
HAL Id: hal-01661127
https://hal.science/hal-01661127v2

Submitted on 14 May 2018 (v2), last revised 31 Oct 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Weakest Failure Detector to Solve the Mutual
Exclusion Problem in an Unknown Dynamic

Environment.
Etienne Mauffret, Élise Jeanneau, Luciana Arantes, Pierre Sens

To cite this version:
Etienne Mauffret, Élise Jeanneau, Luciana Arantes, Pierre Sens. The Weakest Failure Detector to
Solve the Mutual Exclusion Problem in an Unknown Dynamic Environment.. [Technical Report]
LISTIC; Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606. 2017. �hal-01661127v2�

https://hal.science/hal-01661127v2
https://hal.archives-ouvertes.fr


The Weakest Failure Detector to Solve the1

Mutual Exclusion Problem in an Unknown2

Dynamic Environment3

Etienne Mauffret4

LISTIC/Université Savoie Mont Blanc5

Denis Jeanneau, Luciana Arantes and Pierre Sens6

Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP67

Abstract8

Mutual exclusion is one of the fundamental problems in distributed computing but existing mu-9

tual exclusion algorithms are unadapted to the dynamics and lack of membership knowledge of10

current distributed systems (e.g., mobile ad-hoc networks, peer-to-peer systems, etc.). Addition-11

ally, in order to circumvent the impossibility of solving mutual exclusion in asynchronous message12

passing systems where processes can crash, some solutions include the use of (T +Σl) [3], which13

is the weakest failure detector to solve mutual exclusion in known static distributed systems. In14

this paper, we prove that (T +Σl) is also the weakest failure detector to solve mutual exclusion15

in unknown dynamic systems with partial memory losses. We consider that crashed processes16

may recover.17

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms18

→ Distributed algorithms19

Keywords and phrases Distributed algorithms, dynamic networks, mutual exclusion, failure20

detectors21

Digital Object Identifier 10.4230/LIPIcs...22

Funding E. Mauffret was supported by the RainbowFS project, funded by the ANR project23

ANR-16-CE25-0013 within the program (DS0703) 2016.24

D. Jeanneau was supported by the Labex SMART, supported by French state funds managed by25

the ANR within the Investissements d’Avenir programme under reference ANR-11-LABX-65.26

1 Introduction27

Distributed algorithms are traditionally conceived for message-passing distributed environ-28

ments which are static and whose membership is known. However, new environments such as29

mobile ad-hoc wireless network (MANET) or wireless sensor network (WSN), peer-to-peer30

networks, and opportunist grids or clouds provide access to services or information regard-31

less of node location, mobility pattern, or global view of the system. These new systems32

are dynamic, which means that the communication graph evolves over time, processes might33

join or leave the system, or crash and recover during the run. Additionally these systems are34

unknown, which means that processes do not initially know which other processes belong to35

the network, and only discover it during the run. Therefore, distributed algorithms that run36

on top of these new systems can not use prior distributed models for static known systems.37

The mutual exclusion problem, introduced by Dijkstra in [9], is a fundamental problem38

in distributed computing requiring that their processes get exclusive access to one or more39

shared resources by executing a segment of code called critical section (CS). It specifies that,40

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Failure Detector for Mutual Exclusion in Dynamic Networks

at any time, each process is either in the try, critical, exit or remainder section. Processes41

cycle through these sections in order. Two processes cannot be in the critical section at the42

same time (safety property), and if a process is in the try section, then at some time later43

some process is in the critical section (liveness property).44

Several mutual exclusion algorithms which tolerate process crash failures in the context of45

known static distributed systems have been proposed in the literature [14] [16] [1]. However,46

these papers do not consider dynamic networks, or that a crashed process can recover.47

Furthermore, mutual exclusion algorithms that tolerate crash-recovery processes were mostly48

defined in the shared memory model, such as [12], [11] and [13], where shared variables are49

stored in non-volatile memory. One crash-recovery mutual exclusion for message-passing50

systems of which we are aware was proposed in [6] but its recovery solution works provided51

that failures do not occur in adjacent connected processes. Hence, the conception of mutual52

exclusion in unknown dynamic distributed systems where crashed processes can recover53

presents great challenges.54

A definition of recoverable mutual exclusion (RME) for systems with crash-recovery was55

presented in [12] and further studied in [11] and [13]. A main change with regard to previous56

definitions of fault-tolerant mutual exclusion is the critical section re-entry property, which57

specifies that if a process p crashes while in the critical section and later recovers, then no58

other process may enter the critical section until p re-enters it after its recovery. Intuitively,59

this means that the lock on the critical section is not released in the case of a temporary60

crash.61

In this paper we consider RME on top of a message passing model, where each process62

has access to a volatile memory of unbounded size, which is lost after a crash and recovery,63

and a non-volatile memory (stable storage) of bounded size. We denote this model the64

partial memory loss model.65

Failure detectors were introduced in [5] as a way to circumvent the impossibility to66

solve consensus in crash-prone asynchronous systems ([10]). In [8], the T failure detector67

was shown to be the weakest failure detector to solve fault-tolerant mutual exclusion in68

message passing systems with a majority of correct processes. Then, in [3], the (T +Σl)69

failure detector was shown to be the weakest failure detector to solve the same problem with70

no assumption on the number of process failures. Both of these results are restricted to71

known, static systems without recovery. Our paper expands on these results by providing72

a definition of (T +Σl) adapted to unknown systems where crashed processes can recover,73

and proving that it is the weakest failure detector to solve fault-tolerant mutual exclusion74

in unknown dynamic systems with partial memory loss.75

The contributions of our paper are threefold:76

Adapting the definition of (T +Σl) for unknown systems where crashed processes can77

recover;78

A RME algorithm that runs on top of the proposed model using the (T +Σl) failure79

detector and which tolerates crashes and recovery of processes, thus proving that (T +Σl)80

is sufficient to solve RME in our model;81

A reduction algorithm proving the necessity of (T +Σl) to solve RME in our model.82

The rest of the paper is organized as follows: Section 2 presents our distributed system83

model. Section 3 presented an adapted definition of the (T +Σl) failure detector. Section 484

provides an algorithm solving mutual exclusion using (T +Σl). Finally, Section 5 proves85

that (T +Σl) is necessary to solve mutual exclusion in an unknown dynamic distributed86

system.87



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:3

2 Model88

This section presents the distributed system model used throughout the rest of the paper.89

2.1 System Model90

The system is composed of a finite set of processes, denoted Π. Each process is uniquely91

identified. Additionally, processes are asynchronous (there is no bound on the relative speed92

of processes). They communicate by sending each other messages with a point-to-point93

send/receive primitive.94

Communications are asynchronous (there is no bound on message transfer delay).95

2.2 Failure Model96

A process can crash (stop executing) during the run, and may recover from the crash, or97

not.98

Each process has access to both a volatile memory and a stable storage of bounded size.99

After a crash and recovery, the variables in volatile memory are reset to their initial default100

values. Because each process has access to stable storage, we say that this model deals with101

partial memory loss. In the rest of the paper, the names of variables in stable storage is102

underlined.103

A process is said to be alive at time t if it never stopped executing before t or if it104

recovered since the last time it stopped executing. A process which is not alive at time t is105

said to be crashed at time t.106

In the traditional crash failure model, processes are grouped into faulty processes, which107

eventually crash, and correct processes, which never crash. However, in a crash-recovery108

model, in any run, we consider three types of processes [2]:109

1) Eventually up processes, which stop crashing after some time and remain alive forever.110

This type also includes processes that never crash (always up).111

2) Eventually down processes, which eventually crash and never recover. This type also112

includes processes that crashed immediately at the start of the run and never recovered113

(always down).114

3) Unstable processes, which crash and recover infinitely often. We assume that, infinitely115

often, each unstable process manages to stay alive long enough to at least send a message116

to each other process it knows of.117

2.3 Connectivity Model118

The system is dynamic in the sense that the edges in the communication graph can appear119

and disappear during the run (in other words, at any given time instant, each edge in the120

graph might or might not be available). Without any further assumption, a system in121

which no edge is ever available would fit this model. Since nothing can be computed in122

such a system, additional assumptions are needed. Therefore, we assume that the following123

properties are verified:124

Dynamic connectivity: Every message sent by a process that is not eventually down125

to a process that is not eventually down is received at least once.126

Unicity of reception: Every message sent is received at most once.127

First in, first out: If process p sends a message m1 to q and then sends m2 to q, if q128

receives m2 then it received m1 first.129



XX:4 Failure Detector for Mutual Exclusion in Dynamic Networks

These properties imply not only that channels are reliable, but also that each pair of130

processes that are not eventually down is connected infinitely often by a path over time.131

This means that when a process p sends a message to process q, then there is a path from p132

to q such that at some point in the future, every edge on this path will be available in the133

correct order, and sufficiently long for the message to cross the edge. This does not require134

all the edges on the path to be available at the same time, and the path that a pair of135

processes uses to communicate is not required to be the same every time. This connectivity136

assumption is referred to as a Time-Varying Graph of class C5 in [4].137

Our algorithms assume that the underlying send/receive implementation handles mes-138

sage forwarding, and therefore behaves the same way that it would in a complete commu-139

nication graph with reliable channels.140

2.4 Knowledge Model141

The system is unknown, i.e., processes initially have no information on system member-142

ship or the number of processes of the system, and are only aware of their own identity.143

The identities of other processes can only be learned through exchanging messages. More144

practically, each process p has access to a local variable knownp (in stable storage) that145

initially contains only p. Eventually, knownp contains the set of all processes that are not146

eventually down. For the sake of simplicity, our algorithms do not attempt to define the147

knownp variable and simply assume that an underlying discovery algorithm eventually fills148

it with the necessary process identities. This is not a strong assumption, since the dynamic149

connectivity property ensures that all processes will be able to communicate (and therefore150

learn of each other’s existence) infinitely often.151

2.5 Problem Definition152

We consider the Recoverable Mutual Exclusion (RME) problem, which we define in our153

model as follows. At any point in time, a process is either in the remainder, try, critical or154

exit section. We consider that every user is well-formed, that is that a user will go through155

the remainder, try, critical and exit sections in the correct order. In case of a crash and156

recovery, a well-formed user will restart in the critical section if it was in the critical section157

when it crashed, and will restart in the remainder section otherwise (this is the critical158

section re-entry property of [11]).159

A fault-tolerant mutual exclusion algorithm must provide a try section and an exit160

section procedures such that the following properties are satisfied:161

Safety: Two distinct alive processes p and q can not be in CS at the same time.162

Liveness: If an eventually up process p stopped crashing and is in the try section, then163

at some time later some process that is not eventually down is in CS.164

Additionally, we consider the following fairness property:165

Starvation Freedom: If no process stays in its critical section forever, then every166

eventually up process that stopped crashing and reaches its try section will eventually enter167

its CS.168

3 Failure Detector169

Failure detectors were introduced by Chandra and Toueg in [5] as a way to circumvent170

the impossibility to solve consensus in crash-prone asynchronous systems [10]. They are171

distributed oracles which provide unreliable information on process crashes. The information172



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:5

is unreliable in the sense that correct processes might be falsely suspected of having crashed,173

and faulty processes might still be trusted after they crashed. Different classes of failure174

detectors provide different properties on the reliability of the information provided to the175

processes.176

Failure detectors are used as an abstraction of the system model assumptions.177

A failure detector D1 is said to be weaker than D2 if there exists a distributed algorithm178

that can implement D1 using the information on failures provided by D2. Intuitively, this179

means that the computing power provided to the system by D2 is stronger than the comput-180

ing power provided by D1. A failure detector that is sufficient to solve a given problem while181

being weaker than every other failure detector that can solve it, is said to be the weakest182

failure detector to solve that problem. It follows that the weakest failure detector to solve a183

problem can be implemented in any system in which the problem can be solved.184

3.1 Failure Detectors for Mutual Exclusion185

In [8], Delporte-Gallet et al. introduce the trusting failure detector T and prove that it is the186

weakest failure detector to solve fault-tolerant mutual exclusion in a system with a majority187

of correct processes. T provides each process with a list of trusted processes. It ensures that188

faulty processes are eventually not trusted by any correct process (strong completeness),189

that eventually all correct processes trust each other (eventually strong accuracy), and that190

at all times, if T stops trusting a process, then the process is crashed.191

Bhatt et al. introduce in [3] the Σl quorum failure detector. Σl is a variant of the Σ192

quorum failure detector [7] adapted for the mutual exclusion problem. It provides each193

process with a quorum of process identities that are eventually ensured to be correct, and194

also ensures that if two processes are alive at some point in time, then all of their quorums195

up to this point intersect. The paper shows that T and Σl used together, denoted (T +Σl),196

constitute the weakest failure detector to solve mutual exclusion with any number of process197

failures in static, known systems.198

3.2 The (T +Σl) Failure Detector199

The existing definition of (T +Σl) is meant for static, known networks, and therefore we200

need to provide a new definitions suited to unknown dynamic networks.201

In an unknown system, the lack of initial information renders difficult the implementation202

of some failure detector properties which must apply from the start of the run, in particular203

the intersection property. To circumvent this problem, we make use of the ⊥ concept204

introduced in [15].205

Additionally, the traditional properties of (T +Σl) are expressed in terms of correct and206

faulty processes. The version of (T +Σl) used here was rewritten using the concepts of207

eventually up and eventually down processes instead.208

The (T +Σl) failure detector provides each process p with a set of trusted process identit-209

ies, denoted tqp, and a flag denoted rdyp. rdyp is initially set to ⊥, and then is changed to >210

once the failure detector has gathered enough information to verify the live pairs intersection211

property. We denote tqt
p the value of tqp at time t, and rdyt

p the value of rdyp at time t. We212

say that process p trusts process q at time t if q ∈ tqt
p, that p suspects q at time t if q /∈ tqt

p,213

and that process p is ready at time t if rdyt
p = >. The following properties must be verified.214

Eventually strong accuracy: Every eventually up process p is eventually trusted215

forever by every process that is not eventually down.216



XX:6 Failure Detector for Mutual Exclusion in Dynamic Networks

Strong completeness: Every eventually down process p is eventually suspected forever217

by every process that is not eventually down.218

Trusting accuracy: For any process p, if there exist times t and t′ > t such that q ∈ tqt
p219

and q /∈ tqt′

p , then q is eventually down and will never be alive after t′.220

Quorum readiness: Every eventually up process is eventually ready forever.221

Live pairs intersection: If two processes p and q are both alive at time t, then for any222

couple of time instants t1 ≤ t and t2 ≤ t, (rdyt1
p = > ∧ rdyt2

q = >) =⇒ tqt1
p ∩ tqt2

q 6= ∅.223

The eventually strong accuracy, strong completeness and trusting accuracy properties224

are the original properties of T , adapted for a crash-recovery model. We call these properties225

the trusting properties of (T +Σl).226

Similarly, the strong completeness and live pairs intersection properties are the original227

properties of Σl, adapted for our model. The new quorum readiness property, along with the228

rdyp output variable, was added to deal with the lack of initial information in an unknown229

system. We call these properties the quorum properties of (T +Σl).230

Note that the strong completeness is both a trusting property and a quorum property,231

since both T and Σl make use of this same property.232

Both trusting and quorum properties apply to the same set tqp, which is different from233

preexisting definitions in which T ans Σl are two separate oracles with separate outputs.234

In Section 5, we will prove that this combined version of the detector is necessary to solve235

RME.236

In a static, known system with reliable channels and prone to crash failures without237

recovery, this new definition of (T +Σl) is equivalent to the traditional definition (T +Σl).238

4 Sufficiency of (T +Σl) to solve Fault-Tolerant Mutual Exclusion239

In this section we introduce Algorithm 1 and prove that it solves the RME in any unknown240

dynamic environment enriched with the (T +Σl) failure detector.241

4.1 Algorithm Description242

In Algorithm 1, each process p which is in the try section issues a request of the form243

(roundp, p), where roundp is the current round number of p. Requests are totally ordered244

by their priority, which is defined as follows: priority(roundp, p) > priority(roundq, q) ⇔245

roundp < roundq or [roundp = roundq and p < q].246

The highest function (called on line 18) takes a list of requests and returns the couple247

(round, id) of the request with the highest priority among the trusted processes according248

to tqp.249

Each process p has access to the output of its respective local failure detector, tqp and250

rdyp. It also keeps the following local variables, initialized with the indicated value:251

critp ← false: a flag indicating that p is currently in CS. This is the only variable kept252

in stable storage. Thus, critp is not reinitialized after a crash and recovery.253

roundp ← 0: the local round number of p, which is used to number its requests. It is254

also used to define the current priority of p to access the critical section.255

last_roundp ← ∅: a table associating each known process identity with its last known256

round number. This is used to restore the round number of other processes after they crash257

and recover.258

reqp ← false: a flag indicating that p is currently in the try section.259

requestsp ← ∅: the set of requests received by p. Each request is a couple (round, pid).260



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:7

Algorithm 1 Solving RME with (T +Σl): code for process p

1: procedure try section
2: wait for recoveringp = false

3: reqp ← true

4: roundp ← roundp + 1; grantsp ← {p}
5: for ∀q ∈ tqp do send(request, roundp, q)
6: requestsp ← requestsp ∪ {(roundp, p)}
7: check requests()
8: wait for gidp = p and rdyp = > and

tqp ⊆ grantsp

9: critp ← true; reqp ← false

10: procedure exit section
11: wait for recoveringp = false

12: critp ← false

13: for ∀q ∈ grantsp \{p} do send(done, q)
14: grantsp ← {p}; requestsp ← requestsp\
{(∗, p)}

15: check requests()
16: procedure check requests
17: if (gidp = −1 or gidp = p) and

requestsp 6= ∅ and critp = false and
recoveringp = false then

18: (grndp, gidp)← highest(requestsp)
19: if gidp 6= p then send(grant, gidp)
20: for ∀q ∈ grantsp \ {p} do
21: grantsp ← grantsp \ {q}
22: send(reject, q)
23: procedure reconnection
24: recoveringp ← true

25: updatep ← tqp

26: for ∀q ∈ updatep do
27: send(comeback, critp, q)
28: wait for updatep = ∅
29: recoveringp ← false

30: check requests()
31: when q added to tqp

32: if reqp = true then send(request, roundp, q)
33: when q removed from tqp

34: grantsp ← grantsp \ {q}
35: requestsp ← requestsp \ {(∗, q)}
36: updatep ← updatep \ {q}
37: if gidp = q then
38: (gidp, grndp)← (−1,−1)

39: check requests()
40: upon reception of request (round) from

src do
41: requestsp ← requestsp ∪ {(round, src)}
42: last_roundp[src]← round

43: check requests()
44: upon reception of grant () from src do
45: if gidp 6= −1 and gidp 6= p then
46: send(reject, src)
47: else if recoveringp = false then
48: grantsp ← grantsp ∪ {src}
49: upon reception of done () from src do
50: requestsp ← requestsp \ {(∗, src)}
51: (gidp, grndp)← (−1,−1)
52: check requests()
53: upon reception of reject () from src do
54: (gidp, grndp)← (−1,−1)
55: check requests()
56: upon reception of comeback (crit_src)

from src do
57: requestsp ← requestsp \ {(∗, src)}
58: if crit_src = false and gidp = src

then
59: (gidp, grndp)← (−1,−1)
60: check requests()
61: send(update, gidp = src, last_roundp[src], src ∈

grantsp, roundp, reqp, src)
62: upon reception of update (grant_p, last_rnd,

grant_src, round, req) from src do
63: last_roundp[src]← round

64: roundp ←max(roundp, last_rnd)
65: if grant_src = true then. p previously

granted src

66: (gidp, grndp)← (src, round)
67: if grant_p = true then. src previously

granted p

68: grantsp ← grantsp ∪ {src}
69: if req = true then . src is requesting
70: requestsp ← requestsp ∪
{(round, src)}

71: updatep ← updatep \ {src}



XX:8 Failure Detector for Mutual Exclusion in Dynamic Networks

gidp ← −1: the identity of the last process to which p granted its permission, or −1 if p261

did not grant it. It indicates that p sent a grant message to gidp, and that this permission262

was not canceled by the reception of a done or reject message yet.263

grndp ← −1: the current round number of the process to which p granted its permission,264

or −1 if p did not grant it.265

grantsp ← {p}: the set of processes from which p received a grant message.266

recoveringp ← false: a flag indicating that p is currently attempting to rebuild its267

volatile memory after a crash. Calls to try section and exit section will be delayed268

while recoveringp = false.269

updatep ← ∅: the set of processes from which p waits for an update message. This270

variable is only used during the recovery phase, i.e., while recoveringp = true.271

All of these local variables, except for critp, are stored in volatile memory. This means272

that after a crash and recovery, they are reinitialized to the above default value.273

The following types of messages are used by Algorithm 1:274

request: asks for permission to enter CS. The message contains the round number of275

the sender.276

grant: grants permission to a process to enter CS.277

done: notifies other processes that the sender just exited CS.278

reject: warns that the sender already gave its permission to a process different from279

the sender, thus preventing deadlocks.280

comeback: notifies other processes that the sender just recovered from a crash.281

update: gives information to a recently recovered process about requests, previously282

given permissions and its current round number.283

The check requests procedure is extensively used in Algorithm 1. Provided that284

process p did not already grant its permission to another process and is not in CS, check285

requests compares the requests that p received so far by calling the highest function286

(line 18), and sends a grant message to the process with the highest priority (line 19). In287

case p received grants from other processes before granting its own permission, it will send288

reject messages to the processes in grantsp in order to prevent a deadlock (lines 20 – 22).289

When a process p wants to access the critical section, it executes the try section: p290

increments its roundp and resets its grantsp set (line 4), then broadcasts a request to291

every process in tqp (line 5). If a new process is discovered while p is still in the try section,292

the request will also be sent to this new process (line 32). Process p adds its own request to293

its requestsp before calling check requests (lines 6 –7), and finally waits for permissions294

from every process in tqp (and its own permission, line 8) before entering CS.295

When p receives a request message from process q (lines 40 – 43), it updates its know-296

ledge about q’s round number and adds the new request to its requestsp set. It then calls297

check requests to decide if it should send a grant to the new requester.298

When p receives a grant message from process q, if p already granted its permission299

to some other process then it informs q by responding with a reject message to prevent300

deadlocks (line 46). Otherwise, if p is not in the recovery phase, then it accepts q’s permission301

by adding it to its grantsp set.302

Upon finishing the critical section and calling exit section, p sends to all trusted303

processes a done message (line 13). Then, p resets its grantsp set and cancels its request304

(line 50) before calling check requests to grant its permission to the next process.305

If p receives a done or reject message from process gidp, it cancels the permission306

granted to gidp (lines 51 and 54) and calls check requests. In the case of a done307

message, the request from gidp is also deleted from requestsp (line 50), since gidp is not308



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:9

requesting CS anymore. However, in the case of a reject, the request from gidp is still309

valid and must be kept, even if it is not the highest priority request.310

If p crashes and recovers, the reconnection procedure will be called first. This pro-311

cedure initiates the recovery phase (lines 24 – 29) by switching the recoveringp flag to true,312

which will temporarily prevent the algorithm from going into the try or exit sections (lines 2313

and 11) and sending or accepting a grant (lines 17 and 47). During the recovery phase, p314

attempts to recover the information it lost during the crash by sending a comeback mes-315

sage to every process in tqp. Other processes will send update messages in response, which316

enables p to restore its last_roundp, roundp, gidp, grndp and requestsp variables (lines 63 –317

71). The recovery phase ends when every process to which p sent a comeback has either318

responded with an update message (line 71), or crashed (line 36). After recovering, p calls319

check requests in order to choose a process to grant its permission to (line 30).320

If p receives a comeback message from a process q, it cancels any request previously321

received from q, since a process in recovery phase can only be in the remainder or critical322

section (by definition of a well-formed process). If q is in its remainder section (critp =323

false), then p cancels any permission it might have granted to q previously (lines 58 – 60).324

Finally, p sends an update message to q.325

Whenever p is informed by the failure detector that a process q is eventually down326

(lines 33 – 39), p deletes q from its requestsp, grantsp and updatep sets. If q was the process327

to which p granted permission, then p cancels the permission (line 38) and calls check328

requests to grant its permission to another process, if appropriate.329

4.2 Proof of correctness330

We will prove, through the following claims, that any run of Algorithm 1 solves the RME331

problem.332

I Claim 1 (Safety). Two distinct alive processes p and q can not be in CS at the same time.333

In order to prove Claim 1 we need to pose the following lemmata.334

I Lemma 1 (Unicity of the permission). Let p, q1, q2 be three distinct alive processes. If335

p ∈ grantsq1 at a time t then p cannot send a grant message to q2 at time t.336

Proof. The only way that p can send a grant message to a process q is on line 19, after337

it selected q as its gidp. Note that the definition of the highest function also implies that338

q ∈ tqp at the time when the grant message is sent.339

Suppose that p has sent a grant message at time tG to another process q1 (and therefore340

at time tG, gidp = q1).341

Let us assume that there is a time t > tG such that p ∈ grantsq1 . Let us then suppose342

that p sends a grant message to another process q2 at time t.343

In order to send a grant message to q2, p has to set gidp to −1 or to p at some time344

t′ ∈ [tG, t] (otherwise p cannot pass the test on line 17). This affectation can only be done345

in one of the following ways:346

Line 38: then q1 /∈ tqt′

p . Since q1 ∈ tqtG
p , according to the trusting accuracy property347

of (T +Σl)d, q1 has crashed at some time before t′ and will never recover. It is therefore348

impossible that p ∈ grantsq1 at time t.349

By crashing. If p crashed between tG and t′, then its gidp got reset to −1. This also350

means that p entered the recovery phase(lines 24 – 29) at some time t′′ ∈ [tG, t′]. Since351

q1 ∈ tqtG
p , then according to the trusting accuracy property of (T +Σl), either q1 crashed352

before t′′ and will never recover (which is a contradiction), or q1 ∈ tqt′′

p . p will therefore353



XX:10 Failure Detector for Mutual Exclusion in Dynamic Networks

send a comeback message to q1 on line 27, and q1 will respond with a update message354

with the grant_src parameter set to true, which will cause p to set its gidp back to q1.355

Since p cannot have sent a grant message while in the recovery phase(because of the test356

on line 17), then p cannot send the grant to q2 at time t which is a contradiction.357

Line 59: then p received a comeback message from q1 at some time t′′ ∈ [tG, t′]. This358

means that q1 crashed and went into the recovery phase. p will respond with an update359

message to q1. Since q1 cannot leave the recovery phase until it receives p’s update and360

because of the first in, first out property, then p’s grant message to q1 was received either361

(1) before q1 crashed, in which case the grant was forgotten, or (2) during the recovery362

phase, in which case q1 will ignore the grant because of the test on line 47. In both cases,363

p /∈ grantsq1 after t′′, which is a contradiction.364

Line 51 or 54: then p received a done or reject message from q1 at time t′. There365

are two cases. If q1 sent the done or reject message after receiving the grant, then q1366

removed p from grantsq1 on line 14 (resp. line 21) and did not add it back in afterwards,367

which is a contradiction. Otherwise, q1 sent the done or reject message before receiving p’s368

grant. Since q1 only sends done or reject messages to processes from which it previously369

received a grant, then p sent another grant message to q1 before tG. This means that p370

sent two consecutive grant messages to q1 without receiving a done or reject message in371

between. The only way this could happen is if p set its gidp to −1 or p between sending the372

two grant messages without receiving a done or reject, which is a contradiction since373

this proof eliminated every other way of doing that.374

Hence, we can not have p ∈ grantsq1 and p sending a grant message to q2 at the same375

time, which conclude the proof of Lemma 1 . J376

I Lemma 2 (Self permission). Let p, q be two distinct alive processes. If p ∈ grantsq then p377

can not enter CS.378

Proof. If p ∈ grantsq, then p sent a grant message to q and therefore set its gidp to q.379

The reasoning of the proof for Lemma 1 can be used to show that p cannot change the value380

of its gidp until q has removed p from its grantsq.381

Since p is required to have its gidp set to p in order to enter CS (line 8), then it is382

impossible for p to enter CS until after q removed p from grantsq. J383

We can now prove the Claim 1 by contradiction.384

Proof. Let p1, p2 be two alive, distinct processes. Let us suppose that p1 enters CS at time385

t1, and p2 enters CS at time t2. Let us suppose that neither process leaves CS until after the386

other process has entered it. According to the live pairs intersection property of (T +Σl),387

there is a process q such that q ∈ tqt1
p1
∩ tqt2

p2
. It follows from the wait condition on line 8388

that q ∈ grantsp1 at time t1 and q ∈ grantsp2 at time t2. There are two cases:389

First case: p1, p2 and q are all distinct. Therefore, q sent a grant message to p1390

before t1 and a grant message to p2 before t2. Additionally, neither process removed q391

from their grants set before entering CS. Without loss of generality, let us assume that q392

sent the grant message to p1 first. There could be a run in which p1 received the message393

immediately, and therefore added q to grantsp1 before q sent the second grant to p2. In394

this run, q sends a grant message to p2 while q ∈ grantsp1 at the same time, which is in395

contradiction with Lemma 1.396

Second case: q = p1 or q = p2. Without loss of generality, let us assume that q = p1.397

Since q ∈ grantsp2 at time t2, q sent a grant message to p2 before t2. Since it is impossible398

for q to send a grant message while in CS (because of the test on line 17), it follows that399



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:11

q sent the grant before entering CS. There could be a run in which p2 received the grant400

immediately after it was sent, therefore adding q to grantsp2 before q entered CS, which is401

in contradiction with Lemma 2. J402

I Claim 2 (Starvation freedom). If no process stays in its critical section forever, then every403

eventually up process that stopped crashing and reaches its try section will eventually enter404

its CS.405

To prove the Claim 2, we pose the following lemmata:406

I Lemma 3 (Deadlock-free). Assuming that no process stays in CS forever, if a process p,407

which does not have the highest priority among the requesting processes, receives at least408

one grant from another process q, p will eventually either crash forever or remove q from409

grantsp, and q will eventually either crash forever or set gidq to −1.410

Proof. Let p be a process in its try section at time t. There exists a distinct process ph which411

is also in its try section at time t and has the highest priority among requesting processes.412

Let q be a process distinct from p that sends a grant message that p receives at time413

t. It follows that p sent a request message to q at some time tR < t.414

One of the following cases applies:415

1) p is eventually down, and q is not. Then according to the strong completeness property416

of (T +Σl), p will eventually be removed from tqq and q will set gidq to −1 on line 38.417

2) q is eventually down, and p is not. Then according to the strong completeness property418

of (T +Σl), q will eventually be removed from tqp and p will remove q from grantsp on line 34.419

3) At time t, gidp 6= −1 and gidp 6= p. Then when p receives q’s grant message, it will420

never add q to grantsp and will send q a reject message instead (line 46). When q receives421

the reject message, it will set gidq to −1 (line 54).422

4) At time t, gidp = −1. When p calls check requests, it will pass the test one line423

17 since requestsp contains at least p’s request, and critp and recoveringp cannot be true424

while in CS. p will then set gidp to something different from −1 on line 18.425

It follows from the cases above that the only way Lemma 3 could be false is if neither426

p nor q are eventually down, and gidp = p at time t. Since p is not eventually down, then427

p will eventually receive ph’s request at some time t′ > t. Then one of the following cases428

applies:429

1) During [tR, t′], p does not crash, receives grant messages from every process in tqp,430

and rdyp is set to >. Then p will end the wait on line 8 and enter CS. When p leaves CS,431

it will remove q from grantsp on line 14 and send a done message to q on line 13. When q432

receives the done message, it will set gidq to −1 on line 51.433

2) During [tR, t′], p does not crash and does not receive enough grant messages to enter434

CS (or rdyp stays equal to ⊥). Then at time t′ when p receives ph’s request, it will call435

check requests on line 43. p will pass the test on line 17 and, since ph is the requesting436

process with the highest priority, p will set gidp to ph. It will then remove q from grantsp437

on line 21 and send a reject message to q on line 22. When q receives the reject message,438

it will set gidq to −1 on line 54.439

3) During [tR, t′], p crashes before receiving enough grant messages to enter CS. When440

p recovers, its grantsp set is reinitialized and does not contain q. Since q was previously in441

tqp and q is not eventually down, it follows from the trusting accuracy property of (T +Σl)442

that q is still in tqp after p recovers. p will therefore send a comeback message to q on443

line 27 with the crit_src parameter set to false. When q receives the comeback message,444

it will set gidq to −1 on line 59. Note that because of the first in, first out property, q will445



XX:12 Failure Detector for Mutual Exclusion in Dynamic Networks

necessarily receive p’s request before the comeback message. Additionally, p will receive446

q’s grant message before q’s update message, and will ignore the grant because of the test447

on line 47. J448

I Lemma 4 (Decreasing priority). Assuming that no process stays in the CS forever, if an449

unstable process p is in the try section infinitely often, then the value of roundp increases450

infinitely often (and therefore, p’s priority decreases infinitely often).451

Proof. Let p be an unstable process that is in the try section infinitely often. By definition, p452

also crashes infinitely often. Let q be any eventually up process. According to the eventually453

strong accuracy property of (T +Σl), p will eventually trust q forever.454

Let t0 be a time after which every eventually down process crashed permanently, every455

eventually up process stopped crashing, and p started trusting q. According to the strong456

completeness property of (T +Σl), there is a time t1 ≥ t0 such that ∀t > t1, tqt
p does not457

contain any eventually down process. Let t2 > t1 be the first time after t1 that p crashes,458

and let t3 > t2 be the first time after t2 that p enters the try section.459

Every request sent by p after t3 is sent only to processes that are not eventually down,460

including q. According to the dynamic connectivity property, q will receive every request461

sent by p after t3. Every time that p crashes after t3, p will send a comeback message to462

q. Because of the first in, first out property, q will receive p’s last request before receiving463

the comeback message, and therefore when q receives the comeback its last_roundq[p]464

will be up to date with q’s latest roundp value from before the crash. q will then respond465

with an update message, and p will update its roundp value on line 63 before leaving the466

recovery phase. As a result, crashes after t3 do not reduce or reset p’s roundp value.467

At any time t > t3, there are three possibilities:468

1) p is in the exit or remainder section at time t. By assumption, p will eventually enter469

the try section, and therefore increase its roundp value on line 4.470

2) p is in the CS at time t. Since by assumption no process stays in the section forever,471

p will eventually leave CS and the case above applies.472

3) p is in the try section at time t. Eventually, p will either enter CS (and the case above473

applies), or p will crash before entering the CS and therefore it will be in the remainder474

section after recovery (and the first case applies).475

In all cases, there is a time t′ > t such that roundp increases at time t′. J476

I Lemma 5 (Highest priority starvation freedom). Let t be a time after all eventually up477

processes stopped crashing. Assuming that no process stays in CS forever, if an eventually478

up process p is in the try section and has the highest priority among requesting eventually479

up processes at time t, then eventually p enters CS.480

Proof. Let p be an eventually up process that is in the try section with the highest priority481

among requesting eventually up processes at time t. By contradiction, let us assume that p482

never enters CS after t. It follows that p will never leave the try section, since it will neither483

crash nor enter CS. Therefore, p will never re-enter the try section and increase its roundp484

value on line 4. It follows that p’s priority will never change after t.485

Let q1 be any unstable process. According to Lemma 4, q1 will either eventually stop486

entering the try section (in which case its priority becomes irrelevant), or q1’s priority will487

be reduced infinitely often, in which case p’s priority will eventually be higher than q1’s.488

As a result, there is a time t′ ≥ t after which p has the highest priority of all requesting489

processes in the system.490



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:13

If gidp = q2 with q2 distinct from q after t′, then according to Lemma 3, eventually p will491

set its gidp to −1 and then call check requests. p will then set itself as gidp on line 18492

and will never change gidp again.493

According to the dynamic connectivity property, eventually every process in tqp will have494

received p’s request. Let q3 be any process that received p’s request. If gidq3 6= −1 and495

gidq3 6= q3, then after t′, according to Lemma 3, q3 will eventually set gidq3 to −1. When496

gidq3 is equal to −1 or q3 after t′, then q3 will set it to p on line 18 and send a grant497

message to p on line 19. As a result, p will receive a grant message from every process in498

tqp.499

Since p is eventually up, according to the quorum readiness property of (T +Σl), the500

eventually rdyp = >.501

Finally, p will pass the wait condition on line 8 and enter CS, which is a contradiction. J502

We can now prove Claim 2.503

Proof. Let p be an eventually up process that stopped crashing and is in its try section at504

time t. By contradiction, let us assume that p never enters CS after t. It follows that p will505

never leave the try section, since it will neither crash nor enter CS. Therefore, p will never506

re-enter the try section and increase its roundp value on line 4. It follows that p’s priority507

will never change after t, and that every requesting unstable process will eventually have a508

lower priority than p.509

Let Q be the set of all requesting eventually up processes with higher priority than p.510

Let q be the process in Q with the highest priority. It follows from Lemma 5 that eventually,511

q will enter CS. After q leaves CS, it will either (1) stop requesting forever (and therefore512

leave Q) or (2) enter the try section again and therefore decrease its priority. By induction,513

q will eventually not have the highest priority amongst requesting processes anymore, and514

another process in Q will take its place. As a result, eventually Q will become empty since515

every process in it will either stop requesting or increase its priority infinitely often.516

Finally, p will become the requesting eventually up process with the highest priority, and517

according to Lemma 5, will enter CS, which is a contradiction. J518

I Claim 3 (Liveness). If an eventually up process p stopped crashing and is in the try section,519

then at some time later some process that is not eventually down is in CS.520

Proof. Let p be an eventually up process that stopped crashing and is in the try section.521

There are two possibilities:522

Some process eventually stays in CS forever. In this case, liveness is ensured.523

Otherwise, according to Claim 2, p will eventually enter CS, thus ensuring liveness.524

J525

From Claim 1 and Claim 3 we can deduce the following theorem:526

I Theorem 6 (Correctness). The Algorithm 1 solves the RME using (T +Σl) in any unknown527

dynamic environment.528

I Corollary 7 (Sufficiency). The (T +Σl) failure detector is sufficient to solve the RME in529

any unknown dynamic environment with partial memory loss.530



XX:14 Failure Detector for Mutual Exclusion in Dynamic Networks

5 Necessity of (T +Σl) to solve Fault-Tolerant Mutual Exclusion531

In this section we prove that the (T +Σl) failure detector is necessary to solve the RME532

problem in any unknown dynamic system with partial memory loss. For this purpose, we533

assume that there is an unknown dynamic system modelMRME with partial memory loss,534

in which RME can be solved with some algorithm ARME. We will then show that the535

properties of (T +Σl) can be implemented inMRME.536

The following proof is inspired by the proofs for the necessity of T and Σl in [8] and [3],537

respectively. The main additional challenge is to merge the two proofs, since both trusting538

and quorum properties must apply for a same set tqp.539

The proof will make use of two algorithms, both of which share the following local540

variables:541

trustp ← {p} is the set of all processes that process p has heard of, that p does not542

suspect. This variable is in stable storage.543

startp ← false is a flag used to delay the start of the RME algorithm.544

First we introduce the algorithm BRME. BRME has exactly the same code as ARME,545

except that every call to the send primitive is replaced by a call to BRME _send, as defined546

in Algorithm 2.547

Algorithm 2 Modified send primitive for BRME

1: procedure BRME _send(msg, dest)
2: wait for startp = true

3: send(msg, trustp, dest)
4: upon reception of (msg, trust_src) from src do
5: wait for startp = true

6: trustp ← trustp ∪ trust_src

7: BRME _deliver(msg)

Algorithm 2 serves two purposes: (1) it enables p to keep track of which processes it548

heard of while trying to access CS, using trustp; (2) it enables p to delay the start of the549

RME algorithm, using startp.550

I Lemma 8. Provided that each eventually up process p eventually sets startp to true,551

Algorithm BRME solves the RME problem inMRME.552

Proof. The only difference between ARME and BRME that could prevent BRME from solving553

RME is the wait on lines 2 and 5. A process that never sets startp to true cannot participate554

in the algorithm. By assumption, this is only a problem for processes that are not eventually555

up. If a process never sets startp to true, then for the purpose of BRME, that process behaves556

exactly as an always down process would in a run of ARME. J557

We can now introduce Algorithm 3, which makes use of ARME and BRME to implement558

the properties of (T +Σl).559

In addition to trustp and startp, Algorithm 3 makes use of the following local variables:560

knownp ← {p}: as detailed in Section 2, knownp represents the knowledge that p has561

of other processes in the system. The algorithm does not show how knownp is kept up to562

date, but simply expects that knownp will eventually contain the process identities of (at563

least) all eventually up processes.564

crashp ← ∅: the set of all processes that p is certain have crashed forever. Note that565

this variable is in stable storage.566



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:15

Algorithm 3 Reduction Algorithm TARME→(T +Σl): code for process p

1: procedure task 1
2: ARME.try(p)
3: startp ← true

4: loop forever:
5: for q ∈ knownp do
6: send(alive, reqp, trustp, q)
7: procedure task 2
8: loop forever:
9: wait for waitlistp \ donelistp = ∅

10: donelistp ← ∅
11: reqp ← true

12: BRME.try
13: BRME.exit
14: reqp ← false

15: if trustp ∩ crashp = ∅ then
16: tqp ← trustp

17: rdyp ← >
18: for q ∈ knownp do
19: send(quorum, trustp, crashp, q)
20: else
21: trustp ← trustp \ crashp

22: procedure task 3 + q

23: knownp ← knownp ∪ {q}

24: ARME.try(q)
25: ARME.exit(q)
26: crashp ← crashp ∪ {q}
27: procedure reconnection
28: tqp ← trustp \ crashp

29: for q ∈ trustp do
30: Start task 3 + q

31: when q 6= p is added to trustp

32: Start task 3 + q

33: upon reception of alive (req, trust_src)
from src do

34: trustp ← trustp ∪ trust_src

35: if req = true then waitlistp ←
waitlistp ∪ {src}

36: else
37: waitlistp ← waitlistp \ {src}
38: donelistp ← donelistp ∪ {src}
39: upon reception of quorum (trust_src, crash_src)

from src do
40: trustp ← trustp ∪ trust_src

41: crashp ← crashp ∪ crash_src

42: if rdyp = ⊥ then
43: tqp ← trustp \ crashp



XX:16 Failure Detector for Mutual Exclusion in Dynamic Networks

tqp ← ∅: the output of the (T +Σl) failure detector, which verifies the trusting and567

quorum properties.568

rdyp ← ⊥: the other output variable of (T +Σl), which verifies the quorum properties.569

waitlistp ← ∅: the set of processes to which p must yield priority for CS. This is used570

to ensure starvation freedom. Note that this variable is in stable storage.571

donelistp ← ∅: the set of processes to which p already yielded priority for CS. This572

prevents p from always being passed over for CS access.573

Algorithm 3 initially starts two tasks in parallel: task 1 and task 2. Later on when574

process p receives knowledge of other processes, it starts a new task for each process q575

(denoted task 3 + q).576

Each process p has its own CS, which is handled by algorithm ARME and accessed with577

ARME.try(p). Additionally, there is a global CS which is handled by algorithm BRME and578

accessed with BRME.try.579

In task 1, p enters its own CS and then never leaves it. Since in this case a well-formed580

process restarts in the CS after a recovery, this means that a recovering process will restart581

task 1 directly after line 2 if it previously managed to enter its own CS. This enables other582

processes to detect p’s failure if it crashes permanently (if another process manages to access583

p’s CS in task 3 + p, it means p crashed forever). task 1 also lets p send information to584

the rest of the system about its own identity and whether or not p is trying to access the585

global CS. These alive messages are used by other processes to keep trustp, waitlistp, and586

donelistp up to date.587

In task 2, p tries infinitely often to access the global CS. The wait on line 9 helps ensure588

that the global CS ensures the starvation freedom property. After entering and leaving the589

global CS, if p entered it using only messages from processes that are not crashed (test590

on line 15), then p updates its (T +Σl) output variables and informs other processes with591

quorum messages. However if p used information from crashed processes to enter CS, it592

removes them from its trustp set instead.593

task 3 + q is started by p when q is added to trustp, and is used to detect q’s permanent594

crash.595

When a process p receives a quorum message, it updates its local trustp and crashp596

information and, if rdyp is currently ⊥ (and therefore p is not currently trying to verify the597

live pairs intersection property), then p updates its tqp.598

I Lemma 9 (Starvation freedom). Every eventually up processes passes the lines 12 – 13599

infinitely often.600

The proof for Lemma 9 can be found in the appendix.601

I Lemma 10 (Crashed completeness). A process can only be added to crashp if it crashed602

forever.603

The proof for Lemma 10 can be found in the appendix.604

I Claim 4 (Strong completeness). Algorithm 3 ensures the strong completeness property of605

(T +Σl) inMRME.606

Proof. Let p be an eventually down process, and q be a process that is not eventually down.607

Note that by construction, a process can never be added to tqq without being added to608

trustq first. There are two cases:609

p was never added to trustq. Then the property is immediately verified.610

p was added to trustq. Let r be some eventually up process. Eventually, q will send an611

alive message to r with its trustq. As a result, r will eventually add p to its trustr. r will612



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:17

then start task 3 + p. After p crashes forever, eventually r will reach line 26 and add p to613

crashr.614

Let t1 be a time after which all eventually down processes have crashed. Let t2 ≥ t1615

be a time after which there are no more messages sent by eventually down processes in the616

system. After t2, neither q nor r will ever add an eventually down process into their trust set617

again. According to Lemma 9, r will then eventually remove all eventually down processes618

from trustr on line 21. Since according to Lemma 10 only eventually down processes can619

be in crashr, after this time r will always pass the test on line 15 and therefore r will send620

a quorum message to q infinitely often.621

If q goes through the loop in task 1 infinitely often, it will act like r and eventually622

never have p in its tqq. If q is unstable and does not go through the loop in task 1 infinitely623

often, then after it stops going through the loop it will crash and reset its rdyq to ⊥. Then,624

the next time that q receives a quorum message from r, it will add p to crashq and remove625

it from tqq on line 43 J626

I Claim 5 (Eventually strong accuracy). Algorithm 3 ensures the eventually strong accuracy627

property of (T +Σl) inMRME.628

Proof. Let p be an eventually up process, and q a process that is not eventually down.629

Eventually, q ∈ knownp. According to the liveness property of RME, p will eventually enter630

its own CS and send an alive message to q on line 6. When q receives the message, it will631

add p to its trustq set on line 34. It follows from Lemma 10 that p will never be in crashq.632

According to the proof for Claim 4, q will update its tqp infinitely often with trustq, either633

on line 16 or on line 43. As a result, p ∈ tqq forever. J634

I Claim 6 (Trusting accuracy). By construction, the only way that a process can be removed635

from tqp is by being added to crashp. The proof then follows directly from Lemma 10.636

I Claim 7 (Quorum readiness). Algorithm 3 ensures the quorum readiness property of (T +Σl)637

inMRME.638

Proof. Let p be an eventually up process. According to the proof for Claim 4, p will pass639

the test on line 15 infinitely often. After p stops crashing, the next time it reaches line 17,640

it will set rdyp to > forever. J641

I Lemma 11 (Message reception intersection). Let p1 and p2 be two processes that enter642

the CS of BRME at time t1 (resp. t2). Let Q1 (resp. Q2) be the set of all processes from643

which p1 (resp. p2) received information from (directly or through forwarding) since the last644

time it entered the try section before t1 (resp. t2). Then either one of the process crashed645

permanently before the other entered CS, or Q1 ∩Q2 6= ∅.646

The proof for Lemma 11 can be found in the appendix.647

I Claim 8 (Live pairs intersection). Algorithm 3 ensures the live pairs intersection property648

of (T +Σl) inMRME.649

Proof. The live pairs intersection property only applies when rdyp is set to >, and the only650

way to set rdyp to > is on line 17. Since lines 28 and 43 can only be reached when rdyp is651

set to ⊥, it follows that at any time rdyp is equal to >, the current value of tqp was set on652

line 16.653

Note that tqp is set from trustp on line 16 after p recently went through the global try,654

critical, and exit sections with BRME on lines 12 – 13. By construction, every process from655

which p received information (even indirectly) in BRME since last entering the try section is656



XX:18 Failure Detector for Mutual Exclusion in Dynamic Networks

in trustp at that time. Observe also that the only way to remove a process identity from657

trustp is on line 21, which cannot be reached between lines 12 and 16.658

Let p1 and p2 be two processes, and let t be some time at which both are alive. Then659

for any time t1 ≤ t when p2 reached line 16 and any time t2 ≤ t when p2 reached line 16, it660

follows from Lemma 11 that trustp1
at time t1 and trustp2

at time t2 intersect. J661

From Claims 4 to 8, we can deduce the following theorem:662

I Theorem 12 (Correctness). The Algorithm 3 implements (T +Σl) inMRME.663

I Corollary 13 (Necessity). The (T +Σl) failure detector is necessary to solve the RME in664

any unknown dynamic environment with partial memory loss.665

Conclusion666

In this paper, we introduced a definition of the (T +Σl) failure detector adapted to unknown667

dynamic systems with partial memory loss and where faulty processes may recover. We668

proved that (T +Σl) is both necessary and sufficient to solve the RME problem in such669

systems, and it is therefore the weakest failure detector to solve RME in unknown dynamic670

systems with partial memory loss.671

We focused on a specific definition of the mutual exclusion problem for crash-recovery,672

more specifically the variant where processes stay in CS after a temporary crash. It would673

be interesting to study other definitions, considering, for instance, that temporary crashes674

make a process to restart from the remainder section, even if it was in the critical section675

previously. On the other hand, the definition that we adopted in this paper provides stronger676

properties, and notably ensures that once a process, which is not eventually down, enters677

the critical section, it does not have to leave it until it decides to.678

References679

1 Divyakant Agrawal and Amr El Abbadi. An efficient and fault-tolerant solution for dis-680

tributed mutual exclusion. ACM Trans. Comput. Syst., 9(1):1–20, February 1991.681

2 Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and consensus in682

the crash-recovery model. Distributed Computing, 13(2):99–125, 2000.683

3 Vibhor Bhatt, Nicholas Christman, and Prasad Jayanti. Extracting quorum failure de-684

tectors. In Proceedings of the 28th Annual ACM Symposium on Principles of Distributed685

Computing, PODC 2009, pages 73–82, 2009.686

4 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-687

varying graphs and dynamic networks. IJPEDS, 27(5):387–408, 2012.688

5 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed689

systems. Journal of the ACM, 43(2):225–267, 1996.690

6 Ye-In Chang, Mukesh Singhal, and Ming T. Liu. A fault tolerant algorithm for distributed691

mutual exclusion. In Ninth Symposium on Reliable Distributed Systems, SRDS 1990, pages692

146–154, 1990.693

7 Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Tight failure detection694

bounds on atomic object implementations. JACM, 57(4), 2010.695

8 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Petr Kouznetsov. Mu-696

tual exclusion in asynchronous systems with failure detectors. Journal of Parallel and697

Distributed Computing, 65(4):492–505, apr 2005.698

9 E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications699

of the ACM, 8(9):569, 1965.700



E. Mauffret, D.Jeanneau, L. Arantes and P. Sens XX:19

10 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed701

consensus with one faulty process. J. ACM, 32(2):374–382, 1985.702

11 Wojciech M. Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic703

time. In Proceedings of the ACM Symposium on Principles of Distributed Computing,704

PODC 2017, pages 211–220, 2017.705

12 Wojciech M. Golab and Aditya Ramaraju. Recoverable mutual exclusion: [extended ab-706

stract]. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Comput-707

ing, PODC 2016, pages 65–74, 2016.708

13 Prasad Jayanti and Anup Joshi. Recoverable FCFS mutual exclusion with wait-free re-709

covery. In 31st International Symposium on Distributed Computing, DISC 2017, pages710

30:1–30:15, 2017.711

14 S. Nishio, E. Manning, and K. Li. A resilient mutual exclusion algorithm for computer712

networks. IEEE Transactions on Parallel and Distributed Systems, 1:344–356, 07 1990.713

15 Thibault Rieutord, Luciana Arantes, and Pierre Sens. Détecteur de défaillances minimal714

pour le consensus adapté aux réseaux inconnus. In Algotel, 2015.715

16 Julien Sopena, Luciana Bezerra Arantes, and Pierre Sens. Performance evaluation of a fair716

fault-tolerant mutual exclusion algorithm. In 25th IEEE Symposium on Reliable Distributed717

Systems (SRDS 2006).718


	Introduction
	Model
	System Model
	Failure Model
	Connectivity Model
	Knowledge Model
	Problem Definition

	Failure Detector
	Failure Detectors for Mutual Exclusion
	The (T+l) Failure Detector

	Sufficiency of (T+l) to solve Fault-Tolerant Mutual Exclusion
	Algorithm Description
	Proof of correctness

	Necessity of (T+l) to solve Fault-Tolerant Mutual Exclusion

