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Introduction

Understanding the dynamics of nonlinear lattices (i.e. large networks of coupled nonlinear oscillators) is a problem of fundamental importance in mechanics, condensed matter physics or biology. One of the major issues concerns the mathematical analysis and numerical computation of special classes of nonlinear time-periodic oscillations that organize the dynamics in many situations. In particular, spatially periodic waves (standing waves or periodic traveling waves) and spatially localized waves (breathers) are the object of intensive research [START_REF] Flach | Discrete breathers : advances in theory and applications[END_REF][START_REF] Vakakis | Normal Modes and Localization in Nonlinear Systems[END_REF]. In this context, many theoretical and numerical works have focused on smooth nonlinear systems, whereas relatively few mathematical existence results are available for waves in nonsmooth infinite lattices [START_REF] Gendelman | Discrete breathers in vibroimpact chains: analytic solutions[END_REF][START_REF] Gendelman | Exact solutions for discrete breathers in a forced-damped chain[END_REF][START_REF] Lebellego | Phénomènes ondulatoires dans un modèle discret de faille sismique[END_REF][START_REF] Shiroky | Discrete breathers in an array of self-excited oscillators: Exact solutions and stability[END_REF]. Developing theoretical and numerical tools for the analysis of nonlinear waves in nonsmooth systems is extremely important for applications, in particular in the context of impact mechanics where unilateral contacts and friction come into play [START_REF] Acary | Numerical methods for nonsmooth dynamical systems[END_REF][START_REF] Babitsky | Theory of vibro-impact systems and applications[END_REF][START_REF] Babitsky | Vibration of strongly nonlinear discontinuous systems[END_REF][START_REF] Bernardo | Piecewise-smooth Dynamical Systems[END_REF][START_REF] Ibrahim | Vibro-impact Dynamics: Modeling, Mapping and Applications[END_REF]. Spatially discrete lattice models are frequently encountered in this context, in particular for the modeling of waves in multibody mechanical systems (e.g. granular media) or in finite element models of continuum systems. A classical example illustrating the latter case concerns thin oscillating mechanical structures (a string under tension or a clamped beam) contacting rigid obstacles [START_REF] Babitsky | Theory of vibro-impact systems and applications[END_REF][START_REF] Babitsky | Vibration of strongly nonlinear discontinuous systems[END_REF][START_REF] Ibrahim | Vibro-impact Dynamics: Modeling, Mapping and Applications[END_REF]. Such a structure can be described by a one-dimensional finite-element model involving a large number of degrees of freedom [START_REF] Ahn | Existence of solutions for a class of impact problems without viscosity[END_REF][START_REF] Schatzman | Numerical approximation of a wave equation with unilateral constraints[END_REF]. The contact force between the string/beam and a rigid obstacle is either measure-valued (for rebounds with velocity jumps at contact times) or set-valued (if a wrapping of the string on the obstacle occurs), see e.g. [START_REF] Cabannes | Presentation of software for movies of vibrating strings with obstacles[END_REF].

Although nonlinear modes of oscillation have been observed in experiments on impacting mechanical systems (see e.g. [START_REF] Astashev | Experimental investigation of vibrations of strings interacting with point obstacles[END_REF][START_REF] Babitsky | Vibration of strongly nonlinear discontinuous systems[END_REF]), relatively little is known from a mathematical point of view on their existence and stability. Existence theorems for periodic and almost-periodic oscillations have been obtained in particular cases, for a continuum string model with point-mass or plane obstacle [START_REF] Cabannes | Mouvements périodiques d'une corde vibrante en présence d'un obstacle rectiligne[END_REF][START_REF] Cabannes | Mouvements presque-périodiques d'une corde vibrante en présence d'un obstacle fixe, rectiligne ou ponctuel[END_REF][START_REF] Cabannes | Mouvement d'une corde vibrante en présence d'un obstacle rectiligne fixe[END_REF][START_REF] Cabannes | Periodic motions of a string vibrating against a fixed point-mass obstacle: II[END_REF][START_REF] Haraux | Almost periodic motion of a string vibrating against a straight fixed obstacle[END_REF][START_REF] Schatzman | A Hyperbolic problem of second order with unilateral constraints : the vibrating string with a concave obstacle[END_REF] (see also [START_REF] Cabannes | Cordes vibrantes avec obstacles[END_REF] for a review). In addition, several analytical approaches have been used to obtain time-periodic solutions formally for different types of piecewiselinear dynamical systems with rigid impacts. One can mention Fourier and Green function methods [START_REF] Astashev | Longitudinal vibrations of a thin rod interacting with an immobile limiter[END_REF][START_REF] Babitsky | Theory of vibro-impact systems and applications[END_REF][START_REF] Babitsky | Vibration of strongly nonlinear discontinuous systems[END_REF][START_REF] Gendelman | Discrete breathers in vibroimpact chains: analytic solutions[END_REF][START_REF] Gendelman | Exact solutions for discrete breathers in a forced-damped chain[END_REF][START_REF] Grinberg | Localization in finite vibroimpact chains: Discrete breathers and multibreathers[END_REF][START_REF] Krupenin | On the analysis of models of strongly nonlinear vibroimpact processes in equipped lattice systems[END_REF][START_REF] Krupenin | Simulation of vibroshock in two-dimensional systems with inherited properties[END_REF][START_REF] Krupenin | Vibration of string placed between extended and point limiters[END_REF][START_REF] Perchikov | Dynamics of a discrete breather in a harmonically excited chain with vibro-impact on-site potential[END_REF][START_REF] Shiroky | Discrete breathers in an array of self-excited oscillators: Exact solutions and stability[END_REF], modal decomposition [START_REF] Legrand | Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law[END_REF][START_REF] Thorin | Nonsmooth modal analysis of piecewise-linear impact oscillators[END_REF] and sawtooth time transformations [START_REF] Pilipchuk | Impact modes in discrete vibrating systems with rigid barriers[END_REF]. Most of the results obtained for discrete systems concern impacts localized on a single particle, and different types of waves have been constructed. In [START_REF] Legrand | Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law[END_REF][START_REF] Pilipchuk | Impact modes in discrete vibrating systems with rigid barriers[END_REF][START_REF] Thorin | Nonsmooth modal analysis of piecewise-linear impact oscillators[END_REF], nonsmooth normal modes have been obtained for general classes of conservative multiple degrees-of-freedom systems (the analysis of [START_REF] Pilipchuk | Impact modes in discrete vibrating systems with rigid barriers[END_REF] is performed for a single or two impacting particles). Spatially-localized oscillations (breathers) with a single impacting node have been also studied for different classes of infinite or finite systems. Breather existence and stability has been analyzed for oscillators chains with linear nearest-neighbors coupling and a symmetric local vibroimpact potential (including in some cases a linear component), both for conservative systems [START_REF] Gendelman | Discrete breathers in vibroimpact chains: analytic solutions[END_REF] and forced systems with dissipative impacts [START_REF] Gendelman | Exact solutions for discrete breathers in a forced-damped chain[END_REF][START_REF] Perchikov | Dynamics of a discrete breather in a harmonically excited chain with vibro-impact on-site potential[END_REF][START_REF] Shiroky | Discrete breathers in an array of self-excited oscillators: Exact solutions and stability[END_REF].

One of the main difficulty with the above techniques is to check analytically that the formal solutions of the piecewise-linear systems are consistent, i.e. satisfy the inequality constraints corresponding to non-penetration of the obstacles. This has been achieved in a number of works in the case of breathers [START_REF] Gendelman | Discrete breathers in vibroimpact chains: analytic solutions[END_REF][START_REF] Gendelman | Exact solutions for discrete breathers in a forced-damped chain[END_REF][START_REF] Shiroky | Discrete breathers in an array of self-excited oscillators: Exact solutions and stability[END_REF] and for nonsmooth modes close to grazing linear normal modes [START_REF] Legrand | Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law[END_REF]. In the work [START_REF] Grinberg | Localization in finite vibroimpact chains: Discrete breathers and multibreathers[END_REF], the analysis of [START_REF] Perchikov | Dynamics of a discrete breather in a harmonically excited chain with vibro-impact on-site potential[END_REF] has been extended to several impacting particles, but the verification of the inequality constraints is still an open problem in that case.

In this work, we study the existence and stability of time-periodic oscillations in an infinite chain of linearly coupled impact oscillators reminiscent of a model analyzed in [START_REF] Grinberg | Localization in finite vibroimpact chains: Discrete breathers and multibreathers[END_REF][START_REF] Perchikov | Dynamics of a discrete breather in a harmonically excited chain with vibro-impact on-site potential[END_REF], for rigid impacts without energy dissipation. We show the existence of exact solutions (i.e. check the non-penetration conditions) for an ar-bitrary number of impacting particles when the coupling between oscillators is small, and we compute solution branches numerically for larger couplings. The system under consideration is depicted in Fig. 1. Particle positions are denoted as y(t) = (y n (t)) n∈Z and satisfy the following complementarity system ÿn + y nγ (∆ y) n = λ n , n ∈ Z,

(1)

0 ≤ λ ⊥ (y + 1) ≥ 0, (2) 
if ẏn (t -) < 0 and y n (t) = -1 then ẏn (t + ) =ẏn (t -),

where (∆ y) n = y n+1 -2 y n + y n-1 defines a discrete Laplacian operator, 1 denotes the constant sequence with all terms equal to unity and γ ≥ 0 is a parameter. Nondissipative impacts occur for y n (t) = -1 and give rise to impulsive reaction forces λ n (t). This configuration differs from the case of a symmetric local vibroimpact potential considered in [START_REF] Grinberg | Localization in finite vibroimpact chains: Discrete breathers and multibreathers[END_REF][START_REF] Perchikov | Dynamics of a discrete breather in a harmonically excited chain with vibro-impact on-site potential[END_REF] which introduces an additional barrier above the chain.
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Fig. 1: A chain of identical impact oscillators with linear nearest-neighbors coupling. The chain is allowed to oscillate above a straight obstacle. After suitable rescaling, the obstacle position is fixed to y = -1, and the masses m of particles and local stiffness k are set to unity.

Our analytical results are presented in section 2. We start by describing in section 2.1 some simple examples of nonsmooth modes of oscillations (in-phase, outof-phase, and some symmetry-breaking bifurcations from these modes). In section 2.2, we reformulate the search of periodic solutions of ( 1)-( 2)-(3) as a boundary value problem incorporating unilateral constraints. This formulation, together with an appropriate notion of nondegenerate modes introduced in section 2.3, allows us to construct nonsmooth modes of oscillations (spatially localized or extended) at small coupling (see theorems 1 and 2). This approach is an adaptation of the idea of "anticontinuum" limit [START_REF] Flach | Discrete breathers : advances in theory and applications[END_REF][START_REF] Mackay | Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators[END_REF][START_REF] Sepulchre | Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators[END_REF] to the nonsmooth setting. Section 2.4 deals with the linear stability of time-periodic solutions of (1)-( 2)-(3). We provide a formula for the monodromy matrix that determines spectral stability in the presence of simple impacts, following the lines of [START_REF] Nqi | Computation of Lyapunov exponents for dynamical system with impact[END_REF]. In section 3, the above results are used for the numerical computation of time-periodic solutions. Solution branches are continued for fixed values of T , varying the linear stiffness γ (and starting from the limit γ = 0) or by fixing γ and varying T . We compute in this way some families of breathers and extended modes and study their linear stability. Dynamical instabilities are illustrated by integrating (1)-( 2)-(3) numerically. These computations are performed with the Siconos software for nonsmooth dynamical systems [START_REF] Acary | Numerical methods for nonsmooth dynamical systems[END_REF]43].

2 Analytical study of nonsmooth modes

Definitions and basic examples

We look for T -periodic solutions of ( 1)-( 2)-(3) even in time, and assume each particle undergoes at most one impact during each period of oscillation. Consequently, for a given particle, impacts either occur at half-period multiples or do not occur at all. We denote by I k ⊂ Z with k = 1 or 2 the index sets of particles impacting at t = (2m+k) T /2 for all m ∈ Z (i.e. y n ((2m+k) T /2) = -1), and by I 0 := Z\(I 1 ∪I 2 ) the index set corresponding to non-impacting particles (i.e. y n (t) > -1 for all t). We have thus λ n = 0 for all n ∈ I 0 and

λ n = 2 ẏn ( kT + 2 ) ∑ m∈Z δ (m+ k 2 )T for all n ∈ I k . (4) 
The triplet (I 0 , I 1 , I 2 ) will be denoted as the pattern of the periodic solution. A nonsmooth mode corresponds to a continuous one-parameter family of periodic solutions (parameterized typically by T ) sharing a given pattern with I 0 = Z (i.e. impacts occur).

We provide below some simple examples of nonsmooth modes. The simplest case corresponds to the in-phase mode with I 1 = Z (or equivalently I 2 = Z up to a phase shift). This solution exists for T ∈ (π, 2π) and reads

y n (t) = - cost cos (T /2) for |t| ≤ T /2, (5) 
where ( 5) is extended by periodicity outside the interval (-T /2, T /2). The impact velocity reads in particular ẏ1 ((T /2)

+ ) = -ẏ1 ((T /2) -) = -tan (T /2).
The amplitude of oscillations diverges when T → π and becomes unity for T = 2π. In that case, the impact becomes grazing (i.e. occurs at zero velocity) and one recovers the linear in-phase mode y n (t) = cost, which is solution of (1) with λ = 0. Notice that for T = 2 k π outside the interval (π, 2π), expression [START_REF] Babitsky | Theory of vibro-impact systems and applications[END_REF] does not provide a solution of (1)-( 2)-(3) because the constraint y n ≥ -1 is violated.

Another example concerns nonsmooth modes with spatial period two, i.e. which satisfy y n+2 (t) = y n (t). Nonsmooth modes in two degrees-of-freedom impacting systems have been studied in a number of works, see e.g. [START_REF] Manevitch | Exact solutions for a discrete systems undergoing free vibro-impact oscillations[END_REF][START_REF] Vedenova | Normal oscillations of a string with concentrated masses on nonlinearly elastic supports[END_REF] in the case of symmetric constraints and [START_REF] Ibrahim | Vibro-impact Dynamics: Modeling, Mapping and Applications[END_REF] for more references. In what follows we discuss the case when I 1 and I 2 consist of the sets of odd and even integers respectively. Moreover we assume that all impacts velocities are identical and nonzero. In order to compute such modes, we introduce the relative displacement r = y 2y 1 , the center of mass q = (y 1 + y 2 )/2 and the impact velocity v = ẏ2 (0 + ) = ẏ1 ((T /2) + ) = 0. From equations ( 1) and (4) taken at n = 1, 2 and considering the spatial period two of the mode, one obtains

r + Ω 2 r = 2 v ∑ m∈Z (-1) m δ m T 2 , (6) 
where Ω = √ 1 + 4 γ. Note that Ω is the frequency of the linear out-of-phase mode y n (t) = (-1) n cos (Ω t), which is solution of (1) with λ = 0. If the non-resonance condition (2m + 1) (2π/T ) = Ω holds true for all integers m, there exists an even T -periodic solution of (6) defined by

r(t) = v Ω sin (Ω (t -T 4 )) cos (Ω T /4) for t ∈ [0, T /2], (7) 
where the integration constants have been determined from the conditions v = ṙ(0 + ) = ṙ((T /2) -). In addition, the T -periodic solution is unique if m (2π/T ) = Ω for all integers m. From expression [START_REF] Ballard | Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints[END_REF] and using the fact that r is T -periodic and even, one can notice that r( T 4 + t) = -r( T 4t) for all t ∈ R. Similarly, the center of mass satisfies

q + q = v ∑ m∈Z δ m T 2 . ( 8 
)
Let us assume that the non-resonance condition T = 4 m π holds true for all integer m. In that case, equation ( 8) admits an even T /2-periodic solution. Indeed, since v/2 = q(0 + ) =q((T /2) -), we find

q(t) = v 2 cos (t -T 4 ) sin (T /4) for t ∈ [0, T /2], (9) 
and q is defined as the T /2-periodic extension of (9). The symmetry q( T 4 + t) = q( T 4t) for all t ∈ R and the fact that q is T /2-periodic imply that q is even. In addition, [START_REF] Babitsky | Vibration of strongly nonlinear discontinuous systems[END_REF] does not possess additional T -periodic solutions if the non-resonance condition T = 2 m π holds true for all integer m.

Particle displacements are obtained from the identities

y 1 = q - r 2 , y 2 = q + r 2 .
One can check that ẏ1 (0 + ) = 0, hence ẏ1 (0 -) = 0 and y 1 is smooth everywhere except at the impact times t = (2k + 1)T /2 with k ∈ Z. Moreover, it follows from the symmetries of r that y 2 (t) = y 1 (t + T /2) = y 1 (t -T /2). We use the constraint y 2 (0) = -1 to determine v from T , which yields

v = 2 1 Ω tan (Ω T /4) -cot (T /4) -1 (10) 
and implies y 1 (T /2) = -1. The expression in [START_REF] Cabannes | Mouvements presque-périodiques d'une corde vibrante en présence d'un obstacle fixe, rectiligne ou ponctuel[END_REF] is depicted in Figure 2. In the uncoupled case γ = 0, expression [START_REF] Cabannes | Mouvements presque-périodiques d'une corde vibrante en présence d'un obstacle fixe, rectiligne ou ponctuel[END_REF] simplifies to v =tan (T /2) and one recovers the case n = 1 of (5). Moreover, in the limit cases T → (2k + 1) 2π/Ω (k ∈ N 0 ) and T → 4mπ (m ∈ N) one obtains v → 0, i.e. a grazing impact. When T → (2k + 1) 2π/Ω and Ω = (2k + 1)/(2m) for all m ∈ N, the above solution converges towards the linear out-of-phase mode y n (t) = (-1) n+1 cos (Ω t), while T → 4mπ and Ω = (2k + 1)/(2m) for all k ∈ N 0 leads to a convergence towards the linear in-phase mode y n (t) =cost.

Fig. 2: Impact velocity as a function of the period

In order to obtain solutions of (1)-( 2)-( 3), there remains to check for which values of parameters γ, T the constraint y 1 ≥ -1 is satisfied. Let us examine this problem when the coupling constant γ is fixed and T is varied. A necessary condition is v ≥ 0, which is achieved for values of T > 0 within an infinite and unbounded sequence of disjoint intervals depending of γ. The lower bounds of these intervals are the roots of v -1 , and the upper bounds take the form T = (2k + 1) 2π/Ω with k ∈ N 0 or T = 4mπ with m ∈ N (values leading to v = 0). In particular, the first interval takes the form (T 0 (γ), 2π/Ω ], where T 0 (γ) is implicitely defined through 1

Ω tan (Ω T 0 /4) = cot (T 0 /4), T 0 ∈ (0, 2π/Ω ). (11) 
Note that lim γ→+∞ T 0 (γ) = 0 (since T 0 < 2π (1 + 4γ) -1/2 ), lim γ→0 T 0 (γ) = π (case Ω = 1 of ( 11)), and T 0 is a decreasing function of γ (since the left side of ( 11) is increasing with Ω or γ), hence T 0 (γ) < π for γ > 0. The upper bound T = 2π/Ω yields v = 0 (grazing impact) as previously outlined, whereas in the case T → T 0 (γ) + one obtains v → +∞. Now let us check the constraint y 1 (t) ≥ -1 in the case T ∈ (T 0 (γ), 2π/Ω ). One can restrict the discussion to t ∈ [0, T /2] without loss of generality (since y 1 is even and T -periodic). In that case, we deduce from the above computations

ẏ1 (t) = - v 2 sin (t -T 4 ) sin (T /4) + cos (Ω (t -T 4 
)) cos (Ω T /4) .

Consequently, the conditions T < 2π/Ω < 2π and v > 0 (which follows from T ∈ (T 0 (γ), 2π/Ω )) imply that y 1 is decreasing on [T /4, T /2], hence y 1 (t) > -1 = y 1 (T /2) for all t ∈ [T /4, T /2). In addition, expressions [START_REF] Ballard | Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints[END_REF] and [START_REF] Cabannes | Mouvements périodiques d'une corde vibrante en présence d'un obstacle rectiligne[END_REF] show that r ≤ 0 and q > 0 on [0, T /4], hence y 1 > 0 on [0, T /4]. This shows that y 1 (t) > -1 for all t ∈ [0, T /2).

As a conclusion, we have obtained a family of even and time-periodic solutions of (1)-( 2)-(3) parameterized by their period T ∈ (T 0 (γ), 2π/Ω ). These solutions have spatial period two and possess the symmetry y n+1 (t) = y n (t + T /2). When T → T 0 (γ) + , the impact velocity v and amplitude of oscillations y 1 (0) diverge. When T → 2π/Ω , the mode converges towards the linear out-of-phase mode. This family of solutions will be denoted as nonsmooth out-of-phase mode. They are illustrated for several values of T in Figure 3.

There exist other nonsmooth modes with spatial period 2 and I 0 = ∅, I 2 = 2 Z not discussed above, for example a branch of solutions emerging above T = 4π/Ω . For T = 4π/Ω , odd particles undergo a grazing impact at t = 0 (we conjecture the existence of a nonsmooth mode with two impacts per period and T < 4π/Ω ). When T increases above 4π/Ω , no impacts occur at t = 0 for odd particles and the branch of solutions can evolve in different ways depending on γ. If γ < 5/16 (so that 4π < 6π/Ω ), the mode converges towards the linear in-phase mode when T → 4π - (this corresponds to a period-doubling bifurcation of the in-phase mode), a limit in which odd particles again display a grazing impact at t = 0. If γ > 5/16 (case 6π/Ω < 4π), convergence towards the linear out-of-phase mode takes place when T → (6π/Ω ) -(period-tripling bifurcation of the out-of-phase mode). In this limit, odd particles undergo a grazing impact at t = π/Ω . Illustrations of period doubling bifurcations are displayed in Figure 4 and period tripling bifurcations in Figure 5. 

Boundary value problem

In the sequel, E denotes either the Banach space ∞ (Z) of real bounded sequences on Z, the Hilbert space 2 (Z) of square-summable sequences, or the Hilbert space P p of p-periodic sequences (isomorphic to the Euclidean space R p ) for a fixed integer p. The case E = 2 (Z) will be relevant for the study of localized modes, and the periodic case will be considered for numerical computations. We consider a chain of impact ocillators with positions described by a vector y(t) ∈ E solution of the complementarity system (1)-( 2)-( 3). We look for T -periodic solutions even in time, with a prescribed pattern (I 0 , I 1 , I 2 ) (as defined in section 2.1) such that I 0 = Z.

The splitting

Z = I 0 ∪ I 1 ∪ I 2 allows one to identify E with E (0) × E (1) × E (2)
where E (k) is a space of sequences indexed by n ∈ I k , equiped with the same norm as E ( 2 or ∞ ). For all y ∈ E, we shall use the notation y = (y (0) , y (1) , y (2) ) with k) . Any solution of the linear differential equation ( 12) satisfies ẏ(t) ∈ E, therefore we shall denote ẏ = ( ẏ(0) , ẏ(1) , ẏ(2) ) with ẏ(k) ∈ E (k) . The above 

y (k) = (y n ) n∈I k ∈ E (
(0, T /2), ÿn + y n -γ (∆ y) n = 0, n ∈ Z, t ∈ (0, T /2), (12) 
with boundary conditions

ẏ(i) (0) = 0 for i ∈ I 0 ∪ I 1 , y (2) (0) = -1, (13) 
ẏ(i) (T /2) = 0 for i ∈ I 0 ∪ I 2 , y (1) (T /2) = -1,
and constraint

y(t) + 1 > 0, t ∈ (0, T /2). (14) 
Indeed, it is immediate that any even T -periodic solution of ( 1)-( 2)-( 3) with pattern (I 0 , I 1 , I 2 ) satisfies ( 12)-( 13)-( 14). Moreover, every solution of ( 12)-( 13)-( 14) can be extended to an even T -periodic function y, which in turn defines a solution of ( 1)-( 2)-( 3). Indeed, since ẏ is odd, we have ẏ(0 -) =ẏ(0 + ) and thus ẏ((k

T ) -) = -ẏ((k T ) + ) for all k ∈ Z because ẏ is T -periodic.
In the same way, since ẏ is odd and T -periodic, we have ẏ((T /2) -) =ẏ((-T /2) + ) =ẏ((T /2) + ), and thus we have by periodicity ẏ(((2k

+ 1)T /2) -) = -ẏ(((2k + 1)T /2) + ) for all k ∈ Z.
In what follows, we reformulate the boundary value problem ( 12)-( 13) as a linear system for ξ = (y (0) (0), y (1) 2) , i.e. as an affine equation in E. For this purpose, we define the projection P :

(0), ẏ(2) (0)) ∈ E (0) × E (1) × E (
E × E → E through P (y, ẏ) = ( ẏ(0) , y (1) , ẏ(2) )
and an embedding N : E → E × E by N (y (0) , y (1) , ẏ(2) ) = (u, v), u = (y (0) , y (1) , 0), v = (0, 0, ẏ(2) ) in E (0) × E (1) × E (2) .

Introducing Y = (y, ẏ) T ∈ E × E, the linear differential equation ( 12) takes the form

Ẏ = J Y + γ LY, (15) 
where

J = 0 I -I 0 , L = 0 0 ∆ 0
and I is the identity map in E. Let us denote by S γ (t) = e (J+γL)t ∈ L (E × E) the flow of [START_REF] Bernardo | Piecewise-smooth Dynamical Systems[END_REF].

The boundary condition at t = 0 defined in ( 13) takes the form

Y (0) = N ξ -B, where B = (1 I 2 , 0) T ∈ E × E and 1 I 2 denotes the indicator function of I 2 . Moreover, the boundary condition at t = T /2 in (13) reads PY (T /2) = -1 I 1 .
Consequently, the boundary value problem ( 12)-( 13) is equivalent to

M γ,T ξ = η, (16) 
where

M γ,T = P S γ (T /2) N ∈ L (E) and η = P S γ (T /2) B -1 I 1 .
In the case E = P p (periodic boundary conditions with period p), E is isomorphic to R p and ( 16) takes the form of a p-dimensional linear system. The solution ξ ∈ E can be identified with a vector x ∈ R p defined by

x i = y i if i ∈ I 0 ∪ I 1 , x i = ẏi if i ∈ I 2 .
The matrix P ∈ M p,2p (R) reads

P j, j = 1 if j ∈ I 1 , P j, j+p = 1 if j ∈ I 0 ∪ I 2 , P i, j = 0 elsewhere. The matrix N ∈ M 2p,p (R) is defined by N i,i = 1 if i ∈ I 0 ∪ I 1 , N i+p,i = 1 if i ∈ I 2 , N i, j = 0 elsewhere.

Nondegenerate modes and continuation at small coupling

Consider an even T -periodic solution of ( 1)-( 2)-( 3) with pattern (I 0 , I 1 , I 2 ) (recall that under these assumptions, each particle undergoes at most one impact per period). The reduced initial condition ξ = (y (0) (0), y (1) 2) defines a solution of the linear problem [START_REF] Flach | Discrete breathers : advances in theory and applications[END_REF]. This leads us to introduce the following notion of nondegenerate periodic solution.

(0), ẏ(2) (0)) ∈ E (0) × E (1) × E (
Definition 1. An even T -periodic solution of ( 1)-( 2)-(3) with pattern

(I 0 , I 1 , I 2 ) is nondegenerate if the map M γ,T is invertible and ẏn ((T /2) -) < 0 ∀ n ∈ I 1 , ẏn (0 + ) > 0 ∀ n ∈ I 2 . ( 17 
)
Let us consider any nondegenerate periodic solution of ( 1)-( 2)-( 3). Since M γ,T depends analytically on γ, T , the corresponding solution of ( 16) admits locally a unique continuation with respect to (γ, T ) denoted by ξ γ,T , which is analytic in (γ, T ) in some open set [START_REF] Whittlesey | Analytic function in Banach spaces[END_REF]. It follows that

Y γ,T (t) = (y γ,T (t), ẏγ,T (t)) T = S γ (t) (N ξ γ,T -B) (18) 
is a solution of ( 12) satisfying [START_REF] Cabannes | Cordes vibrantes avec obstacles[END_REF].

In order to check the constraint ( 14), we define u γ,T (t) = y γ,T ( T 2 t ) + 1 and introduce the Banach space

X = { u ∈ C 1 ([0, 1], E), u n (1) = 0 ∀ n ∈ I 1 , u n (0) = 0 ∀ n ∈ I 2 }, equiped with the C 1 -norm. We consider the open set Ω = { u ∈ X, ∀ n ∈ I 0 , u n > 0 on [0, 1], ∀ n ∈ I 1 , u n > 0 on [0, 1), un (1 -) < 0, ∀ n ∈ I 2 , u n > 0 on (0, 1], un (0 + ) > 0 .
Thanks to assumption [START_REF] Gendelman | Discrete breathers in vibroimpact chains: analytic solutions[END_REF], the nondegenerate periodic solution belongs to Ω . Since the map (γ, T ) → u γ,T is continuous in X, the local continuation with respect to (γ, T ) of the nondegenerate solution stays locally in Ω , and thus the constraint ( 14) is satisfied by y γ,T when (γ, T ) lies in some open set U . Consequently, we have obtained a family of solutions of the boundary value problem ( 12)-( 13)-( 14) parameterized by (γ, T ), which provides in turn a family of solutions of ( 1)-( 2)-( 3). As a conclusion, we have shown the following.

Theorem 1. Any nondegenerate even periodic solution of ( 1)-( 2)-( 3) with a given pattern persists for values of the coupling constant γ and period T lying in an open set U . Moreover, these solutions take the form y(t) = y γ,T (t) for all t ∈ [0, T /2],

where the map (t, γ, T ) → y γ,T (t) is analytic in R × U and defined in [START_REF] Gendelman | Exact solutions for discrete breathers in a forced-damped chain[END_REF].

In particular, the above result shows that any nondegenerate periodic solution is part of a continuous branch of periodic solutions parameterized by T and forming a nonsmooth mode. The continuation may stop when a new grazing impact takes place for n ∈ I 0 or if an impact occurring for n ∈ I 1 or I 2 becomes grazing. In such cases, the branch of periodic solutions might be continued with a different pattern or by allowing several impacts per period or sticking contacts, but these extensions are out of the scope of the present study.

Another case when the above continuation theorem does not apply corresponds to the noninvertibility of M γ,T . This situation may lead to a divergence of the solution (i.e. divergence of (y (0) (0), y (1) (0), ẏ(2) (0)) ) or to a bifurcation of periodic solutions.

The solution of ( 12)-( 13) is non-unique, or equivalently M γ,T admits a nontrivial kernel, if and only if the homogeneous boundary value problem given by [START_REF] Cabannes | Periodic motions of a string vibrating against a fixed point-mass obstacle: II[END_REF] and

ẏ(i) (0) = 0 for i ∈ I 0 ∪ I 1 , y (2) (0) = 0, (19) 
ẏ(i) (T /2) = 0 for i ∈ I 0 ∪ I 2 , y (1) 
(T /2) = 0, admits nontrivial solutions y(t) ∈ E. Let us fix E = ∞ (Z) and discuss some resonant cases when this phenomenon occurs. The linear equation ( 12) admits normal mode solutions (or "phonons")

y n (t) = a cos (Ω q t + ϕ) cos (q n + ψ), (20) 
whose frequencies Ω q = (1 + 4γ sin 2 (q/2)) 1/2 span the phonon band [1, Ω ], the highest frequency Ω = √ 1 + 4γ corresponding to the out-of-phase mode with q = π. For nonsmooth modes having certain patterns, simple nontrivial solutions of ( 12)-( 19) can be found in the form [START_REF] Haraux | Almost periodic motion of a string vibrating against a straight fixed obstacle[END_REF] if some multiple of π/T belongs to the phonon band.

For example, if I 1 = Z or I 2 = Z (this is the case for the in-phase mode) and if one has a resonance (2m + 1) π/T = Ω q for some integer m and q ∈ [0, π], then [START_REF] Haraux | Almost periodic motion of a string vibrating against a straight fixed obstacle[END_REF] provides nontrivial solutions of ( 12)- [START_REF] Grinberg | Localization in finite vibroimpact chains: Discrete breathers and multibreathers[END_REF], and thus M γ,T is non-invertible. This occurs e.g. for T = π (m = 0, q = 0), where the amplitude of the in-phase mode becomes infinite.

Moreover, if one considers a localized pattern I 0 = Z \ {n 0 } for some integer n 0 , then the resonance m (2π/T ) = Ω q (m ∈ N) leads to nontrivial solutions of ( 12)-( 19) (obtained by choosing ψ = π 2q n 0 in [START_REF] Haraux | Almost periodic motion of a string vibrating against a straight fixed obstacle[END_REF]) and thus M γ,T is non-invertible. In the case E = P p (p-periodic sequences), the phonon band becomes discrete (wavenumbers take the form q = k 2π/p with k ∈ Z), but the above resonance conditions remain valid when

I 1 = Z or I 2 = Z, or if I 0 = Z \ {n 0 + p Z}.
As an application of theorem 1, we now prove the existence of nonsmooth modes having any type of pattern, close to the uncoupled (or "anticontinuum") limit γ = 0. In theorem 2 below, the mode pattern I = (I 0 , I 1 , I 2 ) must be compatible with the choice of E. For E = P p , the sets I k are assumed invariant modulo p, and for E = 2 (Z) the sets I 1 and I 2 have to be finite (no impacts occur at infinity when oscillations are spatially localized). In the case E = ∞ (Z) there are no restrictions on the mode pattern.

Theorem 2. Fix a mode pattern I = (I 0 , I 1 , I 2 ) compatible with E. There exists an open set V ⊂ R 2 including the segment {0} × (π, 2π), such that for all (γ, T ) ∈ V , system (1)-( 2)-( 3) admits a unique even periodic solution with pattern I, which is defined by [START_REF] Gendelman | Exact solutions for discrete breathers in a forced-damped chain[END_REF].

Proof. It suffices to check that for γ = 0 and all T ∈ (π, 2π), system (1)-( 2)-( 3) admits a unique nondegenerate periodic solution with pattern I. Then the result follows by direct application of theorem 1.

Let us denote by y ip n (t) the in-phase mode defined by ( 5) with period T ∈ (π, 2π). For γ = 0, system (1)-( 2)-(3) consists of uncoupled impact oscillators. Consequently, the unique T -periodic solution with pattern I is given by y n = y ip n for all n ∈ I 1 , y n (t) = y ip n (t + T /2) for all n ∈ I 2 , and y n = 0 for all n ∈ I 0 (for γ = 0, all non-impacting nontrivial solutions are 2π-periodic, and we have assumed T < 2π). It follows that the condition (17) of non-grazing impacts is satistied for T ∈ (π, 2π). In order to show that the T -periodic solution obtained for γ = 0 is nondegenerate, there remains to check that the linear map M 0,T of ( 16) is invertible. We have for all ξ = (ξ (0) , ξ (1) , ξ (2) ) ∈ E (0) × E (1) × E (2) M 0,T ξ = P e J T /2 u v ,

where u, v ∈ E = E (0) × E (1) × E (2) are defined as follows u = (ξ (0) , ξ (1) , 0), v = (0, 0, ξ (2) ).

Moreover, we have in the block form

e J t = cost sint -sint cost ∈ L (E × E), hence (21) yields M 0,T ξ = P (y, ẏ),
where y, ẏ ∈ E = E (0) × E (1) × E (2) are defined by y = (cos (T /2) ξ (0) , cos (T /2) ξ (1) , sin (T /2) ξ (2) ), ẏ = (sin (T /2) ξ (0) ,sin (T /2) ξ (1) , cos (T /2) ξ (2) ).

Consequently, M 0,T ∈ L (E (0) × E (1) × E (2) ) takes the following diagonal form M 0,T ξ = (sin (T /2) ξ (0) , cos (T /2) ξ (1) , cos (T /2) ξ (2) ).

It follows that M 0,T is invertible because the coefficients cos (T /2) and sin (T /2) do not vanish for T ∈ (π, 2π).

It is interesting to compare the local continuation result of theorem 2 and the explicit computations of the nonsmooth in-phase and out-of-phase modes performed in section 2. The in-phase mode actually exists for all γ ∈ R and T ∈ (π, 2π). Moreover, the out-of-phase mode exists for all γ ≥ 0 (and even for γ slightly negative) and T ∈ (T 0 (γ), 2π(1 + 4γ) -1/2 ).

Stability

In this section, the linear stability of periodic solutions is analyzed through the eigenvalues of an associated monodromy matrix. Since the trajectory of the state of the system is nonsmooth at impact times, some precautions must be taken into account to compute the monodromy matrix. The computation of the monodromy follows the line of the work in [START_REF] Nqi | Computation of Lyapunov exponents for dynamical system with impact[END_REF].

In this section, we will consider the finite-dimensional case E = P p . For a given initial condition Y 0 = (y(t 0 ), ẏ(t 0 )) T ∈ R 2p , the conservative system (1)-( 2)-(3) admits a unique solution (without accumulation of impacts) which is analytic in time between impacts [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF][START_REF] Ballard | Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints[END_REF][START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF]. Let us define the trajectory of the flow of (1)-( 2)-(3) for the initial conditions (t 0 ,Y 0 ) as

φ : R × R × R 2p → R 2p (t,t 0 ,Y 0 ) → φ (t,t 0 ,Y 0 ). (22) 
The flow φ satisfies φ (t 0 ,t 0 ,Y 0 ) = Y 0 . The trajectory of the system for the initial condition

(t 0 ,Y 0 ) is Y (t) = φ (t,t 0 ,Y 0 ).
In the sequel we consider a time t and an initial time t 0 at which no impact occurs. The computation of the monodromy amounts to performing the differentiation of the flow φ at time t for the initial time t 0 with respect to the initial condition Y 0 , that is

M(t) = dφ (t,t 0 ,Y 0 ) dY 0 . (23) 
This matrix can be approximated by finite differences. As it is noted in [START_REF] Nqi | Computation of Lyapunov exponents for dynamical system with impact[END_REF], the application of a finite-difference scheme may result in a poor approximation of the monodromy matrix. Since, in our application, the flow can be defined as a concatenation of piecewise smooth flows between impact times, we present here a closed-form formula for the monodromy matrix that is based on the computation of a saltation matrix that takes into account how the impact times evolve with the initial conditions. This closed-form formula is based on the assumption that the impacts are simple impacts in the sense that only one particle impacts at a given time.

Moreover we consider non-grazing impacts, i.e. impact at nonzero velocities.

The case of a simple impact at time t > t 0 :

Let us assume that we have a unique and simple impact in the interval (t 0 ,t) at time t (Y 0 ). The notation outlines its dependency on the initial condition. At the impact time t (Y 0 ), the trajectory is reset using the elastic Newton impact law that can be written as follows

Y (t + (Y 0 )) = R t Y (t -(Y 0 )) (24) 
where R t ∈ R 2p×2p is the reset matrix. Let us denote by i t the index of the impacting particle at t (Y 0 ), i.e.

y i t (t (Y 0 )) = -1. (25) 
The reset matrix can be written as

R t = I 0 0 E , (26) 
where the matrix E ∈ R p×p is given by its components as

E i j =      0, if i = j, 1, if i = j = i t , -1, if i = j = i t . (27) 
The state of the system at time t can be written as

Y (t) = φ (t,t 0 ,Y 0 ) = φ (t,t + (Y 0 ),Y (t + (Y 0 ))) = φ (t,t + (Y 0 ), R t Y (t -(Y 0 ))) = φ (t,t + (Y 0 ), R t φ (t -(Y 0 ),t 0 ,Y 0 )). (28) 
The differentiation of the previous expression amounts to differentiating with respect to Y 0 a composition of smooth functions

dφ (t,t 0 ,Y 0 ) dY 0 = D 2 φ (t,t + (Y 0 ), R t φ (t -(Y 0 ),t 0 ,Y 0 )) dt (Y 0 ) dY 0 +D 3 φ (t,t + (Y 0 ), R t φ (t -(Y 0 ),t 0 ,Y 0 ))R t dφ (t -(Y 0 ),t 0 ,Y 0 ) dY 0 (29) 
with

dφ (t -(Y 0 ),t 0 ,Y 0 ) dY 0 = D 1 φ (t -(Y 0 ),t 0 ,Y 0 ) dt (Y 0 ) dY 0 + D 3 φ (t -(Y 0 ),t 0 ,Y 0 ). (30) 
The notation D k φ denotes the partial derivatives of φ with respect to its k-th argument. If the smooth flow is known between impacts, the only difficult part that remains to compute is the derivative of the time of impact t with respect to Y 0 . Let us split the flow φ such that

Y (t) = φ (t,t 0 ,Y 0 ) = φ y (t,t 0 ,Y 0 ) φ ẏ(t, t 0 ,Y 0 ) = y(t) ẏ(t) . ( 31 
)
We have assumed that only one particle of index i t is impacting at t (Y 0 ). The constraint ( 25) can be written as

φ y,i t (t ,t 0 ,Y 0 ) = -1. (32) 
Since ∂ t φ y,i t (t -,t 0 ,Y 0 ) = ẏi t (t -(Y 0 )) < 0 (non-grazing impact) and the flow is smooth (analytic) between impacts, the implicit function theorem guarantees that the impact persists upon small variations of Y 0 , with an impact time t being a smooth (analytic) function of Y 0 . Moreover, defining a projection matrix

P i ∈ R 1×2p such that D 3 φ y,i (t -(Y 0 ),t 0 ,Y 0 ) = P i D 3 φ (t -(Y 0 ),t 0 ,Y 0 ), (33) 
we have

dt t (Y 0 ) dY 0 = - 1 ẏi t (t -(Y 0 )) P i t D 3 φ (t -(Y 0 ),t 0 ,Y 0 ). (34) 
In order to simplify the expression of the monodromy matrix given by ( 29) and ( 30), we observe that

D 2 φ (t,t + ,Y (t + (Y 0 ))) = -D 3 φ (t,t + (Y 0 ),Y (t + (Y 0 ))) Ẏ (t + (Y 0 )). (35) 
Indeed, since φ (t, t, φ (t,t + ,Y )) = φ (t,t + ,Y ) is independent of t, the identity ∂ t φ (t, t, φ (t,t + ,Y )) = 0 evaluated at t = t + and Y = Y (t + (Y 0 )) yields identity [START_REF] Schatzman | Numerical approximation of a wave equation with unilateral constraints[END_REF]. Using ( 29), ( 30) and [START_REF] Schatzman | Numerical approximation of a wave equation with unilateral constraints[END_REF], the monodromy matrix simplifies to

dφ (t,t 0 ,Y 0 ) dY 0 = D 3 φ (t,t + ,Y (t + (Y 0 ))) [R t Ẏ (t -(Y 0 )) -Ẏ (t + (Y 0 ))] dt (Y 0 ) dY 0 + R t D 3 φ (t -(Y 0 ),t 0 ,Y 0 ) . (36 
) Finally, using the relation [START_REF] Schatzman | A Hyperbolic problem of second order with unilateral constraints : the vibrating string with a concave obstacle[END_REF], the monodromy matrix is expressed as follows

dφ (t,t 0 ,Y 0 ) dY 0 = D 3 φ (t,t + (Y 0 ),Y (t + (Y 0 )))S t D 3 φ (t -(Y 0 ),t 0 ,Y 0 ), t > t (Y 0 ) (37)
where the so-called saltation matrix S t is defined by

S t = - 1 ẏi t (t -(Y 0 )) [R t Ẏ (t -(Y 0 )) -Ẏ (t + (Y 0 ))]P i t + R t . (38) 
Note that the monodromy matrix is obtained as the product of the Jacobian matrices of the flow with respect to the initial condition in each smooth phases separated by the saltation matrix.

The case of two simple impacts at times t ,2 > t ,1 > t 0 :

For the two simple impacts at time t ,2 > t ,1 > t 0 , the computation of the monodromy matrix follows the same line. It is also a product of the Jacobian matrices of the flow with respect to the initial condition in each smooth phases separated by the saltation matrix:

dφ (t,t 0 ,Y 0 ) dY 0 = D 3 φ (t,t + ,2 (Y 0 ),Y (t + ,2 (Y 0 )))S t ,2 D 3 φ (t,t + ,1 (Y 0 ),Y (t + ,1 (Y 0 )))S t ,1 D 3 φ (t - ,1 (Y 0 ),t 0 ,Y 0 ), t > t ,2 (Y 0 ). (39) 
Computation of the monodromy for the piecewise linear system :

In our case of a piecewise-linear dynamics, the flow of the system between two impacts is given by

φ (t,t 0 ,Y 0 ) = exp(D(t -t 0 ))Y 0 , t 0 ≤ t ≤ t ,1 (Y 0 ), (40) 
φ (t,t + ,1 (Y 0 ),Y (t + ,1 (Y 0 ))) = exp(D(t -t ,1 (Y 0 )))Y (t + ,1 (Y 0 )), t ,1 (Y 0 ) ≤ t ≤ t ,2 (Y 0 ) (41) φ (t,t + ,2 (Y 0 ),Y (t + ,2 (Y 0 ))) = exp(D(t -t ,2 (Y 0 )))Y (t + ,2 (Y 0 )), t ≥ t ,2 (Y 0 ), (42) 
with D = J + γL. As indicated above in the derivation of the monodromy matrix, the piecewise linear flow is smooth (analytic). If we consider consider the explicit formula of the linear flow ( 40), [START_REF] Whittlesey | Analytic function in Banach spaces[END_REF], [START_REF] Nqi | Computation of Lyapunov exponents for dynamical system with impact[END_REF] between impacting times at t ,1 = T /2 and t ,2 = T , we get for the monodromy matrix

dφ (t,t 0 ,Y 0 ) dY 0 = exp(D(t -T )) S T exp(D(T /2)) S T /2 exp(D(T /2 -t 0 )), t > T, (43) 
where t 0 < T /2. In section 3, we shall fix t 0 = T /4 and t = t 0 +T = 5T /4 to compute the monodromy matrix of a T -periodic solution with impact times multiple of T /2. This leads to dφ (5T /4, T /4,Y 0 ) dY 0 = exp(DT /4) S T exp(D(T /2)) S T /2 exp(DT /4).

The periodic solution will be unstable if this monodromy matrix admits an eigenvalue with modulus greater than unity, and spectrally stable if all eigenvalues lie on the unit circle (due to time-reversal symmetry, the Floquet spectrum has the invariance σ → σ -1 ). The spectrum of the above monodromy is the same as for S T exp(D(T /2)) S T /2 exp(DT /2).

Numerical computation of nonsmooth modes

We solve problem ( 12)-( 13) numerically for a chain of p oscillators with periodic boundary conditions. Unless explicitly stated otherwise, we fix p = 100. Although the system ( 12)-( 13) is a standard linear system, we use a general shooting method, i.e. determine a vector ξ = (y (0) (0), y (1) (0), ẏ(2) (0)) ∈ R p such that the three boundary conditions of ( 13) at t = 0 and t = T /2 are satisfied through Newton iterations.

For each Newton iteration, this requires to solve a linear system for ξ obtained through time-integration of the linear ODE [START_REF] Cabannes | Periodic motions of a string vibrating against a fixed point-mass obstacle: II[END_REF]. This time integration is equivalent to computing numerically the exponential matrix of the linear flow. When the coupling parameter is chosen far from the degeneracy case of the BVP matrix, the shooting technique converges in one iteration. When we are in the neighborhood of the degenerate cases, the number of Newton iterations may increase indicating an ill-conditioned linear system of the BVP. Thanks to the general shooting technique, the case of nonlinear local or interaction potentials could be addressed similarly. The constraint ( 14) is checked a posteriori. To this end, we integrate ( 1)-( 2)-( 3) numerically using an event-driven scheme for nonsmooth dynamical systems implemented in the Siconos software [43]. For the shooting technique and validation of the constraints, the linear ODE is integrated thanks to ODEPACK [START_REF] Hindmarsh | ODEPACK, A Systematized Collection of ODE Solvers[END_REF] embedded in the Siconos software. Usually, the solution branches are first continued for fixed values of T , varying the coupling parameter γ. For all fixed value T ∈ (π, 2π), a choice of impacting particles and phases (determined by I 1 , I 2 ) selects a unique solution for γ = 0 which can be continued up to some maximal value of the coupling parameter γ. We shall see in the sequel that some continuations are also done with respect to the period.

Site-centered breathers

In this section, we illustrate the site-centered breather for the mode pattern I 2 = {50}, I 1 = / 0 depicted in Figure 6. The period is T = 3π 2 . The periodic solution has been successfully computed for γ ∈ [0, γ c ] with

γ c = 1 4 (( 2π 
T ) 2 -1), ( 45 
)
the critical value of γ for which we expect to reach the out-of-phase mode. For T = 3π 2 , we have γ c ≈ 0.1944. In Figure 7, the initial positions and velocities are displayed for the particle indices between 40 and 60 and for 4 different values of γ. We observe that for small values of the coupling parameter γ the breather is localized on a few particles. With the increasing values of γ, the support of the solution is increasing to reach the out-of-phase linear grazing mode for γ = γ c . Let us note that the velocity of the central particle 50 is decreasing to the grazing solution for all the particles. In Figure 8, the eigenvalues of the monodromy matrix are displayed. In Figure 8(a), we remark that the eigenvalues have a modulus equal to 1 up to a critical value γ s between 0.129 and 0.142 for which a pair of eigenvalues is leaving the unit circle. In Figures 8(b), 8(c) and 8(d), all the eigenvalues are plotted in the complex plane for three different values of γ ∈ {0, 0.064, 0.181}. For γ = 0, a pair of eigenvalues are equal to +1 and all the other conjugate eigenvalues pairs are equal to i or -i. For γ < γ s , the conjugate eigenvalues pairs, equals to i and -i for γ = 0, start to slide on the unit circle toward the pair of eigenvalues that remains at +1. For γ = γ s , a collision occurs in +1. Finally, for γ > γ s , a pair of real inverse eigenvalues is leaving the unit circle to slide on the real line while a pair of eigenvalues is remaining at +1. In that case, the stability of the periodic solution is lost. For γ = 0.181, one the eigenvalues of modulus around 5.71 is not displayed. To illustrate this loss of stability, we report in Figure 9 several time integrations of the system with constraints and impacts for different values of γ over the time interval [0, 25T ]. Although the system is numerically integrated with high accuracy Runge-Kutta schemes in ODE-PACK with very tight tolerances (10 -14 ), the periodic solutions for γ = 0.181 is destabilized. 
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Fig. 8: Eigenvalues of the monodromy matrix for the site-centered breather with pattern

I 1 = / 0, I 2 = {50}
We also perform a continuation of the solution with respect to the period. We start for a value of (γ, T ) equals to (0.15, 3π/2) and we decrease the period following a We can observe that a family of site-centered breathers is found with an increasing amplitude of the initial state. For the uncoupled case (γ = 0.0), we know that the amplitude of the solution goes to infinity when T → π. The same phenomenon is observed for a given coupling parameter γ = 0.15. In Figure 10(b), we plot the maximum amplitude of the position y(0) ∞ and the velocity ẏ(0) ∞ as a function of T . An asymptotic value of the period appears clearly for which the amplitude of the solution blows up. In this specific case, the asymptotic value of the period is about 0.58(3π/2) ≈ 2.78. Let us note that this value is below π. To conclude this section, an exploration of the viability of the site-centered breathers has been performed for (γ, T ) ∈ [0, 1.1] × [2, 2π] and p = 30 particles. We select a mesh grid in the plane (γ, T ) and solve the boundary value problem for each pair (γ, T ). The results are reported in Figure 11. The light areas correspond to a numerical computation of a periodic solution of ( 12)-( 13) with the satisfaction of the constraint [START_REF] Cabannes | Presentation of software for movies of vibrating strings with obstacles[END_REF] and the pattern I 1 = / 0, I 2 = {15}. The red dashed curve is given by the out-of-phase grazing linear mode whose period is related to γ by

T (γ) = 2π (1 + 4γ) -1/2 . ( 46 
)
As expected with the previous computations, we observe that there exists a large light area bounded above by the relation (46) and corresponding to site-centered breathers. This area is also bounded below by a another curve that corresponds to modes whose amplitudes go to infinity as we have already discussed for a particular value of γ = 0.15 in Figure 10. Quite interestingly, other light areas are present above the red curve. To explain these areas, we plot the graphs of the periods with respect to γ for larger wavenumber q given by

T n (γ) = 2π (1 + 4γsin 2 (q/2)) -1/2 , with q = n2π/p, n = 1, . . . , 15. (47) 
We can observe the existence of modulated waves near the linear grazing solutions.

In order to illustrate the solutions obtained in these areas, we plot in Figure 12 the results of two continuations over the period for γ = 1, T 3 ≈ 5.34 and T 4 ≈ 4.87 (large dots in Figure 11). We can observe that these solutions are not exactly normal nonsmooth modes that emerge from the linear grazing modes but rather spatial modulations of nonsmooth normal modes. For the computation of what could be called a nonsmooth normal mode we refer to Section 3.4. There, other solutions are computed (with long-wavelength near T 1 ) with preservation of the normal mode pattern at the start of continuation. 

I 1 = / 0, I 2 = {15} (light areas) for (γ, T ) ∈ [0, 1.1] × [2, 2π]. Graphs of T n (γ) = 2π (1 + 4γsin 2 (q/2))
-1/2 , with q = n2π/p, for n = 1, . . . , 15 and p = 30. 

Bond-centered breathers

In this section, some bond-centered breathers are computed with two different patterns.

Bond-centered breathers with pattern

I 1 = {49}, I 2 = {50}
Let us start with the out-of-phase pattern I 1 = {49}, I 2 = {50} illustrated in Figure [START_REF] Cabannes | Cordes vibrantes avec obstacles[END_REF]. We choose again a period equal to 3π 2 and the periodic solution has successfully been computed in the range [0, γ c ] with γ c given by (45). The initial conditions of the periodic solutions are displayed in Figure 14 for the particle indices in [START_REF] Vedenova | Normal oscillations of a string with concentrated masses on nonlinearly elastic supports[END_REF]60]. Again, we can observe that the breather is localized over few particles for small values of the coupling parameter. Once again, the solution reaches the out-of-phase linear grazing mode for γ = γ c while the velocity of the central particle decreases at time 0. In Figure 15, we depict the eigenvalues of the monodromy matrix. In Figure 15(b) for γ = 0, we have two pairs of eigenvalues in +1. All the other pairs of conjugate eigenvalues are equal to i or -i. We observe in Figure 15(a) and Figure 15(b) that for γ > 0, a pair of real inverse eigenvalues slides from +1 on the real line as γ increases while the other pair remains equal to +1. The others pairs of conjugate eigenvalues slide on the unit circle toward the pair of real eigenvalues in +1. A collision occurs again at +1 for γ = γ s ∈ [0.142, 0.155]. Then, a second pair of inverse real eigenvalues slides on the real line. For γ > 0, the stability of the periodic solutions is lost. We attempt to illustrate this phenomena with numerical time integration of the periodic solutions over a long time interval [0, 35T ] in Figure 16.

Bond-centered breathers with pattern I 1 = / 0, I 2 = {49, 50}

For the pattern I 1 = / 0, I 2 = {49, 50}, the solution for the initial conditions is depicted for the whole chain in Figure 17(a) and for the particles with indices in [START_REF] Vedenova | Normal oscillations of a string with concentrated masses on nonlinearly elastic supports[END_REF]60] in Figure 17(b). The period is again 3π 2 and we succesfully perform a continuation of the solution over [0, γ c ] with γ c given by (45). The main difference with the previous breathers concerns the solution when γ → γ c . In this latter case, it seems that we do not converge towards a grazing linear mode. This has to be confirmed with a more accurate study of the critical value of γ.

In Figure 18, we depict the eigenvalues of the monodromy matrix computed by finite differences. In this case, the closed form formula of the monodromy (44) does no longer apply since we have impacts. Although the approximation of the eigenvalues may contain some numerical errors, we observe a more complicated behavior of the evolution with respect to γ of the eigenvalues. For γ = 0, two pairs of real eigenvalues are equal to +1 and the others are conjugated pairs of eigenvalues are equal to i and -i. For increasing values of γ, one of the pairs of real eigenvalues starts to slide on the unit circle respectively towards i and -i while the other pairs of conjugate eigenvalues slide on the unit circle from i and -i towards +1. A first collision occurs on the unit circle for γ ∈ [0.051, 0.064] and two pairs of eigenvalues leave the unit circle. Several other collisions of different types occur when we increase the value of γ up to γ c . 

i | versus γ -2 -1 0 1 2 -2 -1 0 1 2 (b) eigenvalues for γ = 0 -2 -1 0 1 2 -2 -1 0 1 2 (c) eigenvalues for γ = 0.025 -2 -1 0 1 2 -2 -1 0 1 2 (d) eigenvalues for γ = 0.051 -2 -1 0 1 2 -2 -1 0 1 2 (e) eigenvalues for γ = 0.077 -2 -1 0 1 2 -2 -1 0 1 2 (f) eigenvalues for γ = 0.103 -2 -1 0 1 2 -2 -1 0 1 2 (g) eigenvalues for γ = 0.129 -2 -1 0 1 2 -2 -1 0 1 2 (h) eigenvalues for γ = 0.155 -2 -1 0 1 2 -2 -1 0 1 2
(i) eigenvalues for γ 0.181 Fig. 18: Eigenvalues of the monodromy matrix computed by finite differences for the bond-centered breather with pattern I 1 = / 0, I 2 = {49, 50}

Multiple impacting particles

In this section, we illustrate wave patterns with multiple impacts, where the pattern is either spatially periodic or localized on several particles (multi-site breathers).

Out-of-phase mode with spatial period two

We start with the nonsmooth mode of spatial period two described in Section 2.

The pattern is given by I 1 = {2k + 1} k=0,...,49 , I 2 = {2k} k=0,...,49 that corresponds to the sets of odd and even integers respectively. In Figure 19, the initial conditions for the periodic solutions are given for T = 3π 2 . For this example, we are able to continue the solution over the range [0, γ c ] up to reaching the out-of-phase linear grazing mode. In Figure 20, the eigenvalues of the monodromy matrix computed by finite differences are depicted. For γ = 0, all the eigenvalues are equal to +1. For γ > 0, the pairs of inverse real eigenvalues slide on the real line. The periodic solutions are therefore unstable for γ > 0. This is illustrated in Figure 21 where long time integration simulations have been performed over the time interval [0, 35T ]. 

Multi-site breather localized on 10 particles

In Figure 23, a multi-site breather with pattern I 1 = / 0, I 2 = {45, . . . , 55} is displayed for T = 3π 2 . For γ → γ c , the computation of the solutions is more difficult. The largest value of γ for which a solution is displayed is 0.1944096 < γ c . We can observe that the particles in I 0 are still not grazing. 

Long-wavelength modes

We also compute spatially extended long-wavelength modes close to the main linear mode with wavenumber q = 2π/p that is depicted in Figure 24. The period of the linear mode for a given wavenumber q is

T 1 = 2π (1 + 4γsin 2 (q/2)) -1/2 . ( 48 
)
Our computations are performed for γ = 1 and p = 30 particles and we get T 1 ≈ 6.150. A first branch of solutions

We are able to follow a first continuous branch of solutions depicted in Figure 25 with periods T ∈ [α 7 T 1 , α 1 T 1 ], and α 1 = 0.99056 and α 7 = 0.5035988. The mode amplitude diverges when T → α 7 T + 1 , and two particles at n = 15, 30 (the antinodes, i.e. the particles that reach maximal height) undergo grazing impacts when T → α 1 T - 1 . The number of impacting particles decreases from 30 to 10 when T is increased. More precisely, for T in intervals of the form [α j T 1 , α j-1 T 1 ], we find 4 j + 2 impacting particles with pattern I 1 = { 1, 2, . . . , j, pj, pj + 1, . . . , p }, I 2 = { 15j, . . . , 15 + j }. We find α 6 ≈ 0.5798, α 5 ≈ 0.7641, α 4 ≈ 0.92, α 3 ≈ 0.9618, α 2 ≈ 0.9771. A second branch of solutions

We find another branch of solutions whose period T ∈ [0.81 • T 1 , T 1 ) can approach T 1 arbitrary closely. These solutions emerge from the linear grazing mode when T → T 1 . Let us set T = α T 1 and describe the mode pattern depending on α. We only describe I 2 , given that I 1 = I 2 + 15(mod 30). We have 

I

Discussion

In this work, we have studied the existence and stability of nonsmooth modes (either spatially localized or extended) in a chain of coupled impact oscillators, for rigid impacts without energy dissipation. We have obtained analytical solutions with an arbitrary number of impacting particles at small coupling, and have computed such solutions numerically for larger coupling constants. Different solution branches corresponding to stable or unstable breathers, multibreathers and nonsmooth normal modes have been found. The computation of periodic solutions based on the above approach is much more effective than numerical continuation of periodic solutions based on stiff compliant models. In the latter case, impacts are described by smooth nonlinear Hertzian type potentials leading to stiff ODE and costly numerical continuation.

Several extensions of this work could be considered. It would be interesting to perform the continuation of periodic solutions while allowing switches in the mode patterns. In addition, the study of more complex types of nonsmooth modes would be of great interest. In particular, one could allow particles to realize several impacts per period [START_REF] Thorin | Nonsmooth modal analysis of piecewise-linear impact oscillators[END_REF] or display sticking phases after a grazing contact [START_REF] Thi | On some periodic solutions of discrete vibro-impact systems with a unilateral contact condition[END_REF]. The inclusion of dissipative impacts and forcing and the application of the method to more complex finite-element models of continuous impacting systems constitute additional challenging directions.
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 9 Fig. 9: Time integration of the periodic solutions for the site-centered breather with pattern I 1 = / 0, I 2 = {50}
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 10 Fig. 10: Continuation with a decreasing period of the site-centered breather with pattern I 1 = / 0, I 2 = {50} for γ = 0.15.
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 12 Fig. 12: Continuation of spatially-modulated nonsmooth normal modes with pattern I 1 = / 0, I 2 = {15} for γ = 1.
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 2192021222 Fig. 19: Out-of-phase mode with pattern I 1 = {2k + 1} k=0,...,49 , I 2 = {2k} k=0,...,49
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 23 Fig. 23: Multi-site breather with pattern I 1 = / 0, I 2 = {45, . . . , 55}
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 a124 Fig. 24: Main linear grazing mode for γ = 1 and T 1 = 2π (1 + 4γsin 2 (π/30)) -1/2 .
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 125125 Fig.25:A first branch of long-wavelength normal modes for = 1 and T 1 = 2π (1 + 4γsin 2 (π/30))-1/2 .
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 k125 Fig.25:A first branch of long-wavelength normal modes for γ = 1 and T 1 = 2π (1 + 4γsin 2 (π/30))-1/2 (continued).
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 a126126 Fig.26:A second branch of long-wavelength normal modes for γ = 1 andT 1 = 2π (1 + 4γsin 2 (π/30)) -1/2 .
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 k126 Fig.26:A second branch of long-wavelength normal modes for γ = 1 and T 1 = 2π (1 + 4γsin 2 (π/30))-1/2 (continued).

  2 = { 15 } for α ∈ [0.991, 1), I 2 = { 14, 15, 16 } for α ∈ [0.9825921, 0.99], I 2 = { 12, 14, 15, 16, 18 } for α ∈ [0.965, 0.9825924], I 2 = { 11, 12, 14, 15, 16, 18, 19 } for α ∈ [0.85, 0.964], I 2 = { 9, 11, 12, 14, 15, 16, 18, 19, 21 } for α ∈ [0.836, 0.849], and for α ∈ [0.81, 0.835] we find I 2 = { 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 }. Mode profiles are shown in Figure 26.
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