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Abstract

Stability of spatially inhomogeneous stationary solutions to the Vlasov equation for multi-dimensional
systems is investigated. The formal stability criterion taking into account all of the Casimir invariants
is derived in an explicit form without use of the angle-action variables of a single particle’s Hamilto-
nian associated with a stationary solutions to the Vlasov equation, when biorthogonal basis can be
defined.

1 Introduction

Temporal evolution of systems with long range interaction (LRI) is approximately described by the Vlasov
equation (also called the collisionless Boltzmann equation) which is an evolution equation of a single
particle density function, when the number of particles are large enough [1–5]. This approximation gets
to be exact when one takes a large population limit (mean-field limit) [6–8]. This equation is hence a ba-
sic tool for analyzing mesoscopic dynamics of Hamiltonian systems with LRI, for example, plasmas [4]
and self-gravitating systems [5]. One of remarkable phenomena observed in the LRI systems is existence
of long-lasting out-of-equilibrium stationary states called quasistationary states (QSSs) and slowly equi-
libration in the relaxation process. The QSSs are regarded as stable stationary solutions to the Vlasov
equation [9–12] . The LRI system is often trapped in a QSS and its duration diverges as the number N of
elements consisting the system. After that, the finite N effect appears and the temporal evolution is no
longer described by the Vlasov equation and is described by the kinetic equation such as Balescu-Lenard
equation [1–4]. Then, the system leaves the QSS and relaxes to the thermal equilibrium state. Such a
relaxation process is directly observed in the N body simulations for the Hamiltonian mean field (HMF)
model (globally coupled XY model with inertial terms) [13] in Refs. [9, 14, 15] and for the α-HMF model
with α≤ 1 (the coupling constant decays as r−α where r denotes distance between lattice points) [16] in
Refs. [17, 18]. The duration τQSS of QSS diverges as, for instance, τQSS ∼ Nν with ν> 0 for the HMF model
and the α-HMF model with α< 1 [9, 10, 14, 15, 18], τQSS ∼ ln N for the α-HMF model with α= 1 [18], and
τQSS ∼ N /ln N for self-gravitating systems [5].

The stability analysis for the Vlasov equation is considered to be a first step of study on QSSs because
it clarifies which kind of solutions can be QSSs. For the spatially homogeneous stationary solutions, the
simple criteria of formal and spectral stability have been already derived in Refs. [9, 19–22]. It is shown
rigorously that some stable homogeneous states are valid for the finite N system within a time scale τst ∼
N 1/8 [12]. The asymptotic stability in the nonlinear regime is rigorously shown for the Vlasov-Poisson
system in the study on nonlinear Landau damping [23].

The aim of this article is to derive a precise formal stability criterion for spatially inhomogeneous sta-
tionary solutions to the Vlasov equation in an explicit form. The stability of inhomogeneous states has
been investigated in the context of astrophysics for a long time [5, 24–27], and it has been investigated for
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simple systems with long-range interaction [28, 29]. The nonlinear (orbital) stability is rigorously investi-
gated recently for the spherical gravitating systems [30] and for the HMF model [31].

The spectral stability has been investigated by use of the Nyquist methods [19–22]. In these works the
back ground stationary state is assumed to be spatially homogeneous, and an explicit form of the plas-
mas dispersion function is required. Thus it is difficult to look into stability of spatially inhomogeneous
states by using the Nyquist method. There exists another way to derive a stability criterion for spatially
inhomogeneous states of the HMF model [28], and the explicit form of dispersion function is necessary
in this procedure too, so that it cannot be applied for stationary states whose effective Hamiltonian is
non-integrable.

In this article, the formal stability [9,28,29,32,33] is investigated. Let f0 be a stationary solution to the
Vlasov equation and also be a critical point of some invariant functional (The detail is exhibited in Sec. 3.).
A solution f0 is said to be formally stable when a second variation (“Hessian”) of the invariant functional
around f0 is positive or negative definite. In this case, L2-like-norm of perturbation given by this “Hessian”
is an invariant of the linearized Vlasov equation, so that the formally stable solution is linearly stable.

The Vlasov equation has infinitely many constraint conditions coming from the Casimir invariant
functionals. Then a physically relevant perturbation satisfies these constraint conditions within a linear
order. The problem of dealing these constraints appeared in a stability analysis of perfect fluid flows [33,
34]. More recently, this is a main problem to derive the asymptotic form of the linear response of the
Vlasov systems around spatially inhomogeneous states [14, 35, 36]. The QSSs are looked as stable fixed
points on a constraint “surface” and these constraints prevent systems relaxing to the equilibrium state
[14], and the solution to the linearized Vlasov equation around f0 should be on the tangent “plane” at
f0 in a constraint “surface.” When f0 is spatially homogeneous [9] or is inhomogeneous whose effec-
tive single particle Hamiltonian is integrable [28], the formal stability criterion taking into account all
the Casimir constraints is derived. Stationary states with nonintegrable effective Hamiltonians are out of
scope in these previous studies. However, for a system in two or three dimensional spaces, the effective
Hamiltonians are nonintegrable in general. In Ref. [29], the linear stability is investigated without use of
the angle-action variables, and less-refined formal stability criteria taking into account a finite number
of invariants have been derived. But the formal stability criterion taking into account all of the Casimir
constraints has not been derived, because it requires to determine an infinite number of Lagrangian mul-
tipliers associated with the Casimir constraints [29], and it is impossible in general.

Some stationary states are stable against the perturbation violating some Casimir constraints. For
instance, if an only normalization condition is taken into account, the inhomogeneous thermal equilib-
ria are judged to be stable in the HMF model [29]. On the other hand, some perturbation violating the
constraint conditions can bring about instability. For instance, if one does not take into account any con-
straint condition, all equilibria in the ordered phase are not judged to be stable in the HMF model [29].
Further, as shown in Ref. [28], some inhomogeneous solutions are not judged to be stable when one use
the stability criterion taking into account only normalization of density functions, even though this is for-
mally stable. Thus, it is important in practice to derive the stability criterion taking into account infinitely
many Casimir invariants without use of the angle-action variables.

We then derive the formal stability criterion without use of the angle-action variables by expressing
the constraint conditions in a simpler manner as in Ref. [36] (a similar formula is found in Ref. [25, 30]).
The formal stability criterion is explicitly written in terms of the positive or negative definiteness of a
matrix in a similar manner with the previous result [28]. Everything is given a priori in this matrix, so
that we can judge the stability of f0 by substituting it into the criterion, in principle. When this formula is
applied for the one-dimensional (1d) systems, this matrix coincides with the dispersion matrix [5,37] with
null frequency. For the multi-dimensional systems, the inverse matrix appears in the linear response and
the zero-field susceptibility diverges when the matrix has a null eigenvalue [36]. The marginally formally
stable solutions are the marginally spectrally stable ones not only in the 1d systems but also in the multi-
dimensional systems.

The rest part of this article is organized as follows: We introduce the Vlasov equation and the con-
straint conditions of Vlasov dynamics in Sec. 2. In Sec. 3, we exhibit a definition of formal stability and
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derive its criterion. We check the present result includes the previous one for the 1d HMF model, and
derive the stability criterion for the 2d HMF model. The article is summarized in Sec. 4.

2 Vlasov equation

2.1 Model

A model dealt in this article is an N -body system with Hamiltonian, in the d dimensional real space,

HN =
N∑

i=1

∥p i∥2

2
+ 1

2N

N∑
i , j=1

V
(

q i −q j

)
, (1)

where q i ∈Dd ⊂ Rd and its conjugate momentum p i ∈ Rd , for i = 1,2, · · · , N . We assume that the domain
Dd is bounded and the potential V is smooth. In the limit N →∞, the temporal evolution is well described
by the Vlasov equation [6–8],

∂ f

∂t
+{

H [ f ], f
}= 0, H [ f ] = ∥p∥2

2
+V [ f ](q),

V [ f ] =
Ï

V (q −q ′) f (q ′, p ′, t )dq ′dp ′,
(2)

where f (q , p , t ) is a single particle density function, and the Poisson bracket is given by {a,b} = ∂a
∂p · ∂b

∂q −
∂a
∂q · ∂b

∂p . The Vlasov equation has infinitely many stationary solutions, and we here deal mainly with a

stationary solution f0 depending only on the one particle effective Hamiltonian H0,

f0(q , p) = F0
(
H0(q , p)

)
, H0

(
q , p

)=H [ f0], (3)

where F0 is a monotonically decreasing function. In the similar manner, we can deal with a stationary
solution f0 depending on two integrals as follows

f0(q , p) = F0
(
H0(q , p)+ ν̄L(q , p)

)
, H0

(
q , p

)=H [ f0], (4)

where L is an additional invariant of the Hamiltonian system with H0, and where F0 is monotonic with
respect to H0 + ν̄L where ν̄ is a constant. The stationary solution f0 is assumed to depend on a linear
combination of two integrals because we focus on the stationary solution f0 which is also a solution to
the optimization problem with some constraint conditions in the present article.

We additionally assume that biorthogonal basis can be defined in this model, and this is introduced
in a forthcoming section.

2.2 Casimir invariants

The Vlasov equation has infinitely many constraint conditions coming from Casimir functionals,

C [ f ] =
Ï

c
(

f (q , p , t )
)

dqdp , (5)

which are conserved in the temporal evolution for any smooth function c. Then solutions to the linearized
Vlasov equation around f0 should be on the tangent “plane” at f0 on the iso-Casimirs “surface,” so that
the physically relevant perturbation δ f satisfies, within a linear order,Ï

c ′
(

f0(q , p)
)
δ f (q , p)dqdp = 0, (6)
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for any c, where c ′(x) = dc/dx. Since f0 = F0(H0) is assumed to be monotonic with respect to H0, it is
shown that this constraint condition is equivalent to the condition:Ï

R
(
H0(q , p)

)
δ f (q , p)dqdp = 0 (7)

for any function R [28]. This is equivalent to the condition:Ï
R

(
H0(q , p)

)〈δ f (q , p)〉H0 dqdp = 0 (8)

(see A for the derivation). The constraint condition are expressed as follows:

〈δ f 〉H0 = 0, (9)

for almost every H0, where 〈•〉H0 denotes the average over the iso-H0 set. Thus, the accessible perturba-
tion can be written as

δ f (q , p) = g (q , p)−〈g 〉H0(q ,p ). (10)

It should be remarked that the condition (6)-(9) is not for the initial state of the perturbation δ f (t =
0) but for the relevant dynamical part of the perturbation whose constrained on a constraint surface.
Even if the δ f (t = 0) does not satisfies the constraint condition (9), the linearized dynamics should be
constrained on a tangent plane of the constraint surface and the directions that are not parallel to the
tangent plane are not accessible. Thus, it is worthwhile to check the formal stability to show the linear
stability of the stationary solution f0.

When the system has an additional invariant L, we should find a condition likes Eq. (9) for each steady
state. If the stationary solution f0 depends on only H0, the physically relevant perturbation satisfies
Eq. (9). When f0 is written as Eq. (4), the accessible perturbation satisfies

〈δ f 〉H0+ν̄L = 0. (11)

Then the stability criterion for f0 in Eq. (4) is derived as done for the stationary solution depending only
H0 by replacing H0 with H0 + ν̄L.

3 Formal stability

3.1 Definition of formal stability

The concept of the formal stability [32] is introduced here. Let us consider the stationary solution f0 to
the Vlasov equation, which is a solution to an optimization problem with constraints, normalization and
energy conservation;

maximizing S [ f ] =
Ï

s( f )dqdp ,

subject to N [ f ] =
Ï

f dqdp = 1,

E [ f ] =
Ï ∥p∥2

2
f dqdp + 1

2

Ï
V [ f ] f dqdp = E ,

(12)

where s is a strictly concave function. This is similar to the maximizing entropy principle. A solution to
the optimization problem (12) is

f0 = (s′)−1(βH0 +α), (13)

where s′(x) = ds/dx, and α and β are Lagrangian multipliers corresponding to the normalization and the
energy conservation respectively. Since s is concave, f0 satisfies the condition (3) when β> 0. Taking the
second variation of the functional F =S −αN −βE around f0, we have

δ2F [ f0][δ f ,δ f ∗] =β

Ï ( |δ f |2
γ(H0)

−δ f ∗V [δ f ]

)
dqdp , (14)
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where z∗ denotes complex conjugate of z ∈ C and γ(H0) = β/s′′
(

f0
) = d f0/dH0. The functional (14) is

an invariant of the linearized Vlasov dynamics. When the quadratic form (14) is negative for any pertur-
bations δ f satisfying Eq. (9), the stationary solution f0 is said to be formally stable. The formally stable
solution is linearly stable [32].

Let us consider the case that there is an additional invariant,

L [ f ] =
Ï

L(q , p) f dqdp = L̄. (15)

The solution to the optimization problem is f0 = (s′)−1(βΨ+α), where Ψ = H0 +νL/β and ν is a La-
grangian multiplier associated with the condition (15). The second variation of the functional (15) is zero,
so that it does not appear in Eq. (14). Then, we just put γ(H0,L) = d f0/dΨ in Eq. (14) instead of γ(H0).

3.2 Bi-orthogonal basis

A useful tool for analyzing perturbations of the Vlasov systems are biorthogonal basis, {di (q)}i∈I and
{ui (q)}i∈I′ , where I′ ⊂ I ⊂ Z, and we assume a number of elements of I′, ♯I′ < ∞ [5, 37, 42, 43]. Any spa-
tial density perturbations δρ(q) = ∫

δ f (q , p)dp is spanned with {di (q)}i∈I, and {ui (q)}i∈I′ are given by

ui (q) = (V ∗di )(q) ≡
∫

V (q −q ′)d j (q ′)dq ′. (16)

They are supposed to satisfy ∫
u∗

i (q)d j (q)dq =λiδi j , (17)

where λi ̸= 0 for i ∈ I′ and λi = 0 for i ∈ I \ I′. By use of the biorthogonal basis, we can express the second
term of right hand side in Eq. (14) asÏ

δ f ∗V [δ f ]dqdp = ∑
i∈I′

1

λi

∣∣∣∣Ï u∗
i δ f dqdp

∣∣∣∣2

. (18)

The derivation is exhibited in B.

3.3 Formal stability criterion

Let us derive the formal stability criterion explicitly. We suppose that the single particle Hamiltonian
H0 has only one integral, H0 per se. Substituting Eq. (10) into Eq. (14), we express the formal stability
condition as

G [g , g∗] = δ2F [ f0]
[
g −〈g 〉H0 , g∗−〈g∗〉H0

]
/β< 0, (19)

for any g . Our strategy is to find a gmax maximizing G under a constraint,

M [g , g∗] = ∑
i∈I′

∣∣∣∣Ï u∗
i (g −〈g 〉H0 )dqdp

∣∣∣∣2

= 1, (20)

and to derive the condition so that G [gmax, g∗
max] < 0 which is equivalent to Eq. (19). The value 1 itself in

the right hand side of Eq. (20) is not important. The condition M [g , g∗] > 0 is really important. This is
because the rescaling g 7→ cg with a constant c just changes the values of functionals as G 7→ |c|2G and
M 7→ |c|2M and it does not affect the sign of G . When M [g , g∗] = 0, then G [g , g∗] < 0 because γ(H0) < 0.
Thus such a perturbation does not bring about instability. By using a vector ξ= (ξi )i∈I′ given by

ξi [g ] =
Ï

u∗
i

(
g −〈g 〉H0

)
dqdp , (21)
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the constraint (20) is expressed as ∥ξ∥ = 1, where ∥•∥ denotes Euclidean norm. We write ξi [gmax] = ξ̄i and
ξ[gmax] = ξ̄. Let Â† denote the Hermitian conjugate of a matrix Â and a† = (a∗)T where the superscript T
denotes transposition. By use of the equality (see A for the derivation),Ï

a〈b〉H0 dqdp =
Ï

〈a〉H0 bdqdp , (22)

for any functions a and b for which the integrals are defined, we have gmax holding δG/δg −ηδM /δg = 0
as

g∗
max −〈g∗

max〉H0 = γ(H0)
∑
i∈I′

(
1

λi
+η

)
ξ̄∗i

(
u∗

i −〈u∗
i 〉H0

)
, (23)

where η is a Lagrangian multiplier with respect to the constraint condition (20). Let ζi = (λ−1
i +η)ξ̄i and

ζ= (ζi )i∈I′ . Substituting Eq. (23) into Eq. (19), we have the condition of the formal stability of f0 as∑
i , j∈I′

ζ∗i ζ j

Ï
γ(H0)

(
u∗

i u j −〈u∗
i 〉H0〈u j 〉H0

)
dqdp −∑

i∈I′
λ−1

i |ξ̄i |2 < 0. (24)

This inequality is similar to Eq. (1.26) in Ref. [30]. For simplicity, we introduce several notations;

Fi j =
Ï

γ(H0)
(
u∗

i u j −〈u∗
i 〉H0〈u j 〉H0

)
dqdp , (25)

F̂ = (
Fi j

)
(i , j )∈I′×I′ , and Λ̂ = diag(λ1,λ2, · · · ,λ♯I′). By use of them, a relation ξ̄ = F̂ζ is derived from Eq. (23).

We thus have the formal stability condition as ζ†F̂
(
1̂− Λ̂−1F̂

)
ζ< 0, where 1̂ ∈C♯I′×♯I′ is the unit matrix and

we have used the fact F̂ = F̂ †. The matrix F̂ is negative definite, because

Fi j =
Ï

γ(H0)
(〈u∗

i u j 〉H0 −〈u∗
i 〉H0〈u j 〉H0

)
dqdp , (26)

the matrix
(〈u∗

i u j 〉H0 −〈u∗
i 〉H0〈u j 〉H0

)
(i , j )∈I′×I′ is positive definite, and γ(H0) < 0. It is therefore shown

the main claim of this article.

Main Claim Let f0 = F0(H0) (F ′
0(H0) < 0) be a stationary solution to the Vlasov equation and H0 have

only one integral of motion, H0 itself. A stationary solution f0 to the Vlasov equation is formally stable if
and only if the matrix D̂[ f0] = 1̂− Λ̂−1F̂ is positive definite. ■

It should be remarked that the matrix D̂[ f0] is the matrix form of dispersion functions with null fre-
quency when the spatial dimension d = 1 [5,37,42]. Further, the inverse matrix of D̂[ f0] appears in a linear
response formula for the 1d and multi-dimensional systems [36,38]. Thus, the zero minimum eigenvalue
of D̂[ f0] might also correspond to the marginal spectral stability, because the zero field susceptibility di-
verges when detD̂[ f0] = 0.

We mention the relation between the present main claim and the classical results on the spherical
stellar system. The Antonov’s variational principle [5] says: For the stellar system in the state f0 = F0(H0)
(F ′

0 < 0) is stable if and only if

WA[ f0][h] ≡−δ2F
[
{h, f0}, {h, f0}

]
β> 0, (27)

for any h(q , p). Furthermore, it is shown that F0(H0) with F ′
0 < 0 is stable by showing WA[ f0][h] > 0 [5]. We

call this statement the classical statement. Let us recall that f0 = F0(H0) (F ′
0 < 0) is formally stable if and

only if (Eq. (19))
−G [g , g∗] =−δ2F

[
g −〈g 〉H0 , g∗−〈g∗〉H0

]
/β> 0.

This is similar to Eq. (27). Let W and G be sets of δ f such that

∃h(q , p), s.t. δ f = {h, f0}, (28)

∃g (q , p), s.t. δ f = g −〈g 〉H0 , (29)
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respectively. Since 〈{h, f0}〉H0 = 0, we have W ⊂ G. It is hence shown that WA[ f0][h] > 0 for any h and
Antonov’s variational principle holds true, when Eq. (19) holds, or equivalently, D̂[ f0] is positive definite.
If there exists h satisfying

F ′
0(H0){h,H0} = g −〈g 〉H0 , (30)

for each g , we have W=G. Thus, the positive definiteness of D̂[ f0] is equivalent to the condition (27) and
we have: For the spherical stellar system, if F0(H0) satisfies F ′

0(H0) < 0 for all H0, then D̂[ f0] is positive
definite. On the other hand, F ′

0(H0) < 0 is assumed in our main claim, so that the present criterion is not
so powerful for the spherical stellar systems, when W=G.

The set I′ is assumed to be a finite set in the present section. One problem is that the matrix D̂[ f0]
becomes infinite matrix, i. e. I′ is not a finite set in general. Thus, some truncation or approximation
of the model V (q − q ′) = ∑

i∈I′ ui (q)u∗
i (q ′) is necessary. When the biorthogonal basis are the Fourier

modes, and V is smooth enough, it may be possible to truncate the matrix elements D[ f0]i j for large i
or j when one computes the determinant. We do not deal with this problem in this article. In the prece-
dence subsections, two examples are exhibited, in which ♯I′ <∞, the 1d and two dimensional (2d) HMF
models [13, 39, 40]. Both of them are out of scope of the classical statement. The 2d one is out of scope of
the previous paper [28], because the angle-action variables are not constructed.

3.4 One-dimensional Hamiltonian mean-field model

Let us examine the obtained criterion includes the one obtained in the previous article [28], the formal
stability criterion for the HMF model whose Hamiltonian is

H =
N∑

i=1

p2
i

2
− 1

2N

∑
i ̸= j

cos(qi −q j )−h
N∑

i=1
cos qi , (31)

where h is an external field, pi ∈ R, qi ∈ [−π,π) for i = 1,2, · · · , N . The effective Hamiltonian H0 of the
stationary state f0 = F0(H0) is

H0 = p2

2
−

Ï
cos(q −q ′) f0(q ′, p ′)dq ′dp ′−h cos q. (32)

In this case, I=N, I′ = {1,2} and di and ui are given respectively by d2k =π−1 cos(kq), d2k−1 =π−1 sin(kq),
u1 =−sin q , and u2 =−cos q , and λ1 =λ2 =−1. Substituting them into the general form (26) of the matrix
D̂ = (Di j )(i , j )∈{1,2}2 , we have D12 = D21 = 0 [41], and

D11 = 1+
Ï

dF0(H0)

dH0

(
sin2 q −〈sin q〉2

H0(q,p)

)
dqdp,

D22 = 1+
Ï

dF0(H0)

dH0

(
cos2 q −〈cos q〉2

H0(q,p)

)
dqdp.

(33)

The stationary solution f0 is formally stable if and only if D11 > 0 and D22 > 0. Using the angle-action
variables, one shows that these coincide with the dispersion function (also called a dielectric function in
the context of plasma physics) with null frequency. This criterion is hence the same with the one obtained
in the previous study [28], and with the criterion of the orbital stability [31].

3.5 Two-dimensional Hamiltonian mean-field model

The 2d HMF model is out of scope of the previous study [28], because it is impossible to construct the
angle-action variables for the effective Hamiltonian of the inhomogeneous stationary states. The N -body
Hamiltonian of this model is

H =
N∑

i=1

∥p i∥2

2
−hx

N∑
i=1

cos xi −hy

N∑
i=1

cos yi

− 1

2N

∑
i ̸= j

[
cos(xi −x j )+cos(yi − y j )+cos(xi −x j )cos(yi − y j )

]
,

(34)
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where p i = (pxi , pyi ) ∈ R2 and q i = (xi , yi ) ∈ [−π,π)2 for i = 1,2, · · · , N [39, 40]. The effective Hamiltonian
for the stationary state with the external field hx = hy = h is

H0 =
p2

x +p2
y

2
+V (x, y),

V (x, y) =−(M +h)cos x − (M +h)cos y −Pcc cos x cos y,

(35)

where we assume that the stationary state f0(q , p) = F0(H0) is symmetric with respect to both x and y ,
and we define the order parameters in the stationary state f0 as M = Î

cos x f0dqdp = Î
cos y f0dqdp

and Pcc =
Î

cos x cos y f0dqdp . We chose {ui }i∈{1,2,··· ,8} as

u1 = cos x, u2 = cos y, u3 = cos x cos y,

u4 = sin x, u5 = sin x cos y,

u6 = sin y, u7 = cos x sin y,

u8 = sin x sin y.

(36)

For the symmetric potential V , we have 〈ui 〉H0 = 0, for i = 4,5, · · · ,8, and Fi j = 0 when ui u j is odd with
respect to x or y . Let 0m,n be an m ×n null matrix. In the similar manner in Ref. [36], we explicitly write
the matrix D̂ = (Di j )(i , j )∈{1,2,··· ,8}2 as

D̂ =


D̂e 03,4 03,1

04,3
D̂o 02,2

02,2 D̂o
04,1

01,3 01,4 D88

= diag
(
D̂e,D̂o,D̂o,D88

)
, (37)

where D̂e ∈R3×3, D̂o ∈R2×2, and D88 are respectively

D̂e =
1+Ge

1 Ge
2 Ge

3
Ge

2 1+Ge
1 Ge

3
Ge

3 Ge
3 1+Ge

4

 ,

D̂o =
(
1+Go

1 Go
2

Go
2 1+Go

3

)
,

D88 = 1+
Ï

dF0(H0)

dH0
sin2 x sin2 ydqdp ,

(38)

and where

Ge
1 =

Ï
dF0(H0)

dH0

(
cos2 x −〈cos x〉2

H0

)
dqdp ,

Ge
2 =

Ï
dF0(H0)

dH0

(
cos x cos y −〈cos x〉2

H0

)
dqdp ,

Ge
3 =

Ï
dF0(H0)

dH0

(
cos2 x cos y −〈cos x〉H0〈cos x cos y〉H0

)
dqdp ,

Ge
4 =

Ï
dF0(H0)

dH0

(
cos2 x cos2 y −〈cos x cos y〉2

H0

)
dqdp ,

(39)

(see Appendix of Ref. [36] for a way to compute numerically them.) and

Go
1 =

Ï
dF0(H0)

dH0
sin2 xdqdp ,

Go
2 =

Ï
dF0(H0)

dH0
sin2 x cos ydqdp ,

Go
3 =

Ï
dF0(H0)

dH0
sin2 x cos2 ydqdp ,

(40)
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Thus, for the 2d HMF model, F0 is formally stable if and only if D̂e and D̂o is positive definite and D88 > 0.
The matrix D̂e appears in the linear response formula [36] and if one of its eigenvalues is 0, the response
diverges. Thus, the marginally formally stable solution f0 is the marginally spectrally stable solution.

4 Summary

The formal stability criterion of stationary solutions to the Vlasov equation for systems in multi-dimensional
space is derived in an explicit form, where the biorthogonal basis can be defined. This criterion takes into
account all of the Casimir invariants.

The practical usefulness of the refined criterion has been already mentioned in the previous pa-
per [28]. The less refined criteria taking into account on the finite numbers of invariants cannot be used
when the stationary state is close to the marginal stable one with spatial inhomogeneity. Furthermore, we
overcome a weak point of the result obtained in Ref. [28]; the criteria has been derived only for the HMF
model or its generalized ones such as α-HMF model [16, 17]. We have checked that our general result
includes what is obtained in the previous study for the HMF model [28], and the matrix D̂[ f0] coincides
with the dispersion matrix when the system is in 1d real space.

For the 1d systems the minimum eigenvalue of D̂[ f0] is 0 if and only if the operator L̂[ f0] in the lin-
earized Vlasov equation ∂tδ f = L̂[ f0][δ f ] around f0 has an (embedded) eigenvalue 0. Thus, the marginally
formally stable solution f0 is also the marginally spectrally stable solution. In the multi-dimensional sys-
tems, although the dispersion relation for the non-zero frequency has not been derived, we can obtain
the same statement as follows: The matrix D̂[ f0]−1 appears in the linear response formula [36]. Thus, the
linear response diverges when D̂[ f0] has a null eigenvalue, and the marginally formally stable f0 is the
marginally spectrally stable. It should be noted that the spectral stability criterion is not obtained and this
is an open problem. It should be noted that when the matrix D̂[ f0] is not positive definite, and has both
positive and negative eigenvalues, it is possible that a growing (unstable) mode exists around f0.

Acknowledgments The author acknowledges the financial support of the A∗MIDEX project (n◦ANR-11-
IDEX-0001-02) funded by the “investissements d’Avenir” French Government program, managed by the
French National Research Agency (ANR).

A Derivation of Eq. (22)

We exhibit a derivation of Eq. (22). 〈X 〉H0 is explicitly written as

〈X 〉H0 =
1

S(H0)

Ï
X (q , p)δ

(
H0 −H0(q , p)

)
dqdp , (41)

where S denotes a measure of iso-H0 in the µ-space, the phase space of single particle,

S(E) =
Ï

δ
(
E −H0(q , p)

)
dqdp . (42)

We assume that ∥∇H0∥ ̸= 0, so that the iso-H0 sets are null sets in 2d-dimensional µ space for each level.
Hereafter, for any function X (q , p), X , X ′, and X ′′ denote X (q , p), X (q ′, p ′), and X (q ′′, p ′′) respectively.
The primes do not mean derivatives hereafter. The equation (22) is shown as follows: The right hand side
in Eq. (22) is equal toÏ

a

[Ï b′δ
(
H0 −H ′

0

)
S (H0)

dq ′dp ′
]

dqdp =
Ï

b′
[Ï aδ

(
H0 −H ′

0

)
S

(
H ′

0

) dqdp

]
dq ′dp ′, (43)

and this is the same with the left hand side in Eq. (22). We have used the fact, for functions f ∈R and G ,Ï
δ( f − f ′)G( f ′)dq ′dp ′ =G( f )

Ï
δ( f − f ′)dq ′dp ′, (44)

where the range of f is in R and
Î

δ( f − f ′)dq ′dp ′ <∞.
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B Derivation of Eq. (18)

The Eq. (18) is shown as follows: The spatial density perturbation is

δρ(q) =
∫

δ f (q , p)dp =∑
i∈I

ai di (q). (45)

We firstly show thatÏ
δ f ∗V [δ f ]dqdp =

∫
δρ∗(V ∗δρ)dq = ∑

i∈I′
ai

∫
δρ∗ui dq = ∑

i∈I′
λi |ai |2. (46)

It is also shown that

∑
i∈I′

1

λi

∣∣∣∣∫ u∗
i δ f dqdp

∣∣∣∣2

=∑
i∈I′

∣∣∣∣∫ u∗
i δρdq

∣∣∣∣2

= ∑
i∈I′

λi |ai |2. (47)

We therefore have Eq. (18).
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