Ref. [33], and indicate how the previous models can be obtained
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in particular limits. The five-field model equations that we are considering are given by

∂ne
∂t

+ [φ, ne] +∇‖ue − 2κ[h, ρ2
sne − φ] = 0, (205)

∂ψe
∂t

+ [φ, ψe]− ρ2
s∇‖ne + 2κd2

eρ
2
s[h, ue] +

∂φ

∂z
= 0, (206)

∂Ni

∂t
+ [Φ, Ni] + ∇̄‖Ui + 2κ[h, ρ2

iNi + Φ + ρ2
iT‖i] = 0, (207)

∂Ψi

∂t
+ [Φ,Ψi] + ρ2

i ∇̄‖Ni + ρ2
i ∇̄‖T‖i + 4κd2

i ρ
2
i [h, Ui] +

∂Φ

∂z
= 0, (208)

∂T‖i
∂t

+ [Φ, T‖i] + ∇̄‖Ui + 2κ[h, ρ2
iNi + Φ + ρ2

iT‖i] = 0, (209)

and are complemented by the quasi-neutrality relation

Γ0 − 1

ρ2
i

φ+ Γ
1/2
0 Ni − ne = 0 (210)

and by Ampère’s law

∆⊥ψ + Γ
1/2
0 Ui − ue = 0. (211)

In Eqs. (205)-(209) we introduced the field variables

ψe = ψ − d2
eue, Ψi = Ψ + d2

iUi, (212)

indicating the electron and ion parallel canonical momenta, respectively. Ion gyrofluid mo-

ments (in order to distinguish them from moments with respect to the particle distribution

functions) are indicated with the uppercase symbols Ni , Ui and T‖i, corresponding to gy-

rocenter density, parallel velocity and parallel temperature fluctuations, respectively. The

electron moments, on the other hand, are indicated with ne and ue, corresponding to the

density and parallel velocity fluctuations, respectively. The expression for the gyroaverage

operator Γ0 [19], in Fourier space, corresponds to multiplication times I0(k2
⊥ρ

2
i ) exp(−k2

⊥ρ
2
i ),

with I0 indicating the modified Bessel function of order zero. We also introduced the symbols

Φ, Ψ and ∇̄‖, involving the gyroaverage operator, and whose definitions are as follows:

Φ = Γ
1/2
0 φ, Ψ = Γ

1/2
0 ψ, ∇̄‖f = −[Ψ, f ] +

∂f

∂z
, (213)

for a function f . In order to facilitate the comparison with other models discussed in

this article, we modified the normalization and the notation, with respect to Ref. [33].
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The coefficient κ, which accounts for the background magnetic curvature corresponds to

κ = ud/di, where ud is the term in the original notation, defined as ud = Ln/R, with Ln

and R being the density scale-length and the radius of curvature of the magnetic field,

respectively. Also, apart form differences in the normalization and in the notation, the

system (205)-(209) differs from Eqs. (3)-(7) of Ref. [33], for it corrects a few typographical

errors present in the original reference.

The closure at the level of ion temperature fluctuations, makes the five-field model (205)-

(209) an effective tool for investigating ion temperature driven instabilitites, such as the

ion temperature gradient instability. As noted above, it follows a series of Hamiltonian

gyrofluid models with lower-order closures. Indeed, neglecting ion temperature fluctuations,

one retrieves the four-field model of Ref. [111]. If, in addition, one neglects parallel ion

dynamics and magnetic curvature, the three-field model of Ref. [34] is obtained. Finally,

if also the ion gyrocenter density fluctuations are suppressed and a Padé approximant is

taken for the gyroaverage operator Γ0, one recovers the two-field model of Ref. [110]. With

regard to this family of gyrofluid models, the following remark about the connection between

closures and Hamiltonian structures was pointed out in Ref. [33]: whereas in the parallel ion

momentum equation (208), the term associated with magnetic curvature has a coefficient

4, in the isothermal version of Ref. [111], the corresponding coefficient is 2. The reason for

this difference resides in the constraint that the models be Hamiltonian. In particular, the

Jacobi identity imposes the coefficients 4 and 2 in the five and four-field model, respectively.

Modifications of the magnetic curvature terms (and possibly of other terms due to effects

neglected in this model) must therefore be applied when varying the closure and requiring

that the resulting model remain Hamiltonian.

Choosing (ne, ψe, Ni,Ψi, T‖i) as dynamical variables, the Hamiltonian for the five-field

model (205)-(209) can be written as

H(ne, ψe, Ni,Ψi, T‖i) =
1

2

∫
d3x (ρ2

sn
2
e + ρ2

iN
2
i + d2

eu
2
e + d2

iU
2
i + ρ2

iT
2
‖i + |∇⊥ψ|2 + ΦNi− φne).

(214)

The first two terms and the fifth term represent energy contributions due to density and
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temperature fluctuations, the third and fourth term correspond to the parallel kinetic ener-

gies for electrons and ion gyrocenters, respectively, whereas the last three terms account for

the magnetic and electrostatic energies.

The corresponding Poisson bracket can be written as

{F,G} = {F,G}e + {F,G}i, (215)

where

{F,G}e =

∫
d3x

(
ñe([Fne , Gne ] + d2

eρ
2
s[Fψe , Gψe ]) + ψe([Fψe , Gne ] + [Fne , Gψe ]))

+Fne

∂Gψe

∂z
+ Fψe

∂Gne

∂z

)
,

{F,G}i = −
∫
d3x

(
Ñi([FNi

, GNi
] + d2

i ρ
2
i [FΨi

, GΨi
] + [FT‖i , GT‖i ])

+Ψi([FΨi
, GNi

] + [FNi
, GΨi

] + [FΨi
, GT‖i ] + [FT‖i , GΨi

])

+T̃‖i([FNi
, GT‖i ] + [FT‖i , GNi

] + d2
i ρ

2
i [FΨi

, GΨi
])

+FΨi

∂GNi

∂z
+ FNi

∂GΨi

∂z
+ FT‖i

∂GΨi

∂z
+ FΨi

∂GT‖i

∂z

)

(216)

with

ñe = ne − 2κx, Ñi = Ni − 2κx, T̃‖i = T‖i − 2κx. (217)

We remark that the Poisson bracket (215) is given by the sum of two contributions, { , }e

and { , }i associated with electron and ion quantities, respectively. Each of these two contri-

butions is of the form (132). Moreover, { , }e has a linear dependence only on the electron

field variables ne, ψe and contains functional derivatives only with respect to such fields.

The same occurs with { , }i but referred to the gyrofluid ion moments Ni,Ψi, T‖i. The two

contributions { , }e and { , }i can then be seen as two Poisson brackets with Poisson op-

erators depending only on electron and ion fields, respectively, and also, with functional

derivatives acting separately with respect to electron and ion fields. Consequently, by virtue

of the Lemma of Ref. [56], mentioned in Sec. II B, if { , }e and { , }i are Poisson brackets,

their direct sum (215) is also a Poisson bracket. This shows that adopting the separated

electron and ion moments as the set of field variables, offers a practical advantage for the
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verification of the Jacobi identity. Also, it simplifies the construction of Hamiltonian models

with different closures for electrons and ions, for one needs only to check the Jacobi identity

separately for the Poisson brackets involving the electron and ion fields. Given that the

Poisson bracket is the direct sum of two Poisson brackets depending only on electron and

ion fields, the coupling between electron and ion fields in the equations of motion is provided

by the Hamiltonian. In particular, the electromagnetic energy (the last three terms in Eq.

(214)), couple ion and electron quantities, via quasi-neutrality and Ampère’s law.

In the 2D limit, the Poisson bracket (215) possesses the following five infinite families of

Casimir invariants:

Ce1 =

∫
d2x Ce+(G+), Ce2 =

∫
d2x Ce−(G−), (218)

Ci1 =

∫
d2x Ci+(I+), Ci2 =

∫
d2x Ci−(I−), (219)

Ci3 =

∫
d2x Ci(S) (220)

where Ce± , Ci± and Ci are arbitrary functions and where we introduced the normal fields

G± = ψe ± deρsñe, (221)

I± =
√

2Ψi ± diρi(Ñi + T̃‖i), (222)

S = Ni − T‖i. (223)

Clearly, the fields G± are reminiscent of the normal fields (148) (indeed, also in the five-

field model electrons are treated as an isothermal fluid). The fields I± represent their ion

gyrocenter counterparts, whereas the field S measures the departure from the adiabaticity

condition for the ion fluid.

In terms of the normal fields, Eqs. (205)-(209) can be recast in the following form:

∂G±
∂t

+ [φ±, G±] +
∂φ±
∂z

= 0, (224)

∂I±
∂t

+ [Φ±, G±] +
√

2
∂Φ±
∂z

= 0, (225)

∂S

∂t
+ [Φ, S] = 0, (226)
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where we introduced the generalized stream functions

φ± = φ± deρsue − ρ2
sne, (227)

Φ± = Φ±
√

2diρiUi + ρ2
i (Ni + T‖i). (228)

The apparent mismatch between the generalized stream functions (152) for the two-field

model and those, given by (227), pertaining to the electron fluid in the five-field model, can

be reconciled by noting that the replacement, in Eqs. (150)-(151) φ± with alternative stream

functions φ′± = φ±∓(ρs/de)G± = φ±deρs∆⊥ψ−ρ2
sω does not modify Eqs. (150)-(151). The

stream functions φ′±, on the other hand, have a form analogous to (227). The form (152)

can be more perspicuous from the physical point of view for, as will be seen in Sec. V B, it

reflects the combination of the E×B velocity with the free motion along the magnetic field

in the gyrocenter dynamics.

2. 2D gyrofluid model with parallel electron heat flux dynamics

Motivated by the interest in going beyond the electron isothermal closure, for the in-

vestigation of magnetic reconnection driven by electron inertia, a 2D Hamiltonian six-field

model accounting for isothermal gyrofluid ions and parallel electron heat flux dynamics was

proposed in Ref. [35]. This model may be considered to lie, in terms of completeness and

simplicity, between the isothermal two-field model of Sec. IV A 2 and hybrid reduced models

for inertial reconnection, where electrons obey a drift-kinetic description [112, 113].
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The model evolution equations are given by

∂ne
∂t

+ [φ, ne]− [ψ, ue] = 0, (229)

∂ψe
∂t

+ [φ, ψe] + ρ2
s[ψ, t‖e + ne] = 0, (230)

∂t‖e
∂t

+ [φ, t‖e]− 2[ψ, q‖e + ue] = 0, (231)

∂q‖e
∂t

+ [φ, q‖e]−
3

2

ρ2
s

d2
e

[ψ, t‖e] = 0, (232)

∂Ni

∂t
+ [Φ, Ni] + [Ui,Ψ] = 0, (233)

∂Ψi

∂t
+ [Φ,Ψi] + ρ2

i [Ni,Ψ] = 0, (234)

and are closed by the relations (210)-(211), as in the five-field model. With respect to the

latter, two new fields appear, t‖e and q‖e, which correspond to the electron parallel and

heat flux fluctuations, respectively. The ion equations (233)-(234) consist of an isothermal

reduction of Eqs. (207)-(209). The electron equations (229)-(232), on the other hand,

account for a more refined closure relation, that can be obtained from the model of Ref.

[24], in the absence of electron FLR effects, dissipation and background inhomogeneities.

In particular, unlike the five-field model of Sec. IV C 1, equilibrium magnetic curvature is

neglected.

The Hamiltonian functional of the model, in terms of the field variables (ne, ψe, t‖e, q‖e, Ni,Ψi)

is given by

H(ne, ψe, t‖e, q‖e, Ni,Ψi)

=
1

2

∫
d2x

(
ρ2
sn

2
e + ρ2

iN
2
i +

ρ2
s

2
t2‖e +

2

3
d2
eq

2
‖e + d2

eu
2
e + d2

iU
2
i + |∇⊥ψ|2 + ΦNi − φne

)
.

(235)

As could have been expected, the total conserved energy, if compared to (214), lacks ion

temperature contributions but includes electron temperature and heat flux fluctuations. We

note the factor 2 in the denominator of the term containing t2‖e. This factor is absent in the

corresponding term containing T 2
‖i in Eq. (214). This difference, which in the equations of

motion reflects in the presence of the factor 2 in Eq. (231), has no counterpart in Eq. (209)

and is ascribed to the different adiabatic indices adopted for the temperature evolution in
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the two models. The six-field model adopts an adiabatic index 3 for the electrons, whereas

the five-field model takes it equal to 2 for the ions. For the five-field model, this choice was,

again, constrained by the Jacobi identity, in combination with the presence of magnetic

curvature effects.

With regard to the Poisson bracket, this model also possesses the direct sum structure

{F,G} = {F,G}e + {F,G}i, (236)

with

{F,G}e =

∫
d2x

(
ne

(
[Fne , Gne ] + ρ2

sd
2
e[Fψe , Gψe ] + 2[Ft‖e , Gt‖e ] +

3

2

ρ2
s

d2
e

[Fq‖e , Gq‖e ]

)
+ψe

(
[Fψe , Gne ] + [Fne , Gψe ] + 2([Fψe , Gt‖e ] + [Ft‖e , Gψe ])−

3

d2
e

([Fq‖e , Gt‖e ] + [Ft‖e , Gq‖e ])

)
+t‖e

(
[Ft‖e , Gne ] + [Fne , Gt‖e ] + ρ2

sd
2
e[Fψe , Gψe ]

−3

2
ρ2
s([Fq‖e , Gψe ] + [Fψe , Gq‖e ]) + 4[Ft‖e , Gt‖e ] +

3

2

ρ2
s

d2
e

[Fq‖e , Gq‖e ]

)
(237)

+q‖e

(
[Fq‖e , Gne ] + [Fne , Gq‖e ]− 2d2

e([Ft‖e , Gψe ] + [Fψe , Gt‖e ]) + 2([Fq‖e , Gt‖e ] + [Ft‖e , Gq‖e ])
))

and

{F,G}i = −
∫
d2x

(
Ni

(
[FNi

, GNi
] + ρ2

i d
2
i [FΨi

, GΨi
]
)

+ Ψi ([FΨi
, GNi

] + [FNi
, GΨi

])
)
. (238)

The 2D Poisson bracket possesses six families of Casimir invariants, four of which are asso-

ciated with electrons and two with ions. Their expressions are given by

Cej =

∫
d2x Cej(Gj), j = 1, · · · , 4, (239)

Ci1 =

∫
d2x C+(I+), Ci2 =

∫
d2x Ci−(I−), (240)
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where

G1 = ψe −
deρs√
3 +
√

6
ne − deρs

√
1

2
+

1√
6
t‖e − d2

e

√
2

3
q‖e, (241)

G2 = ψe +
deρs√
3 +
√

6
ne + deρs

√
1

2
+

1√
6
t‖e − d2

e

√
2

3
q‖e, (242)

G3 = ψe +
deρs√
3−
√

6
ne − deρs

√
1

2
− 1√

6
t‖e + d2

e

√
2

3
q‖e, (243)

G4 = ψe −
deρs√
3−
√

6
ne + deρs

√
1

2
− 1√

6
t‖e + d2

e

√
2

3
q‖e, (244)

I± = Ψi ± diρiNi, (245)

and where Ce1,e2,e3,e4 and C± are arbitrary functions.

As was the case of the five-field model and for the two-fluid model with isothermal

electrons, adopting the normal fields (G1, G2, G3, G4, I+, I−) as dynamical field variables,

the model equations (229)-(234) take the Lagrangian advection form:

∂Gi

∂t
= −[φi, Gi], i = 1, · · · , 4,

∂I±
∂t

= −[Φ±, I±],

(246)

where

φ1 = φ−
√

3 +
√

6
ρs
de
ψ, φ2 = φ+

√
3 +
√

6
ρs
de
ψ,

φ3 = φ+

√
3−
√

6
ρs
de
ψ, φ4 = φ−

√
3−
√

6
ρs
de
ψ,

Φ± = Φ∓ ρi
di

Ψ,

(247)

The inclusion of the parallel electron heat flux dynamics still allows for a Hamiltonian

formulation. The closure adopted on the electron fluid, in particular, corresponds to setting

to zero the fluctuations of the energy-weighted pressure tensor (related to the fourth order

moment) or, equivalently, to assuming an expansion of the underlying distribution function

in terms of Hermite polynomials (see Ref. [24] and Sec. V B) truncated at the third order

polynomial.

In Ref. [35], the consequences of adopting different closures for the electron fluid, on

the magnetic reconnection phenomenon, were investigated numerically. On one hand, the
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comparison between the six-field model and the four-field model of Ref. [111] allows one to

investigate the effect of the heat flux and temperature fluctuations against an isothermal

closure. On the other hand, we remark that in the six-field model, the evolution of the heat

flux is controlled by the combination of parameters ρ2
s/d

2
e = (βe/2)(M/me). Indeed, from

Eq. (232) one sees that, in the limit ρ2
s/d

2
e → 0, the heat flux tends to be purely advected

by the E×B velocity. In particular, if q‖e = 0 at t = 0, then the heat flux fluctuations will

not grow. The regime ρ2
s � d2

e corresponds then to the adiabatic regime, were the electron

heat flux is suppressed. Varying the ratio ρ2
s/d

2
e allows the investigation of the heat flux.

A selection of the results of Ref. [35] is summarized here and the reader can refer to the

original article for further details.

A magnetic reconnection process was simulated numerically with both the six-field model

and the isothermal four-field model of Ref. [111] on the domain Dx = [−π, π] × [−2π, 2π]

by perturbing, with a single helicity mode, the equilibrium

Nieq = neeq = n0, Uieq = 0, ψeq(x) =
11∑

n=−11

f̂ne
inx, (248)

t‖eeq = 0, q‖eeq = 0, (249)

where n0 is a constant, whereas f̂n are the Fourier coefficients of the function

f(x) = 0.1/ cosh2(x). (250)

In all the simulations considered here, the values ρi = 0.2, de = 0.2, di = 2 were kept

fixed. Fig. 3 shows how the total energy is redistributed, during the reconnection process,

according to the two models. We observe that the Hamiltonian for the isothermal four-field

model corresponds to the Hamiltonian (235) in the limit t‖e = q‖e = 0.

The different terms contributing to the total energy are named as follows:

Emag =
1

2

∫
d2x |∇ψ|2, Eke =

d2
e

2

∫
d2xu2

e, Eele = −1

2

∫
d2xφne,

Ethe =
ρ2
s

2

∫
d2xn2

e, ET‖ =
ρ2
s

4

∫
d2x t2‖e, Eq‖ =

d2
e

3

∫
d2x q2

‖e,

Eki =
d2
i

2

∫
d2xU2

i , Eeli =
1

2

∫
d2xΦNi, Ethi =

ρ2
i

2

∫
d2xN2

i .
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Figure 3. Relative variations of the different contributions to the total energy (Hamiltonian) for

the six-field model (solid line) and for the isothermal four-field model (dashed line), for ρs = 0.1.

Time is expressed in Alfvén units normalized with respect to the linear growth rate γL (after D.

Grasso and E. Tassi, J. Plasma Phys., 81, 495810501 (2015)).

The relative variations for each form of energy, shown in Fig. 3, are calculated with respect

to the initial values and normalized with respect to the total energy, so that, for instance,

in the case of the magnetic energy one has δEmag(t) = (Emag(t)−Emag(0))/H(0), where H

is the Hamiltonian functional (235).

As expected for Hamiltonian dynamics, the total energy remains essentially identical to

its initial value, the only variation being due to numerical dissipation acting toward the end
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of the simulation. Magnetic energy decays as a consequence of the reconnection process,

which converts it into other forms of energy. Most of the magnetic energy is transformed into

electrostatic electron energy (Eele). The fraction of magnetic energy converted into forms

of energy associated with ions (Eki, Eeli and Ethi) is essentially the same for both closures.

Therefore, modifying the closure on the electron fluid, seems to affect only the forms of

energies associated with electrons. In particular, we observe that the fraction of energy

feeding Eele and Ethe in the six-field model, is smaller than that for the four-field model.

This gap in energy is clearly compensated by the new channels of free energy available in the

six-field model, and corresponding to ET‖ and Eq‖ . On the other hand, in terms of the linear

growth rate, both closures yield very similar results, with slightly faster growth occurring in

the six-field model [35]. The comparison with the adiabatic closure, on the other hand, can

be made within the framework of the six-field model, as above said, by varying the ratio

ρ2
s/d

2
e. Whereas in the adiabatic regime ρs � d2

e, heat flux fluctuations get suppressed, in

the opposite, non-adiabatic regime with ρ2
s � d2

e, it is the temperature fluctuations which

tend to damp, given that the heat can flow between different regions of plasma to equalize

the temperature of the electron fluid.

Fig. 4 shows contour plots of three electron field variables in the two regimes. In the

adiabatic regimes, as expected, temperature fluctuations tend to follow density fluctuations.

Both tend to concentrate in four lobes with alternating signs, which turn out to be local-

ized in correspondence of the separatrices of the magnetic island formed as a consequence

of the reconnection process. In the non-adiabatic regime, density fluctuations remain es-

sentially concentrated along the separatrices of the magnetic island, whereas temperature

fluctuations, which are now much weaker, distribute inside the island. Heat flux fluctuations,

which are very weak in the adiabatic regime, also tend to concentrate along the separatrices,

as they become relevant in the non-adiabatic regime.
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Figure 4. Contour plots of ne, t‖e and q‖e in the adiabatic regime (ρs = 0.01, left column) and

in the non-adiabatic regime (ρs = 0.8, right column) at a time into the nonlinear phase of the

reconnection process (after D. Grasso and E. Tassi, J. Plasma Phys., 81, 495810501 (2015)).

V. DERIVING HAMILTONIAN CLOSURES

In Secs. III and IV Hamiltonian fluid models adopting different closure schemes were

presented. For some of such models, in the original derivation, the Hamiltonian structure

was verified a posteriori. In the cases of incompressible MHD of Sec. III B and of the

gyromapped models of Sec. IV B, the models were derived from Hamiltonian parent models,

by applying techniques that guarantee the existence of a Hamiltonian structure. In these

cases, however, the Hamiltonian parent models were fluid models.

Adopting fluid models as parent models imposes, clearly, some limitations on the features

of the models that can be derived. It would then be desirable to identify closures that provide
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fluid models with a Hamiltonian structure, starting from a parent kinetic theory, which offers

a much more general approach.

Recently, a number of results were obtained in this direction. In this Section, we sum-

marize the main achievements, which we classify according to whether the parent kinetic

model includes the Vlasov equation or the drift-kinetic equation.

A. Hamiltonian closures from Vlasov systems

The Vlasov-Maxwell system is known to possess a noncanonical Hamiltonian structure

[56, 114, 115]. Electrostatic reductions of the Vlasov-Maxwell system can still possess a

Hamiltonian structure [56, 76, 114]. In the remaining part of Sec. V A, we consider Hamilto-

nian fluid models derived from Hamiltonian systems evolving a particle distribution function

according to the Vlasov equation, in the absence of magnetic fields but in the presence of

an external potential (in Sec. V A 1) or coupled with the evolution of the electric field (in

Secs. V A 2 and V A 3).

1. Three-moment model derived from the Vlasov equation

We consider the following one-dimensional Vlasov equation

∂f

∂t
+ v

∂f

∂x
− ∂V

∂x

∂f

∂v
= 0. (251)

In Eq. (251) f = f(x, v, t) is the distribution function for a population of particles subject

to an external potential V = V (x) (although the extension to the Vlasov-Poisson system

can easily be carried out). We consider f as dynamical field variable, over a domain Dx,v =

[0, 1] × R, with x ∈ [0, 1] and v ∈ R, where x and v indicate the spatial and velocity

coordinate, respectively. Periodic boundary conditions are assumed on the interval 0 ≤ x ≤

1, whereas vanishing boundary conditions are imposed as |v| → ∞. In this setting, Eq.

(251) admits a Hamiltonian formulation with Hamiltonian

H(f) =

∫
dxdv f

(
v2

2
+ V

)
(252)
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and Poisson bracket

{F,G} =

∫
dxdv f

(
∂Ff
∂x

∂Gf

∂v
− ∂Ff

∂v

∂Gf

∂x

)
. (253)

As anticipated in Sec. I, the customary procedure to derive a fluid model from Eq. (251) is

to first introduce the fluid moments

Pn(x, t) =

∫
dv vnf(x, v, t), (254)

where n is a non-negative integer denoted as order of the moment.

By multiplying the left-hand side of Eq. (251) by vn, integrating with respect to v and

using integration by parts, one obtains the hierarchy of fluid equations

∂Pn
∂t

+
∂Pn+1

∂x
+ n

∂V

∂x
Pn−1 = 0, (255)

for n = 0, 1, 2, · · · . Evidently, the knowledge of the evolution of the moment Pn requires the

knowledge of Pn+1, which in turn requires knowing Pn+2 and so on. Therefore, obtaining

a closed fluid model evolving a finite number N of moments requires imposing a closure

relation

PN = F(P0, P1, · · · , PN−1) (256)

where F is, in general, an operator which might depend on derivatives of the moments as

well as explicitly on the spatial coordinate x.

Truncating the infinite hierarchy (255) by imposing a closure relation (256), however, in

general does not preserve the Hamiltonian character of the parent Vlasov equation (251).

In Ref. [116] closure relations were derived in such a way that a three-moment fluid model,

possessing a Hamiltonian structure by construction, could be obtained from Eq. (251).

The procedure for the derivation of such Hamiltonian closures begins by expressing the

Hamiltonian structure of the parent Vlasov model in terms of the fluid moments instead of

that in terms of the distribution function.

With regard to the Hamiltonian (252), this is easily accomplished by substitution and

yields

H(P0, P1, P2) =

∫
dx

(
P2

2
+ V P0

)
. (257)
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As far as the Poisson bracket (253) is concerned, it is necessary to be able to express the

functional derivatives with respect to f , in terms of functional derivatives with respect to

P0, P1, P2, · · · . This is accomplished by making use of the functional chain rule described

in Sec. II applied to the change of variables f → (P0, P1, P2, · · · ). Noticing that, from

the relation (254) one obtains the relation δPn =
∫
dv vnδf between the variations, the

functional chain rule yields

δF

δf
=

+∞∑
i=0

δF̄

δPi
. (258)

Using this relation in (253) one obtains that the Vlasov Poisson bracket in terms of the fluid

moments reads

{F,G} =
+∞∑
m,n=0

∫
dxPm+n−1(nGn∂xFm −mFm∂xGn), (259)

where the subscripts on the functionals indicates the order of the moments, so that, for

instance, Fm = δF/δPm. The bracket (259) was derived in Ref. [117] and associated with

the Vlasov-Poisson bracket in Ref. [118].

In order to derive a Hamiltonian three-moment model, a natural choice of the field vari-

ables is clearly the set (P0, P1, P2). If one evaluates the Poisson bracket (259) restricting to

functionals F and G depending on P0, P1 and P2 only, one obtains

{F,G} = {F,G}J + {F,G}∗, (260)

where

{F,G}J =

∫
dx (P0(G1∂xF0 − F1∂xG0) + P1(G1∂xF1 − F1∂xG1)

+P2(G1∂xF2 − F1∂xG2)) ,

{F,G}∗ = 2

∫
dx (P1(G2∂xF0 − F2∂xG0) + P2(G2∂xF1 − F2∂xG1)

+P3(G2∂xF2 − F2∂xG2)) .

(261)

From Eq. (261) it emerges then that, although F and G depend only on P0, P1 and P2, the

bracket {F,G} does not, because it depends explicitly on P3. This differs, in particular, from

the case where one restricts to the set of functionals of P0 and P1, which, on the contrary,
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forms a sub-algebra [119, 120]. As will become evident later, the case of the sub-algebra of

functionals of P0 and P1 includes the case of barotropic fluids. In order for the expression

(260) to be a functional of P0, P1 and P2 we impose a closure relation

P3 = F(x, P0, P1, P2), (262)

expressing the fact that P3 must depend on its lower order moments, and possibly also on the

coordinate x through a function F (we assume no dependence on the derivatives of P0, P1

and P2, on the other hand). However, the expression that one obtains after inserting (262)

into (260) in general is not a Poisson bracket. Indeed, whereas bilinearity, antisymmetry

and the Leibniz identity are satisfied for any F , the Jacobi identity is not. Imposing the

Jacobi identity (note that the { , }J satisfies the Jacobi identity independently) implies the

following constraints on F :

P0
∂F
∂P1

+ 2P1
∂F
∂P2

− 3P2 = 0, (263)

P0
∂F
∂P0

+ 2P1
∂F
∂P1

− 4F + 3P2
∂F
∂P2

= 0, (264)

∂F
∂x

= 0. (265)

Equation (265) implies that F cannot depend explicitly on x. The remaining two equations

are solved by the method of characteristics in Ref. [116] and yield the following Hamiltonian

closure

P3 = 3
P1P2

P0

− 2
P 3

1

P 2
0

+
P 4

0

2
Q
(
P2

P 3
0

− P 2
1

P 4
0

)
, (266)

where Q is an arbitrary function. The Poisson bracket (260), with P3 given by Eq. (266),

and the Hamiltonian (257) generate a Hamiltonian three-moment model, possessing a free

function Q.

This Hamiltonian structure can be expressed in an alternative, physically relevant form
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as

H(ρ,M,U) =

∫
dx

(
M2

2ρ
+ ρU + ρV

)
, (267)

{F,G} = −
∫
dx (ρ(FM∂xGρ −GM∂xFρ) +M(FM∂xGM −GM∂xFM) (268)

+U(FM∂xGU −GM∂xFU + FU∂xGM −GU∂xFM)− ρ2Q(2U/ρ2)(FU∂xGU −GU∂xFU)
)
,

(269)

where the new field variables ρ, M and U are related to the previous moment variables by

ρ = P0, M = P1, U =
1

2P0

(
P2 −

P 2
1

P0

)
. (270)

The variables ρ, M and U represent the density, the momentum density and the internal

energy of the fluid, respectively. The Hamiltonian (267) and the Poisson bracket (269)

can be compared with the corresponding expressions (40) and (41), for a barotropic fluid.

Indeed, one sees that the Hamiltonian structure for a 1D barotropic fluid can be obtained

from Eqs. (267)-(269) in the absence of potential (V = 0), restricting to functionals of ρ and

M and imposing that the internal energy be a function of the density. In the three-moment

model, on the other hand, the internal energy is an independent dynamical variable.

The equations of motion for the three-moment model can be written as

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (271)

∂v

∂t
+ v

∂v

∂x
+
∂V

∂x
+

1

ρ

∂p

∂x
= 0, (272)

∂U

∂t
+ v

∂U

∂x
+ 2U

∂v

∂x
+

1

ρ

∂

∂x
(ρ4Q) = 0, (273)

where we replaced the momentum variable M in favor of the velocity field v = M/ρ and

where we defined the pressure p = 2ρU , which is consistent with the relation ρU = p/(γ−1),

valid for a one-dimensional gas with adiabatic index γ = 3.

Eq. (273) can also be expressed as the following evolution equation for the pressure:

∂p

∂t
+ v

∂p

∂x
+ 3p

∂v

∂x
+ 2

∂

∂x
(ρ4Q) = 0. (274)

The family of models (271)-(273) represent then extensions to a higher order closure with

respect to a barotropic fluid, and still possessing a Hamiltonian structure. Note that, in
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order for the model to be Hamiltonian, Q must be Q(2U/ρ2). From Eq. (274) it follows

that q = ρ4Q corresponds to the heat flux.

The particular case Q = 0 corresponds to a situation where the underlying Vlasov dis-

tribution function has zero skewness, as in the case of a Maxwellian distribution function

f(x, v) =
ρ√
4πU

exp

(
−(v −M/ρ)2

4U

)
. (275)

In this limit, the system is constrained by the famly of Casimir invariants

C =

∫
dx ρκ(S), (276)

where S = 2U/ρ2 and κ is an arbitrary function.

In the limit Q = 0, the Poisson bracket (269), expressed in terms of the variables ρ, M

and S is invariant under the transformation S → s, where s = f(S), for an arbitrary but

invertible function f . The model equations admit then also the formulation

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (277)

∂v

∂t
+ v

∂v

∂x
+
∂V

∂x
+

1

ρ

∂

∂x
(ρ3g(s)) = 0, (278)

∂s

∂t
+ v

∂s

∂x
= 0, (279)

where g = f−1. By identifying s with the entropy per unit mass, one sees that the caseQ = 0

corresponds to an adiabatic fluid governed by a polytropic equation of state p = g(s)ρ3 (one

could also compare Eqs. (277)-(279) with Eqs. (92), (93), (95) in the absence of magnetic

field).

If Q 6= 0, on the other hand, the underlying distribution function is allowed a finite

skewness. Adiabatic processes in this case are restricted to cases where Q has a zero.

If Q does not vanish on its domain, then the system possesses three Casimir invariants,

corresponding to

C1 =

∫
dx ρ, C2 =

∫
dx

(
M

ρ
− ρκ2

0(S)

4

)
, C3 =

∫
dx ρκ0(S), (280)

where κ0 is such that κ′0 = 1/
√
|Q|.
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2. A four-moment model derived from the Vlasov-Ampère system

We consider here the dynamics of a population of charged particles, in the presence of

a neutralizing background composed of static particles with opposite charge and subject

to the action of the resulting electric field. Without loss of generality, in the plasma that

we are considering, the population of dynamical particles is composed of electrons, with a

background population of static ions. This system can be described, in normalized units,

by the following Vlasov-Ampère model :

∂f

∂t
+ v

∂f

∂x
− Ẽ ∂f

∂v
= 0, (281)

∂E

∂t
+ j̃ = 0, (282)

where f = f(x, v, t) is the electron distribution function, E = E(x, t) is the electric field,

j = −
∫
dv vf is the current density. Here the tilde indicates the fluctuating part with

respect to the spatial average value, so that Ẽ = E −
∫
dxE and j̃ = j −

∫
dx j.

The system (281)-(282) admits a Hamiltonian formulation in terms of the dynamical

variables (f, E). We assume that the coordinate domain of the distribution function f is

Dx,v = [0, 1] × R, whereas that for the electric field E is Dx = [0, 1]. As in the previous

cases, periodicity is imposed at x = 0 and x = 1, whereas vanishing boundary conditions

are assumed for |v| → ∞. Note that this case refers to the situation, mentioned in Sec. II,

where the dynamical field variables depend on different domains of coordinates.

The Hamiltonian for the Vlasov-Ampère system is given by

H(f, E) =

∫
dxdv f

v2

2
+

∫
dx
E2

2
, (283)

where the first term on the right-hand side corresponds to the kinetic energy, and the second

term to the electrostatic energy.

The expression for the Poisson bracket is given by

{F,G} =

∫
dxdv f

(
∂Ff
∂x

∂Gf

∂v
− ∂Ff

∂v

∂Gf

∂x
(284)

+

(
F̃E

∂Gf

∂v
− G̃E

∂Ff
∂v

))
. (285)
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Note that the contribution (284) corresponds to the Poisson bracket (253) of the case with

external potential, whereas the terms (285) account for the evolution of the electric field.

In Ref. [121], the Hamiltonian closures for a four-moment fluid model, derived from Eqs.

(281)-(282) and evolving the field variables (P0, P1, P2, P3, E), were found.

The approach is similar to that of Ref. [116], although a higher order closure is considered

here. The Hamiltonian (283) can easily be expressed in terms of the involved field variables

(P0, P1, P2, P3, E) as

H(P0, P1, P2, P3, E) =
1

2

∫
dx
(
P2 + E2

)
. (286)

In terms of the fluid moments and electric field, on the other hand, the Poisson bracket

(284)-(285) becomes

{F,G} =
+∞∑
m,n=0

∫
dx (Pm+n−1(nGn∂xFm −mFm∂xGn) + Pm−1(GmF̃E − FmG̃E)). (287)

The bracket (287) is then evaluated on functionals F and G depending on P0, P1, P2, P3

and E . The result is a functional that depends also on P4 and P5. A closure relation

is thus required, and in this case, unlike for the three-moment model of Sec. V A 1, it

involves two higher order moments rather than one. Imposing P4 = P4(P0, P1, P2, P3, E)

and P5 = P5(P0, P1, P2, P3, E) in Eq. (287) (we exclude dependence on the derivatives of

the moments and on the spatial coordinate x) one looks for the constraints that P4 and

P5 need to satisfy in order for the Jacobi identity to be verified. The conditions on the

fluid moments P4 and P5 can be more conveniently expressed in terms of the reduced fluid

moments defined as Sn(x, t) = (1/ρn+1(x, t))
∫
dv(v − v(x, t))nf(x, v, t), for n ≥ 2. In Ref.

[121], it is shown that a necessary condition for the Jacobi identity to be satisfied is that S4

and S5 not depend on ρ, v and E. Also, the constraints on S4 fully determine the closure

on S5. The constraints reduce to the following two partial differential equations:

4S3
∂2S4

∂S2
2

− ∂2S4

∂S2∂S3

(9S2
2 − 5S4)− ∂S4

∂S2

∂S4

∂S3

= 12S3, (288)

4S3
∂2S4

∂S3∂S2

− ∂2S4

∂S2
3

(9S2
2 − 5S4) + 12S2 =

(
∂S4

∂S3

)2

+ 2
∂S4

∂S2

, (289)

to be solved for S4 = S4(S3, S2).
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Solutions are sought in such a way that the relation between S4, S2 and S3 does not

involve further dimensional parameters. With this assumption, given that the relation S4 =

S4(S2, S3) involves three quantities and a single physical dimensions L2T−1 (with L and

T indicating the units of length and time, respectively), the Buckingham π theorem [122]

implies that the relation S4 = S4(S2, S3) can be reduced to a relation ζ = R(ξ) between

two dimensionless quantities ζ and ξ. Setting ζ = S4/S
2
2 and ξ = S3/S

3/2
2 , two solutions for

the closure relation were found. We focus on one of these two solutions, which leads to a

physically relevant model, and which corresponds to

S4 = S2
2 +

S2
3

S2

, S5 = 2S2S3 +
S2

3

S2
2

. (290)

The resulting model equations can be written in the following form:

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (291)

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
+ Ẽ = 0, (292)

∂p

∂t
+ v

∂p

∂x
+ 3p

∂v

∂x
+ 2

∂q

∂x
= 0, (293)

∂q

∂t
+ v

∂q

∂x
+ 4q

∂v

∂x
+ 2

∂

∂x

(
q2

p

)
− 1

4ρ3

∂

∂x

(
ρ2p2

)
= 0, (294)

∂E

∂t
− ρ̃v = 0, (295)

where

p = ρ3S2 = P2 −
P 2

1

P0

, q =
ρ4

2
S3 =

P3

2
− 3

2

P1P2

P0

+
P 3

1

P 2
0

, (296)

correspond to the pressure and to the heat flux, respectively.

The closure on P4 yielding Eqs. (291)-(294) corresponds to a bi-delta reduction [123–126],

i.e. to a distribution function of the form f(x, v, t) = ρ1(x, t)δ(v − v1(x, t)) + ρ2(x, t)δ(v −

v2(x, t)), consisting of two beams centered at the velocities v1 and v2 and distributed in

space according to the densities ρ1 and ρ2, respectively.

Global Casimir invariants for this system correspond to

C1 =

∫
dx ρ, C2 =

∫
dxE, C3 =

∫
dx v̄, (297)

C4 =

∫
dxQ2, C5 =

∫
dxQ3, (298)
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where

v̄ = v +
q

p
Q2 = 2

√
p

ρ
+
q2

p2
, Q3 = qρ

√
ρ

p3 + ρq2
. (299)

The set of variables (ρ, E, v̄, Q2, Q3) identifies a set of normal fields, in terms of which the

Poisson bracket for the model (291)-(295) takes the remarkably simple form

{F,G} =

∫
dx

(
Gv̄

∂Fρ
∂x
− Fv̄

∂Gρ

∂x
+ (Gv̄F̃E − Fv̄G̃E)− 2GQ3

∂FQ2

∂x
+ 2FQ3

∂GQ2

∂x

)
. (300)

As was the case for the three-moment model, also in this case one Casimir invariant, namely

C3 corresponds to the integral of a generalized velocity v̄ (analogous to C2 in Eq. (280)).

In addition to the global invariants C1, · · · , C5, the system possesses also a local Casimir

invariant

C6(x) =
∂E(x)

∂x
+ ρ(x), (301)

which expresses Gauss’s law governing the charge density.

Interestingly, Eqs. (288)-(289) possess, still in the framework of the above dimensional

analysis, a second solution providing a second Hamiltonian closure. This second solution,

however, does not allow for symmetric distribution functions, and consequently, its physical

relevance for plasma physics remains questionable. Also, this second solution yields a Poisson

bracket without a complete set normal fields [121].

3. Higher-order Hamiltonian closures for the models derived from the Vlasov-Ampère system

In Sec. V A 2 we summarized the results of Ref. [121], where it was found that, in the

framework of the above discussed dimensional analysis, and excluding in the closure relation

any dependence on the spatial coordinates as well as on derivatives of the moments, only

two Hamiltonian closures exist for four-moment models derived from the Vlasov-Ampère

system. In Ref. [127] it was shown, on the other hand, that there exist a family of closures

of the Vlasov-Ampère system, those associated with the so called water-bag distribution

functions, which lead to Hamiltonian fluid models for an arbitrary number of moments.
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Given a non-negative integer N , the N -water-bag distribution function [128–130] is de-

fined as

fN(x, v, t) =
N+1∑
i=1

ai Θ[v − vi(x, t)], (302)

where Θ is the Heaviside distribution, a1, · · · , aN+1 are constants and v1, · · · , vN+1 are

contour velocity fields identifying the boundaries between the “bags”. In order for the

distribution to have a compact support, the constraint
N+1∑
i=1

ai = 0 is imposed, Moreover, it

is assumed that v1(x, t) < v2(x, t) < · · · < vN+1(x, t) for all (x, t) ∈ [0; 1[×R+.

Water-bag distribution functions can be considered as piecewise constant approximations

of smooth distribution functions and were used, for instance, in the context of gyrokinetic

theory [131–134]. An important feature of the water-bag distribution functions is that they

provide a weak solution of the Vlasov-Ampère system (281)-(282) if and only if the velocity

fields v1, · · · , vN+1 satisfy

∂vi
∂t

= −vi
∂vi
∂x
− Ẽ, (303)

for all 1 ≤ i ≤ N + 1 and

∂E

∂t
= −1

2

N+1∑
i=1

aiṽ2
i . (304)

By solving the fluid-like system (303)-(304), one then finds a solution of the Vlasov-Ampère

system of the form (302).

The system (303)-(304) possesses a Hamiltonian structure [135–137] with Hamiltonian

H(v1, · · · , vN+1, E) =
1

2

∫
dx

(
−1

3

N+1∑
i=1

aiv
3
i + E2

)
, (305)

and Poisson bracket

{F,G} =
N+1∑
i=1

∫
dx

(
1

ai
Fvi

∂

∂x
Gvi

+Gvi
F̃E − Fvi

G̃E

)
. (306)

As above anticipated, water-bag distribution functions (302) lead to Hamiltonian fluid mod-

els for an arbitrary number of moments.

This is easily seen in the case of a single water-bag distribution function f1(x, v, t) =

Θ[v − v1(x, t)]−Θ[v − v2(x, t)], which corresponds to a two-moment model, with

P0 = v2 − v1, P1 =
v2

2 − v2
1

2
.
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The contour velocity fields are related to the density ρ and to the velocity v of the fluid by

v1 = v − ρ

2
, v2 = v +

ρ

2
.

The Hamiltonian and the Poisson bracket for the model are given by

H(ρ, v, E) =

∫
dx

(
ρ

v2

2
+ ρU(ρ) +

E2

2

)
, (307)

and

{F,G} = −
∫
dx

(
Fρ
∂Gv

∂x
−Gρ

∂Fv

∂x
+ FvG̃E −GvF̃E

)
, (308)

respectively. In the Hamiltonian (307), the expression for the internal energy corresponds

to U(ρ) = ρ2/24. The corresponding equations of motion read

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (309)

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
+ Ẽ = 0, (310)

∂E

∂t
− ρ̃v = 0, (311)

where the expression for the pressure is given by p = ρ3/12. Equivalently, this closure can

be written as

P2 =
P 2

1

P0

+
P 3

0

12
(312)

in terms of the fluid moments, or as S2 = 1/12 in terms of reduced moments.

It follows then that the single water-bag case leads to the equations for a barotropic fluid,

governed by an adiabatic equation of state for an ideal gas with one degree of freedom, and

interacting with an electric field.

Associated Casimir invariants are given by:

C1 =

∫
dx ρ, C2 =

∫
dxE, C3 =

∫
dx v, C4(x) =

∂E

∂x
+ ρ. (313)

The invariant C1, C2 and C4 are in common with the Casimir invariants of the four-moment

model (291)-(295). The conservation of the mean value of the fluid velocity, associated with

C2, on the other hand, is peculiar to the adiabatic closure of this two-moment model.
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In the general case of an N -water-bag distribution function, the fluid density and velocity

are given by

ρ = −
N+1∑
i=1

aivi, v =

N+1∑
i=1

aiv
2
i

2
N+1∑
k=1

akvk

. (314)

It is then convenient to introduce the quantities

nl = −
(vl+1 − vl)

l∑
i=1

ai

N+1∑
k=1

akvk

, 1 ≤ l ≤ N − 1, (315)

such that ρni is the density of particles contained in the i-th bag for 1 ≤ i ≤ N − 1, and

νi =
i∑

k=1

nk, 1 ≤ i ≤ N − 1. (316)

From Eq. (315), it follows that the quantity
∫
dxρνi corresponds to the cumulative number

of particles contained in the first i bags.

In terms of the field variables (ρ, v, ν1, · · · , νN−1, E), the Hamiltonian structure of the

N + 1-moment model associated with an N -water-bag distribution function consists of

H(ρ, v, ν1, · · · , νN−1, E) =
1

2

∫
dx
(
ρv2 + ρ3S2(ν1, · · · , νN−1) + E2

)
, (317)

{F,G} = −
∫
dx

(
Fρ
∂Gv

∂x
−Gρ

∂Fv

∂x
+ FvG̃E −GvF̃E

+
1

ρ
(FνiGv −GνiFv)

∂νi
∂x
− λi

Fνi
ρ

∂

∂x

(
Gνi

ρ

))
, (318)

In the Hamiltonian (317), the expression for S2 in terms of the field variables ν1, · · · , νN−1

can be obtained from the general expression for the reduced moments, corresponding to

Si(x, t) = − 1

(i+ 1)ρi+1

N+1∑
k=1

ak[vk(x, t)− v(x, t)]i+1, (319)

for i ≥ 2.

In the Poisson bracket (318), the sum of repeated indices from 1 to N − 1 is understood

and we introduced the constants

λi =

i∑
k=1

ak
i+1∑
l=1

al

ai+1

.
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The resulting N + 1 moment model equations are given by

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (320)

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
+ Ẽ = 0, (321)

∂νi
∂t

+ v
∂νi
∂x
− λi

ρ

∂

∂x

(
ρ2

2

∂S2

∂νi

)
= 0, 1 ≤ i ≤ N − 1, (322)

∂E

∂t
− ρ̃v = 0, (323)

and are constrained by the Casimir invariants

C1 =

∫
dx ρ, C2 =

∫
dxE, (324)

C3 =

∫
dx

(
v +

ρ

2

N∑
k=1

ak
a2
N+1

(
νN−1 + aN+1

N−1∑
l=k

νl − νl−1

Al

)2)
, (325)

C4 =
∂E

∂x
+ ρ, Ci =

∫
dx ρνi, 5 ≤ i ≤ N + 3, (326)

(327)

where Ai =
∑i

k=1 ak. In addition to the already encountered constraints associated with

C1, C2 and C4, the generic N + 1-moment model derived from the water-bag distribution

function possesses further conservation laws. The invariants C5, · · · , CN+3 express the con-

servation of the number of particles in each bag, whereas C3 reflects the conservation of a

mean generalized velocity (which reduces to the fluid velocity in the single water-bag limit).

Although it was shown that from water-bag distribution functions it is possible to con-

struct Hamiltonian fluid models for an arbitrary number of moments, the corresponding

closure relations are not easy to extract, except for the simplest cases, as in the case of the

single water-bag. In Ref. [127] a way to represent such closure relations in terms of reduced

moments was presented. The closure for the N -water-bag model is indeed a relation of the

form SN+1 = SN+1(S2, · · · , SN), which represents an N − 1-dimensional manifold in RN ,

parametrized by (ν1, · · · , νN−1).

The projections of the edges of such manifold on the (S2, S3, S4) space correspond to the

closures of the three-moment models obtained by combining all the possible pairs of bags
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Figure 5. Upper panel: sketch of a bell-shaped water-bag distribution function with twenty-seven

bags. Lower panel: projection of the edges of the manifold defining the closure for the distribution

function given by the upper panel (after M. Perin, C. Chandre, P.J. Morrison, E. Tassi, Phys.

Plasmas, 22, 092309 (2015)).

of the distribution function under consideration. In this way, using the values of S4 as a

function of S2 and S3 in order to visualize the edges of the manifolds in the (S2, S3, S4)

space, it is possible to represent all the information related to a given closure relation.

An example for a closure associated with a 27-water-bag distribution function is depicted

in Fig. 5.

Finally, we remark that the water-bag closure extends the N -delta reductions

f(x, v, t) =
N∑
i=1

bi(x, t)δ(v − vi(x, t)), (328)

which, in terms of moments, lead to the Zakharov decomposition [135, 138, 139].

Pn(x, t) =
N∑
i=1

bi(x, t)vi
n(x, t), (329)

for non-negative integers n.
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B. Hamiltonian closures from drift-kinetic systems

As mentioned in Sec. IV C, the investigation of low-frequency phenomena such as toka-

mak turbulence, occurring in the presence of a strong magnetic field, can take advantage of

reduced kinetic description such as gyrokinetics, where the evolving distribution functions

are defined over a reduced coordinate space, independent of the gyration angle. If, in addi-

tion, one is interested in phenomena occurring on scales much larger than the Larmor radius,

one can take the limit k⊥ρ� 1 of the gyrokinetic theory, where ρ is the Larmor radius of the

particle of the species under consideration. This leads to a so called drift-kinetic description

(see,, e.g. Ref. [27]). Similarly to the case of gyrofluid models, fluid models (sometimes

also referred to as to drift-fluid models) can be derived from drift-kinetic equations by trun-

cating the infinite hierarchy of equations evolving moments of the drift-kinetic distribution

functions.

In this Section, we review recent results concerning closures leading to Hamiltonian drift-

fluid models derived from Hamiltonian parent drift-kinetic systems.

1. Two and three-moment drift-fluid models

In the presence of a uniform and constant magnetic field B = B0ẑ, we consider the parent

drift-kinetic model in which the evolution equation, is given by

∂f

∂t
+

c

B0

[φ, f ] + v‖
∂f

∂z
− q

m

∂φ

∂z

∂f

∂v‖
= 0. (330)

In Eq. (330), f = f(x, y, z, v‖, t) is the average, with respect to the magnetic moment

coordinate µ = mv2
⊥/(2B0), of the actual drift-kinetic distribution function f(x, y, z, v‖, µ, t),

i.e. f(x, y, z, v‖, t) = (2πB0/m)
∫ +∞

0
dµf(x, y, z, v‖, µ, t). The distribution function refers to

a population of particles of mass m and charge q. Here the symbols v⊥ and v‖ denote the

velocity coordinates perpendicular and parallel to the magnetic field, respectively. In Eq.

(330), the second term represents the transport by the E × B drift, the third term is the

advection along the magnetic field, whereas the last term accounts for the action of the
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electric force. Equation (330) can be obtained as a considerably simplified limit of standard

gyrokinetic system such as those of Refs. [16, 24]. In the following, we set c = B0 = m = 1

and q = −1. We specialize then, without loss of generality, to the case where the distribution

f refers to electrons and we assume, for simplicity, that the normalized electrostatic potential

φ is related to f via Poisson’s equation, with ions forming a neutralizing background

∆φ =

∫
dv‖ (f −

∫
d3x f), (331)

although the results of Sec. V B 1 hold also in the case of more refined relations [140]. We

remark that, with the formulation given in Eq. (331), one assumes that the ion density is

equal to
∫
d3xdv‖f , corresponding to the spatial average of the electron density over the

domain, so that the distribution function f actually contains information also on the ion

population.

Equation (330) admits a Hamiltonian formulation in terms of the dynamical field f ,

defined over the domain of coordinates (x, y, z, v‖) ∈ Dx,v = [0, 1] × [0, 1] × [0, 1] × R. The

Hamiltonian functional corresponds to the sum of parallel kinetic and electrostatic energy

and is given by

H(f) =
1

2

∫
d3xdv‖ f

(
v2
‖ − φ

)
, (332)

whereas the Poisson bracket reads

{F,G} =

∫
d3xdv‖ f([Ff , Gf ] + [Ff , Gf ]v), (333)

where

[g, h]v =
∂g

∂z

∂h

∂v‖
− ∂g

∂v‖

∂h

∂z
. (334)

In Refs. [140, 141], the Hamiltonian closures for two and three-moment reductions of the

system (330) were derived.

The procedure for the derivation of the Hamiltonian closures corresponds essentially

to that already described in Secs. V A 1 and V A 2. Fluid moments of the drift-kinetic

distribution function, with respect to the parallel velocity, are defined as follows:

Pn(x, y, z, t) =

∫
dv‖ v

n
‖ f(x, y, z, v‖, t), (335)
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for a non-negative integer n.

The Hamiltonian (332) can, as was the case for the Vlasov systems, easily be expressed

in terms of the moments as

H(P0, P2) =
1

2

∫
d3x (P2 − φP0) . (336)

(note that, from Eq. (331), the electrostatic potential φ depends on P0 as ∆φ = P̃0).

Making use of the functional chain rule, the Poisson bracket (333) is rewritten, in terms

of the moment variables, as

{F,G} =
+∞∑
m,n=0

∫
d3x (Pm+n[Fm, Gn] + Pm+n−1(nGn∂zFm −mFm∂zGn)). (337)

Note that the second term in the bracket (337) corresponds (provided one replaces z with x)

to the bracket (259), derived from the Vlasov equation. The drift-kinetic system adds then

a further contribution, corresponding to the term accounting for the advection in the plane

perpendicular to the magnetic field. Namely the presence of this term implies an important

difference with respect to the previously treated Vlasov cases, with regard to the derivation

of Hamiltonian closures. Indeed, unlike for Vlasov systems, evaluating (337) between two

functionals F (P0, P1) and G(P0, P1) does not yield again a functional of P0 and P1 but

{F,G} =

∫
d3x (P0[F0, G0] + P1([F1, G0] + [F0, G1]) + P2[F1, G1]

+P0(G1∂zF0 − F1∂zG0) + P1(G1∂zF1 − F1∂zG1)) ,

(338)

which depends expicitly on P2. For a two-moment model derived from the drift-kinetic

system, therefore, Hamiltonian closures must be sought in the form P2 = P2(P0, P1). In Ref.

[140] it is shown that (again assuming independence of the closure relation on the derivatives

of the moments and on the spatial coordinates) the only Hamiltonian closure is given by

P2 =
P 2

1

P0

+AP 3
0 , (339)

with constant A. Inserting (339) into Eq. (338) yields then a Poisson bracket.

In terms of pressure p = P2 − P 2
1 /P0 and mass density ρ = P0, the closure (339) reads

p = Aρ3, which corresponds to the adiabatic equation of state for an ideal barotropic gas
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composed of molecules with one degree of freedom. Following Sec. V A 3, we observe then

that this corresponds to a single water-bag distribution function, with the constant A related

to the height of the bag and, consequently, to the temperature of the electron population.

The resulting model equations can be written as

∂ρ

∂t
+ [φ, ρ] +

∂(ρu)

∂z
= 0, (340)

∂u

∂t
+ [φ, u] +

∂

∂z

(
u2

2
− φ+

3

2
Aρ2

)
= 0, (341)

where we replaced the dynamical variable P1 in favor of the parallel fluid velocity u = P1/P0.

The model (340)-(341) corresponds to a single water-bag version of the model derived in

Ref. [131]. Two Casimir invariants constrain the dynamics and are given by

C1 =

∫
d3x ρ, C2 =

∫
d3xu, (342)

corresponding to conservation of the total mass and of the mean parallel velocity. These

are clearly analogous to the invariants C1 and C3 in Eq. (313), indicating that, in spite

of the differences introduced in the Poisson bracket by the perpendicular dynamics, such

Casimir invariants survive when moving from the 1D Vlasov case to the drift-kinetic case

in the frame of the single water-bag reduction. We remark that in Ref. [142], the above

results were generalized to the case where the drift-kinetic distribution function is given by

the sum of a perturbation with a non-uniform Maxwellian, thus leading to a Hamiltonian

two-moment extension of the Charney-Hasegawa-Mima equation for drift waves.

In Ref. [141] the above result was extended and the Hamiltonian closures for three-

moment drift-fluid models were derived. In this case, the Hamiltonian (332) can be conve-

niently rewritten as a functional of three fluid dynamical fields, as

H(ρ, u, S2) =
1

2

∫
d3x

(
ρu2 + ρ3S2 − φρ

)
, (343)

where, analogously to the Vlasov systems, we introduced the reduced moments with respect

to the parallel velocity as

Sn(x, y, z, t) =
1

ρn+1(x, y, z, t)

∫
dv‖(v‖ − u(x, y, z, t))nf(x, y, z, v‖, t), for n ≥ 2. (344)
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We remark that, although the drift-fluid Hamiltonian remains (336), the Jacobi identity

implies that constraints on both P3 = P3(P0, P1, P2) and P4 = P4(P0, P1, P2) have to be

satisfied. These constraints can be best expressed in terms of the reduced moments. A

necessary condition imposed by the Jacobi identity is that S3 = S3(S2). Furthermore, the

equations

3S2 − (S ′3)2 + 4S3S
′′
3 = 0, (345)

and

S4 =
1

5

(
4S3S

′
3 + 9S2

2

)
+
C
ρ5
, (346)

where C is a constant, have to be satisfied. We note that Eq. (346) indicates that, once

a solution is found for S3 from Eq. (345), then S4 is immediately determined. Moreover,

preventing S4 (which corresponds to the kurtosis of the underlying distribution function)

going to infinity as ρ tends to zero, implies C = 0. In Ref. [141], Eq. (345) is investigated

after transforming it into an Emden-Fowler (see, e.g. Ref. [143]) form. It is then shown that

the only physically plausible solution corresponds to a two-water-bag distribution function

of the form

f(x, v‖, t) = a1

[
Θ
(
v‖ − u1(x, t)

)
−Θ

(
v‖ − u2(x, t)

)]
+(a1 + a2)

[
Θ
(
v‖ − u2(x, t)

)
−Θ

(
v‖ − u3(x, t)

)]
,

where a1 and a1 + a2 are the heights of the two bags and u1, u2 and u3 correspond to the

contour velocities. The solution for S3 can be expressed in parametric form as

S2(n1) =
a2

1 + 6a2a1n
2
1 + 4a2(a2 − a1)n3

1 − 3a2
2n

4
1

12a2
1(a1 + a2)2

,

S3(n1) = −a2(n1 − 1)2n2
1(a1 + a2n1)2

4a3
1(a1 + a2)3

,

where the parameter n1 ∈ [0, 1] corresponds to the density of particles in the first bag.

97



Considering this solution for S3, the resulting Hamiltonian three-moment model reads

∂ρ

∂t
+ [φ, ρ] +

∂(ρu)

∂z
= 0, (347)

∂u

∂t
+ [φ, u] + u

∂u

∂z
+

1

ρ

∂(ρ3S2)

∂z
− ∂φ

∂z
= 0, (348)

∂S2

∂t
+ [φ, S2] + u

∂S2

∂z
+

1

ρ3

∂(ρ4S3)

∂z
= 0. (349)

Equation (349) can be reformulated as en evolution equation for the pressure p = ρ3S2 as

∂p

∂t
+ [φ, p] + u

∂p

∂z
+ 3p

∂u

∂z
+
∂(ρ4S3)

∂z
= 0. (350)

Although with a different, non-Hamiltonian, closure, this three-moment model was studied

in Ref. [144].

Casimir invariants for this model are given by

C1 =

∫
d3x ρ, C2 =

∫
d3x

(
u− 1

4
ρκ2

0

)
, C3 =

∫
d3x ρκ0,

where κ′0(S2) = 1/
√

2S3. Note the analogy with the Casimir invariants (280). Indeed, a

formal similarity exists between Eqs. (347), (348), (350) and the three-moment model given

by Eqs. (271), (272) and (274). Analogous terms are present in both models, and the differ-

ences arise due to the presence of a perpendicular dynamics, associated with the dependence

of the moments on two additional space coordinates, and to the closures. In particular, we

remark that in the model derived from the Vlasov system, a family of Hamiltonian closures

exists, which one can rewrite as S3 = Q̄(S2), with arbitrary Q̄. In the drift-fluid model, on

the other hand, the dependence of S3 on S2 leading to a Hamiltonian closure is not arbitrary.

The introduction of the perpendicular dynamics, associated with the first contribution on

the right-hand side of Eq. (337), imposes stronger constraints on the drift-fluid Hamiltonian

closures than in the Vlasov case.

2. Reduced drift-fluid models derived in the δf approximation

For plasmas close to equilibrium and in the presence of a strong guide field, the drift-

kinetic description can be further simplified by adopting the so called δf approximation,
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which we assume in the following. Simplifications introduced by this approximation allow

us to consider, with respect to the electrostatic case of Sec. V B 1, a more general magnetic

field B(x, y, z, t) = B0ẑ +∇ψ(x, y, z, t)× ẑ.

Considering, again, without loss of generality, the case of the electron population, in the

δf approximation one decomposes the drift-kinetic distribution function f, in dimensional

units, as

f(x, y, z, v‖, µ, t) = Feq(v‖, µ) + f̃(x, y, z, v‖, µ, t), (351)

where Feq(v‖, µ) = n0(2πTe/me)
−3/2 exp

(
−mev

2
‖/2Te − µB0/Te

)
is a Maxwellian equilib-

rium distribution function, characterized by uniform temperature Te and density n0. The

function f̃, on the other hand, indicates a space and time-dependent perturbation. Denot-

ing by τ and L characteristic time and perpendicular length scales of the fluctuations, the

following ordering is then assumed:

τ∂t ∼ L∂z ∼
f̃

Feq
∼ |∇ψ|

B0

∼ |∇φ|
B0

∼ ε� 1,

L∂x ∼ L∂y ∼
τ

L
v‖ ∼ 1.

(352)

Note the similarity between the orderings (352) and (130).

From the electromagnetic gyrokinetic equations (in the drift-kinetic limit k⊥ρ � 1), by

retaining only terms of order ε2 according to the ordering (352), it is possible to derive the

following δf drift-kinetic equation

∂g

∂t
+
c

B

[
φ−

v‖
c
ψ, g

]
+ v‖

∂

∂z

(
g − eFeq

Te

(
φ−

v‖
c
ψ
))

= 0. (353)

In Eq. (353), we introduced the field variable

g(x, y, z, v‖, t) = f̃(x, y, z, v‖, t)−
e

Te

v‖
c
Feq(v‖)ψ(x, y, z, t), (354)

where f̃ = (2πB0/me)
∫ +∞

0
dµf̃ and

Feq =
2πB0

me

∫ +∞

0

dµF̃eq = n0

(
me

2πTe

)1/2

exp(−mev
2
‖/(2Te)) (355)

are the averages of the perturbation and equilibrium distribution functions with respect to

the magnetic moment. The modified distribution function g, with the second term of Eq.

99



(354), accounts also for a linearized form of the term responsible for the perturbation of the

magnetic field. Equation (354) can be obtained as a simplified limit of the δf gyrokinetic

equation adopted, for instance, in Ref. [24]. We remark that the possibility of making

use of a field variable averaged over the magnetic moment, depends on the fact that we

are neglecting curvature and inhomogeneity in the background magnetic field, which would

otherwise introduce an explicit dependence on the magnetic moment, of the coefficients of

some terms in the drift-kinetic equation.

We suppose, for simplicity, that the electrostatic and magnetic potential are related to

the modified distribution function by

(Γ0 − 1)
eφ

Ti
=

1

n0

∫
dv‖ g, (356)

∆⊥ψ =
4πe2n0

mec2
ψ +

4πe

c

∫
dv‖ v‖g. (357)

Equation (356) corresponds to the quasi-neutrality relation balancing the electron density

perturbations and the polarization of ions fluctuating around a Maxwellian distribution

with temperature Ti, whereas Eq. (357) is the parallel component of Ampère’s law where

the parallel ion velocity has been neglected. Ion dynamics, which we do not include here

while irrelevant for the sake of describing the Hamiltonian closure, can be specified providing

relations between ion (kinetic or fluid ) field variables and the electromagnetic potentials.

We remark that, for instance, the results presented in Sec. V B 2 can easily be extended to

include an ion dynamics governed by isothermal gyrofluid equations [145].

The δf drift-kinetic equation (353), completed by the relations (356)-(357) admits a

Hamiltonian formulation with g as field variable defined over Dx,v = [0, 1]× [0, 1]× [0, 1]×R.

The Hamiltonian functional is given by

H(g) =
1

2

∫
d3xdv‖

(
Te
Feq

g2 − e
(
φ−

v‖
c
ψ
)
g

)
, (358)

and the Poisson bracket reads

{F,G} =

∫
d3xdv‖

(
c

eB0

g[Fg, Gg]− v‖
Feq
Te

Fg
∂Gg

∂z

)
. (359)
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From the Hamiltonian drift-kinetic system under consideration, it is possible to derive a

hierarchy of fluid equations that can be conveniently expressed in terms of Hermite moments

with respect to the parallel velocity v‖ normalized to the electron thermal speed vte =

(Te/me)
1/2. We define the Hermite moment of order n as

gn(x, y, z, t) =
1

n0

√
n!

∫
dv‖Hn(v‖/vte)g(x, y, z, v‖, t), (360)

where Hn denotes the n-th Hermite polynomial.

Although we make use here of Hermite moments, ordinary moments Pn =
∫
dv‖v

n
‖ g can

be obtained as linear combinations of the Hermite moments. In particular, we recall that the

first Hermite polynomials are given by H0

(
v‖/vte

)
= 1, H1

(
v‖/vte

)
= v‖/vte, H2

(
v‖/vte

)
=

(v‖/vte)
2 − 1, H3

(
v‖/vte

)
= (v‖/vte)

3 − 3(v‖/vte). The first Hermite moments possess then a

clear physical meaning as they can be written as

g0 =
n

n0

, g1 =
u

vte
− e

mevtec
ψ, (361)

g2 =
t‖√

2mev2
te

, g3 =

√
2

3

q‖
n0Tevte

, (362)

where n, u, t‖ and q‖ indicate the (dimensional) fluctuations for the electron particle density,

parallel fluid velocity, temperature and heat flux, respectively.

In order to express the hierarchy of fluid equations in terms of Hermite moments, we

observe first that the quasi-neutrality relation (356) and Ampère’s law (357) can easily be

rewritten as

(Γ0 − 1)
eφ

Ti
= g0, (363)

∆⊥ψ =
4πe2n0

mec2
ψ +

4πen0vte
c

g1. (364)

From Eq. (353) it can then be shown that the evolution equation for the generic Hermite

moment of order n is:

∂gn
∂t

= − c

B0

[φ, gn] +
√
n+ 1

vte
B0

[ψ, gn+1] +
√
n
vte
B0

[ψ, gn−1]

−
√
n+ 1vte

∂

∂z
gn+1 −

√
nvte

∂

∂z
gn−1

+ δn1vte
∂

∂z

eφ

Te
−
√
n!v2

te(δn0 + δn2)
∂

∂z

eψ

cTe
.

(365)
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The evolution of gn requires knowing the evolution of gn+1, which in turn depends on the

evolution of gn+2 and so on, thus leading to a closure problem. In Ref. [145] it is shown that

the closure relation

gN+1 = αgN , (366)

with constant α and positive integer N , leads to a Hamiltonian N + 1-moment drift-fluid

model, for arbitrary N .

The Hamiltonian of the resulting drift-fluid model can be derived from the parent Hamil-

tonian (358) by replacing g with its truncated expansion in terms of Hermite polynomials

g(x, y, z, v‖, t) =
N∑
n=0

gn(x, y, z, t)√
n!

Hn

(
v‖
vte

)
Feq(v‖), (367)

and making use of the orthogonality relation between Hermite polynomials. The resulting

drift-fluid Hamiltonian, adopting (g0, · · · , gN) as dynamical field variables, reads

H(g0, · · · , gN) =
n0Te

2

N∑
n=0

∫
d3x

(
g2
n −

eφ

Te
g0 +

evte
Tec

ψg1

)
. (368)

The Poisson bracket, on the other hand, is best expressed in terms of the variables Gi =

UT
imgm, for i = 0, · · · , N . In this expression, UT indicates the transpose of the orthogonal

matrix U such that UTWU = Λ, where Λ = diag(λ0, λ1, · · · , λN) with λ0, · · · , λN indicating

the eigenvalues of the symmetric matrix

W =



0 1 0 0 ... 0

1 0
√

2 0 ... 0

0
√

2 0
√

3 ... 0

0 0
√

3 0 ... 0

... ...

... ...

0 0 0 ... 0
√
N

0 0 0 ...
√
N α

√
N + 1



. (369)

Note that, once the fluid hierarchy is closed by imposing the relation (366), the evolution

equation for the generic moment gn can be written, with the help of the elements Wni of the
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matrix W , as

∂gn
∂t

= − c

B0

[φ, gn] +
vte
B0

[ψ,Wnigi]− vte
∂

∂z
Wnigi + δn1vte

∂

∂z

eφ

Te

−
√
n!(δn0 + δn2)v2

te

∂

∂z

eψ

cTe
, 0 ≤ n ≤ N.

(370)

The transformation UT is namely the one that maps the original field variables (g0, · · · , gN)

into the corresponding normal fields (G0, · · · , GN), in terms of which, as already seen in

many previous cases, the Poisson bracket reduces into its simplest form. In the specific case,

the Poisson bracket is given by

{F,G} =
N∑
i=0

c

eB0n0v(i)

∫
d3xGi [FGi

, GGi
] +

N∑
i=0

vte
Ten0

λi

∫
d3xFGi

∂GGi

∂z
, (371)

where v(0), · · · , v(N) are constants determined by the normalization of the eigenvectors of W .

The model equations (370), when expressed in terms of the normal fields, correspond to

∂Gi

∂t
+

c

B0

[
φ− λi

vte
c
ψ,Gi

]
+ vteλi

∂Gi

∂z
− vteλiv(i)

∂

∂z

eφ

Te

+
vte
c
λ2
i v(i)

∂

∂z

eψ

Te
= 0, i = 0, · · · , N.

(372)

In particular note that, in the 2D limit, Eqs. (372) reduce to equations expressing, for i =

0, · · · , N , the advection of the normal fields Gi by means of stream functions φ−λi(vte/c)ψ,

which are reminiscent of the E×B advection and of the free streaming along the magnetic

field.

As a simple example illustrating one member of the infinite family of Hamiltonian drift-

fluid models that can be derived in this way, we consider the case N = 1 and α = 0. Upon

introducing the normalized quantities

t =
vA
L
t̂, x =

x̂

L
, y =

ŷ

L
, z =

ẑ

L
, di,e =

d̂i,e
L
, ρs,i =

ρ̂s,i
L
, (373)

ne =
L

d̂i

n̂

n0

, ue =
L

d̂i

û

vA
, ψ =

ψ̂

B0L
, φ = c

φ̂

B0LvA
,

where the carets denote the dimensional quantities, the two-field model equations for the

case N = 1, α = 0 can be written as

∂ne
∂t

+ [φ, ne] +∇‖ue = 0, (374)

∂ψe
∂t

+ [φ, ψe]− ρ2
s∇‖ne +

∂φ

∂z
= 0, (375)

103



complemented by the relations

ne =
Γ0 − 1

ρ2
i

φ, (376)

∆⊥ψ = ue. (377)

For N = 1, the choice α = 0 corresponds to the closure g2 = 0 which, according to Eq. (361),

means isothermal electrons. The model (374)-(377) describes the dynamics of isothermal

electron density fluctuations coupled to that of a magnetic field allowed to reconnect because

of electron inertia. Eqs. (374)-(375) correspond indeed to Eqs.(143)-(144) (upon identifying

ω with ne ) and to Eqs. (205)-(206) in the limit κ = 0, i.e. neglecting background magnetic

curvature. The Hamiltonian of the model, given by Eq. (368), corresponds then to

H(ψe, ne) =
1

2

∫
d3x (ρ2

sn
2
e + d2

eu
2
e − φne − ψue)

=
1

2

∫
d3x (ρ2

sn
2
e + |∇⊥ψ|2 + d2

e|∆⊥ψ|2 − φne),
(378)

which coincides with Eq. (145), if ne is replaced with ω and if the relation between φ and ne

is given by ne = ∆⊥φ (which corresponds indeed to the cold-ion limit of Eq. (376)). With

the analogous prescription, one obtains that the Poisson bracket corresponds to

{F,G} =

∫
d3x

(
ψe([Fψe , Gne ] + [Fne , Gψe ]) + ne(d

2
eρ

2
s[Fψe , Gψe ] + [Fne , Gne ])

+Fne

∂Gψe

∂z
+ Fψe

∂Gne

∂z

)
,

(379)

which can be compared with the bracket (146). Furthermore, the Poisson bracket (379) can

be written in the simplified form (371) in terms of the normal fields

G± = ψe ± deρsne, (380)

associated with the Casimir invariants C1 =
∫
d3xG+ , C2 =

∫
d3xG−.

As a second example, consider the case N = 3, α = 0, where in the 2D limit one obtains

the four evolution equations (229)-(232).

Therefore, we have shown that, from the infinite family of Hamiltonian fluid models

derived from the drift-kinetic equations, it is possible to retrieve reduced drift-fluid models

104



known in the literature. Their Hamiltonian structure, which was obtained a posteriori, in

the original derivation, can then be put in correspondance with the Hamiltonian structure

of the parent drift-kinetic model. More in general, given the Hamiltonian structure of a

reduced drift-fluid model, if the Hamiltonian is of the form (358) and the Poisson bracket in

terms of the normal fields is of the form (371), it is then possible to conclude that the model

admits a derivation from a drift-kinetic model, with a closure of the form gN+1 = αgN .

In Ref. [32] it was shown that, by a similar argument, it is possible to derive, from

a drift-kinetic model, a Hamiltonian drift-fluid model evolving six field variables for each

species, including perpendicular temperature and heat flux fluctuations, so that also fluid

anisotropy effects can be modelled in the Hamiltonian context.

VI. CONCLUSIONS

The derivation and the analysis of Hamiltonian structures of fluid models for plasmas,

characterized by different closures, is a subject which is attracting a considerable interest not

only in the plasma physics community but also among applied mathematicians interested

in geometrical mechanics and dynamical systems. The Hamiltonian approach to the deriva-

tion of fluid models provides a complementary viewpoint with respect to more traditional

approaches to the closure problem adopted in plasma physics, such as, for instance, those

mentioned in Sec. I. Recent results based on this approach have been described in this

review, trying also to show how the Hamiltonian approach provides a unifying framework

for various fluid models. In Sec. III the classical results on the Hamiltonian formulation for

adiabatic and double-adiabatic MHD were recalled and we showed a recent application of

Dirac’s theory of constraints which made it possible to impose the incompressibility closure

to the MHD system, while preserving a Hamiltonian structure. In perspective, we think

that Dirac’s theory might have other applications in this context, regarding, for instance,

imposing constraints such as quasi-neutrality or pressure balance, without losing control of

the Hamiltonian structure. In Sec. III, it was also shown how the Hamiltonian character of

105



barotropic MHD survives the inclusion of important two-fluid effects leading to the Hamil-

tonian extended MHD model. This naturally opens the way to a number of investigations,

for instance on equilibria and stability, inspired from previous results on MHD (see, e.g.

Ref. [41–45]). A novel application of the Hamiltonian structure for this model to plasma

turbulence, has already been presented in Ref. [146].

The succesful application of reduced fluid models for both laboratory and astrophysical

plasmas motivated the search for Hamiltonian structures also for such kind of models. In

Sec. IV, after recalling results on classical reduced models, we focused on the recent FFEI

model for magnetic reconnection and on gyrofluid models. Hamiltonian reduced models

share a common form for the Hamiltonian functional and the Poisson bracket. In particular,

they offer a good application of the concept of normal fields, which correspond to dynamical

field variables, associated with the Casimir invariants of the Poisson bracket, in terms of

which, as we saw, the model equations take remarkably simple forms. An example of the

role of such normal fields emerged when we considered, for instance, the six-field gyrofluid

model for magnetic reconnection of Sec. IV C 2. The influence of electron heat flux on a 2D

magnetic reconnection process was discussed in comparison with the adiabatic case. In both

cases, although the magnetic frozen-in condition is violated by electron inertia, alternative

topological conservation laws hold. Such conservation laws are associated with the normal

fields which, for both considered closures, are Lagrangian invariants.

The potential for future applications of the Hamiltonian approach to reduced fluid models

is likely to be important in particular for 2D geometries, which can be of interest , e.g., for

tokamaks and the solar corona. The translational symmetry along one direction, as shown in

a number of examples in this review, is associated with infinite families of Casimir invariants.

Full advantage from this richness of invariants can be taken for stability investigations by

means of the Energy-Casimir method. The formulation of 2D models in terms of normal

fields, can also be beneficial for adopting numerical schemes, such as finite volume schemes,

suited for advection equations with incompressible velocity fields.

In Sec. V we reviewed recent results on the derivations of Hamiltonian closures based on
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the Hamiltonian structure of the parent kinetic models. This provides a systematic approach

to the derivation of Hamiltonian fluid models and avoids the “a posteriori” search for such

structure, which can be cumbersome and is often based on a certain amount of intuition.

Also, we saw that the approach of deriving the Hamiltonian closures let emerge interesting

connections with previosuly derived models. For instance, drift-fluid models with the water-

bag closure were retrieved by means of the procedure described in Sec. V B 1 and found

to be the only Hamiltonian models within a certain class of closures. Also, some of the

reduced fluid models treated in Sec. IV, and originally derived from a two-fluid description

of the plasma, were shown to admit a drift-kinetic derivation in the δf approximation and

with the Hamiltonian closure presented in Sec. V B 2. In this context, it would be desirable

to obtain Hamiltonian closures for moments taken with respect to more than one velocity

coordinate. In spite of the results of Refs. [32, 56], indeed, little is known about Hamiltonian

structures for models accounting for pressure or heat flux anisotropies. As discussed in Ref.

[147], there can be energy conserving models with pressure anisotropy, but only for specific

closures on the heat fluxes and energy-weighted pressure tensors, such models were shown

to possess a Hamiltonian structure. The gyrofluid reduced model with anisotropic pressure

and heat flux fluctuations of Ref. [24] is also energy conserving, but the existence of its

Hamiltonian structure remains an open question. If it exists, it would be interesting to see

how the normal fields compare with those of the isotropic gyrofluid models discussed in Sec.

IV C. Moreover, most of the Hamiltonian reduced fluid models known so far, are valid in

the low-β regime, where magnetic perturbations parallel to the strong guide field can be

neglected. In some astrophysical plasmas, as for instance at sub-ion Larmor radius scales

in the solar wind [148], such perturbations are, however, non negligible, and temperature

anisotropies are important. Finite β Hamiltonian models with closures more sophisticated

than that adopted for the FFEI model would then be desirable.

A further possible field, where we think that the derivation of Hamiltonian closures

might be of interest, lies outside the domain of classical plasmas and concerns the so called

quantum plasmas. This field attracted, over the last years, increasing attention for its
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possible applications for the description of, e.g., electron gases in metals, dense matter in

the core of giant planets or stars and high density ionized plasmas produced by laser-matter

interaction [149, 150]. Recently, a number of models based on a fluid description of quantum

plasmas were proposed and a debate about the regime of validity of such models followed

(see, e.g. Ref. [151]). Clearly, the identification of a Hamiltonian structure in a fluid model

cannot, by itself, determine about the physical soundness of the model. However, for the

same reasons for which we believe the Hamiltonian approach is beneficial for classical plasma

fluid models, we think that, in addition to the fundamental investigations about the regimes

of validity, the derivation of Hamiltonian closures for quantum hydrodynamic models, might

help in identifiying models failing in preserving the original Hamiltonian dynamics. Recent

results in this direction, accounting also for dissipative effects in the metriplectic formulation,

are presented in Ref. [152].

We find it also important to mention that the identification of Hamiltonian structures

opens to the possibility of applying structure-preserving algorithms in numerical simula-

tions. The development of algorithms that preserve geometric features of ordinary or partial

differential equations is now a well developed field. However, the applications to continuum

plasma physics models is relatively new. In particular, the development of algorithms based

on the noncanonical Hamiltonian structure of continuum models is still at an initial stage

[153] and possess a considerable potential for applications, including, among others, all the

models treated in this review article.

Clearly, the ultimate purpose of the activity on Hamiltonian closures in fluid models for

plasmas should be to identify models that provide a better description of experimental results

or observations. In this respect, it could be interesting to apply a derivation or identification

of Hamiltonian structures to models more directed toward the comparison with experiments.

Indeed, to the best of our knowledge, most of the results obtained so far, including those

described in this review, concerned relatively simple fluid models in idealized geometries,

admitting a restricted class of boundary conditions. It would be interesting to investigate,

from the point of view of the Hamiltonian structure, for instance fluid models adopted to
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investigate tokamak turbulence in realistic geometries. Indeed, just from the discussion [33]

on the simplified gyrofluid model of Sec. IV C 1, it emerged how the modelling of geometric

effects due to magnetic curvature can affect the Hamiltonian structure.

Still in the framework of laboratory plasmas, experiments on magnetic reconnection mo-

tivated the search for anisotropic closures for fluid models in weakly collisional plasmas [154].

It might be of interest trying to identify Hamiltonian closures for such fluid models, where,

also, some dissipative effects, such as those due to collisions, are weak.

Collisionless space plasmas, finally, could also offer a further field of applications. For

instance, in Ref. [147], a family of reduced fluid models for finite-β, collisionless plasmas,

was derived, with the closure relation on heat flux and energy-weighted pressure tensors left

unspecified. Depending on the closure, it was possible to identify Hamiltonian models but

also energy-conserving models for which the Hamiltonian structure did not exist (at least

in the form of Eqs. (131)-(132)). It would be interesting to compare energy-conserving

vs. Hamiltonian models in terms of observables such as, for instance, the turbulent spec-

trum, and see how the Hamiltonian character affects the comparison with space plasma

observations.
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Appendix A: Jacobi identity for the Poisson bracket of a barotropic fluid

We intend to show that the Poisson bracket (48) satisfies the Jacobi identity. Upon

writing

{F,G} = −
∫
Dx

d3x (ρ (FM · ∇Gρ −GM · ∇Fρ) + M · (FM · ∇GM −GM · ∇FM))

=

〈
δF

δχ

∣∣∣J δG
δχ

〉
, (A1)
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where χ = (ρ,M), we can identify the Poisson operator as

J = −

 0 ∇ · (ρ( · ))

ρ∇( · ) ∇( · ) ·M +∇ · (M( · ))

 (A2)

with ( · ) indicating the place of the function that the operator J acts upon. As discussed

in Sec. II, by virtue of the Lemma of Ref. [56], when evaluating functional derivatives of

a Poisson bracket in the Jacobi identity, only the contributions due to the dependence of J

on the field variables count. Consequently we write

δ{G,H}
δρ

= −GM·∇Hρ+HM·∇Gρ+· · · ,
δ{G,H}
δM

= −(GM·∇)HM+(HM·∇)GM+· · · ,

(A3)

where the dots indicate the terms that, by virtue of the Lemma of Ref. [56], do not contribute

in the Jacobi identity. Then, making use of Eq. (A3) expressed in coordinates, one obtains

{F, {G,H}}+ 	

= −
∫
Dx

d3x
(
ρ
(
FMi

∂i
(
−GMj

∂jHρ +HMj
∂jGρ

)
+GMi

∂i(HMj
∂jFρ)−HMi

∂i(GMj
∂jFρ)

)
+Mk

(
FMi

∂i(−GMj
∂jHMk

+HMj
∂jGMk

) + (GMj
∂jHMi

−HMj
∂jGMi

)∂FMk

))
+ 	= 0,

where we indicated with the symbol 	, the additional terms that one obtains from cyclic

permutation of F , G and H. It has been then shown that the Poisson bracket (48) (and,

consequently the Poisson bracket (41)) satisfies the Jacobi identity.

[1] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cam-

bridge University Press, 1952).

[2] H. Grad, Commun. Pure and Appl. Math. 2, 311 (1949).

[3] S. I. Braginskii, Zh. Eksp. Teor. Fiz. 33, 459 (1957).

[4] S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, edited by

M. A. Leontovich (Consultants Bureau, New York, 1965).

[5] R. Balescu, Transport Processes in Plasmas. Vol. 1 Classical Transport (North-Holland,

1988).

110



[6] R. D. Hazeltine, M. Kotschenreuther, and P. J. Morrison, Phys. Fluids 28, 2466 (1985).

[7] G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).

[8] P. B. Snyder and G. W. Hammett, Phys. Plasmas 4, 3974 (1997).

[9] T. Passot and P. L. Sulem, Phys. Plasmas 11, 5173 (2004).

[10] P. Goswami, T. Passot, and P. L. Sulem, Phys. Plasmas 12, 2109 (2005).

[11] P. L. Sulem and T. Passot, J. Plasma Phys. , 325810103 (2015).

[12] N. Mattor and S. E. Parker, Phys. Rev. Lett. 79, 3419 (1997).

[13] N. Mattor, Phys. Plasmas 5, 1822 (1998).

[14] H. Sugama, T. H. Watanabe, and W. Horton, Phys. Plasmas 8, 2617 (2001).

[15] A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).

[16] A. Brizard, Phys. Fluids B 4, 1213 (1992).

[17] G. W. Hammett, W. Dorland, and F. W. Perkins, Phys. Fluids B 4, 2052 (1992).

[18] G. W. Hammett, M. A. Beer, W. Dorland, S. C. Cowley, and S. A. Smith, Plasma Phys.

Control. Fusion 35, 973 (1993).

[19] W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993).

[20] M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996).

[21] P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001).

[22] B. Scott, Phys. Plasmas 7, 1845 (2000).

[23] D. Strintzi, B. Scott, and A. Brizard, Phys. Plasmas 12, 052517 (2005).

[24] B. Scott, Phys. Plasmas 17, 102306 (2010).

[25] J. Madsen, Phys. Plasmas 20, 072301 (2013).

[26] H. R. Strauss, Phys. Fluids 19, 134 (1976).

[27] R. D. Hazeltine and J. D. Meiss, Plasma Confinement (Dover Publications, 2003).

[28] A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).

[29] A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983).

[30] T. J. Schep, F. Pegoraro, and B. N. Kuvshinov, Phys. Plasmas 1, 2843 (1994).

[31] R. Fitzpatrick and F. Porcelli, Phys. Plasmas 11, 4713 (2004), erratum: 14, 049902 (2007).

[32] E. Tassi, Theor. and Math. Phys. 188, 1377 (2016).

[33] I. Keramidas Charidakos, F. L. Waelbroeck, and P. J. Morrison, Phys. Plasmas 22, 112113

(2015).

[34] F. L. Waelbroeck, R. D. Hazeltine, and P. J. Morrison, Phys. Plasmas 16, 032109 (2009).

111



[35] D. Grasso and E. Tassi, J. Plasma Phys. 81, 495810501 (2015).

[36] G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc. A236, 112 (1956).

[37] P. J. Morrison, Phys. Plasmas 12, 058102 (2005).

[38] P. J. Morrison, Rev. Mod. Phys. 70, 467 (1998).

[39] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag,

Berlin, 2002).

[40] C. Tronci, E. Tassi, E. Camporeale, and P. Morrison, Plasma Phys. Control. Fusion 56,

095008 (2014).

[41] D. D. Holm, J. E. Marsden, T. S. Ratiu, and A. Weinstein, Physics Reports 123, 2 (1985).

[42] T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 23, 102112 (2016).

[43] T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 20, 092104 (2013).

[44] T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 19, 052102 (2012).

[45] T. Andreussi, P. J. Morrison, and F. Pegoraro, Plasma Phys. and Contr. Fusion 52, 055001

(2010).

[46] F. Bouchet and A. Venaille, Phys. Reports 515, 227 (2012).

[47] H. M. Abdelhamid and Z. Yoshida, Phys. Plasmas 23, 022105 (2016).

[48] H. M. Abdelhamid, M. Lingam, and S. M. Mahajan, The Astrophys. J. 829, 87 (2016).

[49] P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45, 790 (1980).

[50] R. Salmon, Ann. Rev. Fluid Mech. 20, 225 (1988).

[51] J. E. Marsden, T. Ratiu, and A. Weinstein, Trans. Amer. Math. Soc. 281, 147 (1984).

[52] J. E. Marsden, A. Weinstein, T. Ratiu, T. S. Schmid, and R. G. Spencer, Atti Acad. Sci.

Torino Cl. Sci. Fis. Math. Natur. 117, 289 (1983).

[53] D. D. Holm, T. Schmah, and C. Stoica, Geometric Mechanics and Symmetry: From Finite

to Infinite Dimensions (Oxford University Press, 2009).

[54] E. C. D’Avignon, P. J. Morrison, and M. Lingam, Phys. Plasmas 23, 062101 (2016).

[55] M. Lingam, P. J. Morrison, and E. Tassi, Phys. Lett. A 379, 570 (2015).

[56] P. J. Morrison, in Mathematical Methods in Hydrodynamics and Integrability in Dynamical

Systems, American Institute of Physics Conference Proceedings, Vol. 88, edited by M. Tabor

and Y. Treve (American Institute of Physics, 1982) pp. 13–45.

[57] J. E. Marsden, T. Ratiu, and A. Weinstein, in Fluids and Plasmas: Geometry and Dynam-

ics, Contemporary Mathematics, Vol. 28, edited by J. E. Marsden (American Mathematical

112



Society, 1984) pp. 55–100.

[58] P. J. Morrison, M. Lingam, and R. Acevedo, Phys. Plasmas 21, 082102 (2014).

[59] M. Lingam and P. J. Morrison, Phys. Lett. A 3526, 570 (2014).

[60] I. Keramidas Charidakos, M. Lingam, P. J. Morrison, R. L. White, and A. Wurm, Phys.

Plasmas 21, 092118 (2014).

[61] Y. Kawazura, G. Miloshevich, and P. J. Morrison, Phys. Plasmas 24, 022103 (2017).

[62] P. J. Morrison and R. D. Hazeltine, Phys. Fluids 27, 886 (1984).

[63] F. Sahraoui, G. Belmont, and L. Rezeau, Phys. Plasmas 10, 1325 (2003).

[64] Z. Yoshida and E. Hameiri, J. Phys. A: Math. Theor. 46, 335502 (2013).

[65] N. Padhye and P. J. Morrison, Phys. Lett. A 219, 287 (1996).

[66] N. Padhye and P. J. Morrison, Plasma Physics Reports 22, 960 (1996).

[67] R. G. Spencer and A. N. Kaufman, Phys. Rev. A 25, 2437 (1982).

[68] D. D. Holm and B. A. Kupershmidt, Physica D 7, 330 (1983).

[69] D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, 2000).

[70] C. Chandre, P. J. Morrison, and E. Tassi, Phys. Lett. A 376, 737 (2012).

[71] P. A. M. Dirac, Can. J. Math. 2, 129 (1950).

[72] A. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian systems (Accademia

Nazionale dei Lincei, Roma, 1976).

[73] E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective (Wiley,

New York, 1974).

[74] K. Sundermeyer, Constrained Dynamics (Springer-Verlag, Berlin, 1982).

[75] C. Chandre, E. Tassi, and P. J. Morrison, Phys. Plasmas 17, 042307 (2010).

[76] C. Chandre, L. de Guillebon, A. Back, E. Tassi, and P. J. Morrison, J. Phys. A: Math.

Theor. 46, 125203 (2013).

[77] D. D. Holm and B. A. Kupershmidt, Phys. Fluids 29, 3889 (1986).
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