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Abstract In this paper we seek to provide greater automation for formal deduc-
tive verification tools for continuous and hybrid dynamical systems which involve
reasoning about invariance of conjunctive equational assertions. We present an
efficient procedure to check invariance of conjunctions of polynomial equalities
under the flow of polynomial ordinary differential equations. The procedure is
based on a necessary and sufficient condition that characterizes the invariance of
a conjunction of polynomial equalities. We contrast this approach to an alterna-
tive one which combines fast and sufficient (but not necessary) conditions using
a special cut rule for soundly restricting the system evolution domain.

1 Introduction

The problem of reasoning about invariant sets of dynamical systems is of fundamental
importance to verification and modern control design. A set is an invariant of a dynami-
cal system if no trajectory can escape from it. Of particular interest are safety assertions
which describe states of the system which are deemed safe; it is clearly important to
ensure that these sets are indeed invariant.

Hybrid dynamical systems combine discrete and continuous behavior and have
found application in modelling a vast quantity of industrially relevant designs, many
of which are safety-critical. In order to verify safety properties in hybrid models, one
often requires the means of reasoning about safety in continuous systems. This paper
focuses on developing and improving the automation of reasoning principles for a par-
ticular class of invariant assertions for continuous systems – conjunctions of polynomial
equalities; these can be used, e.g. to assert the property that certain values (temperature,
pressure, water level, etc.) in the system are maintained at a constant level as the system
evolves.

In practice, it is also highly desirable to have the means of deciding whether a given
set is invariant in a particular dynamical system. It is equally important that such meth-
ods be efficient enough to be of practical utility. This paper will address both of these
issues in the case when the invariant set is given by a conjunction of equations.

Contributions. The contributions of this paper are twofold:
? This material is based upon work supported by the National Science Foundation by NSF

CAREER Award CNS-1054246, NSF EXPEDITION CNS-0926181, CNS-0931985, DARPA
FA8750-12-2-0291 and EPSRC EP/I010335/1.
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• It gives a differential radical characterization of invariance for algebraic sets (con-
junctions of polynomial equalities) under the flow of algebraic differential equa-
tions. A new related proof rule is introduced together with an optimized decision
procedure.

• It explores an alternative approach which, while deductively less powerful, allows
one to exploit knowledge about the system to yield efficient proofs and is further-
more able to work with non-polynomial systems.

The two approaches to proving invariance of conjunctive equational assertions explored
in this paper are complementary and aim at improving proof automation—deductive
power and efficiency—in deductive formal verification tools.

Content. In Section 2, we recall some basic definitions and concepts that we will
use through the paper. Section 3 will introduce a new proof rule to check invariance of
a conjunction of polynomials. We discuss its complexity and present an optimization
of the original algorithm (Section 3.2). Its average performance is assessed using a set
of 31 benchmarks (Section 6). The remainder of the paper presents another novel ap-
proach to check invariance of a conjunction; it leverages efficient existing proof rules
together with differential cuts and differential weakening (Section 4). Section 5 presents
an automated proof strategy that can be used to combine proof rules.

2 Preliminaries

We consider autonomous3 polynomial vector fields (see Def. 1 below).
Let x = (x1, . . . , xn) : Rn, and x(t) = (x1(t), . . . , xn(t)), where xi : R → R,

t 7→ xi(t). The ring of polynomials over the reals will be denoted by R[x1, . . . , xn].

Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate polyno-
mials in the polynomial ring R[x]. A polynomial vector field, p, is an explicit system
ordinary differential equations with polynomial right-hand side:

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n . (1)

One important problem is that of determining whether a set of states satisfying a
polynomial equation h = 0 remains invariant under the flow of the vector field. That is,
whether the following formula of differential dynamic logic [24] is valid, i.e. true in all
states

(h = 0)→ [ẋ = p](h = 0) (2)

where [ẋ = p](h = 0) is true in a state xι if postcondition h = 0 is true in all states
reachable from xι by following the differential equation ẋ = p for any amount of time.
The implication in the formula Eq. (2) expresses that h = 0 stays true forever from all
initial states xι that satisfy h = 0. Note that h is a polynomial in x, but we write h = 0
for h(x) = 0 in this paper for simplicity.

3 Autonomous means that the rate of change of the system over time depends only on the sys-
tem’s state, not on time. Non-autonomous systems with time dependence can be made au-
tonomous by adding a new state variable to account for the progress of time.
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In this work we investigate a generalization of Eq. (2) to a conjunction of polynomial
equations; that is, instead of h = 0 , we ask whether a conjunction h1 = 0∧· · ·∧hr = 0,
where hi are polynomials, holds true in all reachable states if it is initially true.

(h1 = 0 ∧ · · · ∧ hr = 0)→ [ẋ = p](h1 = 0 ∧ · · · ∧ hr = 0) (3)

Since polynomial functions are smooth (C∞, i.e. they have derivatives of any order),
they are locally Lipschitz-continuous. By Cauchy-Lipschitz theorem (a.k.a. Picard-
Lindelöf theorem) [17], there exists a unique maximal solution to the initial value prob-
lem (ẋ = p, x(0) = xι) defined for t in some non-empty open interval Uxι ⊆ R.

Geometrically, Eq. (3) is represented by the set of real roots of the system h1 =
0, . . . , hr = 0. Such a set is called an algebraic set or a variety and will be hence-
forth denoted by VR(h1, . . . , hr). Therefore, the fact that the variety VR(h1, . . . , hr)
is an invariant region of the vector field p is equivalent to the invariance of the con-
junction h1 = 0 ∧ · · · ∧ hr = 0, that is, if h1(xι) = 0 ∧ · · · ∧ hr(xι) = 0, then,
h1(x(t)) = 0 ∧ · · · ∧ hr(x(t)) for all t ∈ Uxι , where x(t) denotes the solution of the
initial value problem (ẋ = p,x(0) = xι). While varieties are not the only invariants
of interest [28,27], they are still intimately related to all other algebraic invariants, such
as semi-algebraic invariants. We thus believe the comparison and the empirical perfor-
mance study we initiate in this paper to be an important step towards understanding the
invariance problem in polynomial vector fields, and hence also in hybrid systems with
polynomial continuous dynamics.

Ideals are sets of polynomials with interesting algebraic properties: they are closed
under addition and external multiplication. That is, if I is an ideal, then for all h1, h2 ∈
I , the sum h1 + h2 ∈ I; and if h ∈ I , then, qh ∈ I , for all q ∈ R[x1 . . . , xn].

We recall the notion of Lie derivation. We will use ∇h, to denote the gradient of
a polynomial h, that is the vector of its partial derivatives

(
∂h
∂x1

, . . . , ∂h∂xn

)
. The Lie

derivative of a polynomial h along a vector field p is defined as follows ( · denotes the
scalar product).

Lp(h)
def
= ∇h · p =

n∑
i=1

∂h

∂xi
pi . (4)

Higher-order Lie derivatives are defined recursively: L(k+1)
p (h) = Lp(L

(k)
p (h)), where

L
(0)
p (h) = h.

3 Invariance of Conjunctions of Polynomial Equations

In this section we give an exact characterization of invariance for conjunctions of poly-
nomial equalities under the flow of algebraic differential equations. When the evolution
domain is constrained, we only consider the trajectory of a solution as long as is satisfies
the constraints. The characterization, as well as the proof rule, generalize our previous
work which handles purely equational invariants of the form h = 0 without considering
evolution domains.

The differential radical invariants proof rule DRI [12, Theorem 2] has been shown
to be a necessary and sufficient criterion for invariance of equations of the form h = 0.
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We reproduce the proof rule for convenience:

(DRI)
h = 0→

∧N−1
i=0 L

(i)
p (h) = 0

(h = 0)→ [ẋ = p](h = 0)
. (5)

The order N ≥ 1 denotes the length of the chain of ideals 〈h〉 ⊆ 〈h,Lp(h)〉 ⊆ · · ·
which reaches a fixed point after finitely many steps by the ascending chain property of
Noetherian rings. Therefore, the order N is always finite and computable—using e.g.
Göbner Bases [4]—for polynomials with rational coefficients. The premise of the proof
rule DRI is a real quantifier elimination problem and can be also solved algorithmically
[5].

A naı̈ve approach to prove invariance of a conjunction h1 = 0 ∧ · · · ∧ hr = 0,
without evolution domain constraints, is to use the proof rule DRI together with the
following sum-of-squares equivalence from real arithmetic:

h1 = 0 ∧ · · · ∧ hr = 0 ≡R

r∑
i=1

h2
i = 0 . (6)

The use of sum-of-squares comes at a cost as the degree of the newly-defined candidate
h at least doubles, increasing the complexity of the problem (Section 3.2 will discuss in
more detail the link between the complexity of DRI-based proof rules and the degree
of the polynomials involved).

Instead, we present in the sequel an extention of the proof rule DRI that exploits
the underlying algebraic structure of the conjunction. For an equational conjunction,
h1 = 0 ∧ · · · ∧ hr = 0, the order N—defined earlier for one atom—is generalized
to the length of the chain of ideals formed by all the involved polynomials and their
subsequent Lie derivatives:

I = 〈h1, . . . , hr〉 ⊆ 〈h1, . . . , hr,Lp(h1), . . . ,Lp(hr)〉 ⊆ · · · . (7)

Theorem 2 (Differential Radical Characterization). Let h1, . . . , hr ∈ R[x] with the
order N for the vector field p. Let H denote some evolution domain constraint. Then,
the conjunction h1 = 0 ∧ · · · ∧ hr = 0 is invariant under the flow of the vector field p,
subject to the evolution constraint H , if and only if

H `
r∧
j=1

hj = 0→
r∧
j=1

N−1∧
i=1

L(i)
p (hj) = 0 . (8)

Proof. See proof of [13, Theorem 2].

When the evolution domain constraints are dropped (H =True) and r = 1 (one
equation), one recovers exactly the statement of [12, Theorem 2] which characterizes
the purely equational case.

Intuitively, Theorem 2 says that on the invariant algebraic set, all higher-order Lie
derivatives of each polynomial hi must vanish. It adds however a crucial detail: check-
ing finitely many—exactly N—higher-order Lie derivatives is both necessary and suf-
ficient. Observe that the theorem does not check for invariance of each conjunct taken
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separately, rather it handles the conjunction in its entirety. The order N itself is defined
as a property of the ideal chain formed by all the polynomials and their Lie derivatives
taken together. If Ni denotes the order of each atom hi taken separately, then one can
readily see that

N ≤ max
i
Ni . (9)

The equality does not hold in general: consider for instance h1 = x, h2 = y and
p = (y, x). Since L

(2)
p (hi) = hi, for i = 1, 2, we have N1 = N2 = 2. However,

〈x, y〉 = 〈h1, h2〉 ⊆ 〈h1, h2,Lp(h1),Lp(h2)〉 = 〈x, y, y, x〉,

which means that N = 1. This example reflects one of the main differences between
this work and the characterization given in [19], where the criterion is given by

H `
r∧
j=1

hj = 0→
r∧
j=1

Nj−1∧
i=1

L(i)
p (hj) = 0 . (10)

As a consequence, the criterion of Theorem 2 requires to dischargeN (versus
∑r
j=1Nj

in [19]) ideal membership problems and
∑
Nj≤N (Nj − 1) +

∑
Nj>N

(N − 1) (versus∑r
j=1Nj − 1 in [19]) purely universal quantifier elimination problems. Therefore, us-

ing Eq. (9), and if k denotes argmaxiNi, Theorem 2 saves at least—when N = Nk—∑r
j=1,j 6=kNj ideal membership problems and

∑
The proof rule DRI [12] generalizes to conjunctions with evolution domain con-

straints as follows:

(DRI∧)
H `

(∧r
j=1 hj = 0

)
→
∧r
j=1

∧N−1
i=1 L

(i)
p (hj) = 0(∧r

j=1 hj = 0
)
→ [ẋ = p]

(∧r
j=1 hj = 0

) . (11)

In what follows, we implement the proof rule DRI∧ and discuss its theoretical com-
plexity.

3.1 Decision Procedure

To check the validity of the premise in the proof rule DRI∧, one needs to compute
the order N and to decide a purely universally quantified sentence in the theory of real
arithmetic. These two tasks do not need to be performed in that precise order, and in fact
we present an algorithm that computes N on the fly while breaking down the quantifier
elimination problem into smaller, more tractable problems.

Algorithm 1 terminates as the variable Ň strictly increases at each iteration of the
outermost while loop, while being bounded by the finite order N , Ň ≤ N . The algo-
rithm returns True if and only if the candidate is an invariant. It is therefore a decision
procedure for the invariance problem with conjunctive equational candidates.

The algorithm does not know N a priori. The variable Ň converges, from below,
in finite steps toward N ; at each iteration of the while loop it checks whether Ň = N .
Toward this, it computes a Gröbner Basis (GB) of the ideal I, containing the polynomi-
als hi as well as their respective higher-order Lie derivatives up to the derivation order
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Algorithm 1: Checking the invariance of a conjunction of polynomial equations.
Data: H (evolution domain constraints), p (vector field), x (state variables)
Data: h1, . . . , hr (conjunction candidate)
Result: True if and only if the conjunction candidate is an invariant

1 Ň ← 1
2 I← {h1, . . . , hr}
3 L← {h1, . . . , hr}
4 symbs← Variables[p, h1, . . . , hr]
5 while True do
6 GB← GröbnerBasis[I, x]
7 LD← {}
8 foreach ` in L do
9 LieD← LieDerivative[`, p, x]

10 Rem← PolynomialRemainder[LieD, GB, x]
11 if Rem 6= 0 then
12 LD← LD ∪ LieD

13 if LD = {} then
14 return True

15 else
16 foreach ` in LD do
17 if QE[∀ symbs, H ∧ h1 = 0 ∧ · · · ∧ hr = 0→ ` = 0] 6= True then
18 return False

19 I← GB ∪ LD
20 Ň ← Ň + 1
21 L← LD

Ň − 1. Then enters a for loop (line 8), where it computes the Ň th order Lie derivatives
and their respective reductions (or remainders) (LieD) by the Gröbner Basis GB. All
non-null remainders are stored in the list LD (line 12). If the list is empty, then we just
proved that Ň = N . Otherwise, the outermost while loop (line 5) needs to be executed
one more time after increasing Ň (line 20). Before re-executing the while loop, how-
ever, we make sure that the premise of the proof rule DRI∧ holds up to Ň . Since in this
case, we know that Ň < N , if the quantifier elimination fails to discharge the premise
of the proof rule DRI∧ up to Ň , then we do not need to go any further as the invariance
property is falsified. The main purpose of the for loop in line 16 is to decompose the
quantifier elimination problem

H →
( r∧
j=1

hj = 0
)
→

r∧
j=1

L(Ň)
p (hj) = 0,

into at most r smaller problems:

H →
( r∧
j=1

hj = 0
)
→ L(Ň)

p (hj) = 0,
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exploiting the logical equivalence

a→ (b ∧ c) ≡ (a→ b) ∧ (a→ c),

for any boolean variables a, b, and c. Observe that the quantifier elimination problem
in line 17 performs a universal closure for all involved symbols—state variables and
parameters— denoted by symbs and determined once at the beginning of the algorithm
using the procedure Variables (line 4). Besides, by eliminating the states variables
in line 17, the algorithm can be readily adapted to explicitly return extra conditions
on the parameters to ensure invariance of the given conjunction. When the algorithm
returns False, any counterexample to the quantifier elimination problem of line 17 can
be used as an initial condition for a concrete counterexample that falsifies the invariant.

3.2 Complexity

Algorithm 1 relies on two expensive procedures: deciding purely universally quantified
sentences in the theory of real arithmetic (line 17) and ideal membership of multivariate
polynomial using Gröbner bases (line 6). We discuss in this section their respective
theoretical complexity.

Quantifier elimination over the reals is decidable [30]. The purely existential frag-
ment of the theory real arithmetic has been shown to exhibit singly exponential time
complexity in the number of variables [1]. Theoretically, the best bound on the com-
plexity of deciding a sentence in the existential theory of R is given by (sd)O(n), where
s is the number of polynomials in the formula, d their maximum degree and n the num-
ber of variables [1]. However, in practice this has not yet led to an efficient decision pro-
cedure, so typically it is much more efficient to use cylindrical algebraic decomposition
(CAD) due to Collins [5,6], which has running time complexity doubly-exponential in
the number of variables.

The ideal membership of multivariate polynomial with rational coefficients is an
EXPSPACE-complete problem [21]. Gröbner bases [4] allow to perform membership
checks in ideals generated by multivariate polynomials. Significant advances have been
made in algorithms for computing Gröbner bases [10,11] which in practice can be ex-
pected to perform very well. The degree of the polynomials involved in a Gröbner basis
computation can be very large. Theoretically, a Gröbner basis may contain polynomials
with degree 22d [22]. The degrees of all involved polynomials is bounded by O(d2n)
[9]. Gröbner bases algorithms are highly sensitive to the monomial order, that is the par-
ticular order one chooses to arrange the different monomials of a multivariate polyno-
mial4. It is known [2] that the Degree Reverse Lexicographic (degrevlex) order gives
on average Gröbner bases with the smallest total degree, although there exist known ex-
amples (cf. Mora’s example in [15]), for which, even for the degrevlex monomial
ordering, the (reduced) Gröbner basis contains a polynomial of total degree O(d2). Fi-
nally, the involved rational coefficients of Gröbner bases elements may get complicated
(compared to the rational coefficients of the original polynomials of the ideal) which
may increase the computational complexity and the required storage space.

4 See for instance [7, Chapter 2] for the formal definitions.
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3.3 Optimization

The theoretical complexity of both the quantifier elimination and Gröbner Bases algo-
rithms suggest several optimization for Algorithm 1.

To reduce the complexity of the quantifier elimination problem (line 17) we attempt
to keep a low maximal degree of all involved polynomials. We consider the maximal
degree of the polynomials involved in H fixed. In general, considering the conjunction
with the polynomials hi instead of an equivalent representation—typically Gröbner ba-
sis’ elements— performs better in view of the discussion above about the degree and
coefficients of Gröbner basis’ elements. However, the degree of the right-hand-side of
the implication can be reduced: by choosing a total degree monomial ordering (e.g.
degrevlex), the remainder Rem has at most the same total degree of LieD and per-
mits hence on average to reduce the quantifier elimination complexity. Lem. 3 proves
that the substitution of LieD by its remainder Rem in line 17 is equivalent.

Lemma 3. Let q be the remainder of the reduction of the polynomial s by the Gröbner
basis of the ideal generated by the polynomials h1, . . . , hr. Then,

h1 = 0 ∧ · · · ∧ hr = 0→ s = 0 if and only if h1 = 0 ∧ · · · ∧ hr = 0→ q = 0 .

Proof. By construction, we have s =
∑r
i=1 αihi + q for some polynomials αi. There-

fore, the conjunction h1 = 0 ∧ · · · ∧ hr = 0 implies that s − q = 0, or equivalently
s = q, and the lemma follows. ut

To reduce the complexity of Gröbner bases computation, we also attempt to keep
a low maximal degree of all involved polynomials of the ideal I. Since the degree of
LieD tends to increase rapidly, we substitute by its remainder Rem, which in the worst
case will have the same total degree than LieD. Lem. 4 shows that the substitution is
equivalent: the ideal I remains the same whether we construct the list LD using LieD
or Rem.

Lemma 4. Let q be the remainder of the reduction of the polynomial s by the Gröbner
basis of the ideal generated by the polynomials h1, . . . , hr. Then,

〈h1, . . . , hr, s〉 = 〈h1, . . . , hr, q〉 .

Proof. By construction, we have s =
∑r
i=1 αihi + q for some polynomials αi. There-

fore, s ∈ 〈h1, . . . , hr, q〉 and q ∈ 〈h1, . . . , hr, s〉, which respectively leads to
〈h1, . . . , hr, s〉 ⊆ 〈h1, . . . , hr, q〉 and 〈h1, . . . , hr, s〉 ⊇ 〈h1, . . . , hr, q〉. ut

For the presented optimization, one should keep in mind that with this equivalent
substitution, although it attempts to keep a low total degree of the elements, the co-
efficients of the remainder q may get substantially more complicated than the coeffi-
cients of the original polynomial s. In Section 6 we give an empirical comparison of
the optimized—as detailed in this section—versus the non-optimized version of Algo-
rithm 1.

The next section discusses an alternative approach to proving invariance of conjunc-
tive assertions that leverages sufficient (but not necessary) proof rules together with ad-
ditional proof rules to discharge such candidates. The technique exploits the hierarchy
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that some conjunctions exhibit to reduce the complexity of the checking problem by
checking the invariance of isolated atoms instead of considering the global conjunction
at once.

4 Sufficient Conditions for Invariance

The previous section dealt with a method for proving invariance which is both nec-
essary and sufficient for conjunctions of polynomial equalities. When one has a proof
rule like DRI∧, it is natural to ask whether previously proposed sufficient proof rules are
still relevant. After all, theoretically, DRI∧ is all that is required for producing proofs
of invariance in this class of problems. This is a perfectly legitimate question; how-
ever, given the complexity of the underlying decision procedures needed for DRI∧ it
is perhaps not surprising that one will eventually face scalability issues. This, in turn,
motivates a different question - can one use proof rules (which are perhaps deductively
weaker than DRI∧) in such a way as to attain more computationally efficient proofs of
invariance?

Before addressing this question, this section will review existing sufficient proof
rules which allow reasoning about invariance of atomic equational assertions. In Fig. 1,
DI= shows the equational differential invariant [25] proof rule. The condition is suffi-
cient (but not necessary) and characterizes polynomial invariant functions [25,27]. The
premise of the Polynomial-consecution rule [20], P-c in Fig. 1, requires Lp(h) to be
in the ideal generated by h. This condition is also only sufficient. The Lie proof rule
gives Lie’s criterion [16,23,27] for the invariance of h = 0 and characterizes smooth
invariant manifolds. The rule DW is called differential weakening [26] and covers the
trivial case when the evolution constraint implies the invariant candidate; in contrast to
all other rules in the table, DW can work with arbitrary invariant assertions.

(DI=)
H ` Lp(h) = 0

(h = 0)→ [ẋ = p & H](h = 0)
(P-c)

H ` Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p & H](h = 0)

(Lie)
H ` h = 0→ (Lp(h) = 0 ∧∇h 6= 0)

(h = 0)→ [ẋ = p & H](h = 0)
(DW)

H ` F

F → [ẋ = p &H ]F

Figure 1: Proof rules for checking the invariance of h = 0 w.r.t. the vector field p: DI= [27,
Theorem 3], P-c [20, Theorem 1], Lie [23, Theorem 2.8], DW [26, Lemma 3.6]

Let us once again stress that unlike the necessary and sufficient condition for invari-
ance of atomic equational assertions provided by the rule DRI (see Section 3), all the
other proof rules in Figure 1 only impose sufficient conditions and may thus fail at a
proof even in cases when the candidate is indeed an invariant.

The purpose of all the rules shown in Figure 1, save perhaps DW, is to show in-
variance of atomic equational assertions. However, in general, one faces the problem
F → [ẋ = p & H]C, where F is a formula defining a set of states where the system is



10 K. Ghorbal, A. Sogokon, and A. Platzer

initialized, and C is the post-condition where the system always enters after following
the differential equation ẋ = p as long as the domain constraint H is satisfied.

One way to prove such a statement is to find an invariant I which is true initially
(i.e. F → I), is indeed an invariant for the system (I → [ẋ = p & H]I), and implies
the post-condition (I → C). These conditions can be formalized in the proof rule [28]

(inv)
F → I I → [ẋ = p &H ]I I → C

F → [ẋ = p &H ]C
.

In this paper we will be dealing with the special case when the invariant is the same as
the post-condition, so in the interest of saving space we can drop the last clause and the
rule becomes

(inv)
F → C C → [ẋ = p &H ]C

F → [ẋ = p &H ]C
.

In the following sections, we will be working in a proof calculus, rather than consid-
ering a single proof rule, and will call upon this definition in the proofs we construct.

5 Differential Cuts and Lie’s Rule

When considering a conjunctive invariant candidate h1 = 0∧ h2 = 0∧ · · · ∧ hr = 0, it
may be the case that each conjunct considered separately is an invariant for the system.
Then, one could simply invoke the following basic result about invariant sets to prove
invariance of each atomic formula individually.

Proposition 5. Let S1, S2 ⊆ Rn be invariant sets for the differential equation ẋ = p,
then the set S1 ∩ S2 is also an invariant.

Corollary 6. The proof rule

(∧inv)
h1 = 0→ [ẋ = p &H ]h1 = 0 h2 = 0→ [ẋ = p &H ]h2 = 0

h1 = 0 ∧ h2 = 0→ [ẋ = p &H ](h1 = 0 ∧ h2 = 0)
(12)

is sound and may be generalized to accommodate arbitrarily many conjuncts.

Of course, one still needs to choose an appropriate proof rule from Figure 1 (or
DRI) in order to prove invariance of atomic equational formulas. For purely polyno-
mial problems it would be natural to attempt a proof using DRI first, but in the presence
of transcendental functions, one may need to resort to other rules. In general however,
even if the conjunction defines an invariant set, the individual conjuncts need not them-
selves be invariants. If such is the case, one cannot simply break down the conjunctive
assertion using the rule ∧inv and prove invariance of each conjunct individually. In this
section, we explore using a proof rule called differential cut (DC) to address this issue.

Differential cuts were introduced as a fundamental proof principle for differential
equations [25] which can be used to (soundly) strengthen assumptions about the system
evolution.
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Proposition 7 (Differential Cut [25]). The proof rule

(DC)
F → [ẋ = p]C F → [ẋ = p & C]F

F → [ẋ = p]F
,

where C and F denote quantifier-free first-order formulas, is sound.

One may appreciate the geometric intuition behind this rule if one realizes that the
left branch requires one to show that the set of states satisfying C is an invariant for
the system initialized in any state satisfying F . Thus, the system does not admit any
trajectories starting in F that leaveC and hence by addingC to the evolution constraint,
one does not restrict the behavior of the original system.

Differential cuts may be applied repeatedly to the effect of refining the evolution
constraint with more invariant sets. It may be profitable to think of successive differen-
tial cuts as showing an embedding of invariants in a system.

There is in fact an interesting connection between differential cuts and embeddings
of invariant sub-manifolds, when used with the proof rule Lie. To develop this idea, let
us remark that if one succeeds at proving invariance of some h1 = 0 using the rule Lie
in a system with no evolution constraint, one shows that h1 = 0 is a smooth invariant
sub-manifold of Rn. If one now considers the system evolving inside that invariant
manifold and finds some h2 = 0 which can be proved to be invariant using Lie with
h1 = 0 acting as an evolution constraint, then inside the manifold h1 = 0, h2 = 0
defines an invariant sub-manifold. One can proceed using Lie in this fashion to look
for further embedded invariant sub-manifolds. We will illustrate this idea using a basic
example.

Example 8 (Differential cut with Lie). Let the system dynamics be ẋ = p ≡ (x1,−x2).
This system has an equilibrium at the origin, i.e. p(0) = 0. Consider an invariant
candidate x1 = 0 ∧ x1 − x2 = 0. One cannot use Lie directly to prove the goal

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p] (x1 = 0 ∧ x1 − x2 = 0).

Instead, DC can be used to cut by x1 = 0, which is an invariant for this system
provable using Lie. For the left branch of DC, it is required to show

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p] x1 = 0,

which can be proved using

*R
x1 = 0 ∧ x1 − x2 = 0→ x1 = 0

*R
x1 = 0→ x1 = 0 ∧ (1 6= 0)

Lie
x1 = 0→ [ẋ = p] x1 = 0

inv
x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p & x1 = 0] x1 = 0

One can also prove that x1 = x2 is a invariant under the evolution constraint x1 = 0:

*
DW

x1 = 0→ [ẋ = p & x1 = 0] x1 = 0

*R
x1 = 0 ` x1 − x2 = 0→ x1 + x2 = 0 ∧ (1 6= 0 ∨ −1 6= 0)

Lie
x1 − x2 = 0→ [ẋ = p & x1 = 0] x1 − x2 = 0

∧inv
x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p & x1 = 0] (x1 = 0 ∧ x1 − x2 = 0)
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x1

x
2

x1

x
2

Figure 2: System invariant x1 = 0 (left) used in a differential cut to show that the intersection at
the origin (right) is an invariant.

Using these two sub-proofs to close the appropriate branches, the rule DC proves

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p ] (x1 = 0 ∧ x1 − x2 = 0).

While this example is very simplistic, it provides a good illustration of the method be-
hind differential cuts. We used DC to restrict system evolution to an invariant manifold
x1 = 0 using Lie and then used Lie again to show that x1−x2 = 0 defines an invariant
sub-manifold inside x1 = 0. This is illustrated in Fig. 2.

It is also worth noting that the choice of conjunct for use in the differential cut was
crucial. Had we initially picked x1−x2 = 0 to act as C in DC, the proof attempt would
have failed, since this does not define an invariant sub-manifold of R2 (see Fig. 2).

Let us now remark that by employing DC, we proved invariance of a conjunction which
could not be described by an atomic equational assertion which is provable using the
rule Lie, or by using Lie to prove invariance of each conjunct after breaking down
the conjunction with the rule ∧inv. It has previously been shown that differential cuts
increase the deductive power of the system when used in concert with differential in-
variants [25,28]. We prove that the same is true for differential cuts with Lie. Indeed,
differential cuts serve to address some of the limitations inherent in both DI= and Lie.

Theorem 9. The deductive power of Lie together with DC is strictly greater than
that of Lie considered separately. We write this as DC + Lie � Lie.

Proof. In Example 8 we demonstrate the use of Lie together with DC to prove in-
variance of a conjunction of polynomial equalities which is not provable using Lie
alone. To see this, suppose that for the system in Example 8 there exists some real-
valued differentiable function g(x) whose zero level set is precisely the origin, i.e.
(g(x) = 0) ≡ (x = 0). Then, for all x ∈ R2 \ {0} this function evaluates to g(x) > 0
or g(x) < 0 (by continuity of g(x)) and 0 is thus the global minimum or global max-
imum, respectively. In either case, g(x) = 0 =⇒ ∇g(x) = 0 is valid, which cannot
satisfy the premise of Lie. �
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The use of differential cuts with differential invariants has been explored in [25,27,28]
and was shown to increase the deductive power of DI= [27]. Below we briefly explore
an intriguing connection between the use of differential cuts together with DI= and
higher integrals of dynamical systems.

The premise of the rule DI= establishes that h(x) is a first integral (i.e. a constant
of motion) for the system in order to conclude that h = 0 is an invariant. More general
notions of invariance have been introduced to study integrability of dynamical systems.
For instance, h(x) is a second integral if Lp(h) = αh, where α is some function; this
is also sufficient to conclude that h = 0 is an invariant. Let us remark that in a purely
polynomial setting, such an h ∈ R[x] is known as a Darboux polynomial [14,8] and
the condition corresponds to ideal membership in the premise of P-c). Going further,
a third integral is a function h(x) that remains constant on some level set of a first
integral g(x) [14, Section 2.6], i.e. Lp(h) = αg where g is a first integral and α is
some function. These ideas generalize to higher integrals (see [14, Section 2.7]).

Example 10 (Deconstructed aircraft [27] - differential cut with DI=). Consider the sys-
tem ẋ = p = (−x2, x3,−x2) and consider the invariant candidate x2

1 +x2
2 = 1∧x3 =

x1. One cannot use DI= directly to prove the goal

x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p] (x2
1 + x2

2 = 1 ∧ x3 = x1) .

We can apply DC to cut by x1 = x3, which is a first integral for the system and is thus
provable using DI=. The left branch requires us to prove

x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p] x3 = x1,

which can be proved as follows:

*R
x2
1 + x2

2 = 1 ∧ x3 = x1 → x3 = x1

*R −x2 = −x2
DI=

x3 = x1 → [ẋ = p] x3 = x1
inv

x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p] x3 = x1

For the right branch of DC we need to show that x2
1 + x2

2 = 1 is an invariant under the
evolution constraint x3 = x1. This is again provable using DI=.

*
DW

x3 = x1 → [ẋ = p & x3 = x1] x3 = x1

*R
x3 = x1 ` −2x1x2 + 2x2x3 = 0

DI=
x2
1 + x2

2 = 1→ [ẋ = p & x3 = x1] x2
1 + x2

2 = 1
∧inv

x2
1 + x2

2 = 1 ∧ x3 = x1 → [ẋ = p & x3 = x1] (x2
1 + x2

2 = 1 ∧ x3 = x1)

We can now construct a proof of invariance for the conjunction using DC.
Note that in this example, we have only ever had to resort to the rule DI= for

showing invariance of an equational candidate. We first showed that x3 − x1 is an
invariant function (first integral) for the system. After restricting the evolution do-
main to the zero set of the first integral, x3 − x1 = 0, we proved that the polyno-
mial x2

1 + x2
2 − 1 is conserved in the constrained system. In this example we have

Lp(x2
1 + x2

2 − 1) = −2x1x2 + 2x2x3 = 2x2(x3 − x1), where (x3 − x1) is a first
integral of the system. Thus, x2

1 + x2
2 − 1 is in fact a (polynomial) third integral.
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5.1 Proof Strategies using Differential Cuts

Differential cuts can be used to search for a proof of invariance of conjunctive equa-
tional assertions. This involves selecting some conjunct hi = 0 to cut by (that is use
it as C in DC). If the conjunct is indeed an invariant, it will be possible to strengthen
the evolution domain constraint and proceed in a similar fashion by selecting a new
C from the remaining conjuncts until a proof is attained. A formal proof of invariance
using differential cuts can be quite long and will repeatedly resort to proof rules such
as (∧inv) (Eq. (12)) and DW (Fig. 1), which is used to prune away conjuncts that have
already been added to the evolution domain constraint.

Algorithm 2 presents a simple proof strategy for iteratively selecting a conjunct with
which to attempt a differential cut. Before the recursive function DCSearch is called,
the conjuncts are put into ascending order with respect to the number of variables ap-
pearing in the conjunct. For purely polynomial problems, the ordering should addition-
ally be ascending with respect to the maximum degree of the polynomials. The aim of
this pre-processing step is to ensure that conjuncts which are potentially less expensive
to check for invariance are processed first (see Section 3.2). There is in general no easy
way of selecting the “right” proof rule for showing invariance (Inv); a possible, albeit
not very efficient, solution would be to iterate through all the available proof rules. This
would combine their deductive power, but could also lead do diminished performance.
In practice, selecting a good proof rule for atomic invariants is very much a problem-
specific matter. The overall proof strategy, if successful, would lead to a proof tree
resembling that shown below. The proof steps labelled with ? mark choices in selecting
the rule for atomic invariants from Figure 1.

*R ∧r
i=1 hi = 0→ h1 = 0

*
?
h1 = 0→ [ẋ = p] h1 = 0

inv ∧r
i=1 hi = 0→ [ẋ = p] h1 = 0

*
DW

h1 = 0→ [ẋ = p & h1 = 0] h1 = 0

*
?
hr = 0→ [ẋ = p &

∧r−1
i=1 hi = 0] hr = 0

DC
...

DC ∧r
i=2 hi = 0→ [ẋ = p & h1 = 0]

∧r
i=2 hi = 0

∧inv ∧r
i=1 hi = 0→ [ẋ = p & h1 = 0]

∧r
i=1 hi = 0

DC ∧r
i=1 hi = 0→ [ẋ = p]

∧r
i=1 hi = 0

5.2 Performance and Limitations

In this section we will identify an example which defeats the current implementation of
DRI∧ and which is easily provable using differential cuts (see Ex. 11 in Appendix A).

Though this is very much an artificial example, it demonstrates that knowledge of
the system can sometimes be exploited to yield efficient proofs using differential cuts.
This is especially useful for large systems with many variables where the structure of
the problem is well-understood. Additionally, we see that a combination of proof rules
(DI=,Lie,DC) can be both helpful and efficient.

Knowledge about the system is crucial for differential cuts to be effective. In partic-
ular, in this example our knowledge about the system structure informed our decision to
“cut by” x13 = 0 (and use the rule Lie in the left branch of DC), which in the absence
of this knowledge may look like an arbitrary choice. The strategy DCSearch also finds
a proof easily in this example.
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Algorithm 2: DCSearch. Differential cut proof search
Data: {h1, . . . , hr}, p, H
Result: True, False.

1 if r = 0 then
2 return True

3 else
4 i← 1
5 while i ≤ r do
6 if Inv(hi, H) then
7 if DCSearch({h1 . . . , hr} \ {hi},p, H ∧ hi = 0) then
8 return True

9 else
10 i← i + 1

11 return False

We should note that while differential cuts can serve to increase the deductive power
of sufficient proof rules, there are invariant conjunctions of equalities for which apply-
ing DC on the conjuncts given in the problem will altogether fail to be fruitful. This is
due to DCSearch relying on the fact that at least some of the conjuncts considered indi-
vidually are invariants for the system, which may not be the case even if the conjunction
is invariant [28].

6 Experiments

In this section, we empirically compare the performance of three families of proof
rules for checking the invariance of conjunctions: (1) DRI-related proof rules includ-
ing SoSDRI (DRI plus sum-of-squares rewriting), DRI∧ as well as their optimized
versions as detailed in Section 3.3, (2) Differential cut proof search presented in Algo-
rithm 2, and (3) Lie et al. procedure [18] properly adapted to handle a disjunction of
equalities—we do not encode the equality h = 0 as h ≤ 0∧−h ≤ 0, rather use it as is.

For simplicity, we do not consider any evolution domain constraints, i.e. H = True.
The running time for each proof rule as well as the dimension, the different degrees of
the candidates and the vector fields, of the used set of benchmarks can be found here
[13].

In Fig. 3, the pair (k, l) in the plot of a proof rule P reads: the proof rule P solved k
problems each in less than 10l seconds. The set of benchmarks contains 32 entries com-
posed of equilibria (16), singularities (8), higher integrals (4) and abstract examples (4).
The examples we used in our benchmarks originate from a number of sources - many
of them come from textbooks on Dynamical Systems; others have been hand-crafted
to exploit sweetspots of certain proof rules. For instance, we constructed Hamiltonian
systems, systems with equilibria and systems with smooth invariants of various poly-
nomial degrees. The most involved example has 12 state variables, a vector field with a
maximum total degree of 291 and an invariant candidate with total degree of 146.
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One can clearly see that the DRI∧ is much more efficient on average compared
to SoSDRI as it solves 31—out of 32—in less than 0.1s each. The optimization dis-
cussed in Section 3.3 yields a slight improvement in the performance of both SoSDRI
and DRI∧. In most examples, both DRI∧ and DRI∧-OPT are very efficient. However,
the optimized version was able to falsify, in 1.2s, an invariant—higher integral of Gory-
achev and Chaplygin top [14]—whereas the non-optimized version, as well as all the
other proof rules, timed out after 60s. We also noticed for another example—extended
Motzkin polynomial—that SoSDRI-OPT timed out whereas SoSDRI was able to check
the invariance in 15s. When we investigated this example, it turned out that the rational
coefficients of the remainder gets complicated compared to the original polynomial be-
fore reduction. For this particular example, the optimized version was able to prove the
invariance in 300s which is 20 times slower than the non-optimized version. (cf. [13,
Section 6] for more details about both examples).

All DRI-related proof rules fail to prove invariance in one example (discussed in
Ex. 11) in less than 60s.

5 10 15 20 25 30

0.01

0.1

1

10

Number of problems solved

T
im

e
HsL

p
e

r
p

ro
b

le
m

SoSDRI

SoSDRI-OPT

Liu et al.@16D
DCSearch

DRIß
DRIß-OPT

Figure 3: Empirical performance comparison of different proof rules and strategies. The total
number of problems solved each in at most ts (log scale) is given in the x-axis for each method.

7 Related Work

In this paper we focus on checking invariance of algebraic sets under the flow of poly-
nomial vector fields. For similar techniques used to automatically generate invariant
algebraic sets we refer the reader to the discussion in [12].

Nagumo’s Theorem [31,3], proved by Mitio Nagumo in 1942, characterizes invari-
ant closed sets—a superset of algebraic sets—of locally Lipschitz-continuous vector
field—a superset of polynomial vector field. The geometric criterion of the theorem is
however intractable. The analyticity of solutions of analytic vector fields—a superset
of polynomial vector fields—also gives a powerful, yet intractable, criterion to reason
about invariant sets. In [29], the authors attempted to define several special cases ex-
ploiting either Nagumo’s theorem or the analyticity of the solution, to give proof rules
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for checking invariance of (closed) semi-algebraic sets under the flow of polynomial
vector fields. Liu et al. in [18] also used analyticity of solutions to polynomial ordinary
differential equations and extended [29] using the ascending chain condition in Noethe-
rian rings to ensure termination of their procedure; they gave a necessary and sufficient
condition for invariance of arbitrary semi-algebraic sets under the flow of polynomial
vector fields and proved the resulting conditions to be decidable.

The approach developed in this paper is phrased in a purely algebraic framework
where the ascending chain condition is also used without resorting to Taylor series
expansions. As in [18], we also require finitely many higher-order Lie derivatives to
vanish; what is different, however, is the definition of the finite number each character-
ization requires: in [18], one is required to compute all orders Ni of each atom hi and
to prove that all higher-order Lie derivatives of hi, up to order Ni − 1, vanish. We only
require that all higher-order Lie derivatives of all hi, up to order (N − 1) (which is the
same for all i) vanish.

Zerz and Walcher [32] have previously considered the problem of deciding invari-
ance of algebraic sets in polynomial vector fields; they gave a sufficient condition for
checking invariance of algebraic sets which can be seen as one iteration of Algorithm 1.
Therefore, Section 3 generalizes their work by providing a complete characterization of
invariant algebraic sets in polynomial vector fields.

8 Conclusion

In this paper, we introduce an efficient decision procedure (DRI∧) for deciding invari-
ance of conjunctive equational assertions for polynomial dynamical systems. We have
explored the use of differential cut rule with existing sufficient conditions for invariance
of equational assertions both as a means of increasing the deductive power of existing
sufficient proof rules and also as a way of attaining more computationally efficient
proofs.

The empirical performance we observe in the optimized implementations of DRI
and DRI∧ is very encouraging and we are confident that a proof strategy in a deductive
formal verification system should give precedence to these methods. However, certain
problems fall out of scope of these rules (for instance when the problems involve tran-
scendental functions), or might take unreasonably long to prove, while progress can
sometimes be made by employing sufficient proof rules such as DI=, Lie, etc. in con-
cert with differential cuts.
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(1878), http://eudml.org/doc/84988
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Appendix A

Example 11. Consider the system

ẋ1 = −292x7(−1 + x2
6 + x2

7 + x2
8)145,

ẋ2 = −292x8(−1 + x2
6 + x2

7 + x2
8)145,

ẋ3 = −42(2x10 + 2x3
10 + 2x9)(−3 + 6x2

10 + x4
10 + 2x10x9 + 2x3

10x9 + x2
9)41,

ẋ4 = −42(12x10 + 4x3
10 + 2x9 + 6x2

10x9)(−3 + 6x2
10 + x4

10 + 2x10x9 + 2x3
10x9 + x2

9)41,

ẋ5 = −2x13(−1 + x13 + x11x13),

ẋ6 = −2x12(−1 + x12 + x11x12),

ẋ7 = 26(−6x1x
2
2 + 4x3

1x
2
2 + 2x1x

4
2)(1− 3x2

1x
2
2 + x4

1x
2
2 + x2

1x
4
2)25,

ẋ8 = 26(−6x2
1x2 + 2x4

1x2 + 4x2
1x

3
2)(1− 3x2

1x
2
2 + x4

1x
2
2 + x2

1x
4
2)25,

ẋ9 = 14(4x3
3x

2
4 + 2x3x

4
4 − 6x3x

2
4x

2
5)(x4

3x
2
4 + x2

3x
4
4 − 3x2

3x
2
4x

2
5 + x6

5)13,

ẋ10 = 14(2x4
3x4 + 4x2

3x
3
4 − 6x2

3x4x
2
5)(x4

3x
2
4 + x2

3x
4
4 − 3x2

3x
2
4x

2
5 + x6

5)13,

ẋ11 = 14(−6x2
3x

2
4x5 + 6x5

5)(x4
3x

2
4 + x2

3x
4
4 − 3x2

3x
2
4x

2
5 + x6

5)13,

ẋ12 = 292x6(−1 + x2
6 + x2

7 + x2
8)145,

ẋ13 = −x13.

Suppose the invariant candidate is given by the following conjunction:

x13 = 0 ∧ ((x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1)13)2 +

((x4
3x

2
4 + x2

3x
4
4 − 3x2

3x
2
4x

2
5 + x6

5)7)2 +

((−1 + x2
6 + x2

7 + x2
8)73)2 +

((−3 + 6x2
10 + x4

10 + 2x10x9 + 2x3
10x9 + x2

9)21)2 +

(x12 + x11x12 − 1)2 = 0.

By using a differential cut to restrict the evolution domain to the invariant smooth man-
ifold x13 = 0 (using the rule Lie), one obtains a system for which the sum-of-squares
conjunct is a Hamiltonian and thus a first integral; this can be easily proved to be a
system invariant using the rule DI=. Naı̈vely attempting to use DRI∧ takes an unrea-
sonable amount of time due to the high degrees involved, while the proof involving DC
takes under a second for both branches, provided the right rules are selected to prove
invariance of atoms.


