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Periodic motions of coupled impact oscillators

Guillaume James, Vincent Acary, Franck Pérignon

Abstract We study the existence and stability of time-periodic oscillations in a
chain of coupled impact oscillators, for rigid impacts without energy dissipation.
We formulate the search of periodic solutions as a boundary value problem incor-
porating unilateral constraints. This problem is solved analytically in the vicinity of
the uncoupled limit and numerically for larger coupling constants. Different solu-
tion branches corresponding to nonlinear localized modes (breathers) and normal
modes are computed.

1 Introduction

Understanding the dynamics of nonlinear lattices (i.e. large networks of coupled
nonlinear oscillators) is a problem of fundamental importance in mechanics, con-
densed matter physics or biology. One of the major issues concerns the mathemati-
cal analysis and numerical computation of special classes of nonlinear time-periodic
oscillations that organize the dynamics in many situations. In particular, spatially
periodic waves (standing waves or periodic traveling waves) and spatially local-
ized waves (breathers) are the object of intensive research [16, 39]. In this context,
many theoretical and numerical works have focused on smooth nonlinear systems,
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whereas relatively few mathematical existence results are available for waves in
nonsmooth infinite lattices [17, 18, 26, 37]. Developing theoretical and numerical
tools for the analysis of nonlinear waves in nonsmooth systems is extremely impor-
tant for applications, in particular in the context of impact mechanics where unilat-
eral contacts and friction come into play [1, 5, 8, 15, 22]. Spatially discrete lattice
models are frequently encountered in this context, in particular for the modeling of
waves in multibody mechanical systems (e.g. granular media) or in finite element
models of continuum systems. A classical example illustrating the latter case con-
cerns thin oscillating mechanical structures (a string under tension or a clamped
beam) contacting rigid obstacles [5, 8, 22]. Such a structure can be described by a
one-dimensional finite-element model involving a large number of degrees of free-
dom [2, 35]. The contact force between the string/beam and a rigid obstacle is either
measure-valued (for rebounds with velocity jumps at contact times) or set-valued (if
a wrapping of the string on the obstacle occurs), see e.g. [14].

Although nonlinear modes of oscillation have been observed in experiments on
impacting mechanical systems (see e.g. [3, 8]), relatively little is known from a
mathematical point of view on their existence and stability. Existence theorems for
periodic and almost-periodic oscillations have been obtained in particular cases, for
a continuum string model with point-mass or plane obstacle [9, 10, 11, 12, 20, 34]
(see also [13] for a review). In addition, several analytical approaches have been
used to obtain time-periodic solutions formally for different types of piecewise-
linear dynamical systems with rigid impacts. One can mention Fourier and Green
function methods [4, 5, 8, 17, 18, 19, 23, 24, 25, 31, 37], modal decomposition
[27, 38] and sawtooth time transformations [32]. Most of the results obtained for
discrete systems concern impacts localized on a single particle, and different types
of waves have been constructed. In [27, 32, 38], nonsmooth normal modes have
been obtained for general classes of conservative multiple degrees-of-freedom sys-
tems (the analysis of [32] is performed for a single or two impacting particles).
Spatially-localized oscillations (breathers) with a single impacting node have been
also studied for different classes of infinite or finite systems. Breather existence and
stability has been analyzed for oscillators chains with linear nearest-neighbors cou-
pling and a symmetric local vibroimpact potential (including in some cases a linear
component), both for conservative systems [17] and forced systems with dissipative
impacts [18, 31, 37].

One of the main difficulty with the above techniques is to check analytically that
the formal solutions of the piecewise-linear systems are consistent, i.e. satisfy the
inequality constraints corresponding to non-penetration of the obstacles. This has
been achieved in a number of works in the case of breathers [17, 18, 37] and for
nonsmooth modes close to grazing linear normal modes [27]. In the work [19], the
analysis of [31] has been extended to several impacting particles, but the verification
of the inequality constraints is still an open problem in that case.

In this work, we study the existence and stability of time-periodic oscillations
in an infinite chain of linearly coupled impact oscillators reminiscent of a model
analyzed in [19, 31], for rigid impacts without energy dissipation. We show the
existence of exact solutions (i.e. check the non-penetration conditions) for an ar-
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bitrary number of impacting particles when the coupling between oscillators is
small, and we compute solution branches numerically for larger couplings. The
system under consideration is depicted in Fig. 1. Particle positions are denoted as
y(t) = (yn(t))n∈Z and satisfy the following complementarity system

ÿn + yn− γ (∆y)n = λn, n ∈ Z, (1)

0≤ λ ⊥ (y+1)≥ 0, (2)

if ẏn(t−)< 0 and yn(t) =−1 then ẏn(t+) =−ẏn(t−), (3)

where (∆y)n = yn+1− 2yn + yn−1 defines a discrete Laplacian operator, 1 denotes
the constant sequence with all terms equal to unity and γ ≥ 0 is a parameter. Non-
dissipative impacts occur for yn(t) = −1 and give rise to impulsive reaction forces
λn(t). This configuration differs from the case of a symmetric local vibroimpact
potential considered in [19, 31] which introduces an additional barrier above the
chain.

x

y

0

−1

γk

k

m

Fig. 1: A chain of identical impact oscillators with linear nearest-neighbors cou-
pling. The chain is allowed to oscillate above a straight obstacle. After suitable
rescaling, the obstacle position is fixed to y =−1, and the masses m of particles and
local stiffness k are set to unity.

Our analytical results are presented in section 2. We start by describing in sec-
tion 2.1 some simple examples of nonsmooth modes of oscillations (in-phase, out-
of-phase, and some symmetry-breaking bifurcations from these modes). In section
2.2, we reformulate the search of periodic solutions of (1)-(2)-(3) as a boundary
value problem incorporating unilateral constraints. This formulation, together with
an appropriate notion of nondegenerate modes introduced in section 2.3, allows us
to construct nonsmooth modes of oscillations (spatially localized or extended) at
small coupling (see theorems 1 and 2). This approach is an adaptation of the idea of
“anticontinuum” limit [16, 29, 36] to the nonsmooth setting. Section 2.4 deals with
the linear stability of time-periodic solutions of (1)-(2)-(3). We provide a formula for
the monodromy matrix that determines spectral stability in the presence of simple
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impacts, following the lines of [42]. In section 3, the above results are used for the
numerical computation of time-periodic solutions. Solution branches are continued
for fixed values of T , varying the linear stiffness γ (and starting from the limit γ = 0)
or by fixing γ and varying T . We compute in this way some families of breathers
and extended modes and study their linear stability. Dynamical instabilities are il-
lustrated by integrating (1)-(2)-(3) numerically. These computations are performed
with the Siconos software for nonsmooth dynamical systems [1, 43].

2 Analytical study of nonsmooth modes

2.1 Definitions and basic examples

We look for T -periodic solutions of (1)-(2)-(3) even in time, and assume each par-
ticle undergoes at most one impact during each period of oscillation. Consequently,
for a given particle, impacts either occur at half-period multiples or do not occur
at all. We denote by Ik ⊂ Z with k = 1 or 2 the index sets of particles impacting at
t = (2m+k)T/2 for all m∈Z (i.e. yn((2m+k)T/2) =−1), and by I0 :=Z\(I1∪I2)
the index set corresponding to non-impacting particles (i.e. yn(t)>−1 for all t). We
have thus λn = 0 for all n ∈ I0 and

λn = 2 ẏn(
kT+

2
) ∑

m∈Z
δ(m+ k

2 )T
for all n ∈ Ik. (4)

The triplet (I0, I1, I2) will be denoted as the pattern of the periodic solution. A nons-
mooth mode corresponds to a continuous one-parameter family of periodic solutions
(parameterized typically by T ) sharing a given pattern with I0 6= Z (i.e. impacts oc-
cur).

We provide below some simple examples of nonsmooth modes. The simplest
case corresponds to the in-phase mode with I1 = Z (or equivalently I2 = Z up to a
phase shift). This solution exists for T ∈ (π,2π) and reads

yn(t) =−
cos t

cos(T/2)
for |t| ≤ T/2, (5)

where (5) is extended by periodicity outside the interval (−T/2,T/2). The impact
velocity reads in particular ẏ1((T/2)+) =−ẏ1((T/2)−) =− tan(T/2). The ampli-
tude of oscillations diverges when T → π and becomes unity for T = 2π . In that
case, the impact becomes grazing (i.e. occurs at zero velocity) and one recovers the
linear in-phase mode yn(t) = cos t, which is solution of (1) with λ = 0. Notice that
for T 6= 2k π outside the interval (π,2π), expression (5) does not provide a solution
of (1)-(2)-(3) because the constraint yn ≥−1 is violated.

Another example concerns nonsmooth modes with spatial period two, i.e. which
satisfy yn+2(t) = yn(t). Nonsmooth modes in two degrees-of-freedom impacting
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systems have been studied in a number of works, see e.g. [30, 40] in the case of
symmetric constraints and [22] for more references. In what follows we discuss
the case when I1 and I2 consist of the sets of odd and even integers respectively.
Moreover we assume that all impacts velocities are identical and nonzero. In order to
compute such modes, we introduce the relative displacement r = y2−y1, the center
of mass q = (y1 + y2)/2 and the impact velocity v = ẏ2(0+) = ẏ1((T/2)+) 6= 0.
From equations (1) and (4) taken at n = 1,2 and considering the spatial period two
of the mode, one obtains

r̈+Ω
2 r = 2v ∑

m∈Z
(−1)m

δm T
2
, (6)

where Ω =
√

1+4γ . Note that Ω is the frequency of the linear out-of-phase mode
yn(t) = (−1)n cos(Ω t), which is solution of (1) with λ = 0. If the non-resonance
condition (2m+ 1)(2π/T ) 6= Ω holds true for all integers m, there exists an even
T -periodic solution of (6) defined by

r(t) =
v
Ω

sin(Ω (t− T
4 ))

cos(Ω T/4)
for t ∈ [0,T/2], (7)

where the integration constants have been determined from the conditions v =
ṙ(0+) = ṙ((T/2)−). In addition, the T -periodic solution is unique if m(2π/T ) 6= Ω

for all integers m. From expression (7) and using the fact that r is T -periodic and
even, one can notice that r(T

4 + t) =−r(T
4 − t) for all t ∈ R.

Similarly, the center of mass satisfies

q̈+q = v ∑
m∈Z

δm T
2
. (8)

Let us assume that the non-resonance condition T 6= 4mπ holds true for all integer
m. In that case, equation (8) admits an even T/2-periodic solution. Indeed, since
v/2 = q̇(0+) =−q̇((T/2)−), we find

q(t) =
v
2

cos(t− T
4 )

sin(T/4)
for t ∈ [0,T/2], (9)

and q is defined as the T/2-periodic extension of (9). The symmetry q(T
4 + t) =

q(T
4 − t) for all t ∈ R and the fact that q is T/2-periodic imply that q is even. In

addition, (8) does not possess additional T -periodic solutions if the non-resonance
condition T 6= 2mπ holds true for all integer m.

Particle displacements are obtained from the identities

y1 = q− r
2
, y2 = q+

r
2
.
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One can check that ẏ1(0+) = 0, hence ẏ1(0−) = 0 and y1 is smooth everywhere
except at the impact times t = (2k+ 1)T/2 with k ∈ Z. Moreover, it follows from
the symmetries of r that y2(t) = y1(t +T/2) = y1(t−T/2).

We use the constraint y2(0) =−1 to determine v from T , which yields

v = 2
(

1
Ω

tan(Ω T/4)− cot(T/4)
)−1

(10)

and implies y1(T/2) = −1. The expression in (10) is depicted in Figure 2. In the
uncoupled case γ = 0, expression (10) simplifies to v = − tan(T/2) and one re-
covers the case n = 1 of (5). Moreover, in the limit cases T → (2k + 1)2π/Ω

(k ∈ N0) and T → 4mπ (m ∈ N) one obtains v→ 0, i.e. a grazing impact. When
T → (2k + 1)2π/Ω and Ω 6= (2k + 1)/(2m) for all m ∈ N, the above solution
converges towards the linear out-of-phase mode yn(t) = (−1)n+1 cos(Ω t), while
T → 4mπ and Ω 6= (2k+1)/(2m) for all k ∈N0 leads to a convergence towards the
linear in-phase mode yn(t) =−cos t.

Fig. 2: Impact velocity as a function of the period

In order to obtain solutions of (1)-(2)-(3), there remains to check for which values
of parameters γ,T the constraint y1 ≥ −1 is satisfied. Let us examine this problem
when the coupling constant γ is fixed and T is varied. A necessary condition is v≥ 0,
which is achieved for values of T > 0 within an infinite and unbounded sequence
of disjoint intervals depending of γ . The lower bounds of these intervals are the
roots of v−1, and the upper bounds take the form T = (2k+1)2π/Ω with k ∈N0 or
T = 4mπ with m ∈ N (values leading to v = 0). In particular, the first interval takes
the form (T0(γ),2π/Ω ], where T0(γ) is implicitely defined through
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1
Ω

tan(Ω T0/4) = cot(T0/4), T0 ∈ (0,2π/Ω). (11)

Note that limγ→+∞ T0(γ) = 0 (since T0 < 2π (1+4γ)−1/2), limγ→0 T0(γ) = π (case
Ω = 1 of (11)), and T0 is a decreasing function of γ (since the left side of (11) is
increasing with Ω or γ), hence T0(γ) < π for γ > 0. The upper bound T = 2π/Ω

yields v= 0 (grazing impact) as previously outlined, whereas in the case T→T0(γ)
+

one obtains v→+∞.
Now let us check the constraint y1(t) ≥ −1 in the case T ∈ (T0(γ),2π/Ω). One

can restrict the discussion to t ∈ [0,T/2] without loss of generality (since y1 is even
and T -periodic). In that case, we deduce from the above computations

ẏ1(t) =−
v
2

(
sin(t− T

4 )

sin(T/4)
+

cos(Ω (t− T
4 ))

cos(Ω T/4)

)
.

Consequently, the conditions T < 2π/Ω < 2π and v > 0 (which follows from
T ∈ (T0(γ),2π/Ω)) imply that y1 is decreasing on [T/4,T/2], hence y1(t)>−1 =
y1(T/2) for all t ∈ [T/4,T/2). In addition, expressions (7) and (9) show that r ≤ 0
and q > 0 on [0,T/4], hence y1 > 0 on [0,T/4]. This shows that y1(t)>−1 for all
t ∈ [0,T/2).

As a conclusion, we have obtained a family of even and time-periodic solutions of
(1)-(2)-(3) parameterized by their period T ∈ (T0(γ),2π/Ω). These solutions have
spatial period two and possess the symmetry yn+1(t) = yn(t + T/2). When T →
T0(γ)

+, the impact velocity v and amplitude of oscillations y1(0) diverge. When
T → 2π/Ω , the mode converges towards the linear out-of-phase mode. This family
of solutions will be denoted as nonsmooth out-of-phase mode. They are illustrated
for several values of T in Figure 3.

There exist other nonsmooth modes with spatial period 2 and I0 = ∅, I2 = 2Z
not discussed above, for example a branch of solutions emerging above T = 4π/Ω .
For T = 4π/Ω , odd particles undergo a grazing impact at t = 0 (we conjecture
the existence of a nonsmooth mode with two impacts per period and T < 4π/Ω ).
When T increases above 4π/Ω , no impacts occur at t = 0 for odd particles and the
branch of solutions can evolve in different ways depending on γ . If γ < 5/16 (so that
4π < 6π/Ω ), the mode converges towards the linear in-phase mode when T → 4π−

(this corresponds to a period-doubling bifurcation of the in-phase mode), a limit
in which odd particles again display a grazing impact at t = 0. If γ > 5/16 (case
6π/Ω < 4π), convergence towards the linear out-of-phase mode takes place when
T → (6π/Ω)− (period-tripling bifurcation of the out-of-phase mode). In this limit,
odd particles undergo a grazing impact at t = π/Ω . Illustrations of period doubling
bifurcations are displayed in Figure 4 and period tripling bifurcations in Figure 5.
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(a) Particle oscillations for γ = 0.2, T = 2π(1+4γ)−1/2 ≈ 4.68

(b) Particle oscillations for γ = 0.2, T = 4.1

(c) Particle oscillations for γ = 0.2, T = 2.926

Fig. 3: Nonsmooth out-of-phase modes for several values of T
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(a) Particle oscillations for γ = 0.2,T = 4π(1+
4γ)−1/2

(b) Particle oscillations for γ = 0.2,T = 11

(c) Particle oscillations for γ = 0.2,T = 12 (d) Particle oscillations for γ = 0.2,T = 4π

Fig. 4: Period doubling bifurcation

2.2 Boundary value problem

In the sequel, E denotes either the Banach space `∞(Z) of real bounded sequences
on Z, the Hilbert space `2(Z) of square-summable sequences, or the Hilbert space
P p of p-periodic sequences (isomorphic to the Euclidean space Rp) for a fixed
integer p. The case E = `2(Z) will be relevant for the study of localized modes,
and the periodic case will be considered for numerical computations. We consider
a chain of impact ocillators with positions described by a vector y(t) ∈ E solution
of the complementarity system (1)-(2)-(3). We look for T -periodic solutions even in
time, with a prescribed pattern (I0, I1, I2) (as defined in section 2.1) such that I0 6=Z.

The splitting Z = I0 ∪ I1 ∪ I2 allows one to identify E with E(0)×E(1)×E(2)

where E(k) is a space of sequences indexed by n ∈ Ik, equiped with the same norm
as E (‖‖2 or ‖‖∞). For all y ∈ E, we shall use the notation y = (y(0),y(1),y(2)) with
y(k) = (yn)n∈Ik ∈ E(k). Any solution of the linear differential equation (12) satisfies
ẏ(t) ∈ E, therefore we shall denote ẏ = (ẏ(0), ẏ(1), ẏ(2)) with ẏ(k) ∈ E(k). The above
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(a) Particle oscillations for γ = 0.4,T = 4π(1+
4γ)−1/2

(b) Particle oscillations for γ = 0.4,T = 8

(c) Particle oscillations for γ = 0.4,T = 11.1 (d) Particle oscillations for γ = 0.4,T = 11.6

(e) Particle oscillations for γ = 0.4,T = 6π(1+
4γ)−1/2

Fig. 5: Period tripling bifurcation
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problem can be reformulated as a boundary value problem on a half-period interval
(0,T/2),

ÿn + yn− γ (∆y)n = 0, n ∈ Z, t ∈ (0,T/2), (12)

with boundary conditions

ẏ(i)(0) = 0 for i ∈ I0 ∪ I1 , y(2)(0) =−1, (13)

ẏ(i)(T/2) = 0 for i ∈ I0 ∪ I2 , y(1)(T/2) =−1,

and constraint
y(t)+1> 0, t ∈ (0,T/2). (14)

Indeed, it is immediate that any even T -periodic solution of (1)-(2)-(3) with pattern
(I0, I1, I2) satisfies (12)-(13)-(14). Moreover, every solution of (12)-(13)-(14) can
be extended to an even T -periodic function y, which in turn defines a solution of
(1)-(2)-(3). Indeed, since ẏ is odd, we have ẏ(0−) = −ẏ(0+) and thus ẏ((k T )−) =
−ẏ((k T )+) for all k ∈ Z because ẏ is T -periodic. In the same way, since ẏ is odd
and T -periodic, we have ẏ((T/2)−) = −ẏ((−T/2)+) = −ẏ((T/2)+), and thus we
have by periodicity ẏ(((2k+1)T/2)−) =−ẏ(((2k+1)T/2)+) for all k ∈ Z.

In what follows, we reformulate the boundary value problem (12)-(13) as a lin-
ear system for ξ = (y(0)(0),y(1)(0), ẏ(2)(0)) ∈ E(0)×E(1)×E(2), i.e. as an affine
equation in E. For this purpose, we define the projection P : E×E→ E through

P(y, ẏ) = (ẏ(0),y(1), ẏ(2))

and an embedding N : E→ E×E by

N (y(0),y(1), ẏ(2)) = (u,v), u = (y(0),y(1),0), v = (0,0, ẏ(2)) in E(0)×E(1)×E(2).

Introducing Y = (y, ẏ)T ∈ E×E, the linear differential equation (12) takes the form

Ẏ = JY + γ LY, (15)

where

J =

(
0 I
−I 0

)
, L =

(
0 0
∆ 0

)
and I is the identity map in E. Let us denote by Sγ(t) = e(J+γL) t ∈L (E ×E) the
flow of (15).

The boundary condition at t = 0 defined in (13) takes the form Y (0) = N ξ −B,
where B = (1I2 ,0)

T ∈ E×E and 1I2 denotes the indicator function of I2. Moreover,
the boundary condition at t = T/2 in (13) reads PY (T/2) = −1I1 . Consequently,
the boundary value problem (12)-(13) is equivalent to

Mγ,T ξ = η , (16)

where Mγ,T = PSγ(T/2)N ∈L (E) and η = PSγ(T/2)B−1I1 .
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In the case E = P p (periodic boundary conditions with period p), E is isomor-
phic to Rp and (16) takes the form of a p-dimensional linear system. The solution
ξ ∈ E can be identified with a vector x ∈ Rp defined by

xi = yi if i ∈ I0 ∪ I1, xi = ẏi if i ∈ I2.

The matrix P ∈Mp,2p(R) reads

Pj, j = 1 if j ∈ I1, Pj, j+p = 1 if j ∈ I0 ∪ I2, Pi, j = 0 elsewhere.

The matrix N ∈M2p,p(R) is defined by

Ni,i = 1 if i ∈ I0 ∪ I1, Ni+p,i = 1 if i ∈ I2, Ni, j = 0 elsewhere.

2.3 Nondegenerate modes and continuation at small coupling

Consider an even T -periodic solution of (1)-(2)-(3) with pattern (I0, I1, I2) (recall
that under these assumptions, each particle undergoes at most one impact per pe-
riod). The reduced initial condition ξ = (y(0)(0),y(1)(0), ẏ(2)(0)) ∈ E(0) × E(1) ×
E(2) defines a solution of the linear problem (16). This leads us to introduce the
following notion of nondegenerate periodic solution.

Definition 1. An even T -periodic solution of (1)-(2)-(3) with pattern (I0, I1, I2) is
nondegenerate if the map Mγ,T is invertible and

ẏn((T/2)−)< 0 ∀n ∈ I1, ẏn(0+)> 0 ∀n ∈ I2. (17)

Let us consider any nondegenerate periodic solution of (1)-(2)-(3). Since Mγ,T
depends analytically on γ,T , the corresponding solution of (16) admits locally a
unique continuation with respect to (γ,T ) denoted by ξγ,T , which is analytic in
(γ,T ) in some open set [41]. It follows that

Yγ,T (t) = (yγ,T (t), ẏγ,T (t))T = Sγ(t)(N ξγ,T −B) (18)

is a solution of (12) satisfying (13).
In order to check the constraint (14), we define uγ,T (t) = yγ,T (

T
2 t )+1 and intro-

duce the Banach space

X = {u ∈C1([0,1],E), un(1) = 0 ∀n ∈ I1, un(0) = 0 ∀n ∈ I2 },

equiped with the C1-norm. We consider the open set

Ω = {u ∈ X , ∀n ∈ I0, un > 0 on [0,1],
∀n ∈ I1, un > 0 on [0,1), u̇n(1−)< 0,
∀n ∈ I2, un > 0 on (0,1], u̇n(0+)> 0

}
.
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Thanks to assumption (17), the nondegenerate periodic solution belongs to Ω . Since
the map (γ,T ) 7→ uγ,T is continuous in X , the local continuation with respect to
(γ,T ) of the nondegenerate solution stays locally in Ω , and thus the constraint (14)
is satisfied by yγ,T when (γ,T ) lies in some open set U . Consequently, we have
obtained a family of solutions of the boundary value problem (12)-(13)-(14) param-
eterized by (γ,T ), which provides in turn a family of solutions of (1)-(2)-(3). As a
conclusion, we have shown the following.

Theorem 1. Any nondegenerate even periodic solution of (1)-(2)-(3) with a given
pattern persists for values of the coupling constant γ and period T lying in an open
set U . Moreover, these solutions take the form y(t) = yγ,T (t) for all t ∈ [0,T/2],
where the map (t,γ,T ) 7→ yγ,T (t) is analytic in R×U and defined in (18).

In particular, the above result shows that any nondegenerate periodic solution is
part of a continuous branch of periodic solutions parameterized by T and forming
a nonsmooth mode. The continuation may stop when a new grazing impact takes
place for n ∈ I0 or if an impact occurring for n ∈ I1 or I2 becomes grazing. In such
cases, the branch of periodic solutions might be continued with a different pattern
or by allowing several impacts per period or sticking contacts, but these extensions
are out of the scope of the present study.

Another case when the above continuation theorem does not apply corresponds
to the noninvertibility of Mγ,T . This situation may lead to a divergence of the so-
lution (i.e. divergence of ‖(y(0)(0),y(1)(0), ẏ(2)(0))‖) or to a bifurcation of periodic
solutions.

The solution of (12)-(13) is non-unique, or equivalently Mγ,T admits a nontrivial
kernel, if and only if the homogeneous boundary value problem given by (12) and

ẏ(i)(0) = 0 for i ∈ I0 ∪ I1 , y(2)(0) = 0, (19)

ẏ(i)(T/2) = 0 for i ∈ I0 ∪ I2 , y(1)(T/2) = 0,

admits nontrivial solutions y(t)∈E. Let us fix E = `∞(Z) and discuss some resonant
cases when this phenomenon occurs. The linear equation (12) admits normal mode
solutions (or “phonons”)

yn(t) = a cos(Ωq t +ϕ) cos(qn+ψ), (20)

whose frequencies Ωq = (1+ 4γ sin2 (q/2))1/2 span the phonon band [1,Ω ], the
highest frequency Ω =

√
1+4γ corresponding to the out-of-phase mode with q= π .

For nonsmooth modes having certain patterns, simple nontrivial solutions of (12)-
(19) can be found in the form (20) if some multiple of π/T belongs to the phonon
band.

For example, if I1 = Z or I2 = Z (this is the case for the in-phase mode) and
if one has a resonance (2m+ 1)π/T = Ωq for some integer m and q ∈ [0,π], then
(20) provides nontrivial solutions of (12)-(19), and thus Mγ,T is non-invertible. This
occurs e.g. for T = π (m = 0, q = 0), where the amplitude of the in-phase mode
becomes infinite.



14 Guillaume James, Vincent Acary, Franck Pérignon

Moreover, if one considers a localized pattern I0 = Z\{n0} for some integer n0,
then the resonance m(2π/T ) =Ωq (m∈N) leads to nontrivial solutions of (12)-(19)
(obtained by choosing ψ = π

2 −qn0 in (20)) and thus Mγ,T is non-invertible.
In the case E = P p (p-periodic sequences), the phonon band becomes discrete

(wavenumbers take the form q = k 2π/p with k ∈ Z), but the above resonance con-
ditions remain valid when I1 = Z or I2 = Z, or if I0 = Z\{n0 + pZ}.

As an application of theorem 1, we now prove the existence of nonsmooth modes
having any type of pattern, close to the uncoupled (or “anticontinuum”) limit γ = 0.
In theorem 2 below, the mode pattern I = (I0, I1, I2) must be compatible with the
choice of E. For E = P p, the sets Ik are assumed invariant modulo p, and for
E = `2(Z) the sets I1 and I2 have to be finite (no impacts occur at infinity when
oscillations are spatially localized). In the case E = `∞(Z) there are no restrictions
on the mode pattern.

Theorem 2. Fix a mode pattern I = (I0, I1, I2) compatible with E. There exists an
open set V ⊂ R2 including the segment {0}× (π,2π), such that for all (γ,T ) ∈ V ,
system (1)-(2)-(3) admits a unique even periodic solution with pattern I, which is
defined by (18).

Proof. It suffices to check that for γ = 0 and all T ∈ (π,2π), system (1)-(2)-(3) ad-
mits a unique nondegenerate periodic solution with pattern I. Then the result follows
by direct application of theorem 1.

Let us denote by yip
n (t) the in-phase mode defined by (5) with period T ∈ (π,2π).

For γ = 0, system (1)-(2)-(3) consists of uncoupled impact oscillators. Conse-
quently, the unique T -periodic solution with pattern I is given by yn = yip

n for all
n ∈ I1, yn(t) = yip

n (t +T/2) for all n ∈ I2, and yn = 0 for all n ∈ I0 (for γ = 0, all
non-impacting nontrivial solutions are 2π-periodic, and we have assumed T < 2π).
It follows that the condition (17) of non-grazing impacts is satistied for T ∈ (π,2π).
In order to show that the T -periodic solution obtained for γ = 0 is nondegenerate,
there remains to check that the linear map M0,T of (16) is invertible. We have for all
ξ = (ξ (0),ξ (1),ξ (2)) ∈ E(0)×E(1)×E(2)

M0,T ξ = PeJ T/2
(

u
v

)
, (21)

where u,v ∈ E = E(0)×E(1)×E(2) are defined as follows

u = (ξ (0),ξ (1),0), v = (0,0,ξ (2)).

Moreover, we have in the block form

eJ t =

(
cos t sin t
−sin t cos t

)
∈L (E×E),

hence (21) yields
M0,T ξ = P(y, ẏ),
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where y, ẏ ∈ E = E(0)×E(1)×E(2) are defined by

y = (cos(T/2)ξ
(0),cos(T/2)ξ

(1),sin(T/2)ξ
(2)),

ẏ = (−sin(T/2)ξ
(0),−sin(T/2)ξ

(1),cos(T/2)ξ
(2)).

Consequently, M0,T ∈L (E(0)×E(1)×E(2)) takes the following diagonal form

M0,T ξ = (−sin(T/2)ξ
(0),cos(T/2)ξ

(1),cos(T/2)ξ
(2)).

It follows that M0,T is invertible because the coefficients cos(T/2) and sin(T/2) do
not vanish for T ∈ (π,2π). ut

It is interesting to compare the local continuation result of theorem 2 and the ex-
plicit computations of the nonsmooth in-phase and out-of-phase modes performed
in section 2. The in-phase mode actually exists for all γ ∈R and T ∈ (π,2π). More-
over, the out-of-phase mode exists for all γ ≥ 0 (and even for γ slightly negative)
and T ∈ (T0(γ),2π(1+4γ)−1/2).

2.4 Stability

In this section, the linear stability of periodic solutions is analyzed through the
eigenvalues of an associated monodromy matrix. Since the trajectory of the state
of the system is nonsmooth at impact times, some precautions must be taken into
account to compute the monodromy matrix. The computation of the monodromy
follows the line of the work in [42].

In this section, we will consider the finite-dimensional case E =P p. For a given
initial condition Y0 = (y(t0), ẏ(t0))T ∈ R2p, the conservative system (1)-(2)-(3) ad-
mits a unique solution (without accumulation of impacts) which is analytic in time
between impacts [6, 7, 33]. Let us define the trajectory of the flow of (1)-(2)-(3) for
the initial conditions (t0,Y0) as

φ : R×R×R2p → R2p

(t, t0,Y0) 7→ φ(t, t0,Y0).
(22)

The flow φ satisfies φ(t0, t0,Y0) =Y0. The trajectory of the system for the initial con-
dition (t0,Y0) is Y (t) = φ(t, t0,Y0). In the sequel we consider a time t and an initial
time t0 at which no impact occurs. The computation of the monodromy amounts
to performing the differentiation of the flow φ at time t for the initial time t0 with
respect to the initial condition Y0, that is

M(t) =
dφ(t, t0,Y0)

dY0
. (23)



16 Guillaume James, Vincent Acary, Franck Pérignon

This matrix can be approximated by finite differences. As it is noted in [42], the
application of a finite-difference scheme may result in a poor approximation of the
monodromy matrix. Since, in our application, the flow can be defined as a con-
catenation of piecewise smooth flows between impact times, we present here a
closed-form formula for the monodromy matrix that is based on the computation
of a saltation matrix that takes into account how the impact times evolve with the
initial conditions. This closed-form formula is based on the assumption that the im-
pacts are simple impacts in the sense that only one particle impacts at a given time.
Moreover we consider non-grazing impacts, i.e. impact at nonzero velocities.

The case of a simple impact at time t? > t0 :

Let us assume that we have a unique and simple impact in the interval (t0, t) at time
t?(Y0). The notation outlines its dependency on the initial condition. At the impact
time t?(Y0), the trajectory is reset using the elastic Newton impact law that can be
written as follows

Y (t+? (Y0)) = Rt?Y (t
−
? (Y0)) (24)

where Rt? ∈ R2p×2p is the reset matrix. Let us denote by it? the index of the impact-
ing particle at t?(Y0), i.e.

yit? (t?(Y0)) =−1. (25)

The reset matrix can be written as

Rt? =

[
I 0
0 E

]
, (26)

where the matrix E ∈ Rp×p is given by its components as

Ei j =


0, if i 6= j,
1, if i = j 6= it? ,
−1, if i = j = it? .

(27)

The state of the system at time t can be written as

Y (t) = φ(t, t0,Y0) = φ(t, t+? (Y0),Y (t+? (Y0)))
= φ(t, t+? (Y0),Rt?Y (t

−
? (Y0))) = φ(t, t+? (Y0),Rt?φ(t−? (Y0), t0,Y0)).

(28)

The differentiation of the previous expression amounts to differentiating with re-
spect to Y0 a composition of smooth functions

dφ(t, t0,Y0)

dY0
= D2φ(t, t+? (Y0),Rt?φ(t−? (Y0), t0,Y0))

dt?(Y0)

dY0

+D3φ(t, t+? (Y0),Rt?φ(t−? (Y0), t0,Y0))Rt?
dφ(t−? (Y0), t0,Y0)

dY0

(29)
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with

dφ(t−? (Y0), t0,Y0)

dY0
= D1φ(t−? (Y0), t0,Y0)

dt?(Y0)

dY0
+D3φ(t−? (Y0), t0,Y0). (30)

The notation Dkφ denotes the partial derivatives of φ with respect to its k-th ar-
gument. If the smooth flow is known between impacts, the only difficult part that
remains to compute is the derivative of the time of impact t? with respect to Y0. Let
us split the flow φ such that

Y (t) = φ(t, t0,Y0) =

[
φy(t, t0,Y0)
φẏ(t, t0,Y0)

]
=

[
y(t)
ẏ(t)

]
. (31)

We have assumed that only one particle of index it? is impacting at t?(Y0). The
constraint (25) can be written as

φy,it? (t?, t0,Y0) =−1. (32)

Since ∂tφy,it? (t
−
? , t0,Y0) = ẏit? (t

−
? (Y0)) < 0 (non-grazing impact) and the flow is

smooth (analytic) between impacts, the implicit function theorem guarantees that
the impact persists upon small variations of Y0, with an impact time t? being a
smooth (analytic) function of Y0. Moreover, defining a projection matrix Pi ∈R1×2p

such that
D3φy,i(t−? (Y0), t0,Y0) = PiD3φ(t−? (Y0), t0,Y0), (33)

we have
dtt?(Y0)

dY0
=− 1

ẏit? (t
−
? (Y0))

Pit? D3φ(t−? (Y0), t0,Y0). (34)

In order to simplify the expression of the monodromy matrix given by (29) and (30),
we observe that

D2φ(t, t+? ,Y (t
+
? (Y0))) =−D3φ(t, t+? (Y0),Y (t+? (Y0)))Ẏ (t+? (Y0)). (35)

Indeed, since φ(t, t̃,φ(t̃, t+? ,Y?)) = φ(t, t+? ,Y?) is independent of t̃, the identity
∂t̃φ(t, t̃,φ(t̃, t+? ,Y?)) = 0 evaluated at t̃ = t+? and Y? =Y (t+? (Y0)) yields identity (35).
Using (29), (30) and (35), the monodromy matrix simplifies to

dφ(t, t0,Y0)

dY0
= D3φ(t, t+? ,Y (t

+
? (Y0)))[

[Rt?Ẏ (t
−
? (Y0))− Ẏ (t+? (Y0))]

dt?(Y0)

dY0
+Rt?D3φ(t−? (Y0), t0,Y0)

]
.

(36)
Finally, using the relation (34), the monodromy matrix is expressed as follows

dφ(t, t0,Y0)

dY0
= D3φ(t, t+? (Y0),Y (t+? (Y0)))St?D3φ(t−? (Y0), t0,Y0), t > t?(Y0) (37)

where the so-called saltation matrix St? is defined by
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St? =−
1

ẏit? (t
−
? (Y0))

[Rt?Ẏ (t
−
? (Y0))− Ẏ (t+? (Y0))]Pit? +Rt? . (38)

Note that the monodromy matrix is obtained as the product of the Jacobian matrices
of the flow with respect to the initial condition in each smooth phases separated by
the saltation matrix.

The case of two simple impacts at times t?,2 > t?,1 > t0 :

For the two simple impacts at time t?,2 > t?,1 > t0, the computation of the mon-
odromy matrix follows the same line. It is also a product of the Jacobian matrices
of the flow with respect to the initial condition in each smooth phases separated by
the saltation matrix:

dφ(t, t0,Y0)

dY0
= D3φ(t, t+?,2(Y0),Y (t+?,2(Y0)))St?,2

D3φ(t, t+?,1(Y0),Y (t+?,1(Y0)))St?,1D3φ(t−?,1(Y0), t0,Y0), t > t?,2(Y0).
(39)

Computation of the monodromy for the piecewise linear system :

In our case of a piecewise-linear dynamics, the flow of the system between two
impacts is given by

φ(t, t0,Y0) = exp(D(t− t0))Y0, t0 ≤ t ≤ t?,1(Y0), (40)

φ(t, t+?,1(Y0),Y (t+?,1(Y0))) = exp(D(t− t?,1(Y0)))Y (t+?,1(Y0)), t?,1(Y0)≤ t ≤ t?,2(Y0)
(41)

φ(t, t+?,2(Y0),Y (t+?,2(Y0))) = exp(D(t− t?,2(Y0)))Y (t+?,2(Y0)), t ≥ t?,2(Y0), (42)

with D = J + γL. As indicated above in the derivation of the monodromy matrix,
the piecewise linear flow is smooth (analytic). If we consider consider the explicit
formula of the linear flow (40),(41),(42) between impacting times at t?,1 = T/2 and
t?,2 = T , we get for the monodromy matrix

dφ(t, t0,Y0)

dY0
= exp(D(t−T ))ST exp(D(T/2))ST/2 exp(D(T/2− t0)), t > T,

(43)
where t0 < T/2. In section 3, we shall fix t0 = T/4 and t = t0+T = 5T/4 to compute
the monodromy matrix of a T -periodic solution with impact times multiple of T/2.
This leads to

dφ(5T/4,T/4,Y0)

dY0
= exp(DT/4)ST exp(D(T/2))ST/2 exp(DT/4). (44)
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The periodic solution will be unstable if this monodromy matrix admits an eigen-
value with modulus greater than unity, and spectrally stable if all eigenvalues lie
on the unit circle (due to time-reversal symmetry, the Floquet spectrum has the
invariance σ → σ−1). The spectrum of the above monodromy is the same as for
ST exp(D(T/2))ST/2 exp(DT/2).

3 Numerical computation of nonsmooth modes

We solve problem (12)-(13) numerically for a chain of p oscillators with periodic
boundary conditions. Unless explicitly stated otherwise, we fix p = 100. Although
the system (12)-(13) is a standard linear system, we use a general shooting method,
i.e. determine a vector ξ = (y(0)(0),y(1)(0), ẏ(2)(0))∈Rp such that the three bound-
ary conditions of (13) at t = 0 and t = T/2 are satisfied through Newton iterations.
For each Newton iteration, this requires to solve a linear system for ξ obtained
through time-integration of the linear ODE (12). This time integration is equiva-
lent to computing numerically the exponential matrix of the linear flow. When the
coupling parameter is chosen far from the degeneracy case of the BVP matrix, the
shooting technique converges in one iteration. When we are in the neighborhood of
the degenerate cases, the number of Newton iterations may increase indicating an
ill-conditioned linear system of the BVP. Thanks to the general shooting technique,
the case of nonlinear local or interaction potentials could be addressed similarly.
The constraint (14) is checked a posteriori. To this end, we integrate (1)-(2)-(3)
numerically using an event-driven scheme for nonsmooth dynamical systems im-
plemented in the Siconos software [43]. For the shooting technique and validation
of the constraints, the linear ODE is integrated thanks to ODEPACK [21] embedded
in the Siconos software.

Usually, the solution branches are first continued for fixed values of T , varying
the coupling parameter γ . For all fixed value T ∈ (π,2π), a choice of impacting
particles and phases (determined by I1, I2) selects a unique solution for γ = 0 which
can be continued up to some maximal value of the coupling parameter γ . We shall
see in the sequel that some continuations are also done with respect to the period.

3.1 Site-centered breathers

In this section, we illustrate the site-centered breather for the mode pattern I2 =
{50}, I1 = /0 depicted in Figure 6. The period is T = 3π

2 . The periodic solution has
been successfully computed for γ ∈ [0,γc] with

γc =
1
4
((

2π

T
)2−1), (45)
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the critical value of γ for which we expect to reach the out-of-phase mode. For
T = 3π

2 , we have γc ≈ 0.1944. In Figure 7, the initial positions and velocities are
displayed for the particle indices between 40 and 60 and for 4 different values of γ .
We observe that for small values of the coupling parameter γ the breather is localized
on a few particles. With the increasing values of γ , the support of the solution is
increasing to reach the out-of-phase linear grazing mode for γ = γc. Let us note that
the velocity of the central particle 50 is decreasing to the grazing solution for all the
particles.

x

y

0

−1

γk

k

m

Fig. 6: Mode pattern for the site-centered breather
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Fig. 7: Site-centered breather with pattern I1 = /0, I2 = {50}

In Figure 8, the eigenvalues of the monodromy matrix are displayed. In Fig-
ure 8(a), we remark that the eigenvalues have a modulus equal to 1 up to a critical
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value γs between 0.129 and 0.142 for which a pair of eigenvalues is leaving the unit
circle. In Figures 8(b), 8(c) and 8(d), all the eigenvalues are plotted in the complex
plane for three different values of γ ∈ {0,0.064,0.181}. For γ = 0, a pair of eigen-
values are equal to +1 and all the other conjugate eigenvalues pairs are equal to i or
−i. For γ < γs, the conjugate eigenvalues pairs, equals to i and −i for γ = 0, start to
slide on the unit circle toward the pair of eigenvalues that remains at +1. For γ = γs,
a collision occurs in +1. Finally, for γ > γs, a pair of real inverse eigenvalues is leav-
ing the unit circle to slide on the real line while a pair of eigenvalues is remaining at
+1. In that case, the stability of the periodic solution is lost. For γ = 0.181, one the
eigenvalues of modulus around 5.71 is not displayed. To illustrate this loss of sta-
bility, we report in Figure 9 several time integrations of the system with constraints
and impacts for different values of γ over the time interval [0,25T ]. Although the
system is numerically integrated with high accuracy Runge-Kutta schemes in ODE-
PACK with very tight tolerances (10−14), the periodic solutions for γ = 0.181 is
destabilized.
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(a) modulus of the eigenvalues |λi| versus γ
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(d) eigenvalues for γ = 0.181

Fig. 8: Eigenvalues of the monodromy matrix for the site-centered breather with
pattern I1 = /0, I2 = {50}

We also perform a continuation of the solution with respect to the period. We start
for a value of (γ,T ) equals to (0.15,3π/2) and we decrease the period following a
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Fig. 9: Time integration of the periodic solutions for the site-centered breather with
pattern I1 = /0, I2 = {50}

solution with a fixed pattern. The numerical solutions are displayed in Figure 10(a).
We can observe that a family of site-centered breathers is found with an increasing
amplitude of the initial state. For the uncoupled case (γ = 0.0), we know that the
amplitude of the solution goes to infinity when T → π . The same phenomenon is
observed for a given coupling parameter γ = 0.15. In Figure 10(b), we plot the
maximum amplitude of the position ‖y(0)‖∞ and the velocity ‖ẏ(0)‖∞ as a function
of T . An asymptotic value of the period appears clearly for which the amplitude of
the solution blows up. In this specific case, the asymptotic value of the period is
about 0.58(3π/2)≈ 2.78. Let us note that this value is below π .
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Fig. 10: Continuation with a decreasing period of the site-centered breather with
pattern I1 = /0, I2 = {50} for γ = 0.15.

To conclude this section, an exploration of the viability of the site-centered
breathers has been performed for (γ,T ) ∈ [0,1.1]× [2,2π] and p = 30 particles.
We select a mesh grid in the plane (γ,T ) and solve the boundary value problem for
each pair (γ,T ). The results are reported in Figure 11. The light areas correspond to
a numerical computation of a periodic solution of (12)-(13) with the satisfaction of
the constraint (14) and the pattern I1 = /0, I2 = {15}. The red dashed curve is given
by the out-of-phase grazing linear mode whose period is related to γ by
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T (γ) = 2π (1+4γ)−1/2. (46)

As expected with the previous computations, we observe that there exists a large
light area bounded above by the relation (46) and corresponding to site-centered
breathers. This area is also bounded below by a another curve that corresponds to
modes whose amplitudes go to infinity as we have already discussed for a particular
value of γ = 0.15 in Figure 10. Quite interestingly, other light areas are present
above the red curve. To explain these areas, we plot the graphs of the periods with
respect to γ for larger wavenumber q given by

Tn(γ) = 2π (1+4γsin2(q/2))
−1/2

, with q = n2π/p, n = 1, . . . ,15. (47)

We can observe the existence of modulated waves near the linear grazing solutions.
In order to illustrate the solutions obtained in these areas, we plot in Figure 12 the
results of two continuations over the period for γ = 1, T3 ≈ 5.34 and T4 ≈ 4.87
(large dots in Figure 11). We can observe that these solutions are not exactly nor-
mal nonsmooth modes that emerge from the linear grazing modes but rather spatial
modulations of nonsmooth normal modes. For the computation of what could be
called a nonsmooth normal mode we refer to Section 3.4. There, other solutions
are computed (with long-wavelength near T1) with preservation of the normal mode
pattern at the start of continuation.
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Fig. 11: Continuation of periodic solutions with pattern I1 = /0, I2 =
{15} (light areas) for (γ,T ) ∈ [0,1.1] × [2,2π]. Graphs of Tn(γ) =

2π (1+4γsin2(q/2))
−1/2

, with q = n2π/p, for n = 1, . . . ,15 and p = 30.



Periodic motions of coupled impact oscillators 25

0 10 20 30
particles indices

−1.0

−0.5

0.0

0.5

1.0

y
(0

)

0 10 20 30
particles indices

0.0

0.2

0.4

0.6

0.8

ẏ
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0 10 20 30
particles indices

−1.0

−0.5

0.0

0.5

1.0

y
(0

)

0 10 20 30
particles indices

0.000

0.025

0.050

0.075

0.100

0.125

ẏ
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Fig. 12: Continuation of spatially-modulated nonsmooth normal modes with pattern
I1 = /0, I2 = {15} for γ = 1.

3.2 Bond-centered breathers

In this section, some bond-centered breathers are computed with two different pat-
terns.
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Bond-centered breathers with pattern I1 = {49}, I2 = {50}

Let us start with the out-of-phase pattern I1 = {49}, I2 = {50} illustrated in Fig-
ure 13. We choose again a period equal to 3π

2 and the periodic solution has success-
fully been computed in the range [0,γc] with γc given by (45). The initial conditions
of the periodic solutions are displayed in Figure 14 for the particle indices in [40,60].
Again, we can observe that the breather is localized over few particles for small val-
ues of the coupling parameter. Once again, the solution reaches the out-of-phase
linear grazing mode for γ = γc while the velocity of the central particle decreases at
time 0.

x

y

0
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γk

k

m

Fig. 13: Mode pattern for the bond-centered breather
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Fig. 14: Bond-centered breather with pattern I1 = {49}, I2 = {50}
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Fig. 15: Eigenvalues of the monodromy matrix for the bond-centered breather with
pattern I1 = {49}, I2 = {50}
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Fig. 16: Time integration of the periodic solutions for the bond-centered breather
with pattern I1 = {49}, I2 = {50}
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In Figure 15, we depict the eigenvalues of the monodromy matrix. In Figure 15(b)
for γ = 0, we have two pairs of eigenvalues in +1. All the other pairs of conjugate
eigenvalues are equal to i or−i. We observe in Figure 15(a) and Figure 15(b) that for
γ > 0, a pair of real inverse eigenvalues slides from +1 on the real line as γ increases
while the other pair remains equal to +1. The others pairs of conjugate eigenvalues
slide on the unit circle toward the pair of real eigenvalues in +1. A collision occurs
again at +1 for γ = γs ∈ [0.142,0.155]. Then, a second pair of inverse real eigenval-
ues slides on the real line. For γ > 0, the stability of the periodic solutions is lost. We
attempt to illustrate this phenomena with numerical time integration of the periodic
solutions over a long time interval [0,35T ] in Figure 16.

Bond-centered breathers with pattern I1 = /0, I2 = {49,50}

For the pattern I1 = /0, I2 = {49,50}, the solution for the initial conditions is depicted
for the whole chain in Figure 17(a) and for the particles with indices in [40,60] in
Figure 17(b). The period is again 3π

2 and we succesfully perform a continuation of
the solution over [0,γc] with γc given by (45). The main difference with the previous
breathers concerns the solution when γ → γc. In this latter case, it seems that we do
not converge towards a grazing linear mode. This has to be confirmed with a more
accurate study of the critical value of γ .

In Figure 18, we depict the eigenvalues of the monodromy matrix computed by
finite differences. In this case, the closed form formula of the monodromy (44) does
no longer apply since we have multiple impacts. Although the approximation of the
eigenvalues may contain some numerical errors, we observe a more complicated be-
havior of the evolution with respect to γ of the eigenvalues. For γ = 0, two pairs of
real eigenvalues are equal to +1 and the others are conjugated pairs of eigenvalues
are equal to i and −i. For increasing values of γ , one of the pairs of real eigenvalues
starts to slide on the unit circle respectively towards i and −i while the other pairs
of conjugate eigenvalues slide on the unit circle from i and −i towards +1. A first
collision occurs on the unit circle for γ ∈ [0.051,0.064] and two pairs of eigenval-
ues leave the unit circle. Several other collisions of different types occur when we
increase the value of γ up to γc.
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Fig. 17: Bond-centered breather with pattern I1 = /0, I2 = {49,50}
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Fig. 18: Eigenvalues of the monodromy matrix computed by finite differences for
the bond-centered breather with pattern I1 = /0, I2 = {49,50}
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3.3 Multiple impacting particles

In this section, we illustrate wave patterns with multiple impacts, where the pattern
is either spatially periodic or localized on several particles (multi-site breathers).

Out-of-phase mode with spatial period two

We start with the nonsmooth mode of spatial period two described in Section 2.
The pattern is given by I1 = {2k+1}k=0,...,49, I2 = {2k}k=0,...,49 that corresponds to
the sets of odd and even integers respectively. In Figure 19, the initial conditions
for the periodic solutions are given for T = 3π

2 . For this example, we are able to
continue the solution over the range [0,γc] up to reaching the out-of-phase linear
grazing mode. In Figure 20, the eigenvalues of the monodromy matrix computed
by finite differences are depicted. For γ = 0, all the eigenvalues are equal to +1.
For γ > 0, the pairs of inverse real eigenvalues slide on the real line. The periodic
solutions are therefore unstable for γ > 0. This is illustrated in Figure 21 where long
time integration simulations have been performed over the time interval [0,35T ].
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Fig. 19: Out-of-phase mode with pattern I1 = {2k+1}k=0,...,49, I2 = {2k}k=0,...,49

Periodic wave with spatial period six

Another example of nonsmooth spatially periodic standing wave is displayed in
Figure 22. The spatial period is six and the time period is again 3π

2 . The mode
profiles are depicted for several values of γ in [0,γc].
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Fig. 20: Eigenvalues of the monodromy matrix computed by finite differences for
the out-of-phase mode with pattern I1 = {2k+1}k=0,...,49, I2 = {2k}k=0,...,49
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Fig. 21: Time integration of the periodic solutions for the out-of-phase mode with
pattern I1 = {2k+1}k=0,...,49, I2 = {2k}k=0,...,49
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Fig. 22: Periodic wave with pattern of spatial period 6 : I1 = {6k+ 3,6k+ 4,6k+
5}k=0,3,..., I2 = {6k,6k+1,6k+2}k=0,3,...

Multi-site breather localized on 10 particles

In Figure 23, a multi-site breather with pattern I1 = /0, I2 = {45, . . . ,55} is displayed
for T = 3π

2 . For γ→ γc, the computation of the solutions is more difficult. The largest
value of γ for which a solution is displayed is 0.1944096 < γc. We can observe that
the particles in I0 are still not grazing.
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Fig. 23: Multi-site breather with pattern I1 = /0, I2 = {45, . . . ,55}

3.4 Long-wavelength modes

We also compute spatially extended long-wavelength modes close to the main linear
mode with wavenumber q = 2π/p that is depicted in Figure 24. The period of the
linear mode for a given wavenumber q is

T1 = 2π (1+4γsin2(q/2))
−1/2

. (48)

Our computations are performed for γ = 1 and p = 30 particles and we get T1 ≈
6.150.
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(a) Positions for T = T1 (b) Velocities for T = T1

Fig. 24: Main linear grazing mode for γ = 1 and T1 = 2π (1+4γsin2(π/30))
−1/2

.

A first branch of solutions

We are able to follow a first continuous branch of solutions depicted in Figure 25
with periods T ∈ [α7 T1,α1 T1], and α1 = 0.99056 and α7 = 0.5035988. The mode
amplitude diverges when T → α7 T+

1 , and two particles at n = 15,30 (the antin-
odes, i.e. the particles that reach maximal height) undergo grazing impacts when
T → α1 T−1 . The number of impacting particles decreases from 30 to 10 when T
is increased. More precisely, for T in intervals of the form [α j T1,α j−1 T1], we find
4 j+2 impacting particles with pattern I1 = {1,2, . . . , j, p− j, p− j+1, . . . , p}, I2 =
{15− j, . . . ,15+ j}. We find α6 ≈ 0.5798, α5 ≈ 0.7641, α4 ≈ 0.92, α3 ≈ 0.9618,
α2 ≈ 0.9771.
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(a) Positions for T = α1T1 (b) Velocities for T = α1T1

(c) Positions for T = α2T1 (d) Velocities for T = α2T1

(e) Positions for T = α3T1 (f) Velocities for T = α3T1

Fig. 25: A first branch of long-wavelength normal modes for γ = 1 and T1 =

2π (1+4γsin2(π/30))
−1/2

.
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(g) Positions for T = α4T1 (h) Velocities for T = α4T1

(i) Positions for T = α5T1 (j) Velocities for T = α5T1

Fig. 25: A first branch of long-wavelength normal modes for γ = 1 and T1 =

2π (1+4γsin2(π/30))
−1/2

(continued).
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(k) Positions for T = α6T1 (l) Velocities for T = α6T1

(m) Positions for T = α7T1 (n) Velocities for T = α7T1

Fig. 25: A first branch of long-wavelength normal modes for γ = 1 and T1 =

2π (1+4γsin2(π/30))
−1/2

(continued).
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A second branch of solutions

We find another branch of solutions whose period T ∈ [0.81 ·T1,T1) can approach
T1 arbitrary closely. These solutions emerge from the linear grazing mode when
T → T1. Let us set T = α T1 and describe the mode pattern depending on α . We
only describe I2, given that I1 = I2 + 15(mod30). We have I2 = {15} for α ∈
[0.991,1), I2 = {14,15,16} for α ∈ [0.9825921,0.99], I2 = {12,14,15,16,18} for
α ∈ [0.965,0.9825924], I2 = {11,12,14,15,16,18,19} for α ∈ [0.85,0.964], I2 =
{9,11,12,14,15,16,18,19,21} for α ∈ [0.836,0.849], and for α ∈ [0.81,0.835] we
find I2 = {9,11,12,13,14,15,16,17,18,19,21}. Mode profiles are shown in Figure
26.
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(a) Positions for T = 0.997T1 (b) Velocities for T = 0.997T1

(c) Positions for T = 0.99T1 (d) Velocities for T = 0.99T1

(e) Positions for T = 0.9825924T1 (f) Velocities for T = 0.9825924T1

Fig. 26: A second branch of long-wavelength normal modes for γ = 1 and T1 =

2π (1+4γsin2(π/30))
−1/2

.
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(g) Positions for T = 0.964T1 (h) Velocities for T = 0.964T1

(i) Positions for T = 0.849T1 (j) Velocities for T = 0.849T1

Fig. 26: A second branch of long-wavelength normal modes for γ = 1 and T1 =

2π (1+4γsin2(π/30))
−1/2

(continued).
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(k) Positions for T = 0.835T1 (l) Velocities for T = 0.835T1

(m) Positions for T = 0.81T1 (n) Velocities for T = 0.81T1

Fig. 26: A second branch of long-wavelength normal modes for γ = 1 and T1 =

2π (1+4γsin2(π/30))
−1/2

(continued).
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4 Discussion

In this work, we have studied the existence and stability of nonsmooth modes (either
spatially localized or extended) in a chain of coupled impact oscillators, for rigid
impacts without energy dissipation. We have obtained analytical solutions with an
arbitrary number of impacting particles at small coupling, and have computed such
solutions numerically for larger coupling constants. Different solution branches cor-
responding to stable or unstable breathers, multibreathers and nonsmooth normal
modes have been found.

The computation of periodic solutions based on the above approach is much more
effective than numerical continuation of periodic solutions based on stiff compliant
models. In the latter case, impacts are described by smooth nonlinear Hertzian type
potentials leading to stiff ODE and costly numerical continuation.

Several extensions of this work could be considered. It would be interesting to
perform the continuation of periodic solutions while allowing switches in the mode
patterns. In addition, the study of more complex types of nonsmooth modes would
be of great interest. In particular, one could allow particles to realize several impacts
per period [38] or display sticking phases after a grazing contact [28]. The inclusion
of dissipative impacts and forcing and the application of the method to more com-
plex finite-element models of continuous impacting systems constitute additional
challenging directions.

Acknowledgements The authors are grateful to Oleg Gendelman and Itay Grinberg for stimulat-
ing discussions.
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