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Abstract

This article investigates the asymptotic stability of impulsive delay dynamical systems (IDDS) by using the Lyapunov-
Krasovskii method and looped-functionals. The proposed conditions reduce the conservatism of the results found in the
literature by allowing the functionals to grow during both the continuous dynamics and the discrete dynamics. Sufficient
conditions for asymptotic stability in the form of linear matrix inequalities (LMI) are provided for the case of impulsive delay
dynamical systems with linear and time-invariant (LTI) base systems (non-impulsive actions). Several numerical examples
illustrate the effectiveness of the method.
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1 Introduction

Impulsive dynamical systems naturally arise as a frame-
work for mathematical modeling of many real world
processes that undergo abrupt state changes. More-
over, impulsive control techniques [26] have attracted
increasing interest in the last two decades, because
of its wide variety of applications, such as ecosystems
management [12], orbital satellite [24], reset control sys-
tems [3, 14]. Roughly speaking, an impulsive dynamical
system consists of three elements; a continuous-time
dynamical equation, which governs the evolution of the
system between reset (impulsive) events; a difference
equation, which describes the way the system states
are instantaneously changed; and finally a criterion for
determining when the states of the system are to be re-
set [1,16]. In addition, it is well known that time-delays
phenomena frequently appear in many practical prob-
lems, such as biological systems, mechanical transmis-
sions, fluid transmissions, networked control systems.
Therefore, it is not surprising that impulsive delay dy-
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namical systems have become an attractive research
area (see e.g. [25]). In particular, during the last years
their stability properties have been intensively stud-
ied [10,17,19,27,29].
The two main approaches (Lyapunov-Razumikhim
technique and the Lyapunov-Krasovskii method) for in-
vestigating time-delay systems are also applied for the
stability analysis of impulsive delay dynamical systems.
In general, the stability results involve two conditions:
a first condition imposes constraints over the derivative
of the function/functional along system trajectories
between two consecutive reset instants (as it has been
made for non-impulsive systems with time-delay), and a
second condition deals with the instantaneously change
of the function/functional along the system trajectory
at a reset instant. In fact, it is this last condition that
makes the Lyapunov-Krasovskii method usually more
difficult than Lyapunov-Razumikhin. Under these two
conditions, the recent works [20, 21] provide sufficient
conditions for the stability analysis of hybrid systems
with time-delays, based on a extension of the hybrid
inclusion model exposed in [14]. In general, those condi-
tions mean that if the continuous dynamics is unstable,
then the impulses must be frequent and their ampli-
tude must be suitably related to the growth rate of the
function/functional. On the contrary, impulses are not
required to be very frequent and stabilizing (decrement
of the function/functional) when the continuous dy-
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namics is stable.
In this work, the stability properties of impulsive de-
lay dynamical systems with dwell-time constraints is
addressed, by relying on the method of Lyapunov-
Krasovskii (LK) functionals. This work takes inspira-
tion from the recent results developed in the field of
sampled-data systems [22, 23], where a Lyapunov func-
tion/functional is combined with an auxiliary functional
(referred to as looped-functional) to relax the required
conditions. The approach of looped-functionals has
been already applied to impulsive systems in [8,9]. Nev-
ertheless, the results are restricted to impulsive systems
without time-delay. As opposed to previous results, the
proposed criteria will not directly result in conditions
on the instantaneous changes of the functional; instead
of that, they will result in conditions based on a com-
bination of the continuous dynamics and the impulsive
dynamics. As a result, very general cases may be ana-
lyzed including, as a major contribution of this work,
the case of unstable continuous dynamics and destabi-
lizing impulses (they may increase the functional).
The rest of the paper is structured as follows. Section 2
contains some necessary notation and the formulation of
impulsive delay dynamical systems. Section 3 provides a
Lyapunov-Krasovskii-like proposition for guaranteeing
the asymptotic stability of impulsive delay dynamical
systems, and sufficient conditions in the form of LMI.
To illustrate the results several examples are presented
in Section 4. The main contributions are highlighted in
Section 5. The proofs of the technical results are given
in Appendices A and B.

2 Impulsive delay dynamical systems

2.1 Notation and background

The sets Sn and Sn+ denote the set of n × n symmet-
ric matrices and the set of definite positive matrices,
respectively. For a matrix P ∈ Sn, P > 0 (P < 0)
means that P is positive definite (negative definite).
For a matrix A ∈ Rn×n, He(A) = A + A>. Given
two vectors x1 and x2, we write (x1,x2) to denote
[x>1 ,x

>
2 ]>. For a symmetric matrix A ∈ Rn×n, λm(A)

and λM (A) stand for the minimum and maximum
eigenvalue, respectively. The notation ‖x‖ is the Eu-
clidean norm for x ∈ Rn. PC([a, b],Rn) is the set of
piecewise left-continuous functions with right limits,
from [a, b] to Rn. The left and right limit are de-
noted by ψ(θ−) = ψ(θ) = limε→0,ε<0 ψ(θ + ε) and
ψ(θ+) = limε→0,ε>0 ψ(θ + ε), respectively. There-
fore, for a function ψ ∈ PC([a, b],Rn), a norm is
defined as ‖ψ‖ = maxθ∈[a,b] ‖ψ(θ)‖. Analogously,
PC([a, b] × [c, d],Rn) stands for the set of functions
that are piecewise continuous on both arguments ex-
cept in a finite number of points. The set of piecewise
absolutely left-continuous functions ψ : [a, b] → Rn,

with ψ̇ the upper right-hand derivative, defined as

ψ̇(θ) = limε→0,ε>0
ψ(θ+ε)−ψ(θ)

ε , belonging to the
set of square integrable functions, is denoted by
PAC([a, b],Rn), and its norm is defined by

‖ψ‖A = max
θ∈[a,b]

‖ψ(θ)‖+

(∫ b

a

‖ψ̇(s)‖2
) 1

2

. (1)

A function f : R+ → R+ is of class K if it is continuous,
strictly increasing, and f(0) = 0.

2.2 Impulsive delay dynamical systems

This work focuses on linear impulsive delay dynamical
systems, which are described by the following impulsive
functional differential equation

ẋ(t) = Ax(t) +Adx(t− h), t 6= tk,

x(t+) = ARx(t), t = tk,

x(t) = φ(t), t ∈ [−h, 0],

(2)

whereA,Ad,AR ∈ Rn×n, h > 0 is a given constant time-
delay, and for t ≥ −h, x(t) ∈ Rn is the system state,
ẋ(t) is the state upper right-hand derivative, x(t+) is the
after-reset state, and φ ∈ PC([−h, 0],Rn) is the initial
condition. The sequence of reset instants {tk}k∈N, tk > 0
satisfies the dwell-time constraints ∆k = tk+1−tk ≥ ∆m

and ∆k ≤ ∆M for some real values ∆M ≥ ∆m > 0
(Zeno solutions do not exist). Since the provided results
are characterized in terms of the dwell-time constraints,
the sequence of reset instants can be generated by any
reset law as long as the dwell-time constraints hold.
Note that, for t ≥ 0, it is important to distinguish be-
tween the instantaneous state x(t) ∈ Rn and the true
(distributed) state xt ∈ PC([−h, 0],Rn), which is de-
fined by xt(θ) = x(t+θ), θ ∈ [−h, 0]. For the sake of sim-
plicity, the shifted-distributed state χk, as defined in [22],
will be used; for any initial condition φ and any reset
instant tk, the shifted-distributed state χk is defined as
the function χk ∈ PC([0,∆k] × [−h, 0],Rn), such that
χk(τ, θ) = x(tk + τ +θ) for any (τ, θ) ∈ [0,∆k]× [−h, 0].
For any t > 0, it is clear that the distributed state may
be recovered by using the shifted-distributed state, sim-
ply by doing xt(θ) = χk(t − tk, θ), where tk is is the
greatest reset instant such that tk ≤ t.
It is clear that both the functional differential equation
and the impulsive equation are Lipschitz continuous, and
that there exists a solution to (2) for all initial condi-
tion φ ∈ PC([−h, 0],Rn). The reader is referred to [2]
for details of the notion of solutions and conditions for
the existence and uniqueness of the solutions.

3 Stability analysis

In this section, we analyze the global asymptotic sta-
bility of system (2) by developing sufficient conditions
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based on LK functionals, where in addition an auxiliary
looped-functional is used to reduce the conservativeness.

3.1 Stability definitions and LK functional

The stability criterion developed in this section is based
on a LK functional that depends on both the solution
x(t) and its derivative 1 ẋ(t). Therefore, the initial con-
ditions are restricted to the space of piecewise abso-
lutely left-continuous functions with square integrable
derivative (see, e.g. [13] and references therein), that is
φ ∈ PAC([−h, 0],Rn).

Definition 3.1 The trivial solution to system (2) is:

• stable if for any ε > 0, there exists δ = δ(ε) > 0 such
that ‖φ‖A< δ implies ‖x(t)‖ < ε for any t ≥ 0,

• asymptotically stable if it is stable and there exists
δa>0 such that limt→∞ ‖x(t)‖=0 whenever ‖φ‖A<δa.

• globally asymptotically stable if it is asymptotically
stable and δa > 0 can be chosen arbitrarily large.

3.2 An improved LK theorem for stability of impulsive
delay dynamical systems

The following proposition extends the idea of looped-
functionals from [8,23] to IDDSs. Roughly speaking, the
main stability result, to be developed in the next Propo-
sition, will be based on two functionals with the follow-
ing properties: i) a LK functional satisfies a boundedness
condition, ii) the sum of the LK functional and an aux-
iliary functional satisfy a decrescent condition, iii) a set
of inequality conditions between both functionals guar-
antees that the increments of the LK functional between
reset instants are bounded and converge to zero.
Let V : PAC([−h, 0],Rn) → R+ be a functional, con-
tinuously differentiable with respect to its argument. If
x(t) is a solution to (2) for some φ ∈ PAC([−h, 0],Rn),
then V (xt) has jump discontinuities at those values of
tk in which x(tk) is discontinuous. For any t ∈ [0,∞) \
{tk}k∈N, the upper right-hand derivative of V along the
solution x(t) to the system (2), is defined by

V̇ (xt) = lim sup
ε→0,ε>0

V (xt+ε)− V (xt)

ε
. (3)

Let us define I(ψ) for a function ψ ∈ PAC([−h, 0],Rn),
as follows:

I(ψ)(θ) =

{
ψ(θ), if θ ∈ [−h, 0),

ARψ(0), if θ = 0.
(4)

1 For the sake of clarity, the dependence of the functionals
on the state derivative is not explicitly shown as an argument
of the functionals.

Proposition 3.1 Suppose u, v, w: R+ → R+ are con-
tinuous nondecreasing functions and in addition u, v ∈
K. If there exist a real number η ≥ 0 a functional V :
PAC([−h, 0],Rn)→ R+ that satisfy

u(‖ψ(0)‖) ≤ V (ψ) ≤ v(‖ψ‖A) (5)

and
V (I(ψ)) ≤ ηV (ψ) (6)

for allψ ∈ PAC([−h, 0],Rn), and for any solution x(t) to
(2) with initial condition φ ∈ PAC([−h, 0],Rn), there ex-
ists s continuous functional Vk : [0,∆k]×PAC([0,∆k]×
[−h, 0],Rn)→ R for every k > 0, which satisfies

Vk(∆k, χk)− Vk(0, χk) = V (χk(0+, ·))− V (χk(0, ·)),
(7)

Vk(0, χk) ≤ ηV (χk(0, ·)), (8)

−ηV (χk(0, ·)) ≤ Vk(τ, χk) (9)

for all τ ∈ [0,∆k] and k > 0, and in addition, the follow-
ing inequality hold

Ẇ (σ, χk) ≤ −w(‖χk(σ+, 0)‖), σ ∈ [0,∆k], k > 0,

(10)

where Ẇ is evaluated along the solution to the system,
and

W (σ, χk) =

{
V (χk(σ, ·)) + Vk(σ, χk), if σ ∈ (0,∆k],

V (χk(0+, ·)) + Vk(0, χk), if σ = 0,

(11)
then the trivial solution to system (2) is stable. In addi-
tion, if lims→∞ u(s) = ∞ and w(s) > 0 for s > 0 then
the trivial solution to system (2) is globally asymptoti-
cally stable.

Remark 3.1 Proposition 3.1 can be directly applied to
IDDSs where both the functional differential equation and
the impulsive equation are nonlinear with local Lipschitz
continuity. In addition, it is important to remark that
the time-delay affects the continuous dynamics instead of
only the sampling instants. In this way, for general ID-
DSs, it is not enough to guarantee the pointwise decrease
of the LK functional. Indeed, the increments of the LK
functional between reset instants should be bounded and
converge to zero.

Remark 3.2 Slightly different versions of condition (7)
have been used in [8, 9]. This condition provides a link
between the discontinuities in V and the functionals Vk,
which allows to compensate the increments of the func-
tional V due to the jumps with enough decrement during
the flow, and the other way around.

Remark 3.3 The negativity of Ẇ is not required when
k = 0, which recalls the behavior of some LK functional
for time-delay systems on the first delay interval. An il-
lustration of this phenomenon is pointed out in the ex-
amples section.
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3.3 Stability criterion in term of LMIs

In this section, Prop. 3.1 and the LK functional proposed
in [15] are used to provide sufficient LMI conditions for
the global asymptotic stability of the IDDS (2).

Proposition 3.2 For a given time-delay h > 0, and
constants ∆m and ∆M satisfying h

r < ∆m ≤ ∆M for
a given integer r ≥ 1, the trivial solution to the system
defined by (2) is globally asymptotically stable if there
exist matrices P , R, U , S1 ∈ Sn+, a matrix Q ∈ Snr+ ,
a matrix X ∈ Sn, a matrix S2 ∈ Rn, and a matrix
Y ∈ R(r+2)n×n such that

Π4 ≤ 0 if ∆m < ∆M , (12)

M>0 Π0M0 + Π1 +NR +α(Π2 + Π3) + 1
∆M

Π4 < 0, (13)[
Υ(α, β) h

r Y

h
r Y
> −hrU

]
< 0, (14)

[
M>0 Π0M0 + Π1 − αΠ3 + 1

∆M
Π4 αY

αY > −αU

]
< 0 (15)

hold for α ∈ {∆m,∆M} and β ∈ {0, 1}, where the dif-
ferent matrices are defined in (18).

A common term in the LK functional to obtain
delay-dependent criteria for time-delay systems is∫ 0

−h
r

∫ 0

β
χ̇>k (τ+,α)Rχ̇k(τ+,α)dαdβ (or similar). As it is shown

in [11], the effect of the reset actions appears in the
derivative of the LK functional through this term, and
it may lead to increments of the LK functional. The
idea behind looped-functionals allows to directly deal
with this effect, when only one reset action occurs in
the interval [t − h

r , t]. This is guaranteed by imposing
h
r < ∆m. The advantage of the LK functional proposed
in [15] is that this condition can be satisfied by taking r
large enough.

Regarding the computational complexity of the condi-
tions in Proposition 3.2, a simple computation leads to
(5 + 0.5r2 + r)n2 + (0.5r + 2.5)n variables and the size
of the LMIs are n(r + 2) for conditions (12) and (13),
and n(r + 3) for conditions (14) and (15). It is worth
mentioning that the approach based on clock-dependent
Lyapunov functions, described in [6], has been shown
to provide better results (mainly in computational com-
plexity, see [7]) than looped-functionals. Therefore, this
approach should be considered for a possible extension
of this work.

4 Examples

In this section, Proposition 3.2 is applied to several nu-
merical examples.

Fig. 1. Allowable reset period as a function of the time-delay
for the IDDS of the Example 4.2 (r = 10).

4.1 An example with unstable continuous dynamics

Consider an IDDS (the example is taken from [29]) with
matrices

A =

[
2 5

3

1
2 4

]
, Ad =

[
3 5

1
3 1

]
, AR =

[
3
5 0

0 3
5

]
. (17)

The system without impulses is unstable for the time-
delay h = 0.1. In addition, [29] shows that if ∆M <
0.0095 then the trivial solution to the system is glob-
ally exponentially stable for any fixed delay h ∈ (0,∞).
Consider h ∈ [0.001, 1], then applying Prop. 3.2 with
r = 40, ∆m > h/40 and ∆M = 0.0671, it follows that
the impulsive system is globally asymptotically stable. It
is deduced that the bound ∆M < 0.0095 is very conser-
vative for h ∈ [0.001, 1]. Finally, note that ∆m strongly
depends on r, hence if it is desired to reduce ∆m or in-
crease h then r should be increased, which may result in
a longer computation time.

4.2 An example with both unstable continuous dynam-
ics and unstable discrete dynamics

Consider the IDDS with matrices

A =

[
0.1 2

−1 0.1

]
, Ad =

[
1 1

0.1 0

]
,AR =

[
0 0

0 1.1

]
.

(18)
This system without impulses has been proved to be
unstable for h ∈ [0, 4] (using the results in [28]). Note
that ‖AR‖ = 1.1 which, roughly speaking, means that
the discrete dynamics is also unstable (to the knowledge
of the authors, there are not previous published results
that can be applied to this type of IDDSs). Fig. 1 shows
the minimum and the maximum period of reset which
globally asymptotically stabilize the IDDS, as a func-
tion of h. Finally, the evolution of the system and the
functionals V and W are shown in Fig. 2. Note that the
functional V increases instantaneously due to both the
reset actions.
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Table 1
Maximum allowable time-delay in Example 4.3.

No reset Prop. 2, [11] Prop. 4, [11]
Prop. 3.2

∆m = 0.081, ∆M = 1.78
Prop. 3.2

∆m = 0.101, ∆M = 0.98
Prop. 3.2

∆m = 0.121, ∆M = 0.5

h 0.87 0.442 0.693 0.8 1 1.2

(a) Trajectory: x1 (dotted) and x2 (solid).

(b) LK functional V (dashed) and functional W (solid).

Fig. 2. Trajectory and value of V and W for the IDDS of
the Example 4.2 with h = 1, r = 10, ∆m = ∆M = 0.6, and
initial condition φ(θ) = (1,−1), θ ∈ [−1, 0].

4.3 An example of a time-delay reset control system

Time-delay reset control systems [3] are a particular class
of the IDDSs, where the reset events are usually deter-

mined by the intersection of the trajectory with some
surface (state-dependent). In the case of LTI plants and
reset controllers with LTI base systems, the reset con-
trol system can be described by (2). The available re-
sults (see, e.g. [4, 11]) are too conservative to guaran-
tee the asymptotic stability in many cases, mainly due
to the state-dependent reset instants. In addition, let
us remark that only a general Lyapunov-Krasovskii-like
theorem is proposed in [20], but no computational con-
ditions are given, for instance in term of LMIs. The
LK theorem in [20] is similar to the one used in [11],
where LMI conditions are developed. Therefore, we fo-
cus on [11] for comparison purpose. The proposed sta-
bility criterion can be applied to guarantee the stability
of time-delay reset systems by imposing the dwell-time
constraint ∆m ≤ tk+1 − tk ≤ ∆M .

Consider a time-delay reset control system where the
plant is P = 1

s and the reset controller is the parallel
connection of a first order reset element (FORE) (see
e.g. [3]) and a proportional term. The FORE is assumed
to be endowed with a mechanism which forces and in-
hibits reset actions in order to guarantee the dwell-time
constraint. The system is described by (2), following [11],
with matrices

A =

[
0 0

−1 −1

]
, Ad =

[
−1 1

0 0

]
,AR =

[
1 0

0 0

]
. (19)

Table 1 shows a comparison of the maximum time-delay
obtained by Prop. 3.2 (for some values of ∆m and ∆M )
and the previous results. For the periodic reset case, the

M0 =
[
I(r+1)n 0(r+1)n×n

]
, MP =

 A 0n,(r−1)n Ad

In 0n,rn

 , MQ =

 Irn 0rn×n

0rn×n Irn

 , MR =

 A 0n,(r−1)n Ad

−In In 0n,(r−1)n

 ,
N0 =

[
A 0n,n(r−1) Ad 0n

]
, N1 =

[
In 0n,n(r+1)

]
, N2 =

[
0n In 0n,nr

]
, N3 =

[
0n,n(r+1) In

]
,

N4 = (AR − I)N3, N13 = N1 −ARN3, Π1 = −N>13S1N13 −He(N>13S2N3) + He(Y N13),

Π2 = He(N>0 S1N13) + He(N>0 S2N3) +N>0 UN0, Π3 = N>3 XN3, Π4 = N>3 (A>RPAR − P )N3,

Υ(α, β) = M>0 Π0M0 + Π1 + βNR + (α− h
r )Π2 + (α− 2hr )Π3 + 1

∆M
Π4

Π0 = M>P

[
0 P

P 0

]
MP +M>R

[
h
rR 0

0 − r
hR

]
MR +M>Q

[
Q 0

0 −Q

]
MQ, NR = r

h


N>1

N>2

N>4


> 

0 0 R

0 0 −R
R −R −R



N1

N2

N4

 .
(18)
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maximum time-delay is 1.433. Note that Prop. 4 in [11]
requires tk − tk−1 > h.

5 Conclusions

This article provides sufficient conditions for the asymp-
totic stability of linear IDDSs. The method allows re-
laxing the conditions on the Lyapunov-Krasovskii func-
tionals that are traditionally employed in the stability
analysis by Lyapunov-like methods. The proposed cri-
terion is expressed in terms of LMIs. By solving these
LMIs, it can be found positive constants that determine
lower and upper bounds of the reset intervals for which
the stability of the system is guaranteed. Several numer-
ical examples show the effectiveness of the results and
the reduction of the conservatism compared to previous
results in the literature. The main advantage of the re-
sults is that the stability of IDDSs, with unstable con-
tinuous dynamics and unstable discrete dynamics, can
be analyzed.
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A Proof of Prop. 3.1

The proof is divided in two parts: stability and asymp-
totic stability.

Stability: Assume η ≥ 1/3 without loss of generality,
and consider a solution x(t) with initial condition φ,
and with reset and interval sequences (t1, t2, . . .) and
(∆0,∆1,∆2, . . .), respectively. For any k > 0, and τ ∈
(0,∆k], integrating (10) with respect to σ over [0, τ ],
results in the following inequality

V (χk(τ, ·))− V (χk(0+, ·)) + Vk(τ, χk)− Vk(0, χk) ≤ 0
(A.1)

and now, by using (6), (8) and (9), it results in

V (χk(τ, ·)) ≤ 3ηV (χk(0, ·)). (A.2)

In addition, by doing τ = ∆k in (A.1) and using condi-
tion (7), it directly follows

V (χk+1(0, ·)) = V (χk(∆k, ·)) ≤ V (χk(0, ·)). (A.3)

for any k > 0. Considering all the previous reset instants,
for k = 2, 3, . . . and τ ∈ (0,∆k], it results from (A.2)
and (A.3) that V (χk(τ, ·)) ≤ 3ηV (χ1(0, ·)). Moreover,
since v ∈ K and ∆0 < ∞ (∆0 = t1), there exists µ =
µ(∆0) such that it is satisfied V (χ0(τ, ·)) ≤ µv(‖φ‖A),
where τ ∈ [0,∆0]. Finally, the above equations, (5), and
V (χ1(0, ·)) = V (χ0(∆0, ·)) imply

u(‖χk(τ, ·)‖) ≤ V (χk(τ, ·)) ≤ 3ηV (χ1(0, ·)) ≤ 3ηµv(‖φ‖A)
(A.4)

For a given ε > 0, choose δ = δ(ε), such as 0 < δ <

min{ε, v−1(u(ε)
3ηµ )}. Therefore, for all ‖φ‖A < δ it is sat-

isfied u(‖χk(τ, ·)‖) < 3ηµv(δ) < u(ε) for k > 0 and
τ ∈ (0,∆k], and for k = 0 and τ ∈ [0,∆0]. The above
condition directly implies ‖x(t)‖ < ε, t ≥ 0, and thus
the trivial solution to the system (2) is stable.

Asymptotic stability: This proof is based on the proof
of asymptotic stability of retarded functional differen-
tial equations provided in [18]. The key idea is a contra-
diction argument based on a sequence of time intervals
where the norm of the instantaneous state is greater than
some value, which leads to a sequence of decrements of
the functional V . The contradiction follows by consider-
ing a sufficiently large sequence, which makes the func-
tional V negative, contradicting its definition.
The proof is as follows. For ε > 0 choose δa as the con-

stant for stability, that is 0 < δa < min{ε, v−1(u(ε)
3ηµ )} ,

Fig. A.1. A notation example: N1 = 2, N2 = 1, N3 = 0,
R(1) = 2, R(2) = 3, R(3) = 3, r(1) = 1, r(2) = 2, r(3) = 2.
(t1, t2, t3, . . .) = (t1,1, t1,2, t2,1, . . .)

then it is true that ‖φ‖A < δa implies ‖x(t)‖ < ε for
t ≥ 0. Moreover, it has to be shown that for any ϕ > 0
there exists some T = T (δa, ϕ) such that ‖x(t)‖ < ϕ
for t ≥ T . Let δb = δ(ϕ) be the constant for stability,
then it is sufficient to prove that ‖xt‖ < δb for t ≥ T .
By contradiction, suppose that there does not exist such
T , then the solution x(t) for an initial condition φ, with
‖φ‖A < δa, satisfies ‖xt‖A ≥ δb for all t ≥ 0. In addition,
there exist δc > 0 and a sequence 2 (τj)

∞
j=1 such that

(2j − 1)2h ≤ τj ≤ 4jh, (A.5)

where τj is not a reset instant and ‖x(τj)‖ ≥ δc. Since
tk+1 − tk ≥ ∆m for k = 1, 2, . . ., and in addition, from
the stability property there exists a constant L > 0 such
that ‖ẋ(t)‖ < L, for any t ∈ [0,∞) \ {tk}k∈N, then it is
possible to build a set of intervals Ij = [τj − δc

2L α̌j , τj +
δc
2L α̂j ] with α̌j , α̂j ∈ {0, 1}, α̌j + α̂j > 0, that do not
contain reset instants and do not overlap (by using L
large enough), that is Ij ∩ {tk}k∈N = ∅, j = 1, 2, . . ..

For the sake of clarity, the reset instants tk are rewritten
as (tj,l), j = 1, 2, . . ., l = 1, 2, . . . , Nj (for some integers
N1, N2, . . .), where the reset instant tj,l corresponds to
the lth-reset instant prior to τj ∈ Ij , that is

0 < t1,1 < t1,2 < · · · t1,N1
< τ̌1 = τ1 − δc

2L α̌j

< τ̂1 = τ1 + δc
2L α̂j < t2,1 < · · · t2,N2

< τ̌2 · · ·
(A.6)

In addition, for j > 0, by definition R(j) = N1 + · · · +
Nj , r(j) = max

i≤j,Ni>0
i, and Λj = τj − tr(j),Nr(j) (Λ̌j and

Λ̂j are defined accordingly by using τ̌j and τ̂j), see Fig.
A.1. Now, by applying the mean-value theorem on the
intervals Ij , j = 1, 2, . . ., it follows that for all t ∈ Ij
there exists some θ ∈ (0, 1) such that ‖x(t)‖ ≥ ‖x(τj)‖−
‖ẋ(τj + θ(t− τj))‖|t− τj | ≥ δc

2 . From (10), it follows

Ẇ (σ, χR(j)) ≤ −w(‖χR(j)(σ
+, 0)‖) ≤ −w

(
δc
2

)
< 0
(A.7)

2 Compared with the proof in [18] for retarded differential
equations, the sequence elements τj are separated 2h, due
the norm used for the functions PAC([−h, 0],Rn).
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for all σ ∈ [Λ̌j , Λ̂j ]. Let i be the smallest value such that

Ni > 0, then integrating Ẇ (σ, χR(i)) over the interval

[Λ̌i, Λ̂i], it is obtained W (Λ̂i, χR(i)) − W (Λ̌i, χR(i)) ≤
−w

(
δc
2

)
δc
2L . From (10), the fact thatW is nonincreasing,

and condition (7), it is obtained

V (χR(i)(∆R(i), ·)) ≤ V (χR(i)(0, ·))− w
(
δc
2

)
δc
2L . (A.8)

Since sequence of reset instants is infinite, considering
all the intervals Ij with j ≥ i, it is obtained

V (χR(j)(∆R(j), ·)) ≤ V (χR(i)(0, ·))−(j−i+1)w
(
δc
2

)
δc
2L .

(A.9)
Hence, for a large enough j, it gives V (χR(j)(∆R(j), ·)) <
0, which is a contradiction. Therefore, there exists T such
that ‖xt‖A < δb for all t ≥ T , and asymptotic stability
follows. Finally, since lims→∞ u(s) = ∞, then δa in the
above analysis may be chosen arbitrarily large, and ε can
be set after δa to satisfy v(δa) < u(ε). Thus, the trivial
solution is globally asymptotically stable. �

B Proof of Prop. 3.2

Consider the LK functional proposed in [15], which is
reformulated with the proposed notation.

V (χk(τ, ·)) = V1(χk(τ, ·)) + V2(χk(τ, ·)) + V3(χk(τ, ·)),

V1(χk(τ, ·)) = χ>k (τ, 0)Pχk(τ, 0),

V2(χk(τ, ·)) =
∫ 0

−hr
χek
>(τ, α)Qχek(τ, α)dα,

V3(χk(τ, ·)) =
∫ 0

−hr

∫ 0

β
χ̇>k (τ+, α)Rχ̇k(τ+, α)dαdβ,

(B.1)
where P > 0, Q > 0, R > 0, χ̇k(τ+, θ) is the upper
right-hand derivative of x(tk + τ + θ), and

χek(τ, θ) =


χk(τ, θ)

χk(τ, θ − 1
rh)

...

χk(τ, θ − r−1
r h)

 . (B.2)

Considering that χk(τ, ·) is piecewise Lipschitz contin-
uous for every τ (bounded derivative), it can be easily
proved that the LK functional (B.1) satisfies condition
(5) (see [15]). In addition, since matrices P , Q, and R
are positive definite, it is always possible to find η ≥ 1
such that condition (6) is satisfied.

On the other hand, the derivative of (B.1) is as follows:

V̇ (χk(τ+, ·)) = He(χ̇>k (τ+, 0)Pχk(τ+, 0))

+h
r χ̇
>
k (τ+, 0)Rχ̇k(τ+, 0)−

∫ 0

−hr
χ̇>k (τ+, α)Rχ̇>k (τ+, α)dα

+χek
>(τ+, 0)Qχek(τ+, 0)− χek

>(τ+,−hr )Qχek(τ+,−hr ).

(B.3)
Now, the Jensen’s inequality and the fundamental the-
orem of calculus (note that there may be only one re-
set instant in any interval [t− h

r , t]) are applied to get a

bound in the derivative 3 :

V̇ (χk(τ+, ·)) ≤ He(χ̇>k (τ+, 0)Pχk(τ+, 0))

+h
r χ̇
>
k (τ+, 0)Rχ̇k(τ+, 0)− r

h

(
χk(τ+, 0)− χk(τ+,−hr )

− ν(τ)(AR − I)χk(0, 0))
>
R
(
χk(τ+, 0)− χk(τ+,−hr )

−ν(τ)(AR − I)χk(0, 0)) + χek
>(τ+, 0)Qχek(τ+, 0)

−χek
>(τ+,−hr )Qχek(τ+,−hr ),

(B.4)
where ν(τ) = 1, 0 ≤ τ < h

r , and ν(τ) = 0, hr ≤ τ ≤ ∆k.
Now consider for every k > 0, the following functional
(the functional is adapted from [22, 23] with new terms
to deal with impulses)

Vk(τ, χk) = τ 1
∆k
χ>k (0, 0)A>RPARχk(0, 0)

+(1− 1
∆k
τ)χ>k (0, 0)Pχk(0, 0)

+(∆k − τ)
[
ζ>k (τ)S1ζk(τ) + He(ζ>k (τ)S2χk(0, 0))

]
+(∆k − τ)

∫ τ
0
χ̇>k (s+, 0)Uχ̇k(s+, 0)ds

+τ(∆k − τ)χ>k (0, 0)Xχk(0, 0) + γ‖χk(0, 0)‖2

(B.5)
for some γ > 0, and where ζk(τ) = χk(τ+, 0)−χk(0+, 0)
and τ ∈ [0,∆k]. By using simple derivations (omit-
ted due to the space limitation), it can be proved
that conditions (7), (8), and (9) are satisfied for

η > 1
λm(P ) max(γ, γ + λM (P )). The derivative of Ẇ is

bounded for all k = 1, 2, . . . as follows:

3 Note that similar results can be obtained by the affine
Jensen’s inequality (see [5] for a comparison of the inequali-
ties), but no substantial improvement has been achieved for
the analyzed examples.
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Ẇ ≤ He(χ̇>k (τ+, 0)Pχk(τ+, 0)) + h
r χ̇
>
k (τ+, 0)Rχ̇k(τ+, 0)

− r
h

(
χk(τ+, 0)− χk(τ+,−hr )− ν(τ)(AR − I)χk(0, 0)

)>
R(

χk(τ+, 0)− χk(τ+,−hr )− ν(τ)(AR − I)χk(0, 0)
)

+χek
>(τ+, 0)Qχek(τ+, 0)− χek

>(τ+,−hr )Qχek(τ+,−hr )

+ 1
∆k
χ>k (0, 0)(ARPAR − P )χk(0, 0)

+(∆k − τ)
(
He(χ̇>k (τ+, 0)S1ζk(τ))

+He(χ̇>k (τ+, 0)S2χk(0, 0)) + χ̇>k (τ+, 0)Uχ̇k(τ+, 0)
)

−ζ>k (τ)S1ζk(τ)−
∫ τ

0
χ̇>k (s+, 0)Uχ̇k(s+, 0)ds

−He(ζ>k (τ)S2χk(0, 0)) + (∆k − 2τ)χ>k (0, 0)X1χk(0, 0).

(B.6)
Let define ξk(τ) = (χek(τ, 0), χk(τ,−h), χk(0, 0)), by
applying the affine Jensen’s inequality (see [5]) on
−
∫ τ
0
χ̇>k (s+,0)Uχ̇k(s+,0)ds and using the definition of ma-

trices (18), the following inequality is obtained

Ẇ ≤ ξk(τ+)>(M>0 Π0M0 + Π1 + ν(τ)NR + (∆k − τ)Π2

+(∆k − 2τ)Π3 + τY U−1Y > + 1
∆k

Π4)ξk(τ+).

(B.7)
Consider ∆m < ∆M then Π4 ≤ 0 from (12). Hence, it
is satisfied 1

∆k
Π4 ≤ 1

∆M
Π4. Using this inequality and

(B.7), the resulting expression is convex on τ and ∆k,
and thus, it is necessary and sufficient to ensure the nega-
tivity at the endpoints of their intervals. Note that there
is a discontinuity at τ = h

r due to ν(τ), but it is sufficient
to check the negativity in both sides of the discontinuity.
Finally, the Schur complement is used to deal with the
term U−1 and write the conditions in an LMI form. �
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