
HAL Id: hal-01661127
https://hal.science/hal-01661127v1

Submitted on 11 Dec 2017 (v1), last revised 31 Oct 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Weakest Failure Detector to Solve the Mutual
Exclusion Problem in an Unknown Dynamic

Environment
Etienne Mauffret, Élise Jeanneau, Luciana Arantes, Pierre Sens

To cite this version:
Etienne Mauffret, Élise Jeanneau, Luciana Arantes, Pierre Sens. The Weakest Failure Detector to
Solve the Mutual Exclusion Problem in an Unknown Dynamic Environment. [Technical Report]
LISTIC; Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606. 2017. �hal-01661127v1�

https://hal.science/hal-01661127v1
https://hal.archives-ouvertes.fr


The Weakest Failure Detector to Solve the
Fault Tolerant Mutual Exclusion Problem in an

Unknown Dynamic Environment
Etienne Mauffret∗, Denis Jeanneau†, Luciana Arantes†, Pierre Sens†

∗LISTIC - Polytech Annecy-Chambéry
†Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6

Abstract—Many traditional distributed algorithms are
unadapted to the new dynamic architectures that have
emerged, such as mobile ad-hoc networks. Mutual exclu-
sion is one of the fundamental problems in distributed
computing, and cannot be solved in an asynchronous
message passing systems where processes can crash. Ex-
isting solutions include the use of (T +Σl), which is the
weakest failure detector to solve mutual exclusion in known,
static distributed systems. In this paper, we introduce the
(T +Σl)d failure detector and prove that it is the weakest
failure detector to solve mutual exclusion in unknown
dynamic systems with partial memory losses.

I. INTRODUCTION

Distributed algorithms are traditionally conceived for
message-passing distributed environments which are
static and whose membership is known. However,
new environments such as mobile wireless network
(MANET), sensor wireless network (WSN), peer-to-peer
networks, and opportunist grids or clouds provide access
to services or information regardless of node location,
mobility patter or global view of the system. These new
systems are dynamic, which means that the communi-
cation graph evolves over time, processes might join or
leave the system, or crash and recover during the run.
Additionally these systems are unknown, which means
that processes do not initially know the membership of
the system, and can only discover it during the run.
Therefore, distributed algorithms that run on top of these
new systems can not use prior distributed models for
static systems.

The mutual exclusion problem, introduced by Dijkstra
in [1], is a fundamental problem in distributed computing
requiring that their processes get exclusive access to one
or more shared resources by executing a segment of code
called critical section (CS). It specifies that, at any time,
each process is either in the try, critical, exit or remainder
section. Processes cycle through these sections in order.
Two processes cannot be in the critical section at the

same time, and if a process is in the try section, then at
some time later some process is in the critical section.

Several mutual exclusion algorithms in the context
of static and known distributed systems that tolerate
crash failures have been proposed in the literature [2] [3]
[4]. However, none of them consider dynamic systems,
neither that a crashed process can recover. Furthermore,
mutual exclusion algorithms that tolerate crash-recovery
processes were mostly defined in the shared memory
model, such as [5] [6], where shared variables are
stored in non-volatile memory. A crash-recovery mutual
exclusion for message-passing systems of which we are
aware was proposed in [7] but its recovery solution
works provided that failures do not occur in adjacent
processes. Hence, the conception of mutual exclusion in
unknown dynamic systems and where crashed processes
can recover presents great challenges.

A definition of recoverable mutual exclusion (RME)
for systems with crash-recovery was presented in [5]
and further studied in [6]. A main change with regard
to previous definitions of fault-tolerant mutual exclusion
is the critical section re-entry property, which specifies
that if a process p crashes while in the critical section
and later recovers, then no other process may enter the
critical section until p re-enters it after its recovery.
Intuitively, this means that the lock on the critical section
is not released in the event of a temporary crash.

In this paper we consider FTME on top of a message
passing model, where each process has access to a
volatile memory of unbounded size, which is lost after
a crash and recovery, and a non-volatile memory (stable
storage) of bounded size. We denoted this model the
partial memory loss model.

Failure detectors were introduced in [8] as a way to
circumvent the impossibility to solve consensus in crash-
prone asynchronous systems ([9]). In [10], the T failure
detector was shown to be the weakest failure detector to



solve fault-tolerant mutual exclusion in message passing
systems with a majority of correct processes. Then,
in [11], the (T +Σl) failure detector was shown to be the
weakest failure detector to solve the same problem with
no assumption on the number of process failures. Both
of these results were confined to known, static systems
without recovery. Our paper expands on these results by
presenting a new failure detector (T +Σl)d, and proving
that it is the weakest failure detector to solve fault-
tolerant mutual exclusion in unknown dynamic systems
with partial memory loss.

The contributions of our paper are threefold:
• Definition of properties necessary to be included in

the (T +Σl) failure detector in order to cope with the
dynamics of the system, the unknown membership and
crash-recovery with partial memory losses;

• the weakest failure detector (T +Σl)d to solve FTME
in unknown dynamic systems with partial memory
loss;

• a FTME algorithm that runs on top of the proposed
model using the (T +Σl)d failure detector.
The rest of the paper is organized as follows: Sec-

tion II presents our distributed system model. Sec-
tion III defines the (T +Σl)d failure detector. Section IV
provides an algorithm solving mutual exclusion using
(T +Σl)d. Finally, Section V proves that (T +Σl)d is
necessary to solve mutual exclusion in an unknown
dynamic distributed system.

II. MODEL

This section presents the distributed system model
used throughout the rest of the paper.

System Model: the system is composed of a finite set
of processes, denoted Π. Each process is uniquely iden-
tified. Additionally, processes are asynchronous (there
is no bound on the relative speed of processes). They
communicate by sending each other messages with a
point-to-point SEND/RECEIVE primitive.

Communications are asynchronous (there is no bound
on message transfer delay). The system is dynamic in
the sense that the edges in the communication graph
can appear and disappear during the run. Communication
channels are assumed to be reliable during the periods
of time where the corresponding edge is present.

Failure Model: a process can crash (stop executing)
during the run, and may recover from the crash, or not.

Each process has access to both a volatile memory
and a stable storage of bounded size. After a crash and
recovery, the variables in volatile memory are reset to
their initial default values. Because each process has

access to stable storage, we say that this model deals
with partial memory loss. In the rest of the paper, the
names of variables in stable storage is underlined.

A process is said to be alive at time t if it never
stopped executing before t or if it recovered since the
last time it stopped executing. A process which is not
alive at time t is said to be crashed at time t.

In the traditional crash failure model, processes are
grouped into faulty processes, which eventually crash,
and correct processes, which never crash. However, in
a crash-recovery model, in any run, we consider three
types of processes:

1) Eventually up processes, which stop crashing after
some time and remain alive forever. This type also
includes processes that never crash (always up).

2) Eventually down processes, which eventually crash
and never recover. This type also includes processes that
crashed immediately at the start of the run and never
recovered (always down).

3) Unstable processes, which crash and recover in-
finitely often.

Knowledge Model: the system is unknown, i.e., pro-
cesses initially have no information on system mem-
bership or the number of processes of the system, and
are only aware of their own identity. The identities of
other processes can only be learned through exchanging
messages. More practically, each process p has access to
a local variable knownp (in stable storage) that initially
contains only p. Eventually, knownp contains the set of
all processes that are not eventually down. For the sake
of simplicity, our algorithms do not attempt to define the
knownp variable and simply assume that an underlying
discovery algorithm eventually fills it with the necessary
process identities.1

Problem Definition: We consider the Fault-Tolerant
Mutual Exclusion (FTME) problem, which we define in
our model as follows. At any point in time, a process
is either in the remainder, try, critical or exit section.
We consider that every user is well-formed, that is that
a user will go through the remainder, try, critical and
exit sections in the correct order. In case of a crash and
recovery, a well-formed user will restart in the critical
section if it was in the critical section when it crashed,
and will restart in the remainder section otherwise (this
is the critical section re-entry property of [5]).

A fault-tolerant mutual exclusion algorithm must pro-
vide a TRY SECTION and an EXIT SECTION procedures
such that the following properties are satisfied:

1Typically, this discovery could be done by the algorithm imple-
menting the failure detector.

2



Safety: Two distinct alive processes p and q can not
be in CS at the same time.

Liveness: If an eventually up process p stopped crash-
ing and is in the try section, then at some time later some
process that is not eventually down is in CS.

Additionally, we consider the following fairness prop-
erty:

Starvation Freedom: If no process stays in its critical
section forever, then every eventually up process that
stopped crashing and reaches its try section will eventu-
ally enter its CS.

III. FAILURE DETECTOR

Failure detectors were introduced by Chandra and
Toueg in [8] as a way to circumvent the impossibility
to solve consensus in crash-prone asynchronous sys-
tems [9]. They are distributed oracles which provide un-
reliable information on process crashes. The information
is unreliable in the sense that correct processes might be
falsely suspected of having crashed, and faulty processes
might still be trusted after they crashed. Different classes
of failure detectors provide different properties on the
reliability of the information provided to the processes.

Failure detectors are used as an abstraction of the
system model assumptions.

A failure detector D1 is said to be weaker than D2

if there exists a distributed algorithm that can imple-
ment D1 using the information on failures provided by
D2. Intuitively, this means that the computing power
provided to the system by D2 is stronger than the
computing power provided by D1. A failure detector that
is sufficient to solve a given problem while being weaker
than every other failure detector that can solve it, is said
to be the weakest failure detector to solve that problem.
It follows that the weakest failure detector to solve a
problem can be implemented in any system in which
the problem can be solved.

A. Failure Detectors for Mutual Exclusion

In [10], Delporte-Gallet et al. introduce the trusting
failure detector T and prove that it is the weakest failure
detector to solve fault-tolerant mutual exclusion in a
system with a majority of correct processes. T provides
each process with a list of trusted processes. It ensures
that faulty processes are eventually not trusted by any
correct process (strong completeness), that eventually
all correct processes trust each other (eventually strong
accuracy), and that at all times, if T stops trusting a
process, then the process is crashed.

Bhatt et al. introduce in [11] the Σl quorum failure
detector. Σl is a variant of the Σ quorum failure detector

[12] adapted for the mutual exclusion problem. It pro-
vides each process with a quorum of process identities
that are eventually ensured to be correct, and also ensures
that if two processes are alive at some point in time, then
all of their quorums up to this point intersect. The paper
shows that T and Σl used together, denoted (T +Σl),
constitute the weakest failure detector to solve mutual
exclusion with any number of process failures in static,
known systems.

B. Adapting Failure Detectors for Unknown Dynamic
Systems

Most distributed computing papers on failure detec-
tors make an assumption on the connectivity of the
network (often, the communication graph is expected
to be connected or complete). In a dynamic system,
connectivity assumptions become much weaker and,
more importantly, problem-dependant. Identifying which
level of connectivity is necessary and/or sufficient to
solve a given problem is one of the main challenges
of dynamic systems.

Therefore, a failure detector cannot be said to be
sufficient to solve a problem in a dynamic system, unless
the detector itself includes a connectivity property which
is sufficient to solve the problem. For this reason, we
augment the original (T +Σl) failure detector with the
dynamic connectivity property.

In an unknown system, the lack of initial information
renders difficult the implementation of some failure
detector properties which must apply from the start of the
run, in particular the intersection property. To circumvent
this problem, we make use of the ⊥ concept introduced
in [13] and adapt it into the rdyp variable of (T +Σl)d.

Finally, in order to ensure the mutual exclusion in a
crash-recovery model with partial memory losses, it is
necessary to guarantee that (1) there is no duplication
of messages, and (2) messages that a process has no
memory of sending cannot be received later.

C. The (T +Σl)d Failure Detector

The (T +Σl)d failure detector provides each process p
with a set of trusted process identities, denoted tqp, and
a flag denoted rdyp. rdyp is initially set to ⊥, and then
is changed to > once the failure detector has gathered
enough information to verify the live pairs intersection
property. We denote tqtp the value of tqp at time t, and
rdytp the value of rdyp at time t. We say that process p
trusts process q at time t if q ∈ tqtp, that p suspects q at
time t if q /∈ tqtp, and that process p is ready at time t
if rdytp = >. The following properties must be verified.

3



• Eventually strong accuracy: Every eventually up
process p is eventually trusted forever by every process
that is not eventually down.

• Strong completeness: Every eventually down process
p is eventually suspected forever by every process that
is not eventually down.

• Trusting accuracy: For any process p, if there exist
times t and t′ > t such that q ∈ tqtp and q /∈ tqt

′

p , then
q is eventually down and will never be alive after t′.

• Quorum readiness: Every eventually up process is
eventually ready forever.

• Live pairs intersection: If two processes p and q are
both alive at time t, then for any couple of time instants
t1 ≤ t and t2 ≤ t, (rdyt1p = > ∧ rdyt2q = >) =⇒
tqt1p ∩ tqt2q 6= ∅.

• Dynamic connectivity: Every message sent by a
process that is not eventually down to a process that
is not eventually down is received at least once.

• Unicity of reception: Every message sent is received
at most once.

• First in, first out: If process p sends a message m1

to q and then sends m2 to q, if q receives m2 then it
received m1 first.

The eventually strong accuracy, strong completeness
and trusting accuracy properties are the original proper-
ties of T , adapted for a crash-recovery model. We call
these properties the trusting properties of (T +Σl)d.

Similarly, the strong completeness and live pairs in-
tersection properties are the original properties of Σl,
adapted for our model. The new quorum readiness prop-
erty, along with the rdyp output variable, was added to
deal with the lack of initial information in an unknown
system. We call these properties the quorum properties
of (T +Σl)d.

Note that the strong completeness is both a trusting
property and a quorum property, since both T and Σl

make use of this same property.
The dynamic connectivity, unicity of reception and

first in, first out properties are new properties added to
the failure detector in order to deal with dynamics and
memory loss.

It might be argued that the dynamic connectivity
and unicity of reception properties are unnecessary in
a model with reliable channels. However, since the
system is dynamic, even if every channel is reliable,
a given edge in the communication graph may not
be present at any given time, and the path used for
two processes to communicate may change during the
run. The dynamic connectivity property is therefore not
trivial. Additionally, in a network with such a dynamic

graph, an algorithm might send each message multiple
times in order to ensure message reception, which is why
the unicity of reception property is not trivial either.

In a static, known system with reliable channels and
prone to crash failures without recovery, (T +Σl)d is
trivially equivalent to (T +Σl).

IV. SUFFICIENCY OF (T +Σl)d TO SOLVE
FAULT-TOLERANT MUTUAL EXCLUSION

In this section we introduce Algorithm 1 and prove
that it solves the FTME in any unknown dynamic
environment enriched with the (T +Σl)d failure detector.

A. Algorithm Description

In Algorithm 1, each process p which is in the try
section issues a request of the form (roundp, p), where
roundp is the current round number of p. Requests are
totally ordered by their priority, which is defined as
follows: priority(roundp, p) > priority(roundq, q)⇔
roundp < roundq or [roundp = roundq and p < q].

The HIGHEST function (called on line 18) takes a
list of requests and returns the couple (round, id) of
the request with the highest priority among the trusted
processes according to tqp.

Each process p has access to the output of its respec-
tive local failure detector, tqp and rdyp. It also keeps the
following local variables, initialized with the indicated
value:
critp ← false: a flag indicating that p is currently in

CS. This is the only variable kept in stable storage. Thus,
critp is not reinitialized after a crash and recovery.
roundp ← 0: the local round number of p, which is

used to number its requests. It is also used to define the
current priority of p to access the critical section.
last roundp ← ∅: a table associating each known

process identity with its last known round number. This
is used to restore the round number of other processes
after they crash and recover.
reqp ← false: a flag indicating that p is currently in

the try section.
requestsp ← ∅: the set of requests received by p.

Each request is a couple (round, pid).
gidp ← −1: the identity of the last process to which

p granted its permission, or −1 if p did not grant it. It
indicates that p sent a GRANT message to gidp, and did
not receive a DONE or REJECT message yet.
grndp ← −1: the current round number of the process

to which p granted its permission, or −1 if p did not
grant it.
grantsp ← {p}: the set of processes from which p

received a GRANT message.

4



Algorithm 1 Solving FTME with (T +Σl)d: code for process p

1: procedure TRY SECTION
2: wait for recoveringp = false
3: reqp ← true
4: roundp ← roundp + 1; grantsp ← {p}
5: for ∀q ∈ tqp do SEND(REQUEST, roundp, q)
6: requestsp ← requestsp ∪ {(roundp, p)}
7: CHECK REQUESTS()
8: wait for gidp = p and rdyp = > and tqp ⊆ grantsp
9: critp ← true; reqp ← false

10: procedure EXIT SECTION
11: wait for recoveringp = false
12: critp ← false
13: for ∀q ∈ grantsp \ {p} do SEND(DONE, q)
14: grantsp ← {p}; requestsp ← requestsp \ {(∗, p)}
15: CHECK REQUESTS()
16: procedure CHECK REQUESTS
17: if (gidp = −1 or gidp = p) and requestsp 6= ∅ and

critp = false and recoveringp = false then
18: (grndp, gidp)← HIGHEST(requestsp)
19: if gidp 6= p then SEND(GRANT, gidp)
20: for ∀q ∈ grantsp \ {p} do
21: grantsp ← grantsp \ {q}
22: SEND(REJECT, q)
23: procedure RECONNECTION
24: recoveringp ← true
25: updatep ← tqp
26: for ∀q ∈ updatep do
27: SEND(COMEBACK, critp, q)

28: wait for updatep = ∅
29: recoveringp ← false
30: CHECK REQUESTS()
31: when q added to tqp
32: if reqp = true then SEND(REQUEST, roundp, q)
33: when q removed from tqp
34: grantsp ← grantsp \ {q}
35: requestsp ← requestsp \ {(∗, q)}
36: updatep ← updatep \ {q}

37: if gidp = q then
38: (gidp, grndp)← (−1,−1)
39: CHECK REQUESTS()
40: upon reception of REQUEST (round) from src do
41: requestsp ← requestsp ∪ {(round, src)}
42: last roundp[src]← round
43: CHECK REQUESTS()
44: upon reception of GRANT () from src do
45: if gidp 6= −1 and gidp 6= p then
46: SEND(REJECT, src)
47: else if recoveringp = false then
48: grantsp ← grantsp ∪ {src}
49: upon reception of DONE () from src do
50: requestsp ← requestsp \ {(∗, src)}
51: (gidp, grndp)← (−1,−1)
52: CHECK REQUESTS()
53: upon reception of REJECT () from src do
54: (gidp, grndp)← (−1,−1)
55: CHECK REQUESTS()
56: upon reception of COMEBACK (crit src) from src do
57: requestsp ← requestsp \ {(∗, src)}
58: if crit src = false and gidp = src then
59: (gidp, grndp)← (−1,−1)
60: CHECK REQUESTS()
61: SEND(UPDATE, gidp = src, last roundp[src], src ∈

grantsp, roundp, reqp, src)
62: upon reception of UPDATE (grant p, last rnd, grant src, round, req)

from src do
63: last roundp[src]← round
64: roundp ←MAX(roundp, last rnd)
65: if grant src = true then. p previously granted src
66: (gidp, grndp)← (src, round)

67: if grant p = true then . src previously granted p
68: grantsp ← grantsp ∪ {src}
69: if req = true then . src is requesting
70: requestsp ← requestsp ∪ {(round, src)}
71: updatep ← updatep \ {src}

recoveringp ← false: a flag indicating that p is
currently attempting to rebuild its volatile memory after
a crash. Calls to TRY SECTION and EXIT SECTION
will be delayed until after the recovery is done, while
recoveringp = false.

updatep ← ∅: the set of processes from which p waits
for an UPDATE message. This variable is only used dur-
ing the recovery phase, i.e., while recoveringp = true.

All of these local variables, except for critp, are stored
in volatile memory. This means that after a crash and
recovery, they are reinitialized to the above default value.

The following types of messages are used by Algo-
rithm 1:

REQUEST: asks for permission to enter CS. The mes-
sage contains the round number of the sender.

GRANT: grants permission to a process to enter CS.
DONE: notifies other processes that the sender just

exited CS.
REJECT: warns that a permission has already been

given to another process, thus preventing deadlocks.
COMEBACK: notifies other processes that the sender

just recovered from a crash.
UPDATE: gives information to a recently recovered

process about requests, previously given permissions and
its current round number.

The CHECK REQUESTS procedure is extensively used

5



in Algorithm 1. Provided that process p did not already
grant its permission to another process and is not in CS,
CHECK REQUESTS compares the requests that p received
so far by calling the HIGHEST function (line 18), and
sends a GRANT message to the process with the highest
priority (line 19). In case p received grants from other
processes before granting its own permission, it will send
REJECT messages to the processes in grantsp in order
to prevent a deadlock (lines 20 – 22).

When a process p wants to access the critical section,
it executes the TRY SECTION: p increments its roundp
and resets its grantsp set (line 4), then broadcasts a
REQUEST to every process in tqp (line 5). If a new
process is discovered while p is still in the try section,
the request will also be sent to this new process (line 32).
Process p adds its own request to its requestsp before
calling CHECK REQUESTS (lines 6 –7), and finally waits
for permissions from every process in tqp (and its own
permission, line 8) before entering CS.

When p receives a REQUEST message from process q
(lines 40 – 43), it updates its knowledge about q’s round
number and adds the new request to its requestsp set. It
then calls CHECK REQUESTS to decide if it should send
a grant to the new requester.

When p receives a GRANT message from process q, if
p already granted its permission to some other process
then it informs q by responding with a REJECT message
to prevent deadlocks (line 46). Otherwise, if p is not
in the recovery phase, then it accepts q’s permission by
adding it to its grantsp set.

Upon finishing the critical section and calling EXIT
SECTION, p sends to all trusted processes a DONE mes-
sage (line 13). Then, p resets its grantsp set and cancels
its request (line 50) before calling CHECK REQUESTS to
grant its permission to the next process.

If p receives a DONE or REJECT message from process
gidp, it cancels the permission granted to gidp (lines 51
and 54) and calls CHECK REQUESTS. In the case of a
DONE message, the request from gidp is also deleted
from requestsp (line 50), since gidp is not requesting CS
anymore. However, in the case of a REJECT, the request
from gidp is still valid and must be kept, even if it is
not the highest priority request.

If p crashes and recovers, the RECONNECTION pro-
cedure will be called first. This procedure initiates
the recovery phase (lines 24 – 29) by switching the
recoveringp flag to true, which will temporarily prevent
the algorithm from going into the try or exit sections
(lines 2 and 11) and sending or accepting a grant
(lines 17 and 47). During the recovery phase, p attempts
to recover the information it lost during the crash by

sending a COMEBACK message to every process in tqp.
Other processes will send UPDATE messages in response,
which enables p to restore its last roundp, roundp,
gidp, grndp and requestsp variables (lines 63 – 71).
The recovery phase ends when every process to which p
sent a COMEBACK has either responded with an UPDATE
message (line 71), or crashed (line 36). After recovering,
p calls CHECK REQUESTS in order to choose a process
to grant its permission to (line 30).

If p receives a COMEBACK message from a process
q, it cancels any request previously received from q,
since a process in recovery phase can only be in the
remainder or critical section. If q is in its remainder
section (critp = false), then p cancels any permission
it might have granted to q previously (lines 58 – 60).
Finally, p sends an UPDATE message to q.

Whenever p is informed by the failure detector that a
process q is eventually down (lines 33 – 39), p deletes q
from its requestsp, grantsp and updatep sets. If q was
the process to which p granted permission, then p cancels
the permission (line 38) and calls CHECK REQUESTS to
grant its permission to another process, if appropriate.

B. Proof of correctness

We will prove, through the following claims, that any
run of Algorithm 1 solves the FTME problem.

Claim 1 (Safety). Two distinct alive processes p and q
can not be in CS at the same time.

In order to prove the Claim 1 we need to pose the
following lemmata.

Lemma 1 (Unicity of the permission). Let p, q1, q2 be
three distinct alive processes. If p ∈ grantsq1 at a time
t then p cannot send a GRANT message to q2 at time t.

Proof. The only way that p can send a GRANT message
to a process q is on line 19, after it selected q as its
gidp. Note that the definition of the HIGHEST function
also implies that q ∈ tqp at the time when the GRANT
message is sent.

Suppose that p has sent a GRANT message at time tG
to another process q1 (and therefore at time tG, gidp =
q1).

Let us assume that there is a time t > tG such that
p ∈ grantsq1 . Let us then suppose that p sends a GRANT
message to another process q2 at time t.

In order to send a GRANT message to q2, p has to set
gidp to −1 or to p at some time t′ ∈ [tG, t] (otherwise
p cannot pass the test on line 17). This affectation can
only be done in one of the following ways:

6



Line 38: then q1 /∈ tqt
′

p . Since q1 ∈ tqtGp , according
to the trusting accuracy property of (T +Σl)d, q1 has
crashed at some time before t′ and will never recover. It
is therefore impossible that p ∈ grantsq1 at time t.

By crashing. If p crashed between tG and t′, then its
gidp got reset to −1. This also means that p entered the
recovery phase(lines 24 – 29) at some time t′′ ∈ [tG, t

′].
Since q1 ∈ tqtGp , then according to the trusting accu-
racy property of (T +Σl)d, either q1 crashed before t′′

and will never recover (which is a contradiction), or
q1 ∈ tqt

′′

p . p will therefore send a COMEBACK message
to q1 on line 27, and q1 will respond with a UPDATE
message with the grant src parameter set to true,
which will cause p to set its gidp back to q1. Since p
cannot have sent a GRANT message while in the recovery
phase(because of the test on line 17), then p cannot send
the GRANT to q2 at time t which is a contradiction.

Line 59: then p received a COMEBACK message from
q1 at some time t′′ ∈ [tG, t

′]. This means that q1 crashed
and went into the recovery phase. p will respond with an
update message to q1. Since q1 cannot leave the recovery
phase until it receives p’s update and because of the
first in, first out property of (T +Σl)d, then p’s GRANT
message to q1 was received either (1) before q1 crashed,
in which case the GRANT was forgotten, or (2) during
the recovery phase, in which case q1 will ignore the
GRANT because of the test on line 47. In both cases,
p /∈ grantsq1 after t′′, which is a contradiction.

Line 51 or 54: then p received a DONE or REJECT
message from q1 at time t′. There are two cases. If q1

sent the DONE or REJECT message after receiving the
GRANT, then q1 removed p from grantsq1 on line 14
(resp. line 21) and did not add it back in afterwards,
which is a contradiction. Otherwise, q1 sent the DONE
or REJECT message before receiving p’s GRANT. Since
q1 only sends DONE or REJECT messages to processes
from which it previously received a GRANT, then p sent
another GRANT message to q1 before tG. This means that
p sent two consecutive GRANT messages to q1 without
receiving a DONE or REJECT message in between. The
only way this could happen is if p set its gidp to −1
or p between sending the two GRANT messages without
receiving a DONE or REJECT, which is a contradiction
since this proof eliminated every other way of doing that.

Hence, we can not have p ∈ grantsq1 and p sending a
GRANT message to q2 at the same time, which conclude
the proof of Lemma 1 .

Lemma 2 (Self permission). Let p, q be two distinct
alive processes. If p ∈ grantsq then p can not enter CS.

Proof. If p ∈ grantsq , then p sent a GRANT message to
q and therefore set its gidp to q. The reasoning of the
proof for Lemma 1 can be used to show that p cannot
change the value of its gidp until q has removed p from
its grantsq .

Since p is required to have its gidp set to p in order
to enter CS (line 8), then it is impossible for p to enter
CS until after q removed p from grantsq .

We can now prove the Claim 1 by contradiction.

Proof. Let p1, p2 be two alive, distinct processes. Let us
suppose that p1 enters CS at time t1, and p2 enters CS
at time t2. Let us suppose that neither process leaves CS
until after the other process has entered it. According to
the live pairs intersection property of (T +Σl)d, there is
a process q such that q ∈ tqt1p1

∩ tqt2p2
. It follows from

the wait condition on line 8 that q ∈ grantsp1
at time

t1 and q ∈ grantsp2
at time t2. There are two cases:

First case: p1, p2 and q are all distinct. Therefore, q
sent a GRANT message to p1 before t1 and a GRANT
message to p2 before t2. Additionally, neither process
removed q from their grants set before entering CS.
Without loss of generality, let us assume that q sent
the GRANT message to p1 first. There could be a run
in which p1 received the message immediately, and
therefore added q to grantsp1

before q sent the second
GRANT to p2. In this run, q sends a GRANT message to
p2 while q ∈ grantsp1

at the same time, which is in
contradiction with Lemma 1.

Second case: q = p1 or q = p2. Without loss of
generality, let us assume that q = p1. Since q ∈ grantsp2

at time t2, q sent a GRANT message to p2 before t2. Since
it is impossible for q to send a GRANT message while in
CS (because of the test on line 17), it follows that q sent
the GRANT before entering CS. There could be a run in
which p2 received the GRANT immediately after it was
sent, therefore adding q to grantsp2

before q entered
CS, which is in contradiction with Lemma 2.

Claim 2 (Starvation freedom). If no process stays in its
critical section forever, then every eventually up process
that stopped crashing and reaches its try section will
eventually enter its CS.

To prove the Claim 2, we pose the following lemmata:

Lemma 3 (Deadlock-free). Assuming that no process
stays in CS forever, if a process p, which does not
have the highest priority among the requesting processes,
receives at least one GRANT from another process q, p
will eventually either crash forever or remove q from

7



grantsp, and q will eventually either crash forever or
set gidq to −1.

Proof. Let p be a process in its try section at time t.
There exists a distinct process ph which is also in its
try section at time t and has the highest priority among
requesting processes.

Let q be a process distinct from p that sends a GRANT
message that p receives at time t. It follows that p sent
a REQUEST message to q at some time tR < t.

One of the following cases applies:
1) p is eventually down, and q is not. Then according

to the strong completeness property of (T +Σl)d, p will
eventually be removed from tqq and q will set gidq to
−1 on line 38.

2) q is eventually down, and p is not. Then according
to the strong completeness property of (T +Σl)d, q will
eventually be removed from tqp and p will remove q
from grantsp on line 34.

3) At time t, gidp 6= −1 and gidp 6= p. Then when
p receives q’s GRANT message, it will never add q to
grantsp and will send q a REJECT message instead
(line 46). When q receives the REJECT message, it will
set gidq to −1 (line 54).

4) At time t, gidp = −1. When p calls CHECK RE-
QUESTS, it will pass the test one line 17 since requestsp
contains at least p’s request, and critp and recoveringp
cannot be true while in CS. p will then set gidp to
something different from −1 on line 18.

It follows from the cases above that the only way
Lemma 3 could be false is if neither p nor q are
eventually down, and gidp = p at time t. Since p is
not eventually down, then p will eventually receive ph’s
request at some time t′ > t. Then one of the following
cases applies:

1) During [tR, t
′], p does not crash, receives GRANT

messages from every process in tqp, and rdyp is set to
>. Then p will end the wait on line 8 and enter CS.
When p leaves CS, it will remove q from grantsp on
line 14 and send a DONE message to q on line 13. When
q receives the DONE message, it will set gidq to −1 on
line 51.

2) During [tR, t
′], p does not crash and does not

receive enough GRANT messages to enter CS (or rdyp
stays equal to ⊥). Then at time t′ when p receives ph’s
request, it will call CHECK REQUESTS on line 43. p will
pass the test on line 17 and, since ph is the requesting
process with the highest priority, p will set gidp to ph.
It will then remove q from grantsp on line 21 and send
a REJECT message to q on line 22. When q receives the
REJECT message, it will set gidq to −1 on line 54.

3) During [tR, t
′], p crashes before receiving enough

GRANT messages to enter CS. When p recovers, its
grantsp set is reinitialized and does not contain q. Since
q was previously in tqp and q is not eventually down, it
follows from the trusting accuracy property of (T +Σl)d

that q is still in tqp after p recovers. p will therefore
send a COMEBACK message to q on line 27 with the
crit src parameter set to false. When q receives the
COMEBACK message, it will set gidq to −1 on line 59.
Note that because of the first in, first out property of
(T +Σl)d, q will necessarily receive p’s request before
the COMEBACK message. Additionally, p will receive q’s
GRANT message before q’s UPDATE message, and will
ignore the grant because of the test on line 47.

Lemma 4 (Decreasing priority). Assuming that no pro-
cess stays in the CS forever, if an unstable process
p is in the try section infinitely often, then the value
of roundp increases infinitely often (and therefore, p’s
priority decreases infinitely often).

Proof. Let p be an unstable process that is in the try
section infinitely often. By definition, p also crashes
infinitely often. Let q be any eventually up process.
According to the eventually strong accuracy property of
(T +Σl)d, p will eventually trust q forever.

Let t0 be a time after which every eventually down
process crashed permanently, every eventually up pro-
cess stopped crashing, and p started trusting q. According
to the strong completeness property of (T +Σl)d, there
is a time t1 ≥ t0 such that ∀t > t1, tqtp does not contain
any eventually down process. Let t2 > t1 be the first
time after t1 that p crashes, and let t3 > t2 be the first
time after t2 that p enters the try section.

Every request sent by p after t3 is sent only to pro-
cesses that are not eventually down, including q. Accord-
ing to the dynamic connectivity property of (T +Σl)d,
q will receive every request sent by p after t3. Every
time that p crashes after t3, p will send a COMEBACK
message to q. Because of the first in, first out property of
(T +Σl)d, q will receive p’s last request before receiving
the COMEBACK message, and therefore when q receives
the COMEBACK its last roundq[p] will be up to date
with q’s latest roundp value from before the crash. q
will then respond with an UPDATE message, and p will
update its roundp value on line 63 before leaving the
recovery phase. As a result, crashes after t3 do not reduce
or reset p’s roundp value.

At any time t > t3, there are three possibilities:
1) p is in the exit or remainder section at time t. By

assumption, p will eventually enter the try section, and
therefore increase its roundp value on line 4.

8



2) p is in the CS at time t. Since by assumption no
process stays in the section forever, p will eventually
leave CS and the case above applies.

3) p is in the try section at time t. Eventually, p will
either enter CS (and the case above applies), or p will
crash before entering the CS and therefore it will be in
the remainder section after recovery (and the first case
applies).

In all cases, there is a time t′ > t such that roundp
increases at time t′.

Lemma 5 (Highest priority starvation freedom). Let
t be a time after all eventually up processes stopped
crashing. Assuming that no process stays in CS forever,
if an eventually up process p is in the try section and
has the highest priority among requesting eventually up
processes at time t, then eventually p enters CS.

Proof. Let p be an eventually up process that is in the
try section with the highest priority among requesting
eventually up processes at time t. By contradiction, let
us assume that p never enters CS after t. It follows that
p will never leave the try section, since it will neither
crash nor enter CS. Therefore, p will never re-enter the
try section and increase its roundp value on line 4. It
follows that p’s priority will never change after t.

Let q1 be any unstable process. According to
Lemma 4, q1 will either eventually stop entering the try
section (in which case its priority becomes irrelevant),
or q1’s priority will be reduced infinitely often, in which
case p’s priority will eventually be higher than q1’s. As a
result, there is a time t′ ≥ t after which p has the highest
priority of all requesting processes in the system.

If gidp = q2 with q2 distinct from q after t′, then
according to Lemma 3, eventually p will set its gidp to
−1 and then call CHECK REQUESTS. p will then set itself
as gidp on line 18 and will never change gidp again.

According to the dynamic connectivity property of
(T +Σl)d, eventually every process in tqp will have
received p’s request. Let q3 be any process that received
p’s request. If gidq3 6= −1 and gidq3 6= q3, then after t′,
according to Lemma 3, q3 will eventually set gidq3 to
−1. When gidq3 is equal to −1 or q3 after t′, then q3

will set it to p on line 18 and send a GRANT message
to p on line 19. As a result, p will receive a GRANT
message from every process in tqp.

Since p is eventually up, according to the quorum
readiness property of (T +Σl)d, the eventually rdyp =
>.

Finally, p will pass the wait condition on line 8 and
enter CS, which is a contradiction.

We can now prove Claim 2.

Proof. Let p be an eventually up process that stopped
crashing and is in its try section at time t. By contra-
diction, let us assume that p never enters CS after t.
Similarly to the proof of Lemma 5, we can show that
p’s priority will never change after t, and that every
requesting unstable process will eventually have a lower
priority than p.

Let Q be the set of all requesting eventually up pro-
cesses with higher priority than p. Let q be the process
in Q with the highest priority. It follows from Lemma 5
that eventually, q will enter CS. After q leaves CS, it will
either (1) stop requesting forever (and therefore leave Q)
or (2) enter the try section again and therefore decrease
its priority. By induction, q will eventually not have the
highest priority amongst requesting processes anymore,
and another process in Q will take its place. As a result,
eventually Q will become empty since every process
in it will either stop requesting or increase its priority
infinitely often.

Finally, p will become the requesting eventually up
process with the highest priority, and according to
Lemma 5, will enter CS, which is a contradiction.

Claim 3 (Liveness). If an eventually up process p
stopped crashing and is in the try section, then at some
time later some process that is not eventually down is in
CS.

Proof. Let p be an eventually up process that stopped
crashing and is in the try section. There are two possi-
bilities:
• Some process eventually stays in CS forever. In this

case, liveness is ensured.
• Otherwise, according to Claim 2, p will eventually

enter CS, thus ensuring liveness.

From Claim 1 and Claim 3 we can deduce the follow-
ing theorem:

Theorem 1 (Correctness). The Algorithm 1 solves the
FTME using (T +Σl)d in any unknown dynamic envi-
ronment.

Corollary 1 (Sufficiency). The (T +Σl)d failure detector
is sufficient to solve the FTME in any unknown dynamic
environment with partial memory loss.

V. NECESSITY OF (T +Σl)d TO SOLVE
FAULT-TOLERANT MUTUAL EXCLUSION

In this section we prove that the (T +Σl)d failure
detector is necessary to solve the FTME problem in

9



any unknown dynamic system with partial memory loss.
For this purpose, we assume that there is an unknown
dynamic system model MFTME with partial memory
loss, in which FTME can be solved with some algo-
rithm AFTME. We will then show that the properties of
(T +Σl)d can be implemented in MFTME.

A. Dynamic connectivity, unicity of reception and first
in, first out properties

We consider a deterministic algorithm AFTME that
solves FTME.

Claim 4 (Dynamic connectivity). The dynamic connec-
tivity property of (T +Σl)d is verified in MFTME.

Proof. By contradiction, we suppose that the dynamic
connectivity property is not verified inMFTME. Let there
be a system consisting of two eventually up processes
p and q. Let there be a run of AFTME in which both
p and q are in the try section at some point in time,
and they never receive each other’s messages. If AFTME
makes p wait for a message from q before entering CS,
since p and q are in a symmetrical situation, then both
processes will wait forever, which violates the liveness
property. If AFTME makes p enter CS without waiting
for a message from q, then there is a run in which both
processes enter CS at the same time, thus violating the
safety property. In both cases there is a contradiction,
and therefore eventually up processes must be ensured
to eventually receive messages in MFTME.

Let there be a system composed of an eventually up
process p and another process q which is not eventually
down. Both processes are in the try section at some point
in time. Note that there is no way for either process to
ever know for sure whether q is unstable or eventually
up, and therefore q will try to enter CS and p must
wait for a message from q to ensure safety (as in the
case above). If q is unstable, it might never receive
any message from p and therefore never knows of p’s
existence. In this case q will never send any message
to p, and p will wait forever, thus violating the liveness
property. It follows that unstable processes must also be
ensured to eventually receive messages in MFTME.

Claim 5 (Unicity of reception). The unicity of reception
property of (T +Σl)d is verified in MFTME.

Proof. By contradiction, we suppose that any message
can be received several times by processes. Let p be a
process and R a run of an AFTME such that in R, p
manages to access CS. Let us denote this sequence by
S1. After S1, p crashes and another process p′ manages
to reach CS. Before p′ leaves the CS, let us suppose that

p recovers and receives all the messages that p already
received before notification of other processes. p can not
dissociate this sequence from the sequence S1 and, as
AFTME is deterministic, p will enter CS without receiving
any new messages and before p′ leaves CS. In this case,
the safety property is violated, which is a contradiction.

Claim 6 (First in, first out). The first in, first out property
of (T +Σl)d is verified in MFTME.

Algorithm 2 Implementation of a FIFO property
1: procedure FIFO SEND(msg, dest)
2: wait for dest /∈ sentp
3: sentp ← sentp ∪ {dest}
4: SEND(MSG,msg, dest)
5: upon reception of MSG (msg) from src do
6: FIFO DELIVER(msg)
7: SEND(ACK, src)
8: upon reception of ACK () from src do
9: sentp ← sentp \ {src}

Proof. Provided that a SEND primitive that verifies the
dynamic connectivity and unicity of reception properties
is available, Algorithm 2 implements FIFO SEND prim-
itive that ensures the first in, first out property.
sentp is a local variable in stable storage that is ini-

tialized to ∅. It enables process p to remember to which
processes it previously sent a message, and prevents it
from sending another message to the same process until
an ACK message has been received.

B. Trusting and quorum properties

The following proof is inspired from the proofs for the
necessity of T and Σl in [10] and [11], respectively. The
main additional challenge is to merge the two proofs,
since both trusting and quorum properties must apply
on a same set tqp.

The proof will make use of two algorithms, both of
which share the following local variables:
trustp ← {p} is the set of all processes that process

p has heard of, that p does not suspect. This variable is
in stable storage.
startp ← false is a flag used to delay the start of the

FTME algorithm.
First we introduce the algorithm BFTME. BFTME has

exactly the same code as AFTME, except that every call
to the SEND primitive is replaced by a call to BFTME

SEND, as defined in Algorithm 3.
The point of Algorithm 3 is twofold: (1) it enables p

to keep track of which processes it heard of while trying

10



Algorithm 3 Modified SEND primitive for BFTME

1: procedure BFTME SEND(msg, dest)
2: wait for startp = true
3: SEND(msg, trustp, dest)

4: upon reception of (msg, trust src) from src do
5: wait for startp = true
6: trustp ← trustp ∪ trust src
7: BFTME DELIVER(msg)

to access CS, with trustp; (2) it enables p to delay the
start of the FTME algorithm, with startp.

Lemma 6. Provided that each eventually up process p
eventually sets startp to true, Algorithm BFTME solves
the FTME problem in MFTME.

Proof. The only difference between AFTME and BFTME
that could prevent BFTME from solving FTME is the wait
on lines 2 and 5. A process that never sets startp to true
cannot participate in the algorithm. By assumption, this
is only a problem for processes that are not eventually
up. If a process never sets startp to true, then for the
purpose of BFTME, that process behaves exactly as an
always down process would in a run of AFTME. Since
always down processes exist in MFTME, and do not
prevent AFTME from solving FTME, then this is not a
problem.

We can now introduce Algorithm 4, which makes use
of AFTME and BFTME to implement the trusting and
quorum properties of (T +Σl)d.

In addition to trustp and startp, Algorithm 4 makes
use of the following local variables:
knownp ← {p}: as detailed in Section II, knownp

represents the knowledge that p has of system mem-
bership. The algorithm will not detail how knownp is
kept up to date, and it is simply expected to eventually
contain the process identities of (at least) all eventually
up processes.
crashp ← ∅: the set of all processes that p is certain

have crashed forever. Note that this variable is in stable
storage.
tqp ← ∅: the output of the (T +Σl)d failure detector,

which must verify the trusting and quorum properties.
rdyp ← ⊥: the other output variable of (T +Σl)d,

which must verify the quorum properties.
waitlistp ← ∅: the set of processes to which p must

cede priority for CS. This is used to ensure starvation
freedom. Note that this variable is in stable storage.
donelistp ← ∅: the set of processes to which p already

ceded priority for CS. This prevents p from always being
passed over for CS access.

Algorithm 4 initially starts two tasks in parallel:
TASK 1 and TASK 2. Later on when process p receives
knowledge of other processes, it will start one more task
for each process q (denoted TASK 3 + q).

Each process p has its own CS, which is handled
by algorithm AFTME and accessed with AFTME .TRY(p).
Additionally, there is a global CS which is handled by
algorithm BFTME and accessed with BFTME .TRY.

In TASK 1, p enters its own CS and then never leaves
it. Since a well-formed process restarts in the CS after a
recovery, this means that a recovering process will restart
TASK 1 directly after line 2 if it previously managed to
enter its own CS. This enables other processes to detect
p’s failure if it crashes permanently (if someone else
manages to access p’s CS in TASK 3 + p, it means p
crashed forever). TASK 1 also lets p send information to
the rest of the system about its own identity and whether
or not p is trying to access the global CS. These ALIVE
messages are used by other processes to keep trustp,
waitlistp and donelistp up to date.

In TASK 2, p tries infinitely often to access the
global CS. The wait on line 9 helps ensure that the
global CS ensures not only liveness but also starvation
freedom. After entering and leaving the global CS, if
p entered said CS using only messages from processes
that are not crashed (test on line 15), then p updates its
(T +Σl)d output variables and informs other processes
with QUORUM messages. However if p used information
from crashed process to enter CS, it removes them from
its trustp set instead.

TASK 3 + q is started by p when q is added to trustp,
and is used to detect q’s permanent crash.

When a process p receives a QUORUM message, it
updates its local trustp and crashp information and,
if rdyp is currently ⊥ (and therefore p is not currently
trying to verify the live pairs intersection property), then
p updates its tqp.

Lemma 7 (Starvation freedom). Every eventually up
processes passes the CS on lines 12 – 13 infinitely often.

Proof. By contradiction, let us assume that there is an
eventually up process p which does not go through CS
infinitely often. There are two ways this could happen:
p is either stuck in the wait on line 9 forever, or p is
stuck in try section on line 12 forever.

First let us assume that p is stuck in try section forever.
Since the liveness property of FTME is verified, and
since no process can stay in CS forever (since the CS
has no code), it follows that there is a process q that
enters CS infinitely often.

11



Algorithm 4 Reduction Algorithm TAFTME→(T +Σl)d : code for process p

1: procedure TASK 1
2: AFTME .TRY(p)
3: startp ← true
4: loop forever:
5: for q ∈ knownp do
6: SEND(ALIVE, reqp, trustp, q)

7: procedure TASK 2
8: loop forever:
9: wait for waitlistp \ donelistp = ∅

10: donelistp ← ∅
11: reqp ← true
12: BFTME .TRY
13: BFTME .EXIT
14: reqp ← false
15: if trustp ∩ crashp = ∅ then
16: tqp ← trustp
17: rdyp ← >
18: for q ∈ knownp do
19: SEND(QUORUM, trustp, crashp, q)

20: else
21: trustp ← trustp \ crashp

22: procedure TASK 3 + q

23: knownp ← knownp ∪ {q}
24: AFTME .TRY(q)
25: AFTME .EXIT(q)
26: crashp ← crashp ∪ {q}
27: procedure RECONNECTION
28: tqp ← trustp \ crashp

29: for q ∈ trustp do
30: Start TASK 3 + q

31: when q 6= p is added to trustp
32: Start TASK 3 + q

33: upon reception of ALIVE (req, trust src) from src do
34: trustp ← trustp ∪ trust src
35: if req = true then waitlistp ← waitlistp ∪ {src}
36: else
37: waitlistp ← waitlistp \ {src}
38: donelistp ← donelistp ∪ {src}
39: upon reception of QUORUM (trust src, crash src)

from src do
40: trustp ← trustp ∪ trust src
41: crashp ← crashp ∪ crash src
42: if rdyp = ⊥ then
43: tqp ← trustp \ crashp

Eventually, p ∈ knownq and q ∈ knownp. Since p set
reqp to true on line 11, then eventually q will receive
an ALIVE message from p with req set to true, and
q will add p to waitlistq . Because of the first in, first
out property, q will eventually stop receiving any ALIVE
message from p that has the req value set to false.
Since q passes the line 10 infinitely often, eventually
p /∈ donelist. Since p ∈ waitlistq \ donelistq , then
eventually q will wait forever on line 9, which is a
contradiction.

Now let us assume that p is stuck on line 9 forever.
Let W be the set of processes that stay in waitlistp \
donelistp for infinitely long. Note that a process q that
is not stuck forever in the try section on line 12 would
have their req set to false and therefore would send an
ALIVE message to p with req set to false, and would
be removed from waitlistp \ donelistp as a result. It
follows that every q ∈W is stuck forever on line 12. If
q is eventually down, it eventually crashes forever and
therefore cannot be in W . If q is eventually up, according
to the previous paragraph it eventually enters CS and
therefore cannot be in W . If q is unstable, it eventually
crashes and resets its reqq to false, and therefore cannot
be in W . As a result, W is empty and p eventually ends
the wait on line 9.

Lemma 8 (Crashed completeness). A process can only
be added to crashp if it crashed forever.

Proof. A process can only be added to crashp on
lines 26 and 41. In order for p to add a process to crashp

on line 41, some other process q must have added it to
crashq on line 26 first.

In order for p to add a process q to crashp on line 26,
p must first have started TASK 3 + q. This can only
happen if p added q to trustp. A process can be added
to trustp on lines 34 and 40, or by receiving information
from q as part of algorithm BFTME. If q sent a QUORUM
message, then it must have passed the CS on lines 12 –
13 and therefore sent or received information as part of
algorithm BFTME, which means that startq was set to
true. Whether q set startq to true on line 3 or sent an
ALIVE message on line 6, it had to enter its own CS on
line 2 first.

Since q entered its own CS before p started TASK 3 +
q and will never leave it, the only way that p can reach
line 26 and add q to crashp is if q crashed forever.

Claim 7 (Strong completeness). Algorithm 4 ensures the
strong completeness property of (T +Σl)d in MFTME.

Proof. Let p be an eventually down process, and q be
a process that is not eventually down. Note that by

12



construction, a process can never be added to tqq without
being added to trustq first. There are two cases.

First case: p was never added to trustq . Then the
property is immediately verified.

Second case: p was added to trustq . Let r be some
eventually up process. Eventually, q will send an ALIVE
to r with its trustq . As a result, r will eventually add
p to its trustr. r will then start TASK 3 + p. After p
crashes forever, eventually r will reach line 26 and add
p to crashr.

Let t1 be a time after which all eventually down
processes have crashed. Let t2 ≥ t1 be a time after
which there are no more messages sent by eventually
down processes in the system. After t2 neither q nor r
will ever add an eventually down process into their trust
set again. According to Lemma 7, r will then eventually
remove all eventually down processes from trustr on
line 21. Since according to Lemma 8 only eventually
down processes can be in crashr, after this time r will
always pass the test on line 15 and therefore r will send
a QUORUM message to q infinitely often.

If q goes through the loop in TASK 1 infinitely often,
it will act like r and eventually never have p in its tqq . If
q is unstable and does not go through the loop in TASK
1 infinitely often, then after it stops going through the
loop it will crash and reset its rdyq to ⊥. Then, the next
time that q receives a QUORUM message from r, it will
add p to crashq and remove it from tqq on line 43

Claim 8 (Eventually strong accuracy). Algorithm 4
ensures the eventually strong accuracy property of
(T +Σl)d in MFTME.

Proof. Let p be an eventually up process, and q a process
that is not eventually down. Eventually, q ∈ knownp.
According to the liveness property of FTME, p will
eventually enter its own CS and send an ALIVE message
to q on line 6. When q receives the message, it will add
p to its trustq set on line 34. It follows from Lemma 8
that p will never be in crashq . According to the proof for
Claim 7, q will update its tqp infinitely often with trustq ,
either on line 16 or on line 43. As a result, p ∈ tqq
forever.

Claim 9 (Trusting accuracy). By construction, the only
way that a process can be removed from tqp is by being
added to crashp. The proof then follows directly from
Lemma 8.

Claim 10 (Quorum readiness). Algorithm 4 ensures the
quorum readiness property of (T +Σl)d in MFTME.

Proof. Let p be an eventually up process. According to
the proof for Claim 7, p will pass the test on line 15
infinitely often. After p stops crashing, the next time it
reaches line 17, it will set rdyp to > forever.

Lemma 9 (Message reception intersection). Let p1 and
p2 be two processes that enter the CS of BFTME at
time t1 (resp. t2). Let Q1 (resp. Q2) be the set of all
processes from which p1 (resp. p2) received information
from (directly or through forwarding) since the last time
it entered the try section before t1 (resp. t2). Then either
one of the process crashed permanently before the other
entered CS, or Q1 ∩Q2 6= ∅.

Proof. By contradiction, let us assume that Q1∩Q2 = ∅.
First let us assume that in BFTME, a process r might

send a message to a process s to authorize s to enter
CS before s has entered the try section. In this case, it
is possible that every process in the system would send
such a message to s before s enters the try section. Let
us now consider a run in which a process s′ different
from s later enters the try section. If BFTME allows some
process to authorize s′, then all other processes might
do the same thing. As a result, if s is not permanently
crashed, s and s′ might enter CS at the same time, thus
violating the safety property. If BFTME does not allow
any process to authorize s′, then s might never enter the
try section, thus violating the liveness property. It follows
that in BFTME, only messages received after entering the
try section can authorize a process to enter CS.

Let us now consider a run in which every message
between Q1 and Q2 is delayed until after both p1 and p2

have left CS. This means that the system is partitioned,
and therefore algorithm BFTME cannot possibly prevent
a run in which both p1 and p2 enter CS at the same time,
thus violating the safety property of FTME.

Claim 11 (Live pairs intersection). Algorithm 4 en-
sures the live pairs intersection property of (T +Σl)d

in MFTME.

Proof. The live pairs intersection property only applies
when rdyp is set to >, and the only way to set rdyp
to > is on line 17. Since lines 28 and 43 can only be
reached when rdyp is set to ⊥, it follows that at any
time rdyp is equal to >, the current value of tqp was set
on line 16.

Note that tqp is set from trustp on line 16 after p
recently went through the global try, critical and exit
sections with BFTME on lines 12 – 13. By construction,
every process that p received information from (even
indirectly) in BFTME since last entering the try section

13



is in trustp at that time. Also note that the only way
to remove a process identity from trustp is on line 21,
which cannot be reached between lines 12 and 16.

Let p1 and p2 be two processes, and let t be some
time at which both are alive. Then for any time t1 ≤ t
when p2 reached line 16 and any time t2 ≤ t when p2

reached line 16, it follows from Lemma 9 that trustp1

at time t1 and trustp2
at time t2 intersect.

From Claims 4 to 11, we can deduce the following
theorem:

Theorem 2 (Correctness). The Algorithm 4 implements
(T +Σl)d in MFTME.

Corollary 2 (Necessity). The (T +Σl)d failure detector
is necessary to solve the FTME in any unknown dynamic
environment with partial memory loss.

CONCLUSION

In this paper, we introduced the (T +Σl)d failure
detector as an adaptation of (T +Σl) for unknown dy-
namic systems with partial memory loss. We proved that
(T +Σl)d is both necessary and sufficient to solve the
FTME problem in such a system, and it is therefore
the weakest failure detector to solve FTME in unknown
dynamic systems with partial memory loss.

We focused on a specific definition of the mutual
exclusion problem for crash-recovery, more specifically
the variant where processes stay in CS after a tempo-
rary crash. It would be interesting to study a different
definition of the problem. For example, a weaker mutual
exclusion could specify that temporary crashes cause a
process to restart from the remainder section, even if
it was in the critical section previously. However, the
variant of the problem studied in this paper provides
stronger properties, and notably ensures that once a
process that is not eventually down enters the critical
section, it does not have to leave it until it decides to.

REFERENCES

[1] E. W. Dijkstra, “Solution of a problem in concurrent program-
ming control,” Communications of the ACM, vol. 8, no. 9, p. 569,
1965.

[2] S. Nishio, E. Manning, and K. Li, “A resilient mutual exclusion
algorithm for computer networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 1, pp. 344–356, 07 1990.

[3] J. Sopena, L. B. Arantes, and P. Sens, “Performance evaluation
of a fair fault-tolerant mutual exclusion algorithm,” in 25th IEEE
Symposium on Reliable Distributed Systems (SRDS 2006),2-4
October 2006, Leeds, UK, 2006, pp. 225–234.

[4] D. Agrawal and A. El Abbadi, “An efficient and fault-tolerant
solution for distributed mutual exclusion,” ACM Trans. Comput.
Syst., vol. 9, no. 1, pp. 1–20, Feb. 1991.

[5] W. M. Golab and D. Hendler, “Recoverable mutual exclusion in
sub-logarithmic time,” in Proceedings of the ACM Symposium on
Principles of Distributed Computing, PODC 2017, Washington,
DC, USA, July 25-27, 2017, 2017, pp. 211–220.

[6] P. Jayanti and A. Joshi, “Recoverable FCFS mutual exclusion
with wait-free recovery,” in 31st International Symposium on Dis-
tributed Computing, DISC 2017, October 16-20, 2017, Vienna,
Austria, 2017, pp. 30:1–30:15.

[7] Y. Chang, M. Singhal, and M. T. Liu, “A fault tolerant algo-
rithm for distributed mutual exclusion,” in Ninth Symposium on
Reliable Distributed Systems, SRDS 1990, Huntsville, Alabama,
USA, October 9-11, 1990, Proceedings, 1990, pp. 146–154.

[8] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” Journal of the ACM, vol. 43, no. 2,
pp. 225–267, 1996.

[9] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32,
no. 2, pp. 374–382, 1985.

[10] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and
P. Kouznetsov, “Mutual exclusion in asynchronous systems
with failure detectors,” Journal of Parallel and Distributed
Computing, vol. 65, no. 4, pp. 492–505, apr 2005.

[11] V. Bhatt, N. Christman, and P. Jayanti, “Extracting quorum failure
detectors,” in Proceedings of the 28th Annual ACM Symposium
on Principles of Distributed Computing, PODC 2009, Calgary,
Alberta, Canada, August 10-12, 2009, 2009, pp. 73–82.

[12] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, “Tight
failure detection bounds on atomic object implementations,”
JACM, vol. 57, no. 4, 2010.

[13] T. Rieutord, L. Arantes, and P. Sens, “Détecteur de défaillances
minimal pour le consensus adapté aux réseaux inconnus,” in
Algotel, 2015.

14


