
HAL Id: hal-01660905
https://hal.science/hal-01660905

Submitted on 11 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Theorem Proving of Aerospace Systems:
Applications and Challenges

Khalil Ghorbal, Jean-Baptiste Jeannin, Erik Zawadzki, André Platzer,
Geoffrey J. Gordon, Peter Capell

To cite this version:
Khalil Ghorbal, Jean-Baptiste Jeannin, Erik Zawadzki, André Platzer, Geoffrey J. Gordon, et al..
Hybrid Theorem Proving of Aerospace Systems: Applications and Challenges. J. Aerospace Inf. Sys.,
2014, 11 (10), pp.702–713. �10.2514/1.I010178�. �hal-01660905�

https://hal.science/hal-01660905
https://hal.archives-ouvertes.fr

Hybrid Theorem Proving of Aerospace Systems:
Applications and Challenges1

Khalil Ghorbal,2 Jean-Baptiste Jeannin,3 Erik Zawadzki,4

André Platzer5 and Geoffrey J. Gordon6
Carnegie Mellon University, 5000 Forbes Avenue,
Gates Hillman Center, Pittsburgh, PA 15213.

Peter Capell7
Software Engineering Institute, Carnegie Mellon,

4500 Fifth Avenue Pittsburgh, PA 15213

Complex software systems are becoming increasingly prevalent in aerospace appli-
cations, in particular to accomplish critical tasks. Ensuring the safety of these systems
is crucial, while they can have subtly different behavior under slight variations in op-
erating conditions. In this paper we advocate the use of formal verification techniques
and in particular theorem proving for hybrid software-intensive systems as a well-
founded complementary approach to the classical aerospace verification and validation
techniques such as testing or simulation. As an illustration of these techniques, we
study a novel lateral mid-air collision avoidance maneuver in an ideal setting, without
accounting for the uncertainties of the physical reality. We then detail the challenges
that naturally arise when applying such technology to industrial-scale applications and
our proposals on how to address these issues.

I. Introduction
Aircraft software is becoming increasingly complex, as shown by rising development costs. These

software systems are safety-critical: their failure can lead to major catastrophes. Past examples
include a collision between a military airplane and a drone over Afghanistan in 2011 [1], or the
2002 tragic mid-flight collision in Überlingen [2]. The Überlingen collision was not caused by a
system failure but rather by conflicting orders between air traffic control and onboard systems,
which illustrates the significance of increasing trust in collision-avoidance systems. Such incidents
and accidents demonstrate that the certification of these systems needs to respond to increased
system complexity by becoming more exhaustive in the methods used to assure software. Relying
on testing alone cannot achieve the desired requirements, as even the most careful testing campaign
can miss some errors, corner cases and rare events.

Significant progress has recently been achieved to increase the reliability of critical software.
Major aircraft manufacturers, such as Airbus, are now relying heavily on model-based architecture,
model-based design, and certified code generation [3]. It can be argued that analysis using models is
currently the only approach to ensuring a safe development of highly-reliable complex systems [4].
There are numerous immediate benefits to this approach such as model reusability, compositional

1 This material is based upon work supported by the National Science Foundation under NSF CAREER Award CNS-
1054246, NSF EXPEDITION CNS-0926181, and under Grant Nos. CNS-1035800, by the Army Research Office
under Award No. W911NF-09-1-0273 and the Federal Aviation Administration under grant number DTFAWA-11-
C-00074.

2 Postdoctoral Fellow, Department of Computer Science, kghorbal@cs.cmu.edu.
3 Postdoctoral Fellow, Department of Computer Science, jeannin@cs.cmu.edu.
4 Ph.D. Student, Department of Computer Science, epz@cs.cmu.edu.
5 Associate Professor, Department of Computer Science, aplatzer@cs.cmu.edu.
6 Associate Professor, Department of Machine Learning, ggordon@cs.cmu.edu.
7 Senior Member of Engineering Staff and Adjunct Professor, Department of Computer Science, psc@sei.cmu.edu.

1

design and certification cost reduction. However, the most important impact for safety is that model-
based design describes the system by many layers of abstraction, with each layer corresponding to a
set of refined models. These abstract models can then be used to reason formally about increasingly
complex systems and to formally verify their properties.

Formal verification and validation of systems involves mathematically well-founded methodolo-
gies for specifying and verifying the system. In general, formal techniques have dual goals: either
formally proving that the system meets its requirements or searching for a specific counterexam-
ple that falsifies a given property. Verification questions are not necessarily limited to functional
requirements. Very often, requirements such as safety or timing are crucial to certifying the system.

Many large-scale formal verification attempts have been successful in the past decade: for
example, hardware model checking of the Intel processor [5] is an outstanding achievement that
increased the reliability of the basic computation units that any software relies on. More recently,
formal verification techniques were applied to check for numerical runtime errors in the Airbus
A380 [6, 7]. Such achievements demonstrate improvements in the underlying theories and related
technologies of formal verification. Formal verification is becoming crucial for verification, validation
and certification of all safety-critical systems, and aerospace systems are no exception.

Formal methods are complementary to—and not a replacement for—the existing classical ver-
ification, validation, and certification approaches, which are predominantly based on testing and
simulation—including flight tests. Formal methods, including the hybrid systems theorem proving
approach presented in this paper, provide an exhaustive approach, ensuring that a property is sat-
isfied for all possible runs of the system. This contrasts with a testing approach that usually tests a
limited number of runs of a system, and could easily miss some corner cases. Exhaustive testing is
limited to relatively small systems—even a system with 7 variables, each with 1000 possible values
requires an intractable 1021 test cases—and it cannot handle continuous variables—they generate
an infinite number of tests. On the other hand, the hybrid systems theorem proving approach
presented in this paper can handle infinitely many cases at once, as well as continuous variables.

In this paper, we focus on hybrid systems theorem proving [8, 9], which has been applied to many
difficult problems where all other (formal and classical) methods have failed [10]. A hybrid system
[11] is a system that involves both discrete and continuous behaviors—such as with the integration
of discrete computer algorithms and continuous flight dynamics of an aircraft. Understanding such
interactions is crucial for ensuring that the system remains within safe boundaries, e.g., the aircraft
is not close to stalling, and is never too close to any other aircraft. Without understanding the
continuous motion of an aircraft in space, it is impossible to tell whether an aircraft might stall.
But one also needs to consider the discrete control decisions that determine the control input for
the flight dynamics. As an illustration of the use of hybrid systems theorem proving for aircraft,
this paper focuses on the property of separation between two or more aircraft.

In Section II, we recall differential dynamic logic, a logic to reason about hybrid systems. This
theoretical framework is used to model and verify the system. As an illustrative example showing
the use of differential dynamic logic for aircraft, we study a novel lateral mid-air collision avoidance
maneuver in Section III. The term lateral refers to the fact that unlike current collision avoidance
systems where the pilot is advised to either climb or descend, we explore the possibility of avoiding
a potential collision by advising the pilot to maneuver laterally (steering) without changing his
altitude. To keep this particular study easy to follow, it does not account for any uncertainty
(sensor noise, wind, etc.). Section IV details how we can push our reasoning further within a more
realistic noisy environment. We also give an overview of the current and future challenges facing
the formal verification community toward a successful application of these capabilities in full-scale
industrial aerospace applications. The related work is discussed in Section V.

II. Theorem Proving of Hybrid Systems
Our group at Carnegie Mellon University has developed tools and techniques to model and prove

properties of dynamic systems. Our main theoretical tool is differential dynamic logic [8, 9, 12], a
logic for specifying and verifying properties of hybrid systems. The hybrid systems theorem prover
KeYmaera [13] implements those and other logics in an automated and interactive theorem prover.

2

A. Differential Dynamic Logic
Differential dynamic logic [8, 9, 12] is the logic of hybrid systems, i.e., systems with interacting

discrete and continuous dynamics. This logic can model the system, e.g., motion of aircraft, cars
or trains, as well as expressing properties about such systems. Because differential dynamic logic
comes with a proof calculus [8, 9, 12], it is both a specification and a verification language for hybrid
systems.

We model systems being studied with hybrid programs, a programming language for hybrid
systems. Hybrid programs combine differential equations and conventional computer program con-
structs. Systems of ordinary differential equations model continuous evolution of variables, and can
be used to model relevant motion equations of aircraft. Instantaneous assignments can be used
to represent the changes in the set-values that an autopilot performs. Tests are used to represent
known constraints on the evolution of the system, either physical constraints on parameters or con-
ditions on the system execution. Sequential composition is used to execute one hybrid program after
another finishes.

A central feature of hybrid programs is nondeterminism: it enables modeling and proving
properties about systems who have parts not controlled by the program. Nondeterministic choice
is encountered when various control decisions can be made without any a priori knowledge about
which one will be triggered first. This is useful to describe, for example, the effect that other
aircraft could suddenly climb or descend. We handle this by accounting for all possible choices.
Nondeterministic repetition is used to model control feedback loops. These operations are enough
to model all classical computer programs (including if and while statements), as well as all hybrid
systems.

Once hybrid programs have been defined, properties about the system can be expressed through
differential dynamic logic itself. Differential dynamic logic is a combination of constructs used
in arithmetic and logic. This logic can express comparisons (equality and inequalities) of terms;
negation (not ¬), conjunction (and ∧) and disjunction (or ∨) of formulas; universal (for all ∀)
and existential quantifiers (exists ∃), expressing properties such as “for all real numbers, a certain
property is true” or “there exists a real number such that a certain property is true”; and universal
([α]) and existential modalities (〈α〉) indexed by hybrid programs α expressing properties such as
“a property is always true after executing a certain hybrid program α”, or “a certain hybrid program
α has at least one execution making a certain property true”. Since those logical operators can be
combined and nested in any way, this results in a flexible logic for specifying and verifying a rich
set of complex properties of hybrid systems.

A precise semantics, i.e., mathematical meaning, for hybrid programs and differential dynamic
logic is beyond the scope of this article but can be found in the literature [8, 9, 12]. These references
also provide rules to reason about the logic and to verify systems without having recourse to their
semantics. Those rules form a proof calculus for the logic. They are purely based on the syntax
of terms, which means that they can be implemented and used in a computer, for example, in
the theorem prover KeYmaera. The proof calculus is sound, i.e., it is faithful to the semantics.
Furthermore, the proof calculus is complete relative to properties of differential equations, i.e.,
every semantically valid formula is provable in the proof calculus from elementary properties of
differential equations.

B. The KeYmaera Theorem Prover for Hybrid Systems
KeYmaera [13] is a hybrid verification tool for hybrid systems implementing differential dynamic

logic [8] and its extensions. It is an automatic and interactive theorem prover. It is automatic as it
implements a set of proof strategies to automatically discharge the proof. It is also interactive, as
a user can help the tool by providing extra hints when the automatic strategies fail.

KeYmaera can be used to prove that a hybrid system satisfies its specification (correctness),
does not show unsafe behavior (safety), remains controllable (controllability), responds within a
specified time (reactivity), and eventually achieves a specified goal (liveness).

KeYmaera has been used successfully for verifying properties of systems involving cars, trains,
aircraft, and robots: local lane controllers for highway car traffic [14], left-turn assist controllers for
cars at intersections [15], intelligent speed adaptation for variable speed limit control and incident
management by traffic centers on highways [16], cooperation protocols of the European Train Control

3

System [17], airplane collision avoidance [18, 19], obstacle avoidance for ground robots [20], and force
feedback to the surgeon from a surgical robot [21].

In Section III we discuss a variation of one of those systems, the curved flight collision avoidance
maneuver, in order to provide a sense of the capabilities of the approach. This analysis yields new
results for the analysis of collision avoidance protocols and generalizes previous related work [18].

III. Case Study: Curved Flight Collision Avoidance Maneuvers
As airspace becomes more crowded, the design of safe and automated traffic management of

airplanes becomes even more critical. Such systems must be hybrid: the motion of each airplane is
described by a set of continuous differential equations, while each pilot is allowed to make discrete
decisions to control the aircraft. In this section we analyze an abstract model of an encounter
between two aircraft. The findings generalize to prevent collisions between three or more aircraft.
Our analysis focuses on proving under which conditions an aircraft, henceforth called the ownship,
and an intruder could possibly collide. If a possible collision is detected we explicitly give a set of
safe, flyable, choices that prevent the collision from happening.

Naturally, the analysis of the real system requires further refinement of the model to account
for real-world settings: flight disturbances, sensor uncertainties, human behaviors, implementation
issues, etc. Our current approaches to deal with such refinements are the topic of Section IV.

Section IIIA recalls the differential equations that describe Dubins trajectories in absolute
and relative frames. In Section III B, we abstract the trajectories using automatically generated
functional invariants (first integrals), i.e. non-trivial functions that are constant along all solutions
of the differential equations. We then use these invariants to generate a safety monitor. The monitor
will play a crucial role in our formal analysis, presented in Section III C, as it serves to synthesize
safe commands for the system.

A. Flight Maneuvers Using Dubins Curves
Our conflict resolution model is based on curved maneuvers, where we allow for curved paths in

addition to straight-line motion. For a fixed altitude, the planar path of an aircraft is modeled by
a set of differential equations that captures the time evolution of the position and orientation of an
aircraft. We use kinematic models based on the standard Dubins vehicle models for aircraft [22–24].

Let us consider two aircraft numbered 1 and 2. We suppose that aircraft 1 is the ownship and
aircraft 2 is an intruder. Aircraft i is modeled by a single point in the plane with a safe surrounding
disc. Its configuration is entirely determined by three variables: (xi, yi) ∈ R2 for its absolute position
and θi ∈ [0, 2π) for its direction with respect to the x-axis (Figure 1). The motion of each aircraft
with respect to an inertial frame is described by the system of ordinary differential equations given
in equation (1). The time variable t is implicit: its time derivative is equal to 1 for all frames: time
evolves linearly and is absolute. The angular and linear velocities of the aircraft (ωi and vi > 0)
are considered as parameters. The angular velocity ωi acts as a controlled input, stemming from
the control decisions made by the pilot. This allows the airplane to fly following a sequence of
circular paths (ωi 6= 0) and straight lines (ωi = 0): for instance, in Figure 1 the dotted lines show
the projected trajectories of two aircraft with potentially conflicting path: aircraft 1 is flying in
a straight line while aircraft 2 is performing a hold—a standard procedure with two circular and
two straight-line legs that an aircraft maintains while waiting. For a real application, one needs to
account for the engine capabilities and functional limits—for instance stalling—on the angular and
linear velocities which lead to additional constraints on ωi and vi.

The ownship is equipped with the following hybrid program that captures the core principles
of the collision avoidance system (cas):

pilot ≡ ω1 := ∗; (2)
cas ≡ (pilot; ?monitor; evolve)∗ (3)

The pilot—or autopilot—of the ownship first sets the angular velocity ω1 of the airplane to an
arbitrary real number (the wildcard ∗ in equation (2)). The expression evolve encodes the set of
differential equations describing the evolution of the intruder relative to the ownship. We use the

4

x1

y1

y2

x2

v2

v1

θ1

θ2

Fig. 1 Planar motion of two airplanes with respect
to an inertial frame of reference. The dotted lines
show an example of flyable trajectories that the
model can describe.

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

(1)

Fig. 2 Dubins motion for the air-
plane i, for i = 1, 2.

relative motion of the intruder with respect to the ownship, by representing the motion equation
relative to a frame fixed to the ownship (Figure 3). With respect to this relative frame, the set of
ordinary differential equations is given in equation (4), where x, y and θ denote respectively the
relative position and direction of the intruder with respect to the ownship. The relative equations
are obtained from the absolute ones (1) by computing the time derivative of the relative position of
the intruder with respect to the ownship while accounting for the angular velocity (along the axis
orthogonal to the plane) of the rotating frame fixed to the ownship.

y

x

v

θ

Fig. 3 Planar motion of the intruder with respect
to a relative frame embedded in aircraft 1.

ẋ = v2 cos θ − v1 + ω1y

ẏ = v2 sin θ − ω1x

θ̇ = ω2 − ω1

(4)

Fig. 4 Dubins motion of the in-
truder relative to the ownship.

The next section discusses our approach to generate an expression for monitor (equation (3)).
We want the expression for monitor to ensure that the current and future behavior of the pilot
always preserves safety.

5

B. Safety Monitoring Using Differential Invariants
In equation (3), the role of the monitor is to check whether the chosen action (ω1) of the ownship

is safe assuming that the evolution of the involved aircraft is governed by the differential equations
given in equation (4). The symbol (?) tests whether the safety condition is satisfied. The test can be
regarded as a filter that rules out unsafe decisions—a failed test should be understood as an unsafe,
and immediately discarded, decision on ω1. Hence, monitor imposes conditions on the safe choices
for ω1. If the test succeeds, the airplanes will evolve following their respective dynamics described
by the set of ordinary differential equations given in (4). If, however, there are no safe choices for ω1,
then the collision avoidance system reaches its operational limit. This case will be further discussed
at the end of this section. Finally, the ∗ operator, in the exponent of equation (3), means that this
sequence of (ı) discrete control, (ıı) monitoring, and (ııı) continuous evolution, can be repeated any
number of times. It, thus, describes the operational nature of the collision avoidance system, which
keeps on repeating any number of times as necessary. Indeed, any flight can be abstracted as a
sequence of pilot decisions and evolution according to the laws of motion.

In order to generate a safe and non-restrictive monitor in equation (3), it is critical to effectively
reason about the behavior of the solutions of the differential equations. Although a closed form
solution of equation (4) is known, handling it symbolically would require automated procedures
to reason about transcendental functions, a problem which is undecidable in general. Instead, we
proceed with a qualitative analysis of the solutions by means of differential invariants [25]—functions
that remain constant when evaluated along any solution of the differential equations. In [26], it is
established that such invariants can be characterized exactly using higher-order Lie derivatives
allowing for an automated and efficient generation procedure based on symbolic linear algebra. ∗
This characterization is used to generate a set of constraints on the coefficients of a parametric
polynomial (template) of a fixed degree. If a solution is found, we have an invariant. Otherwise,
the degree is augmented and we look for a solution to the new set of constraints.

When (ω1, ω2) = (0, 0), the direction θ(t) of the intruder relative to the ownship stays constant
over time, that is θ(t) = θ(0) for all t. In this case using the technique described in [26], we
automatically generate the following non-trivial invariant function:

I1(t)
def
= (v2 sin θ(0))x(t)− (v2 cos θ(0)− v1)y(t) = I1(0) . (5)

The quantity I1(t) is an invariant because its time derivative İ1(t) is zero for all t. The invariant
function describes the relative motion of the intruder as a line in the phase space (x, y). This line
is entirely defined by the initial configuration x(0), y(0), θ(0).

On the other hand, when (ω1, ω2) 6= (0, 0), we automatically generate the following, non-trivial
invariant function:

I2(t)
def
= −ω1ω2(x(t)2+y(t)2)+2v2ω1 sin θ(t)x(t)+2(v1ω2−v2ω1 cos θ(t))y(t)+2v1v2 cos θ(t) = I2(0) .

(6)
Again, I2(t) is an invariant because its time derivative İ2(t) is zero for all t. In this case, the relative
motion draws a non-trivial helical trajectory (the radius of the circle changes over time) in the
3-dimensional phase space (x, y, θ).

∗ The set of differential equations (4) can be rewritten into a set of algebraic differential equations—up to introducing
two additional variables to encode the transcendental functions cos θ and sin θ á la differential axiomatization [25].

6

�

�

θ

Fig. 5 Helical trajectory in the 3-dimensional phase space (x, y, θ).

From the invariants I1(t) and I2(t), we now sketch how we derive a sufficient condition on the
initial conditions, as well as the input commands, in order to avoid a collision. We illustrate the
case where (ω1, ω2) = (0, 0) in detail and then summarize the result for the case (ω1, ω2) 6= (0, 0),
for which an analogous derivation works.

We want the distance r(t) between the two aircraft (r(t)2 = x(t)2 + y(t)2) to always remain
greater than a given safety bound p > 0 at all times:

safety ≡ ∀ t ≥ 0, r(t) > p . (7)

Assuming (ω1, ω2) = (0, 0), from equation (5), (x(t), y(t)) moves along a line encoded by I1(t) =
I1(0), where the constant I1(0) ∈ R is entirely defined by the initial configuration (x(0), y(0), θ(0)).
We use this automatically generated invariant to manually derive a necessary condition on the
initial configuration when a collision occurs anytime in the future. From there, we derive a sufficient
condition—on the initial configuration—that preserves the separation property.

|I1(0)| = |I1(t)| (8)
= |(v2 sin θ(0))x(t)− (v2 cos θ(0)− v1)y(t)| (9)

≤ v1|y(t)|+ v2r(t)

∣∣∣∣x(t)

r(t)
sin θ(0)− y(t)

r(t)
cos θ(0)

∣∣∣∣ (10)

≤ v1r(t) + v2r(t) . (11)

In equation (10), we used the fact that
∣∣x(t)
r(t) sin θ(0) − y(t)

r(t) cos θ(0)
∣∣ is equal to |sin(θ(0) − α(t))|,

where the angle α(t) is such that cosα(t) = x(t)
r(t) and sinα(t) = y(t)

r(t) . If a collision occurs, then, there
exists t > 0 such that r(t) ≤ p. Therefore, from equation (11), we obtain:

¬safety −→ |I1(0)| ≤ (v1 + v2)p, (12)

where (−→) denotes the logical implication. By contraposition, this leads to the following sufficient
condition on the initial configurations to ensure the safety (when (ω1, ω2) = (0, 0)):

|I1(0)| > (v1 + v2)p −→ safety (13)

Figure 6 depicts this safe region for v1 = 1, v2 = 2, ω1 = ω2 = 0 and p = 1. For a given initial
(relative) configuration (x(0), y(0), θ(0)), if the line I1(t) = I1(0) of the (x, y) plane is included in
the gray region then the motion is safe as long as (ω1, ω2) remains equal to (0, 0). The disk of
radius p around the ownship depicts the safe separation distance that we want to keep between
the ownship and any intruder at all times. When (x(0), y(0)) is in the white region, the motion
cannot be proven safe using the invariant I1(t) = I1(0). This does not necessarily mean that the
motion is unsafe: we may observe false alarms when the motion is safe but cannot be proven. The
use of invariants instead of the actual solutions of the differential equation as well as non-equivalent
inequality bounds as in equation (11) are two common sources for false alarms. Hence, reducing false
alarms requires more refined analysis where one targets the sources of large over-approximations.

7

-4 -2 0 2 4
-4

-2

0

2

4

x

y

Fig. 6 Safe region (gray) relative to the
ownship, centered in the disk of radius p,
when (ω1, ω2) = (0, 0). Given an initial rel-
ative configuration (x(0), y(0), θ(0)), if the
line described by I1(t) = I1(0) lies in the
safe region (for instance the black dashed
line) then the relative motion is proven
safe. If the line intersects the white re-
gion, our analysis fails to prove safety.

-6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

x

y

Fig. 7 Projection of the safe region (gray)
relative to the ownship, centered in the
disk of radius p, when (ω1, ω2) 6= (0, 0).
Given an initial relative configuration
(x(0), y(0), θ(0)), if the projection of the
curve described by I2(t) = I2(0) lies in
the safe region then the relative motion
is proven safe. If the projection inter-
sects the white region, our analysis fails
to prove safety. The black dashed curve
depicts a concrete safe trajectory.

Following similar reasoning, when (ω1, ω2) 6= (0, 0), we derive the following sufficient condition:

|I2(0)| > 2v1v2 + 2p(v2|ω1|+ v1|ω2|) + p2|ω1ω2| −→ safety (14)

In this case, the safe region is a 3-dimensional region in the configuration space (x, y, θ) described
by (14). The projection of the safe region on the (x, y) plane is depicted in gray in Figure 7.
Given an initial relative configuration (x(0), y(0), θ(0)), if the projection of the curve described by
I2(t) = I2(0) lies in the safe region then the relative motion is proven safe. If, however, the projection
of the curve intersects the white region, our analysis fails to prove safety. The black dashed curve
depicts a safe trajectory in relative coordinates for v1 = v2 = 2, ω1 = −1, ω2 = 1 and p = 1.

The monitor of our collision avoidance system (equation (3)) combines the safety bounds given
in equations (13) and (14) for the cases of zero and nonzero angular velocity, respectively:

monitor ≡ (ω1, ω2) = (0, 0) −→ I1(0) > p(v1 + v2) ∧
(ω1, ω2) 6= (0, 0) −→ I2(0) > 2v1v2 + 2p(v2|ω1|+ v1|ω2|) + p2|ω1ω2| .

(15)

C. Formal Safety Verification
In this section we use the monitor generated in the previous section to formally verify our

collision avoidance system.

Theorem 1 (The collision avoidance system cas meets its safety requirement). The following dL
formula, expressing that the safety property always holds for the whole system, is valid, i.e., true in
all states:

safety→ [cas] safety, (16)

where cas is given in (3) and safety is defined in (7).

Theorem 1 states that if two airplanes start at a safe state (where the separation is respected),
and if the monitor defined in equation (15) is satisfied, then the evolution of the system is safe, hence

8

collision-free, for all possible executions of the system. The proof obtained with KeYmaera † together
with Theorem 1 can therefore be used to certify that our model meets its safety requirement and
ensures the separation of the equipped ownship from an intruder. The proof tree has 21 branches
and 240 nodes. With a highly interactive proof strategy—200 interactive steps—the computation
time to discharge the proof obligation takes less than 60s on a standard desktop (4GB of RAM and
Intel Core 2 Duo 2.66GHz).

In addition to proving safety, Theorem 1 can be used to determine which control choices for
the ownship will remain safe. For given linear velocities v1, v2, intruder’s angular velocity ω2, and
desired separation p, the set of safe control inputs ω1 for the ownship can be computed as those
that satisfy the monitor formula (15). For a concrete scenario—v1 = v2 = 2, ω2 = 1, p = 1—in
which the intruder is flying on a circular path, Figure 8 illustrates the beginnings of the unsafe
trajectories resulting from the set of all ω1 control choices that are deemed unsafe, because they do
not satisfy the monitor (15). The dashed trajectory shows a trajectory for the ownship, ω1 = −1,
that is provably safe, because ω1 = −1 satisfies the monitor (in particular it is entirely outside the
potentially unsafe gray region).

When the ownship detects multiple intruders in its surroundings, the same constraints (equa-
tion (15)) can be used for each intruder to ensure separation from all the intruders by suitable
coordination. Figure 9 shows a configuration with 3 aircraft where the gray zone depicts the projec-
tion of the trajectories resulting from an unsafe command ω1 being selected. Observe how the gray
zone evolved from Figure 8 where only one intruder was involved. It is now a union of all unsafe gray
zones for all intruders. The choices that are proven safe for the ownship are considerably reduced.
The selected dashed trajectory permits once again to evolve safely.

� � � � �
-�

-�

-�

�

�

�

�

�

Fig. 8 The gray zone depicts the projection
of the trajectories that results when an un-
safe command ω1 is selected. The dashed
trajectory shows a proven safe choice for
the ownship.

-� -� � � � � �
-�

-�

-�

�

�

�

�

�

�

Fig. 9 The gray zone as in Fig 8 ac-
counts now for the additional intruder.
The dashed trajectory shows a proven safe
choice for the ownship.

Figure 9 suggests that there exist scenarios where the ownship is “trapped”, that is no proven
safe choice exists for the ownship. In such cases, and if all involved aircraft are equipped, the system
can try to find an instantiation of commands (ω1, ω2, . . .) (within their respective physical limits)
for which the pairwise safety condition (equation (15)) of each two players is satisfied. ‡ When no
such safe global collision-free choice exists, however, the system reaches its operational limit: it can
no longer give a safe advisory to resolve the conflict.

† using an encoding of the transcendental functions (sine and cosine) with extra variables. The models and proof
files are available http://www.lix.polytechnique.fr/~ghorbal/aerospace.
‡ Notice that such an approach assumes that involved aircraft can communicate and that pilots are compliant with
no delays.

9

IV. Aerospace Challenges
Aircraft and other physical systems do not always operate in ideal conditions. Physical reality

is a noisy place, and aircraft interacting with reality must handle the resulting uncertainty. There
are many examples of situations where understanding uncertainty is critical to faithfully rendering
an aircraft, so it is important for representations and reasoning systems for aircraft to handle
uncertainty concisely, simply, and accurately. In this Section, we first discuss why uncertainty poses
a challenge for our approach to verification, how we are currently handling these issues, and how we
expect to finally resolve them. We also classify the current and future challenges in the aerospace
domain. We distinguish four different categories: uncertainty (Section IVA), proof automation
(Section IVB), numerical issues (Section IVC) and finally scalability (Section IVD). Although
not exhaustive, our classification is driven by the difficulties we have encountered analyzing real
aerospace systems. The classification is also guided by the progress made in general by the formal
verification community.

A. Uncertainty
1. Uncertain parameters and component faults
A common kind of uncertainty is with respect to conditions in which a plane is expected to

operate. A plane is designed to be able to operate in a variety of atmospheric conditions (air speed,
turbulence, and so forth). The same control signals in an aircraft may have different outcomes
depending on the exact same atmospheric conditions, and this uncertainty must be accounted for.
Our best choice to fully model such behavior of the plane may be to represent it as a distribution
over outcomes fitted from data using suitable models.§

For example, wind is an uncertain force that affects the velocity of a plane. A collision avoidance
advisory system should be robust to wind conditions that are common enough—any maneuver that
requires more accurate position control than is possible under reasonable wind conditions should
be rejected. It is difficult to represent probability distributions in hybrid systems,¶ and thus our
hybrid systems verification models would handle this type of parameter uncertainty by modeling
windspeed as a variable that nondeterministically takes a value in some region. This region should
be selected such that it encompasses a range of ‘reasonable wind conditions’.

Selecting this region is currently a matter of human judgment. If an uncertainty outcome is
judged sufficiently common then we will conservatively allow this outcome to occur nondeterminis-
tically. This assumes that any uncertain parameter’s value is chosen by a hypothetical ‘adversary’
who is trying to derail our attempts to prove system safety—the adversary is some subspecies of
Cartesian demon.∗∗ Ceding too much control to our adversary makes proving results either difficult
or impossible. If, in our models, we hand total control over all uncertainty to the adversary, we will
be unable to prove that planes could have left the ground in the first place, much less successfully
avoid collisions midair.

One must therefore ignore (or abstract) sufficiently unlikely and unimportant events. We cannot
model every possible event from deep in the tail of a probability distribution—we do not want to
model glancing blows from meteors, which would make the aircraft system unsafe but are beyond
our control anyhow. We must also omit events in a principled fashion or our model will be too
optimistic in a way that will be difficult to quantify.

For the purposes of verification we want a global bound ∆ on the total joint probability of
the events we ignore. Since our proof is based on ignoring these events, this bound licenses us to
certify that our proof applies with probability 1 − ∆. To simplify our proving task we currently
decompose this global probability bound into a series of bounds on the range of parameters. This

§ However, using a joint distribution that is far from the true uncertainty in, for example, Kullback-Leibler divergence
may lead to subtle errors in the overall model.

¶ Stochastic information can be incorporated into hybrid system models leading to stochastic hybrid systems, for
which logic can be lifted [27]. Verification of stochastic hybrid systems is quite nontrivial, though, so that we pursue
a separate approach here.

∗∗ This adversary is just a way of explaining a worst-case analysis; we are not describing a true game theoretic setting
here.

10

decomposition ensures that we do not have to do complicated probability calculations every time
we make a nondeterministic choice in our proof.

The exact form of a parameter bound is something that the prover could pick during the
proving process—the bounds do not have to be set a priori. A particular parameter’s bounds could
themselves be a parametric shape (corresponding to, e.g., a fixed distribution’s confidence intervals).
The prover is free to pick these shapes as long as the joint probability of all of these shapes exceeds
the global probability bound 1−∆. This gives our prover more flexibility than if we were to a priori
set the bounds, and this additional freedom might be important for proving safety.

Estimating ∆—the joint probability bound—is essentially an integration question. At a high
level: if Ω is a set of all possible joint parameter settings (e.g. ~x ∈ Rn), E ⊂ Ω is the set of all joint
settings that satisfy the local bounds (e.g. a box E = {~x ∈ Rn | li ≤ xi ≤ ui}), and p is a joint
probability density function (e.g. a multivariate normal distribution), then we want to find a small
∆ such that ∆ ≥ 1−

∫
E p(~x)d~x. Computing this integral exactly is—in general—not possible. The

challenge is to find local bounds that allow us to easily prove safety while simultaneously permitting
tight approximations of this integral. There may be a natural trade off, in many problems, between
ease of proof and the strength of the probability bound.

2. Sensor uncertainty
Another source of uncertainty is an aircraft’s estimates about its state. In the collision avoidance

example, the state of both planes (e.g. their positions and their velocities) were used in the model
in Section III, but are really estimated from a number of different noisy sensors, including radar and
GPS positioning information broadcast by ADS-B. Planes need to form an accurate understanding
of the world with noisy sensors and do this by fusing the measurements from different sensors over
time in order to filter out noise. This process of filtering noise—updating state estimates based on
noisy information—poses several interesting challenges for verification.

First of all, uncertain models are larger and more difficult to reason about than certain models
of the same system. This is one of the reasons why it is beneficial to first start a formal analysis
under ideal-world conditions and then proceed to include uncertainties, because if the system is
already unsafe under ideal-world sensing, it is not safe to be used in the real world. In order to take
sensor uncertainty into account, we need to represent both the state of the plane and the plane’s
estimates about its own state. This is necessary because the plane’s control systems (such as the
pilot, or any automated system) can only react to its estimates, but their actions will take effect on
the true state. The plane’s beliefs about position are a ‘first-class citizen’ of the proof that need to
be modeled in the underlying logic.

Secondly, we need to reason about filtered estimates in a safe way. For example, we currently
bound the beliefs of the entities in our verification of a robot collision avoidance problem [20] by
some static confidence region centered at the true location of robot; the width of this region is
based on sensor quality. The robot’s estimate of its position corresponds to the immediate sensor
information. The robot never compares this measurement to any past measurements—it does not
filter at all.

There are alternative ways to update estimates that consider past observations. A Kalman filter,
for example, is the optimal way to estimate state for linear dynamical systems with Gaussian noise
[28]. Updating estimates in this way tends to be more accurate than enthusiastically discarding past
observations. This extra precision allows collision avoidance policies that are less conservative about
uncertainty and are more efficient because they require smaller margins, for example the distance
between planes passing each other at different altitudes. Smaller safety margins means fewer ‘false
alarm’ advisories which waste fuel and may fray the pilot’s nerves, undermining the credibility of
the system.

Unfortunately, if we hand over control of our sensors to our proof adversary, the adversary
can maliciously pick noise that is highly correlated or anti-correlated. This could cause filtering
algorithms to form very inaccurate state estimates—a filter was designed for a distribution of sensor
noise, and our adversary can break the filter by picking a sequence of sensor measurements that
is entirely unrepresentative of the assumed noise model. This is possible even if we restrict the
adversary to measurements that are individually within some local 1− δ confidence region.

Therefore either we need to recommend that planes use inefficient policies that, like in [20], do

11

not filter, or further restrict the sequences that a proof’s adversary can employ. We want to restrict
the adversary to sequences that never have subsequences that are too unlikely, for example asserting
that all measurement subsequences of length k have some minimum probability. How this should
be done efficiently in verification is an interesting open problem.

3. Controllers that Deal with Uncertainty: ACAS X Case Study
Controllers designed for uncertain settings are difficult to formally reason about. The controller

synthesis problem is—by itself—difficult. Due to this difficulty, we might be forced to use synthesis
methods that utilize potentially unsafe heuristics (although, reasonable heuristics should be safe
with high probability). Since the resulting controller may not be safe, we need a separate, sound
verification procedure.

Control policies may also be tough to represent compactly. We have been grappling with this
representation issue on the Aircraft Collision Avoidance System (ACAS X) [29]. This system, a
successor to TCAS, suggests pilot actions (from a small number of discrete advisories) whenever
two or more planes are close enough to each other in midair to risk a near mid-air collision (NMAC),
i.e., an unacceptable proximity value.

The control policy for this system (i.e. a function that maps from the system state to advisories)
is found by discretizing the joint state space of a two plane encounter. The exact discretization
scheme is subject to change, but one can imagine a continuous dimension of state like altitude
being represented by an integer multiple of meters in some reasonable range of common altitudes.
The system’s dynamics are encoded in this discrete state-space as probabilistic transitions between
discrete states (this abstracts away underlying details of the physics, which the hybrid systems
techniques handle). Undesirable behaviors and states are described by assigning a cost to certain
state-action pairs. These costs are based on features like whether the state is an NMAC, and whether
the action reverses the previous resolution advisory—repeatedly reversing suggestions is jarring to
the pilot.

Modeling the continuous dynamics discretely in this way yields a Markov decision process
(MDP); a common decision theory framework with several effective algorithms for finding optimal
policies for an MDP (see, for example, [30]). MDPs are solved by dynamic programming algorithms
that propagate the costs of states and actions to the states and actions that lead to these states.
Discrete optimal policies found with these dynamic programming algorithms form the basis of the
continuous state-space ACAS X controller. Every continuous point falls in the neighborhood of a
number of discrete points, and the MDP solutions at these neighboring discrete points are linearly
interpolated to find the cost of different actions at the continuous point.

The MDP controller is synthesized using a discretized model of our dynamics, but we want
to prove its safety using more faithful continuous dynamics.†† In principle we could explicitly
represent the controller in our logic and try to directly prove its safety. However, even in a compact
representation the MDP policy is hundreds of megabytes large—monstrously large for all existing
hybrid systems verification tools.

Instead, we suggest a two-stage method for proving safety with respect to the continuous dy-
namics. First, the theorem prover is employed to find sufficient conditions for safety in the hybrid
systems model with its differential equations describing the continuous dynamics. These conditions
take the form of safe regions in the continuous state space for each action. Boundaries are described
with low-order polynomials. The regions have the semantics that if you start in Sa—the safe region
for action a—then you will remain safe as long as you execute a. These safe regions are related
to the monitors discussed in Section III. If one is in the intersection of two safe regions (i.e. in
Sa ∩ Sb) then there are at least two safe actions to choose from. The system has a problem if it is
in no safe region Sa.

With these safety regions, we can check that the possible chains of actions recommended by a
policy are all safe. In the MDP policy for ACAS X, this is a simple geometric problem that can be

†† In fact, the policy might not even be safe for the discrete dynamics. This is due to the fact that operational
considerations like ‘not bothering the pilot’ are incorporated into the cost function.

12

done in parallel. We do this by partitioning the continuous state space and checking each cell. If
action a is recommended anywhere in cell C, then that resolution advisory is safe if C is contained
in a’s safety region: C ⊆ Sa. If a partition contains possibly unsafe cells, then we either refine the
partition in these cells, or give up and report the problematic cells. If every cell is safe, then we
conclude inductively that the policy is safe: we only jump from safe action to safe action.

This two-stage method offers two advantages over the more direct method of explicitly rep-
resenting the policy. First, the safety regions are more compact symbolic regions than the MDP
policy‡‡ and easier for the theorem prover to reason about. This is because safety regions abstract
away a lot of the details the MDPs had to wrestle with, and use a symbolic polynomial represen-
tation that is richer than the tabular representation used by the MDP. Secondly, finding the safe
regions is decoupled from checking that a specific policy actually is safe. So if the exact details of the
policy are altered, we can simply reuse our safe regions and focus on checking that the new policy
is still safe according to these regions without having to redo the hybrid systems safety proofs.

This approach clearly complements the use of probabilistic model checking to verify the ACAS
X policy table [31].

B. Proof Automation
Automation for formal verification and validation is a key factor to integrating its use in indus-

trial contexts. This is even more crucial when one wants to use such tools in a design loop in early
development stages. Although nowadays engineers are more and more familiar with the theoretical
background behind these approaches, full automation is an active area of research to expand the
reach of formal verification & validation. In addition to the usual curse of dimensionality, expressive
languages—although very useful in practice—also have their challenges in analysis as they allow the
design of heterogeneous aspects of the systems. The typical example in hybrid systems modeling
languages is the ability to mix continuous (dynamics) and discrete (control) evolution of time, which
is crucial to understanding the interactions of advanced control with dynamics.

We are currently working on new ideas to reduce the needed number of interactions with the
theorem prover. More precisely, in addition to the automated generation of differential invariants
(such as I1 and I2 in Section III), we want to automate the generation of the safety bounds (such
as the safety monitor in Section III). Such directions have been recently explored within our group
[32].

C. Numerical Issues
A computer cannot effectively perform real numbers computations. Real numbers are always

truncated to fit a specific finite representation, more suitable for machines. Floating and fixed point
representations are the two commonly used finite representations. The challenge is that the models
and flight control algorithms are usually designed assuming real numbers arithmetic. Real numbers
are accurate for modeling the continuous behavior in the system, including the evolution of positions
and orientations of the aircraft. However, the internal control implementation will ultimately work
only with finite-precision arithmetic, which deviates from the true real state of the system and might
lead to errors that accumulate over time. Therefore, the discrepancy introduced by approximating
real numbers by finite representations needs to be accounted for. KeYmaera does not have a built-in
way of addressing floating-point or fixed-point arithmetic.

There are formal verification tools, such as Fluctuat [33], that are designed to formally check
the robustness and stability of numerical algorithms, that is, determine bounds on the error in-
troduced by floating-point computations. But those tools cannot reason about the differential
equations describing the aircraft dynamics nor about the true state of the aircraft in terms of its
real position, velocity, and orientation. Tools like Fluctuat, thus, often lead to rather pessimistic

‡‡ The safety-region polynomials were much more compact than any representations we tried for either the optimal
value-function or the policy regions for the ACAS X MDP. This included both lossless representations that tried
to exploit regularity in the data, and representations that allowed a small amount of loss.

13

over-approximations, because they lose the functional relations between the actuators (output) and
the sensors’ data (input).

Consequently, theorem proving of hybrid systems should be leveraged to model and reason about
the continuous part of the system and help tools like Fluctuat to tighten their approximations and
increase the accuracy of their results. Conversely, KeYmaera could use the bounds and numerical
relations discovered by Fluctuat as an overapproximation for the error introduced by the finite
precision number arithmetic.

D. Scalability
As stated earlier in this paper, formal verification tools do not and should not claim to solve

all verification problems of all aspects of all systems. Nevertheless, even after abstracting away
unwanted details, the scalability of the formal verification tools still remains one of the biggest
challenges for the community. Many tailored solutions have been successfully tested for abstract
interpretation [6, 34], each tuned for one specific property. The state space explosion in model
checking is yet an active area of research since its introduction in the early 80’s (see [5] for a survey).§§
The dL framework has already pushed further the boundaries that previous approaches were limited
to [9, 12]. It allows for sound compositional verification of (linear and nonlinear) hybrid systems.
That is, the system is decomposed into subsystems, then each subsystem is analyzed independently
from the other parts. This approach allows for the verification of real-world systems as it focuses
on one smaller part at a time. Our current work focuses on pushing further the automation of the
decomposition and abstraction procedures.

V. Related Work
The freshly published DO-178C [36] report about the certification guide lines for commercial

software-based aerospace systems explicitly supports the use of formal methods as a new standard
to ensure high-quality software for critical systems. Both software model checking [37] and abstract
interpretation [6, 38] have been shown to help verifying the complex software of nowadays aircraft.

Nevertheless having an aircraft in which software runs as expected does not necessarily prevent
collisions from happening. Indeed, such analysis needs to consider the behavior of the aircraft—
in addition to its embedded software—within its operational environment. This property makes
aircrafts essentially hybrid, because they involve both continuous flight dynamics and discrete control
software, which is a combination that is out of scope for software model checking [37] and abstract
interpretation [6, 38]. Formal verification and validation techniques for hybrid systems such as
theorem proving [8, 9, 12] are suitable, as we have illustrated in the collision avoidance case study
of Section III.

The benefit of formally verifying a collision avoidance system is obvious: missing corner cases
is unacceptable. While exhaustive stress testing is infeasible, formal methods aim at proving the
absence of mishaps, a highly desirable property. As a matter of fact, many collision avoidance
systems have been proposed—see [39] for an overview—, but only few attempts have been made
to formally verify such systems [24, 40–42]. Non-verified collision avoidance systems, such as those
based on probabilistic modeling methods (e.g. [43, 44]) have the advantage of being designed to cope
with the noisy physical environment. However, this leads to discrete time and space approximations
of the motion of involved aircraft, leaving open questions about the error that these approximations
induce on the overall behavior of the system. On the other hand, although easier to verify, worst-case
modeling (e.g. [45, 46]) is too conservative. It assumes uniform distributions of events and resorts
often to either large or non-flyable approximations of the dynamics. Likewise, the verification (not
the design) of collision avoidance systems based on controllable sets [24, 47] uses either simplified,
usually non-flyable approximations, such as a succession of straight-lines segments or instant turns
as in [24] or falls back on non-exhaustive numerical testing when the computation is too complex

§§ Similar issues were noticed in other branches of computer science earlier, e.g. the curse of dimensionality observed
by Bellman [35].

14

[47]. Numerical computation of the reachable sets of hybrid systems by means of partial differential
equations [48] has been applied to design and verify the safety of collision avoidance systems for
which an analytic solution is available. Such approach is interesting, especially in sufficiently low
dimensions, but is not necessarily sound, because of numerical errors that can accumulate. Notice
also that the computation of reachable sets is hard to automate except for hybrid systems with
linear dynamics [49].

Previous approaches of using theorem provers, such as PVS, in [40, 41], for collision avoidance
systems were helpful but also ignored the flight dynamics and used more abstract geometrical
considerations such as straight lines. Once again, the main problem one faces in this case is the lack
of any formal link between the aircraft model and its geometrical approximation. In addition, using
a hybrid theorem prover such as KeYmaera, enriched with specific proof rules to reason about the
continuous dynamics, is much more suitable for systems that are essentially hybrid.

The hybrid system theorem prover KeYmaera has been used to formally verify a circular round-
about maneuver modeled by Dubins curves [42]. The full capabilities of such protocol proposed first
in [24] were formally verified and even refined with flyable entries and exits.

The proposed approach in this work is different form [24, 42] in that it is not protocol-based. It
hence allows for more flexible, yet flyable, collision resolutions. The verification does not consider
an approximated continuous nor a discretized trajectory as in [24, 40, 41]. The analysis is performed
with respect to the continuous motion of aircraft. Yet, it allows for the selection of a feasible control
input as in [24, 47, 48], leading naturally to a flyable resolution of conflicts. It is however desirable
to refine the considered model with relevant uncertainties in the sensing and actuation as in [43–46],
which we leave as a future work.

Apart from collision avoidance, other aircraft maneuvers were also formally verified. For in-
stance, the PVS theorem prover was used to prove the safety of an aircraft landing protocol [50, 51].
In [52] the safety analysis of aircraft autolander was performed by means of numerical computation
of reachable sets. More recently, the distributed extension of the KeYmaera and its underlying logic
was used to verify safe separation in a system with arbitrarily many aircraft or UAVs [19].

VI. Conclusion
The differential dynamic logic (dL) framework gives an expressive and rich language for a for-

mal description of hybrid systems. It comes with effective syntactic proof rules that were proven
successful in different case studies, including applications in the domain of aviation. We sketched
the avenues we are exploring to extend our approach to formally verify real aerospace systems. We
are convinced that the complexity and nature of the aerospace systems requires a mixture of formal
methods and classical empirical approaches to verify and validate the behavior of all parts of the
system design and implementation. The drawbacks of one method are usually diminished—if not
eliminated—by the complementary use of another approach. For instance abstract interpretation
techniques can significantly improve the scalability of the analysis, whereas theorem proving turns
out to be crucial to reason about high level abstraction that requires precise analysis and the han-
dling of the flight dynamics. In the same vein, model checking can be used to reach a better coverage
of the state space even for properties that are still out of reach for abstract interpreters. Similarly,
theorem provers provide means of verifying systems that are out of reach for their present level of
automation or for other automatic tools, because they provide ways of inspecting and where an
automatic proof attempt failed and helping out.

With the astonishing advances in formal methods, and the surprisingly strong analysis that is
possible today, we believe that formal methods will become—and remain—a crucial ingredient in the
design of aerospace systems. We are convinced that formal methods, as supported by DO-178C, will
play an increasingly important role in certification. Runs of a model checker or abstract interpreter
give evidence that parts of the aerospace system function correctly, and this evidence should be
incorporated in the certification process. In theorem proving approaches—such as the one shown
in this paper—certification is direct and emphatic. The result of a theorem proving activity for an
aerospace system is a proof, which can be checked independently as evidence that the aerospace
system is correct with respect to the corresponding formal properties. This is a promising feature,
because it makes the final proof artifact independent of the advanced automation techniques that

15

were used in the original proof system to come up with the proof in the first place.
[1] Trimble, S., “AUVSI: RQ-7 likely not to blame for C-130 collision,” Flight Global, 2011.
[2] Johnson, C., “Review of the BFU Überlingen Accident Report,” , 2004. www.dcs.gla.ac.uk/~johnson/

Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF.
[3] “Airbus - Esterel Technologies,” http://www.esterel-technologies.com/success-stories/airbus/.

Accessed: July 2014.
[4] Weiss, K. A., Dulac, N., Chiesi, S., Daouk, M., Zipkin, D., and Leveson, N., “Engineering Spacecraft

Mission Software using a Model-Based and Safety-Driven Design Methodology,” Journal of Aerospace
Computing, Information, and Communication, Vol. 3, No. 11, 2006, pp. 562–586,
doi:10.2514/1.24677.

[5] Fix, L., “Fifteen Years of Formal Property Verification in Intel,” in Grumberg, O. and Veith, H., eds.,
“25 Years of Model Checking,” Springer-Verlag, Berlin, Heidelberg, pp. 139–144, 2008.

[6] Delmas, D. and Souyris, J., “Astrée: From Research to Industry,” in Nielson, H. and Filé, G., eds.,
“Static Analysis,” Springer Berlin Heidelberg, Vol. 4634 of LNCS, pp. 437–451, 2007.

[7] Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., and Rival, X., “Static Analysis
and Verification of Aerospace Software by Abstract Interpretation,” in “AIAA Infotech@Aerospace
2010,” American Institute of Aeronautics and Astronautics, Atlanta, Georgia, 2010, pp. 1–38.

[8] Platzer, A., “Differential Dynamic Logic for Hybrid Systems.” Journal of Automated Reasoning, Vol. 41,
No. 2, 2008, pp. 143–189.

[9] Platzer, A., “Logics of Dynamical Systems,” in “Logic in Computer Science (LICS’12),” IEEE, 2012,
pp. 13–24.

[10] Platzer, A. and Clarke, E. M., “Computing Differential Invariants of Hybrid Systems as Fixedpoints,”
in Gupta, A. and Malik, S., eds., “Computer Assisted Verification (CAV’08),” Springer, Vol. 5123 of
LNCS, 2008, pp. 176–189.

[11] Henzinger, T. A., “The Theory of Hybrid Automata,” in “LICS,” IEEE Computer Society, 1996, pp.
278–292.

[12] Platzer, A., Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics, Springer,
Heidelberg, 2010.

[13] Platzer, A. and Quesel, J.-D., “KeYmaera: A Hybrid Theorem Prover for Hybrid Systems.” in Armando,
A., Baumgartner, P., and Dowek, G., eds., “International Joint Conference on Automated Reasoning
(IJCAR’08),” Springer, Vol. 5195 of LNCS, 2008, pp. 171–178.

[14] Loos, S. M., Platzer, A., and Nistor, L., “Adaptive Cruise Control: Hybrid, Distributed, and Now
Formally Verified,” in “Formal Methods (FM’09),” Springer, Vol. 6664 of LNCS, 2011, pp. 42–56.

[15] Loos, S. M. and Platzer, A., “Safe Intersections: At the Crossing of Hybrid Systems and Verification,”
in Yi, K., ed., “Intelligent Transportation Systems (ITSC’11),” , 2011, pp. 1181–1186.

[16] Mitsch, S., Loos, S. M., and Platzer, A., “Towards formal verification of freeway traffic control,” in
Lu, C., ed., “Proceedings of the 2nd International Conference on Cyber-Physical Systems (ICCPS’12),”
IEEE, 2012, pp. 171–180.

[17] Platzer, A. and Quesel, J.-D., “European Train Control System: A Case Study in Formal Verification,”
in Breitman, K. and Cavalcanti, A., eds., “International Conference on Formal Engineering Methods
(ICFEM’09),” Springer, Vol. 5885 of LNCS, 2009, pp. 246–265.

[18] Platzer, A. and Clarke, E. M., “Formal Verification of Curved Flight Collision Avoidance Maneuvers:
A Case Study,” in Cavalcanti, A. and Dams, D., eds., “Formal Methods (FM’09),” Springer, Vol. 5850
of LNCS, 2009, pp. 547–562.

[19] Loos, S. M., Renshaw, D. W., and Platzer, A., “Formal Verification of Distributed Aircraft Controllers,”
in Belta, C. and Ivancic, F., eds., “Hybrid Systems: Computation and Control (HSCC’13), Philadelphia,
PA, USA, April 8-13, 2013 (part of CPS Week 2013),” ACM, 2013, pp. 125–130.

[20] Mitsch, S., Ghorbal, K., and Platzer, A., “On Provably Safe Obstacle Avoidance for Autonomous
Robotic Ground Vehicles,” in “Robotics: Science and Systems (RSS’13),” , 2013.
http://www.roboticsproceedings.org/rss09/p14.html.

[21] Kouskoulas, Y., Renshaw, D. W., Platzer, A., and Kazanzides, P., “Certifying the Safe Design of a
Virtual Fixture Control Algorithm for a Surgical Robot,” in Belta, C. and Ivancic, F., eds., “Hybrid
Systems: Computation and Control (HSCC’13), Philadelphia, PA, USA, April 8-13, 2013 (part of CPS
Week 2013),” ACM, 2013, pp. 263–272.

[22] Dubins, L. E., “On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents,” American Journal of Mathematics, pp. 497–516.

[23] Bicchi, A., Marigo, A., Pappas, G., Pardini, M., Parlangeli, G., Tomlin, C., and Sastry, S., “Decentral-
ized air traffic management systems: performance and fault tolerance,” in “Proceedings of the IFAC
International Workshop on Motion Control (MC’98),” , 1998, pp. 259–264.

[24] Tomlin, C., Pappas, G. J., and Sastry, S., “Conflict resolution for air traffic management: a study
in multi-agent hybrid systems,” IEEE Transactions on Automatic Control, Vol. 43, No. 4, 1998, pp.
509–521.

[25] Platzer, A., “Differential-algebraic Dynamic Logic for Differential-algebraic Programs,” J. Log. Comput.,
Vol. 20, No. 1, 2010, pp. 309–352. Advance Access published on November 18, 2008.

16

[26] Ghorbal, K. and Platzer, A., “Characterizing Algebraic Invariants by Differential Radical Invariants,”
in Ábrahám, E. and Havelund, K., eds., “TACAS,” Springer, Vol. 8413, 2014, pp. 279–294.

[27] Platzer, A., “Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs,” in Bjørner, N.
and Sofronie-Stokkermans, V., eds., “Conference on Automated Deduction (CADE’11),” Springer, Vol.
6803 of LNCS, 2011, pp. 431–445.

[28] Kalman, R. E. et al., “A new approach to linear filtering and prediction problems,” Journal of Basic
Engineering, Vol. 82, No. 1, 1960, pp. 35–45.

[29] Kochenderfer, M. J., Holland, J. E., and Chryssanthacopoulos, J. P., “Next-Generation Airborne Col-
lision Avoidance System,” Lincoln Laboratory Journal, Vol. 19, No. 1.

[30] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley
& Sons, 2009.

[31] von Essen, C. and Giannakopoulou, D., “Analyzing the Next Generation Airborne Collision Avoidance
System,” in Ábrahám, E. and Havelund, K., eds., “TACAS,” Springer, Vol. 8413 of Lecture Notes in
Computer Science, 2014, pp. 620–635.

[32] Mitsch, S. and Platzer, A., “ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System
Models,” in Bonakdarpour, B. and Smolka, S. A., eds., “RV,” Springer, Vol. 8734 of LNCS, 2014, pp.
199–214.

[33] Bouissou, O., Goubault, E., Putot, S., Tekkal, K., and Vedrine, F., “HybridFluctuat: A Static Analyzer
of Numerical Programs within a Continuous Environment,” in “Computer Aided Verification (CAV’09),”
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 620–626.

[34] Venet, A., “The Gauge Domain: Scalable Analysis of Linear Inequality Invariants,” in Madhusudan, P.
and Seshia, S., eds., “Computer Aided Verification (CAV’12),” Springer Berlin Heidelberg, Vol. 7358 of
LNCS, pp. 139–154, 2012.

[35] Bellman, R. E., Dynamic programming, Princeton University Press, 1962.
[36] RTCA, “DO-178C: Software Considerations in Airborne Systems and Equipment Certification,” , 2012.
[37] Miller, S. P., Whalen, M. W., and Cofer, D. D., “Software model checking takes off,” Commun. ACM,

Vol. 53, No. 2, 2010, pp. 58–64.
[38] Souyris, J., Wiels, V., Delmas, D., and Delseny, H., “Formal Verification of Avionics Software Products,”

in Cavalcanti, A. and Dams, D., eds., “FM,” Springer, Vol. 5850 of Lecture Notes in Computer Science,
2009, pp. 532–546.

[39] Kuchar, J. K. and Yang, L. C., “A review of conflict detection and resolution modeling methods,”
Intelligent Transportation Systems, IEEE Transactions on, Vol. 1, No. 4, 2000, pp. 179–189.

[40] Dowek, G., Muñoz, C., and Carreño, V. A., “Provably Safe Coordinated Strategy for Distributed
Conflict Resolution,” in “Proceedings of the AIAA Guidance Navigation, and Control Conference and
Exhibit 2005, AIAA-2005-6047,” , 2005.

[41] Galdino, A. L., Muñoz, C., and Ayala-Rincón, M., “Formal Verification of an Optimal Air Traffic
Conflict Resolution and Recovery Algorithm,” in Leivant, D. and de Queiroz, R., eds., “Workshop on
Logic, Language, Information and Computation (WoLLIC’07),” Springer, Vol. 4576 of LNCS, 2007, pp.
177–188.

[42] Platzer, A. and Clarke, E. M., “Computing Differential Invariants of Hybrid Systems as Fixedpoints,”
Formal Methods in System Design, Vol. 35, No. 1, 2009, pp. 98–120.

[43] Prandini, M., Hu, J., Lygeros, J., and Sastry, S., “A probabilistic approach to aircraft conflict detection,”
Intelligent Transportation Systems, IEEE Transactions on, Vol. 1, No. 4, 2000, pp. 199–220.

[44] Lygeros, J. and Prandini, M., “Aircraft and weather models for probabilistic collision avoidance in air
traffic control,” in “Decision and Control, 2002, Proceedings of the 41st IEEE Conference on,” Vol. 3,
2002, pp. 2427–2432 vol.3.

[45] Lachner, R., “Collision avoidance as a differential game: real-time approximation of optimal strategies
using higher derivatives of the value function,” in “Systems, Man, and Cybernetics, 1997. Computational
Cybernetics and Simulation., 1997 IEEE International Conference on,” Vol. 3, 1997, pp. 2308–2313 vol.3.

[46] Bilimoria, K. D., Lee, H. Q., Mao, Z.-H., and Feron, E., “Comparison of Centralized and Decentralized
Conflict Resolution Strategies for Multiple-Aircraft Problems,” in “AIAA Guidance, Navigation, and
Control Conference,” , 2000.

[47] Hwang, I. and Tomlin, C., “Protocol-based conflict resolution for air traffic control,” Air Traffic Control
Quarterly, Vol. 15, No. 1, 2007, pp. 1–34.

[48] Mitchell, I. M., Bayen, A. M., and Tomlin, C. J., “A time-dependent Hamilton-Jacobi formulation of
reachable sets for continuous dynamic games,” IEEE Trans. Automat. Contr., Vol. 50, No. 7, 2005, pp.
947–957.

[49] Frehse, G., Guernic, C. L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang,
T., and Maler, O., “SpaceEx: Scalable Verification of Hybrid Systems,” in Gopalakrishnan, G. and
Qadeer, S., eds., “CAV,” Springer, Vol. 6806 of Lecture Notes in Computer Science, 2011, pp. 379–395.

[50] Umeno, S. and Lynch, N. A., “Proving Safety Properties of an Aircraft Landing Protocol Using I/O
Automata and the PVS Theorem Prover: A Case Study,” in Misra, J., Nipkow, T., and Sekerinski, E.,
eds., “Formal Methods (FM’06),” Springer, Vol. 4085 of Lecture Notes in Computer Science, 2006, pp.
64–80.

17

[51] Umeno, S. and Lynch, N. A., “Safety Verification of an Aircraft Landing Protocol: A Refinement
Approach,” in Bemporad, A., Bicchi, A., and Buttazzo, G., eds., “Hybrid Systems: Computation and
Control (HSCC’07),” Springer, Vol. 4416 of LNCS, 2007, pp. 557–572.

[52] Bayen, A. M., Mitchell, I. M., Osihi, M. K., and Tomlin, C. J., “Aircraft Autolander Safety Analysis
Through Optimal Control-Based Reach Set Computation,” Journal of Guidance, Control, and Dynam-
ics, Vol. 30, No. 1, 2007, pp. 68–77.

18

