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Inertial settling of a sphere through an interface.
Part 1. From sphere flotation to

wake fragmentation

Jean-Lou Pierson1,‡ and Jacques Magnaudet1,†
1Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS,

Toulouse, France

Experiments are performed to better understand the characteristics of the flow induced
by the gravity-driven settling of a rigid sphere through a two-layer arrangement of
immiscible Newtonian fluids, mostly in inertia-controlled regimes. High-speed video
imaging is employed to follow the sphere motion and the deformation of the interface
separating the two fluids. The viscosity ratio between the lower and upper fluids is
varied by four orders of magnitude, making it possible to observe highly contrasting
interface patterns. Depending on the properties of the sphere and the fluids, the
sphere may either float steadily at the interface or cross it by pulling a column of
the upper fluid into the lower one. This column, which may be axisymmetric or
three-dimensional depending on the relative magnitude of inertia effects in the upper
fluid, generally pinches off at some position located either close to the initial interface
or, more frequently, close to the sphere. Its lower part then recedes towards the sphere,
forming a drop which remains attached to its top half. However, when inertia effects
in the lower fluid are large enough and the upper fluid is not ‘too’ viscous, the
tail quickly undergoes a complete fragmentation, giving birth to a large quantity of
filaments and droplets. These various interface configurations are qualitatively analysed
using the five independent dimensionless parameters characterizing the system, and
regime maps based on the most relevant of them are provided. The influence of
several of these parameters on four specific features observed in the course of
the experiments, namely the pinch-off position, the floating/sinking transition, the
volume of the attached drops and the average size of the droplets formed during the
fragmentation process, is examined in detail. A simple model providing qualitative
or quantitative predictions is established in each case, and its validity and limitations
are assessed against experimental observations.

Key words: interfacial flows (free surface), multiphase and particle-laden flows

1. Introduction
The settling of a body through an interface separating two fluids is encountered

in a broad variety of situations, both in the geophysical context and in engineering
applications. In environmental sciences, aerosols, dust or volcanic ashes settling in
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the lower atmosphere, as well as marine snow sinking in the upper ocean, face a
surrounding fluid medium which may locally comprise large density gradients. The
corresponding layers are now recognized as having a strong impact on the settling rate
and dispersion characteristics of particles, in the case of both atmospheric inversions
(Kellogg 1980; Burns & Chemel 2015) and oceanic thermoclines and haloclines
(Riebesell 1992; MacIntyre, Alldredge & Gotschalk 1995). This, in turn, makes the
underlying hydrodynamical processes relevant to an understanding of several aspects
of air pollution, climate variability or oceanic biochemical cycling (Denman & Gargett
1995; Condie & Bormans 1997). Fluids involved in internal geophysical processes
may also undergo natural discontinuous density and/or viscosity stratifications. These
discontinuities are thought to be important in momentum exchanges between several
layers of planetary interiors. This is, for instance, the case with the ascent of plumes
through the Earth’s mantle or the migration of magma slabs through the crust (Manga,
Stone & O’Connell 1993).

Most engineering configurations in which rigid or fluid particles have to cross
a horizontal interface involve immiscible fluids. Hence, although effects of density
stratification may still be significant, those due to interfacial tension and, possibly,
viscosity contrast generally play a leading role in that context, as the three following
examples suggest. Removal of non-metallic impurities during steel elaboration is
usually achieved by transferring them from metal to slag, frequently with the help
of gas bubbles either injected at the bottom of the ladle or produced in situ by
a chemical reaction (Poggi, Minto & Davenport 1969; Shannon, White & Sridhar
2008). In contacting devices used to achieve liquid–liquid extraction, droplets of a
light (respectively heavy) liquid rise (respectively settle) towards an interface through
a second heavier (respectively lighter) liquid and eventually coalesce to form a
light upper (respectively heavy lower) layer. In encapsulation and in several coating
processes, gravity is classically used to drive particles across an interface in order to
coat them within the film of light fluid that still surrounds them when they penetrate
into the second heavier fluid (Weinstein & Palmer 1997). However, applications
to drug delivery and cell therapy have recently led to the development of coating
strategies for micron-size particles using microfluidic devices. As gravity is barely
efficient at such scales, magnetic forcing has been proposed as a surrogate to force
paramagnetic microparticles to cross the interface and achieve ultrathin coating (Tsai
et al. 2011).

From the viewpoint of hydrodynamics, the canonical configuration that can provide
a basic understanding of the complex phenomena involved in the various applications
reviewed above is that of a single rigid sphere moving through a quiescent fluid near
and across a deformable, initially flat, interface. So far, most of the available studies in
the domain have concentrated on two extreme situations involving immiscible fluids.

The first of them corresponds to the so-called ‘film drainage’ problem, in which
the sphere succeeds in crossing the interface only after the liquid film that forms
ahead of it as it gets close to the interface has been completely drained. Indeed, film
drainage is the slowest step of the breakthrough process under certain conditions. This
is so if the particle is small enough or its density is close to that of the two fluids,
or if it is released close enough to the interface, which is why this configuration has
been considered as a reference to elucidate the hydrodynamic mechanisms governing
coalescence under quasi-steady conditions. Film drainage dynamics is also key to
determining the capture efficiency in flotation processes, where bubbles are used to
remove mineral impurities from a liquid (Stechemesser & Nguyen 1999). Pioneering
experimental and theoretical investigations of that configuration were carried out by
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Hartland (1968, 1969), who established the laws governing the evolution of the film
thickness and its longitudinal variations; see also the review by Jeffreys & Davies
(1971). A more rigorous theory, clarifying, among other things, the origin of the
narrowing of the film in the peripheral region where it connects to the meniscus, was
elaborated by Jones & Wilson (1978); the influence of gravity on the evolution of
the film thickness was then considered by Smith & Van de Ven (1984).

The ‘opposite’ limit worth mentioning is that of a sphere impacting a free surface
normally (most frequently an air–water interface) in the regime where inertia effects
dominate over those related to surface tension, and viscosity has a virtually negligible
influence. Several aspects of this problem are addressed in the classical treatise by
Birkhoff & Zarantonello (1957), and a recent update was provided by Truscott, Epps
& Belden (2014). In this situation, provided that the impact velocity is sufficient,
a ‘splash’ characterized by the generation of a circular crown of ligaments and
droplets is observed at the free surface. It is accompanied by the development of
an air cavity connecting the free surface to the sphere. At some point this cavity
snaps, letting the sphere sink with a more or less large cylindrical volume of air
attached to its rear half. For moderate-to-low impact velocities, the hydrophilic or
hydrophobic nature of the sphere surface has been shown to a have a dramatic effect
on the deformation of the free surface (Duez, Ybert & Bocquet 2007; Lee & Kim
2008; Aristoff & Bush 2009): the formation of the crown and cavity is only observed
with hydrophobic spheres (at the surface of which the fluid–solid contact is of the
Cassie–Baxter type, due to air entrapment between roughness elements (De Gennes,
Brochard-Wyart & Quéré 2003)), whereas the impact of smooth hydrophilic spheres
gives rise to the generation of an upward jet, resulting in a dome above the initial
level of the free surface. On increasing the ratio of inertia to capillary effects, the
cavity observed with hydrophobic spheres is found to pinch off either right at the
free surface (a configuration referred to as ‘surface seal’ by Aristoff & Bush (2009)),
somewhat below the free surface (‘shallow seal’) or closer to the sphere than to the
surface (‘deep seal’). The dynamics of the cavity, especially the time and vertical
position at which its pinch-off occurs, have been modelled using a potential flow
approach based on the cylindrical analogue of the theoretical solution of the so-called
Rayleigh–Besant problem governing the collapse of a spherical cavity (Duclaux et al.
2007; Aristoff & Bush 2009). In the deep-seal configuration, ripples due to the
acoustic disturbance generated by the pinch-off have been observed to develop at
the cavity surface (Grumstrup, Keller & Belmonte 2007). A similar phenomenon but
with a different origin was recently reported by Tan et al. (2016), who considered
the impact of spheres coated with a thin oil film (obtained by using a two-layer
configuration where the sphere first crosses an oil layer). In that case, ripples form
before the cavity snaps, owing to an instability due to the shear at the oil–water
interface.

In contrast to the phenomenology of impacting spheres, the present study is
concerned with situations in which no ‘splash’ occurs, due to the moderate density
difference between the two fluids and the absence of an initial sphere velocity. In
this case, two fundamental configurations have been identified (Maru, Wasan &
Kintner 1971; Geller, Lee & Leal 1986). One corresponds to the ‘film drainage’
situation introduced above. The other is the so-called ‘tailing’ configuration, in which,
although the drainage of the film separating the sphere from the interface may not
have been completed, the sphere succeeds in crossing the interface by towing a
column of the upper fluid into the lower one. This column eventually pinches off, its
upper part then receding towards the initial position of the interface while the lower
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part may remain attached to the sphere. The tailing and impacting configurations
clearly exhibit qualitative similarities, the liquid tail being the counterpart of the
air cavity. However, viscous effects are generally hardly negligible within the tail,
generating significant vorticity levels. Given the comparable densities of the two
fluids, this vorticity makes the entire flow field quite different from a potential flow.
Hence, the tail dynamics generally dramatically differs from that of a cavity. An
example of this may be found in a recent study where a disk initially located at an
oil–water interface was pulled down with a constant velocity (Peters et al. 2016):
the optically determined entrained volume of oil was found to be typically twice as
large as Darwin’s drift volume (Darwin 1953) predicted by assuming a potential flow
throughout the fluid domain. Surprisingly, few systematic studies have been devoted to
the tailing configuration, starting with the investigation of Maru et al. (1971). These
authors were mostly interested in determining the critical conditions under which a
sphere cannot reach a static equilibrium at the interface, then sinking in the lower
fluid. However, using oil–glycerin and oil–water systems, they also observed various
aspects of the tail dynamics, including under certain conditions the development of a
Rayleigh–Plateau instability in the late stages. A computational study by Geller et al.
(1986) extensively considered the tailing configuration under creeping flow conditions.
By imposing the sphere velocity (respectively body force), these authors could also
monitor the evolution of the drag force (respectively sphere velocity) for contrasting
values of the flow characteristic parameters, especially the viscosity ratio. However,
due to limitations inherent to the boundary integral method, the computations had to
be stopped before the tail pinched off, so that no information was provided regarding
the late dynamics of the sphere and tail. More recently, quantitative observations
of the interface deformation and induced velocity field generated by the settling
of millimetre-size glass spheres in a silicone oil/aqueous solution were reported by
Dietrich, Poncin & Li (2011) using high-speed imaging and particle image velocimetry.
In a different context, microscopy techniques were used by De Folter et al. (2010) to
describe the film drainage and tailing configurations, including various aspects of the
late tail dynamics, in the case of micron-size spheres settling through a fluid–fluid
interface in a demixed colloid–polymer mixture.

The tailing configuration is also observed in miscible fluid set-ups. Indeed, when
a body moves vertically in a linearly stratified environment, the originally horizontal
isopycnals are distorted and the body tows a long ‘wake’ made of fluid particles
lighter than those located at the same altitude far away from its path. As a result,
the drag coefficient characterizing the overall fluid resistance to the body motion
may increase dramatically (Torres et al. 2000; Yick et al. 2009). A qualitatively
similar phenomenology takes place in the presence of a sharp density stratification.
Srdic-Mitrovic, Mohamed & Fernando (1999) used a two-layer water + alcohol–brine
system to determine the settling velocity of spherical particles made of various
materials. They concluded that the drag coefficient may increase by an order of
magnitude after the sphere has crossed the density interface, yielding much longer
residence times close to the interface than predicted on the basis of standard drag
laws. Abaid et al. (2004) even observed that, due to this increase, the sphere velocity
may reverse for some time, so that the particle momentarily ‘levitates’ in a fluid
environment lighter than its own density. Detailed experiments were then performed
in the low-Reynolds-number regime by Camassa et al. (2009, 2010). These authors
also developed a theoretical framework yielding an integral representation of the
velocity disturbance induced by the distortion of the isopycnals, from which the drag
enhancement may be formally evaluated.
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Based on the above state of the art for fluid pairs with comparable densities, the
present investigation was carried out with two main goals in mind. The first of these
was to investigate the evolution of the interface shape and sphere motion over a broad
range of physical conditions, from viscosity-dominated to inertia-controlled situations,
and from large to small values of the viscosity ratio between the upper and lower
fluid layers. Our second aim was to use the quantitative information provided by
experiments and direct numerical simulations to obtain new insight into the physical
mechanisms governing specific aspects of this evolution, at both short and long time,
and develop quantitative models for some of them. The present paper is the first of
a series of two in which we present the most significant results of this investigation.
The companion paper (Pierson & Magnaudet 2017b), hereafter referred to as PM2,
focuses on the dynamics of the sphere and tail in some selected axisymmetric
configurations corresponding to contrasting flow conditions. Taking advantage of the
combination of experimental and computational results, it also provides a detailed
analysis of several mechanisms encountered in the long-term evolution of the receding
tail which may be seen as a pre-stretched fluid ligament. Here, in Part 1, we focus on
experimental observations of the interface dynamics, starting with a description of the
corresponding device, protocol and measurement techniques in § 2. Then, § 3 provides
a qualitative description of the ‘zoology’ of interface configurations experimentally
observed by varying the physical characteristics of the fluid pairs and those of the
sphere. These configurations range from the static situation in which small light
spheres are able to float steadily at the interface to those, observed with the largest
heaviest spheres, in which the tail breaks up into a myriad of droplets, corresponding
to a situation of liquid–liquid fragmentation. In intermediate tailing regimes, the
primary pinch-off may take place either close to the sphere or in the vicinity of
the interface. We rationalize the ‘zoology’ of interface configurations and pinch-off
positions by providing qualitative regime maps. Each of the next three sections is
devoted to the analysis and modelling of a specific phenomenon observed within
some range of conditions; in each case, the corresponding predictions are compared
with observations. Section 4 focuses on conditions under which the sphere can rest
at the interface, and provides a flotation criterion based on a static force balance.
Section 5 considers the drop which frequently remains attached to the sphere once
the tail has pinched off. Using a suitable force balance, scaling laws are derived to
predict how the drop volume varies with the fluids and sphere characteristics in two
different limits. Finally, § 6 focuses on droplets produced during tail fragmentation.
A model based on scaling arguments is set up to predict the average drop radius
and identify the physical origin of the breakup in cases where effects of interfacial
tension and tail viscosity are both significant. The main findings of the paper are
summarized in § 7.

2. Experimental approach
2.1. Experimental device and protocol, measurement and processing techniques

The experiments reported below made use of silicone oil as the upper fluid, while the
lower fluid was either distilled water or a mixture of distilled water and glycerin with
a 79 % glycerin volume fraction. The device and measurement equipment are sketched
in figure 1. Experiments were carried out in a 40 cm high glass tank with a 20 cm×
20 cm cross-section. Two sides of the tank were made of B270 SuperwiteTM glass
to limit optical distortion. To avoid formation of a meniscus along the interface, the
upper part of the glass walls was coated with the hydrophobic compound Rain-XTM.
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FIGURE 1. (Colour online) Sketch of the experimental device and optical
measurement system.

Spheres were initially held with an inverted clamp and released gently at the top of
a 35 mm long tube; the use of an inverted clamp allows the initial rotation of the
spheres to be drastically reduced. To also reduce their lateral drift to a minimum, the
tube diameter was selected to be slightly larger than that of the sphere in each case,
i.e. different tubes were used according to the sphere diameter. In most cases, the top
of the tube stood 9 cm above the interface, thus allowing the spheres to settle in the
upper liquid over a 5.5 cm distance; this distance was determined to be sufficient for
the spheres to almost reach their terminal velocity before encountering the interface.
However, with the least viscous silicone oil, inertia effects may be large and increase
the distance required for the spheres to reach their terminal velocity. Therefore another
stand was used to support the tube, the top of which was located 12 cm above the
interface in that case. All experiments were carried out at room temperature, in the
range 20± 2 ◦C. Liquids were replaced every day or every two days. Each time they
were changed, the tank was washed with a detergent liquid, then rinsed out with tap
water approximately 10 times, and dried with a dry duster.

The sphere and interface contours were recorded with a PCO pco.dimax S4 high-
speed video camera with a resolution of 2016 × 2016 pixels. The acquisition rate
varied from 10 frames per second in the case of very slow sphere motion to 500
frames per second for the fastest settling velocity. To reduce optical distortion caused
by the interface, an Opto Engineering TC 4M 120 telecentric lens was used. The
detected field of view was approximately 15.5 cm× 8.1 cm.

The contours of the sphere and liquid–liquid interfaces were generally detected
using a thresholding method. However, in cases where the lower fluid involved a
high percentage of glycerin, the optical contrast between the two fluids was small,
making this detection method inaccurate. Therefore, a gradient method was used
in such cases. Whatever the detection method, the positions and surfaces detected
in each frame were then tracked using a maximum likelihood detection procedure.
During the interface breakthrough, optical distortions may affect the detection of the
sphere contour. A Hough transform, which allows circles to be recognized on a frame,
was then used to extract this contour properly.

Each experiment was repeated at least three times by waiting long enough in
between two successive tests for the bath to come back to rest. The results revealed
an excellent repeatability, except in the close vicinity of the flotation/sinking transition,
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Steel Aluminium Glass Teflon Polyacetal
Density (kg m−3) 7910 3842 2518 2162 1361

TABLE 1. Marble densities.

Density (kg m−3) Viscosity (mPa s)

Water 997 1.0
79 % glycerin + water 1208 88
V5 silicone oil 918 4.8
V50 silicone oil 962 52
V500 silicone oil 971 520
Interfacial tension (mN m−1) V5 V50 V500
Water 29± 2 30± 2 27± 4
79 % glycerin + water 31± 0.5 32± 0.5 31± 0.5

TABLE 2. The physical properties of the various liquids measured at a temperature
of 20 ◦C.

where small disturbances, such as dust captured at the sphere surface or variation
in the room temperature, could affect the time required for the sphere to detach
from the interface significantly. Obviously, in cases exhibiting non-axisymmetric tails,
repeatability holds only in a statistical sense, since each realization yields a different
instantaneous interface geometry. Nevertheless, these restrictions do not affect the
bounds of the various settling regimes to be described in § 3. Repeatability in the
axisymmetric regimes can be fully appreciated in PM2, were numerous figures include
data provided by the three successive tests. These data are seen to collapse very well
in all cases.

2.2. The physical characteristics of the fluids and spheres
The ‘spheres’ were precision marbles manufactured by Marteau et Lemarié, made of
stainless steel, aluminium, glass, Teflon (PTFE) and polyacetal (POM) respectively.
For each material, we used marbles with nominal diameters of 4, 7, 10 and 14 mm.
These diameters were controlled with a ±0.02 mm accuracy with a sliding calliper.
The manufacturer’s specifications indicate that their departure from sphericity ranges
from 0.13 µm for small steel marbles to 25 µm for polyacetal marbles, the former
having a maximum roughness of 0.014 µm. Their weights were measured with a
Mettler Toledo balance with a 1 mg accuracy. The corresponding material densities
are given in table 1. They were obtained by averaging over five marbles made of the
same material, all with a 7 mm diameter to minimize effects of volume uncertainty.
The resulting accuracy of these material densities was ±10 kg m−3.

Table 2 gathers the physical properties of the various fluids or fluid pairs at
a reference temperature of 20 ◦C. Liquid densities were measured with a glass
gravity hydrometer from Thermo Fisher Scientific with a ±1 kg m−3 accuracy.
Viscosities were determined with a Haake Mars III rheometer (also from Thermo
Fisher Scientific). The corresponding relative uncertainty, estimated by determining
the viscosity of a given liquid using different ranges of torque, was approximately 3 %
for the least viscous oil and was a decreasing function of viscosity. It must be noticed
that the viscosity of the water–glycerin mixture is highly temperature-dependent,
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(a) (b) (c) (d)

FIGURE 2. Contact between a drop of water and a solid surface immersed in a bath of
V5 silicone oil. (a–d) Steel, glass, Teflon and polyacetal.

Steel Aluminium Glass Teflon Polyacetal
V5-water 150◦ s 110◦m 60◦ s 160◦ s 150◦m

V5-79 % glycerin + water 135◦ s 130◦m 80◦ s 150◦ s 120◦m

TABLE 3. The contact angle in V5 silicone oil. The superscripts s and m indicate that
measurements were performed on a strip of material or directly on the marble respectively.

varying by approximately 25 % in between 18 ◦C and 22 ◦C. Interfacial tensions were
measured with a Kruss DSA 100 tensiometer using the pendant drop technique. The
corresponding uncertainty depended on the pair of fluids under consideration. This
is because small density differences result in approximately spherical drops, which
makes the determination of the interfacial tension more difficult. The uncertainty
indicated in table 2 was determined by considering maximum and minimum values
obtained over five tests.

Finally, we determined the macroscopic contact angle at the marble surface in
two pairs of fluids, namely V5 oil/water and V5 oil/glycerin+water. We focused
on the least viscous silicone oil because it is expected to lead to the fastest film
drainage; hence, it is the most favourable to a partial dewetting of the marble surface
(De Gennes et al. 2003). To measure the contact angle, a strip of the material of
which the marble was made, or in some cases the marble itself, was introduced into
a bath of silicone oil. A drop of water was then released on the solid surface and the
contact angle was determined using a Kruss DSA100 tensiometer. The corresponding
values (averaged over three tests) are gathered in table 3, and some views of the
corresponding three-phase systems are provided in figure 2. These pictures indicate
that the solid surface was completely wetted by silicone oil, except in the case of
glass, for which partial wetting by water was observed. However, in the course of the
dynamic experiments reported below, we never observed the formation of a contact
line, even with glass marbles. This is why in the theoretical models described below
(and in the computational approach to be described in PM2), we always consider that
the sphere is entirely surrounded by a film of silicone oil, i.e. it is never in contact
with the lower fluid.

3. Overall observations and regime maps
3.1. Dimensionless numbers and presentation of observations

Before we start to describe the experimental observations, a prerequisite is the
definition of a proper set of dimensionless numbers characterizing the three-phase
system. In what follows, index 1 (respectively 2) refers to the upper (respectively
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lower) fluid, while index p refers to the sphere. Assuming that the tank is large
enough for confinement effects to be negligible, this system is entirely defined by
eight quantities, namely the three densities ρ1, ρ2, ρp, the two viscosities µ1, µ2, the
interfacial tension γ , the sphere radius R and gravity g. Hence, five independent
dimensionless numbers may be formed. We select the viscosity ratio λ= µ2/µ1, the
fluid and solid-to-fluid density contrasts with respect to the upper fluid ζ = ρ2/ρ1 − 1
and ζp = ρp/ρ1 − 1 respectively, the interfacial Bond number Bo = g(ρ2 − ρ1)R2/γ
and the Archimedes number Ar = ρ1(ζpg)1/2R3/2/µ1, which is merely a Reynolds
number based on the gravitational velocity (ζpgR)1/2. With the set of fluids described
in § 2.2, λ may be varied by nearly four orders of magnitude, from λ = 1.9 × 10−3

with the combination V500/water to λ = 18.3 with V5/glycerin + water. With the
same two pairs of fluids, ζ varies by only one order of magnitude, from ζ ≈ 0.03
to ζ ≈ 0.32. The sphere-to-fluid density contrast ranges from 0.40 for polyacetal
spheres in V500 oil to 7.65 for steel spheres in V5. The interfacial Bond number
varies by two orders of magnitude, from 0.038 for the smallest spheres (R = 2
mm) with the V500/water pair to 4.5 for the largest ones (R = 7 mm) with the
V5/glycerin–water pair. Finally, the Archimedes number varies by more than three
orders of magnitude, from 0.33 with the smallest polyacetal spheres in the V500 oil
to 968 with the largest steel spheres in V5. However, in the lower fluid, the relevant
gravitational velocity and viscosity are ((ρp/ρ2 − 1)gR)1/2 and µ2 respectively, so that
the relevant Archimedes number, say Arl, is Arl = (1/λ)

(
(ζp − ζ )(1+ ζ )/ζp

)1/2
Ar.

Hence, when the viscosity contrast is large, Ar and Arl may differ by several orders
of magnitude for a given sphere. For instance, in the latter two cases with Ar= 0.33
and Ar = 968, one respectively obtains Arl = 169 and Arl = 4815 when the lower
fluid is water. To analyse some specific phenomena, it may also be appropriate
to replace Bo, which only involves the fluid density contrast, by a Bond number
based on the solid-to-fluid density contrast with respect to the lower fluid, i.e.
Bol = g(ρp − ρ2)R2/γ = (ζp/ζ − 1)Bo.

To discuss experimental observations in the five-dimensional parameter space
(λ, ζ , ζp, Bo, Ar), we select a representation in which, for a given pair of fluids, i.e.
a given (λ, ζ ) pair, a typical view of the sphere + fluid system corresponding to a
given ζp is positioned in the (Ar, Bo) plane. We focus on three materials, namely
polyacetal, glass and steel, which, for a given sphere radius, yield ascending values
of Ar. We also select three sphere radii, namely 2, 3.5 and 7 mm, which, for a given
material, yield ascending values of both Ar and Bo. We found it most convenient
to split the results into three series. The first of them corresponds to fluid pairs
with λ > 0.1 and spheres such that Ar < 102 and Arl < 102, which yields strictly or
approximately axisymmetric configurations (see the discussion in § 3.3). The second
series covers the same range of viscosity ratios but focuses on spheres such that Ar
is large enough (i.e. typically > 102) for significant non-axisymmetric effects to take
place in the upper fluid and possibly in the lower one. Finally, the third series focuses
on fluid pairs with small viscosity ratios (λ6 0.02) and spheres such that the flow is
axisymmetric in the upper fluid (Ar<102) but may turn three-dimensional in the lower
one because Arl� Ar. The various snapshots showing typical interface deformations
in the upcoming figures were taken at different times. Time is of course irrelevant
in the case of spheres floating steadily at the interface. In tailing configurations,
most pictures were taken before the tail and the sphere separated from each other.
However, in figures 4 and 5, we selected some snapshots captured right after the
tail pinched off, to emphasize that the primary pinch-off may take place either close
to the initial position of the interface or close to the sphere. (Mechanisms yielding
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FIGURE 3. Some selected settling configurations for (a) the V50/water–glycerin pair
(λ = 1.7, ζ = 0.26) and (b) the V500/water–glycerin pair (λ = 0.17, ζ = 0.24). In each
panel, from left to right, polyacetal, glass and steel spheres; from top to bottom, R= 7, 3.5
and 2 mm. The vertical and horizontal medians of each image are positioned on the
appropriate values of Ar and Bo respectively.
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FIGURE 4. The same as figure 3 for (a) the V5/water–glycerin pair (λ= 18.3, ζ = 0.32)
and (b) the V5/water pair (λ= 0.21, ζ = 0.09).

these two distinct pinch-off locations will be discussed in § 3.4.) Some snapshots
revealing massive fragmentation in the tail are also included in figures 4(b) and 5(a).
Obviously, the various snapshots do not provide any insight into the evolution of the
sphere dynamics, or in most cases the evolution of the tail dynamics, especially after
pinch-off has occurred. These aspects are discussed in detail in PM2 for selected
axisymmetric configurations taken from figures 3–5. Nevertheless, it may be pointed
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FIGURE 5. (Colour online) The same as figure 3 for (a) the V50/water pair (λ= 1.9×
10−2, ζ = 0.04) and (b) the V500/water pair (λ = 1.9 × 10−3, ζ = 0.03). In (a), images
located above the broken line were obtained in the presence of Triton X-100; in the lower
(respectively upper) series, the image corresponding to the smallest polyacetal (respectively
largest glass) sphere was not saved.

out here that, in tailing regimes, pinch-off has little direct influence on the sphere
velocity, large decelerations/accelerations only being observed well before it occurs.

3.2. General observations
Figure 3 displays the first series of observations corresponding to spheres such
that Ar < 102 and Arl < 102 in two fluid pairs, corresponding to λ = 1.7 and 0.17
respectively (among the various experiments, these viscosity ratios actually vary in the
ranges 1.7± 0.2 and 0.17± 0.2 respectively, due to the influence of temperature on
the viscosity of the water–glycerin mixture). In both cases, the settling of the smallest
two polyacetal spheres yields a configuration in which the sphere floats steadily at
the interface (configurations 1a–b and 4a–b in the figure respectively). In contrast,
the largest polyacetal sphere and the smallest glass sphere (configurations 7a–b and
2a–b respectively) succeed in crossing the interface in a slow quasi-static manner. In
all other cases, although it is slowed down by capillary effects when it reaches the
interface, the sphere quickly crosses its initial position and settles through the lower
fluid while pulling a long tail of the upper fluid. The corresponding images in figure 3
reveal that the geometry of this tail may vary significantly from one case to another.
It is almost cylindrical up to the undisturbed interface position in configurations 5a–b
in both pairs of fluids as well as for 8b in the V500/water–glycerin pair. Moving
towards the right on each row, one observes that, far above the sphere, the tail
becomes more conical with a flared base for steel spheres (configurations 3a–b, 6a–b
and 9a–b), which corresponds to a larger entrainment of the upper fluid. Another
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feature may be noticed by examining the shape of the tail just at the back of these
three spheres. From bottom to top, it is seen that this shape changes from conical
to nearly cylindrical, even almost forming an angle with the rest of the tail in the
case of configuration 9b. These changes are reminiscent of those experienced by the
streamlines past a sphere in a homogeneous fluid as the Reynolds number increases,
the nearly cylindrical configuration corresponding to a well-developed standing eddy.
Comparing figures 3(a) and 3(b), it can be observed that tails pulled by steel spheres
are thicker, especially in the top region, in the case of the most viscous oil, i.e. of
the smallest λ. The same remark holds for the thin film around the sphere, which
can still be discerned in most cases in (b) but not in (a), indicating that the larger λ
is the faster the drainage is. Lastly, although no pinch-off has occurred by the time
of the frames reported in the two panels, its precursor is present in most cases in
the form of a neck slightly above the sphere. In contrast, pinch-off is about to occur
at the top of the tail in configuration 5a, very close to the initial position of the
interface.

Figure 4 gathers observations corresponding mostly to spheres such that Ar> 102 in
two fluid pairs with λ= 18.3 (actually 18.3± 2.2 depending on the room temperature)
and 0.21 respectively. It should be noted that for a given sphere, Ar has the same
value in (a) and (b) since the upper fluid is the same. Hence, differences observed
between them are due to the influence of the lower fluid. This influence is obvious,
starting with the smallest glass spheres (configurations 11a–b) and the intermediate
polyacetal spheres (configurations 13a–b). The former two, which correspond to
Ar ≈ 70, exhibit an axisymmetric tail in both pairs of fluids. However, pinch-off
takes place at dramatically different locations. In configuration 11a, the tail breaks
right at the initial position of the interface; later on, the sphere settles with a slender
column of light fluid attached to its top. In contrast, pinch-off occurs in the lower
part of the tail, close to the top of the sphere, in configuration 11b. The latter then
goes on settling with a drop of light fluid attached to it, the volume of which is
nearly three times its own volume. Similarly, the intermediate polyacetal sphere
(configuration 13a) experiences a quasi-static detachment from the interface, whereas
a long non-axisymmetric column of light fluid is still developing past the sphere in
configuration 13b.

The three-dimensional nature of the tail is prominent in most other cases, especially
when Ar and/or ζp are/is large. In several of them, the topology of the tail strongly
resembles that of vortices shed in the wake of a sphere translating in a homogeneous
fluid, displaying hairpin-like structures (Sakamoto & Haniu 1991). For a given sphere
with a non-axisymmetric tail, comparison of (a) and (b) makes it clear that three-
dimensional effects are significantly stronger in the latter (e.g. configurations 14–16).
This is not unlikely since, for a given Ar, the actual Archimedes number in the lower
fluid, Arl, is typically 90 times larger in (b), making the Reynolds number Re =
ρ2VR/µ2 (V being the sphere velocity) much larger in the V5/water combination and
forcing the corresponding wakes to be in a more advanced transitional stage. In the
most inertial case (configuration 8b), fragmentation giving rise to a broad range of
droplets and ligaments of light fluid is seen to occur in (b). Premises of fragmentation
may also be discerned in configuration 17b: thin axisymmetric corollas or ‘inverted
skirts’ form at the back of the sphere and propagate downstream, becoming thinner
as the distance from the sphere increases.

Observations carried out in fluid pairs with very small viscosity ratios (λ < 0.02)
and with spheres for which Ar < 102 are summarized in figure 5. Under such
conditions, the flow is axisymmetric in the upper fluid but may be three-dimensional

https://doi.org/10.1017/jfm.2017.747
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


in the lower one. Some three-dimensionality may be observed in both panels in the
most inertial cases, especially in the fragmented region past the most inertial sphere
in (a). Actually, this panel displays two distinct series of results. Those located below
the broken line were obtained under nominal conditions. In contrast, configurations
located above this line (with index s standing for ‘surfactant’) were recorded in
the presence of Triton X-100 surfactant deliberately added to the distilled water
to get some more insight into the influence of the Bond number. We mixed water
with a volume of 0.6 g l−1 of Triton X-100 (which is soluble in water but not
in silicone oil), corresponding to four times the critical micellar concentration, in
order to saturate the interface and prevent the occurrence of any Marangoni effect,
even in the presence of strong deformations. While this addition does not modify
the viscosity of water, it reduces the interfacial tension by an order of magnitude,
yielding γ = 3.3 × 10−3

± 0.1 Nm−1 for the V50/water+Triton X-100 fluid pair,
instead of 30× 10−3 Nm−1 in the nominal case.

Although the smallest two polyacetal spheres float at the interface of the
V50/distilled water pair (configurations 19a and 22a; the image of the former is
missing), they are seen to entrain a long tail when the interface is contaminated by
Triton X-100 (configurations 19as and 22as). These two strikingly different behaviours
underline the possibility for small light spheres to float or sink, depending on the
magnitude of capillary effects. In contrast, the tails developing behind a given steel
sphere without or with Triton X-100 (configurations 21a− as, 24a− as and 27a− as

respectively) exhibit very similar shapes. This indicates that capillary effects do not
play a significant role when the sphere has enough inertia, at least regarding the
large-scale geometry of the tail (see the discussion in § 6.2 for their effect on the
small-scale structure). Again, thin corollas prefiguring fragmentation and travelling
upward along the tail are visible in several cases, especially in configurations 26a,
23as and 27b. One should note the bulge at the surface of the film that surrounds the
sphere in configurations 21b, 23b, 24b and 26b. The presence of this bulge suggests
that the corollas may have some connection with disturbances born at the surface of
the film; the underlying mechanism will be discussed in detail in PM2. A common
feature encountered in both pairs of fluids is that tails always neck and later pinch
off close to the top of the sphere, giving birth to a drop that remains stuck to it. The
volume of this drop may be much larger than that of the sphere itself, as for instance
in configuration 20a. Finally, consideration of a given sphere successively in (a) and
(b) makes it clear that the viscosity of the upper fluid still influences the evolution of
the system at the stage displayed in the figure: in some cases, pinch-off has already
taken place in (a) whereas it is still to occur in (b); in some others, fragmentation is
already present in (a) whereas only its precursor is visible in (b), etc.

3.3. Regime maps
The previous observations reveal a broad variety of phenomena and some classification
is desirable. It can be achieved according to the most prominent features seen in the
various snapshots of figures 3–5, although such a choice is not unique. According to
the mechanisms involved, we consider that the most meaningful classification is one
that identifies six distinct regimes, namely flotation at the interface, quasi-steady
detachment, axisymmetric and three-dimensional tailing, tailing with peripheral
corollas (which may be axisymmetric or three-dimensional) and tail fragmentation.
In tailing regimes, subclasses could be introduced according to the position where
pinch-off takes place, or, in the post-pinch-off stage, according to the way in which
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FIGURE 6. (Colour online) Regime map showing the distribution of flotation, quasi-static
detachment and tailing configurations in the (Bo, ζp/ζ ) plane.

the tail recedes towards the initial position of the interface. We do not consider the
latter aspect here, although it will become salient in PM2. It should be noted also
that the phenomenon of drops captured by the sphere is common to the quasi-steady
detachment and tailing configurations and does not form a specific regime per se.

As stated in § 3.1, the problem under consideration depends on five independent
parameters. However, their relative influences are not the same in all regimes, making
it possible to draw approximate regime maps by selecting those that are locally
most relevant. In figures 3–5, flotation and quasi-static detachment are observed near
the bottom-left-hand corner, i.e. with ‘small’ ‘light’ spheres. This is an indication
that, under the present conditions, these regimes are primarily governed by static
forces, i.e. those due to interfacial tension, gravity and buoyancy, although dynamical
effects may become important when the sphere kinetic energy is large enough, as
we shall see in § 4.3. Balancing these three static forces and normalizing by the
buoyancy force induced by the fluid density contrast introduces Bo and ζp/ζ as the
two key parameters. Figure 6 shows how some selected configurations that were
found to correspond to flotation or quasi-static detachment in figures 3–5 gather in
the (ζp/ζ , Bo) diagram, irrespective of the fluid pair under consideration. All floating
spheres fall below a critical curve which reveals a sharp decrease of the maximum
solid-to-fluid density contrast that allows the sphere to float as the Bond number
increases: while capillary effects may sustain spheres much heavier than the lower
fluid when Bo� 1, buoyancy remains the only mechanism that can counteract the
extra weight of the sphere when Bo� 1 (Vella 2015). This maximum density contrast
is seen to vary by more than an order of magnitude across the range spanned by the
Bond number in the present experiments; its variation will be studied in more detail
in § 4. Configurations in which spheres are observed to detach from the interface in
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FIGURE 7. (Colour online) Regime map showing the distribution of the various tailing
configurations, including those with peripheral corollas and tail fragmentation, in the
(Ar, λ) plane. The upper (respectively lower) inclined stripe below the flotation region
corresponds to the approximate position of the flotation/tailing transition and quasi-steady
detachment regimes for set-ups involving the water–glycerin mixture (respectively water
alone) as the lower fluid. The vertical line Ar = 55.0 corresponds to the transition from
axisymmetric to three-dimensional flow past the sphere.

a quasi-static manner gather within a narrow stripe which follows the above critical
curve. The tailing regime takes place beyond this intermediate region.

Near the top-right-hand corner of figures 3–5, capillary effects do not influence
the large-scale features of the observed configurations, although they may still affect
the shape of the entrained column locally or the characteristics of structures that
form at its periphery (corollas) or within it (ligaments and droplets). The same
remark holds for the fluid density contrast, whereas the solid-to-fluid density
contrast essentially determines the sphere velocity (V ∝ (ζpgR)1/2). Therefore, the
corresponding configurations are, to leading order, governed by the balance between
inertial and viscous effects in both fluids, i.e. by the parameters Ar and λ. Based on
these remarks, figure 7 displays 13 snapshots extracted from figures 3–5, obtained in
the six different pairs of fluids, in the (Ar, λ) plane. Qualitative boundaries are drawn
to make the succession of regimes apparent. One of these boundaries, namely the
straight line corresponding to Ar= Arc= 55.0, is actually exact. It corresponds to the
threshold beyond which flow axisymmetry past a freely falling sphere breaks down
and the sphere does not follow a strictly vertical path any more, first switching to
a slightly oblique path (Fabre, Tchoufag & Magnaudet 2012). Intuitively, one could
think that the proper criterion to assess flow three-dimensionality in the present case
should rather be based on the viscosity of the lower fluid, i.e. on Arl rather than Ar.
However, the wake develops within the tail, i.e. within the upper fluid, making Ar the
relevant parameter as far as the sphere remains attached to the tail. This argument is
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fully confirmed in figure 7, where three-dimensional tail geometries are only observed
for Ar> Arc, even in cases where Arl is very large (up to 5× 103). Not surprisingly,
the representation used in figure 7 is of little relevance close to the flotation/tailing
transition, which fails to collapse onto a single curve and actually results in two
distinct stripes in the left part of the figure. Indeed, for a given fluid pair, i.e. a given
λ, the flotation/tailing transition, including the quasi-static detachment regime, spans a
non-negligible range of Ar, the lower (respectively upper) bound of which corresponds
to the smallest (respectively largest) sphere-to-fluid density contrast and Bond number
at which this transition is observed in this fluid set-up. Moreover, consider a given
sphere settling in two different fluid pairs, say A and B, which differ only by the
viscosities of each fluid, i.e. µA

1 6=µ
B
1 and µA

2 6=µ
B
2 , but have the same λ, i.e. λA

= λB.
Then, although Bo and ζp/ζ are unchanged, the Archimedes numbers associated with
the sphere in the two pairs are such that ArA/ArB

=µB
1/µ

A
1 =µ

B
2/µ

A
2 . If Bo and ζp/ζ

have values corresponding to the flotation/tailing transition in figure 6, the two points
(ArA, λ) and (ArB, λ) are distinct in figure 7, and the larger the difference between
µB

2 and µA
2 is, the larger their separation is. As the water–glycerin mixture has a

viscosity that is 88 times that of water, the critical Ar corresponding to this transition
for a given λ is much larger in the series involving water alone, which yields the
two distinct stripes in figure 7.

On increasing Ar along an iso-λ line, two different successions of regimes are
observed, depending on whether λ is larger or smaller than a critical value λc ≈ 0.1.
For λ > λc, starting from flotation and quasi-static detachment, one successively
encounters axisymmetric tails (when the lower fluid is the water–glycerin mixture),
then three-dimensional tails, followed by tails with peripheral corollas and eventually
tail fragmentation. In contrast, for λ< λc (which is achieved only when water is used
as the lower fluid), peripheral corollas develop directly on axisymmetric tails and
fragmentation takes place for values of Ar of the order of Arc (as may be noticed
in figure 5, the present experiments with λ = 1.9 × 10−3 were limited to Ar ≈ 10,
so that fragmentation was not observed at such small viscosity ratios, leaving the
fragmentation threshold undetermined). For Ar & 10, decreasing λ while keeping Ar
constant, one progressively moves from an axisymmetric or three-dimensional tailing
regime to tailing with peripheral corollas and eventually tail fragmentation. Keeping
in mind that the sphere settles within a fluid at rest at infinity, this succession may be
understood by considering the flow region within which velocity gradients are most
intense: large (respectively small) λ corresponds to situations in which shear is large
within (around) the tail. Hence, for small λ, the flow within the tail looks essentially
like a plug-type jet peeled off by a strong outer shear, a situation known to be prone
to fragmentation (Villermaux 2007).

3.4. Where does pinch-off take place?
In tailing regimes, the observations reported in figures 3–5 show that the tail may
break first very close to the initial position of the interface (e.g. configurations 5a,
11a and 14a), close to the sphere (e.g. 11b, 12b and 20a) or at some intermediate
position (e.g. 16b and 17a) in strongly three-dimensional configurations. Among these
distinct pinch-off locations, the first two are reminiscent of the ‘shallow seal’/‘deep
seal’ classification defined by Aristoff & Bush (2009) in the case of a sphere
impacting an air–water surface. To better appreciate how the pinch-off position is
influenced by the various control parameters in the present case, we considered
all axisymmetric or weakly three-dimensional tailing configurations identified
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FIGURE 8. (Colour online) Pinch-off configurations observed in experiments and
axisymmetric simulations in fluid set-ups with (a) λ > 0.1 and (b) λ 6 0.1. In (a),
C, quasi-static detachment in V5/wg, V50/wg and V500/wg (wg stands for water–glycerin);
q (brown) andA, shallow and ‘hesitant’ seals in V5/wg respectively;p (brown),@ and
s (green), shallow, ‘hesitant’ and deep seals in V50/wg respectively; � and , ‘hesitant’
and deep seals in V500/wg respectively;f (brown) ande (green), shallow and deep seals
in V5/w respectively (w stands for water); ×, + and ∗, shallow, ‘hesitant’ and deep seals
with λ= 1 (numerical). In (b),C, quasi-static detachment in V5/w and V50/w;@ and p,
‘hesitant’ and deep seals in V50/w respectively; 6 and f, ‘hesitant’ and deep seals in
V500/w respectively; q, deep seal in V50/w+Triton X-100; ∗, deep seal with λ = 0.1
(numerical).

experimentally (including those observed with Teflon and aluminium spheres which
do not appear in figures 3–5), plus some results from direct numerical simulations
carried out by varying Bo,Ar, λ, ζ and ζp independently (the corresponding numerical
approach is described in § 2 of PM2). On analysing these results, we noticed that Ar
has a weak effect on this position, while ζ and ζp influence it very significantly but
essentially through the ratio ζp/ζ , similarly to what happens for the flotation/tailing
transition. We also observed significant changes with the Bond number in the range
0.1< Bo< 5, and a fairly sharp transition with the viscosity contrast for λ≈ 0.1.

Based on these observations, figure 8 provides the distribution of the pinch-off style
(i.e. ‘shallow’ or ‘deep’) in the (Bo, ζp/ζ ) plane, separately for λ> 0.1 and λ6 0.1.
In the former case, only axisymmetric or weakly three-dimensional configurations
have been considered, since the tail dynamics is enslaved to wake instabilities in fully
three-dimensional cases, and pinch-off can then occur at various positions, depending
on the details of the shedding process. Some other configurations could not be
included because pinch-off took place out of the field of view of the camera, so
that its position could not be guaranteed. In addition to shallow and deep types,
figure 8 also identifies situations corresponding to quasi-static detachment plus
‘hesitant’ configurations, where pinch-off occurs almost simultaneously at the top
and near the bottom of the tail (an example of such situations is discussed in § 4.2
of PM2). According to figure 8(b), only deep-seal-type events are observed beyond
the quasi-static detachment regime when λ 6 0.1. In contrast, for λ > 0.1, such
events mostly occur either for Bo & 3 or for ζp/ζ & 10. For Bo . 3 and ζp/ζ . 10,
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most pinch-off events take place near the top part of the tail, corresponding to the
shallow-seal configuration, but a significant number of ‘hesitant’ configurations also
exist. Some complex behaviours may be noticed in figure 8(a), suggesting more
subtle influences than just those of Bo and ζp/ζ . For instance, at Bo≈ 0.3, pinch-off
is found to be ‘shallow’ for both ζp/ζ ≈ 12 and 30 in the V50/water–glycerin set-up,
whereas it is ‘deep’ for ζp/ζ ≈ 16 and 20 in the V5/water set-up.

To rationalize these observations, scaling arguments are developed in appendix A.
As far as the sphere velocity V does not change significantly during the breakthrough,
i.e. it still scales as (ζpgR)1/2, the main conclusions are summarized in (A 1).
According to these predictions, a ‘shallow’ pinch-off due to capillary effects occurs
at a dimensionless time τ ∗γ (normalized by (ζpg/R)1/2) such that τ ∗γ ∼ (ζp/ζ )Bo1/2.
It is readily seen that τ ∗γ represents the dimensionless length of the tail by the time
pinch-off occurs in that configuration; the Bo1/2 scaling is confirmed by the tails
seen in figure 4 for configurations 14a and 11a: the former is 1.8 longer than the
latter, close to the 1.75 ratio of the square roots of the corresponding Bond numbers.
Conversely, a ‘deep’ pinch-off due to buoyancy effects occurs at a dimensionless time
τ ∗g ∼ (ζp/ζ )

1/3, and the transition between the two regimes takes place at a critical
Bond number Bot ∼ (ζp/ζ )

−1/3, only deep (respectively shallow) seal being possible
at larger (respectively smaller) Bond numbers. The scaling Bot ∼ (ζp/ζ )

−1/3 suggests
a fairly sharp transition between the two styles of pinch-off, as Bot only varies by a
factor of 2 when ζp/ζ is varied by one order of magnitude. Unfortunately, the data
gathered in figure 8 for which the assumption of a nearly constant settling velocity
is realistic (i.e. essentially those corresponding to the V50/water–glycerin set-up) do
not cover a sufficient range of density contrasts to check this prediction.

The situation is more complex than expected on the basis of the above scalings
in most cases, due to the acceleration or deceleration of the sphere after it has
crossed the interface. As shown in appendix A, variations in the sphere velocity
result in an additional ‘buoyancy’ effect which shortens (respectively lengthens) the
characteristic time τ ∗g when the sphere accelerates (respectively decelerates), thus
decreasing (respectively increasing) the effective critical Bond number Bot according
to (A 2). The amplitude of the settling velocity variations may be estimated through
the ratio of the terminal velocity in the lower fluid to that in the upper one. According
to (A 4), this ratio varies approximately as C(1− ζ/ζp)

3/5, with C = λ−1/5(1+ ζ )−2/5,
provided that Ar and Arl are large enough. In the V50/water (respectively V500/water)
pairs of fluids, C is approximately 2.15 (respectively 3.4). All spheres considered
here are such that ζp/ζ > 10 in these set-ups, so that they all experience significant
acceleration effects, which favour deep seal. Figure 8 confirms this trend, as no
‘shallow’ pinch-off is observed in (b), especially in the range Bo< 1, 10< ζp/ζ < 30,
where several shallow configurations are identified in (a). In the V5/water–glycerin
mixture set-up, C ≈ 0.50, implying a strong deceleration whatever the sphere-to-fluid
density contrast. This is why, in that set-up, there exists a range of shallow-seal
configurations extending beyond the critical Bond number predicted under the
assumption of a constant V . In contrast, the V5/water and V50/water–glycerin set-ups
have C ≈ 1.33 and 0.82 respectively, so that the settling velocity of dense enough
spheres is expected to slightly increase in the former and experience little variation
in the latter. In figure 8(a), examination of the critical Bond number corresponding
to the shallow seal/deep seal transition in the range 4 . ζp/ζ . 6 fully confirms the
influence of acceleration/deceleration effects anticipated on the above basis: while
this transition takes place in the range 1 < Bo < 2 in the V50/water–glycerin set-up
(C ≈ 1), it occurs in the range 0.3 < Bo < 0.6 in the V5/water system (C > 1) and
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most probably beyond Bo= 3 in the V5/water–glycerin set-up (C< 1) since a shallow
pinch-off is still detected for Bo = 2.2. The above findings indicate that, under the
present conditions, the viscosity ratio primarily affects the pinch-off dynamics through
the sphere acceleration or deceleration, although other viscous effects are possible
when λ is large, as mentioned in appendix A.

The pinch-off configurations encountered here are reminiscent of those previously
described in the context of spheres impacting a free surface (Truscott et al. 2014).
However, despite obvious similarities, such as the role of capillary and buoyancy
forces in the shallow and deep styles of pinch-off respectively, many differences
exist. For instance, no splash is observed at the interface in the present experiments,
whereas spectacular splash curtains are known to take place when a hydrophobic
sphere impacts a free surface with a large enough velocity, a situation yielding
a specific ‘surface-seal’ configuration (Aristoff & Bush 2009). Connections and
fundamental differences between the tail dynamics that develop in liquid–liquid
systems and the dynamics of air cavities that form in impact situations are further
discussed in appendix B.

4. When can the sphere float?
Observations reviewed in § 3.2, summarized in the phase diagram of figure 6,

revealed that small and light enough spheres do not succeed in crossing the interface
and keep on floating on it for ever. In such cases, on recording the evolution of the
vertical position z(t) of the sphere centre of mass as it settled in the upper fluid, we
either observed z to decrease continuously until an asymptotic value z∞, or to go
through a slight minimum before reaching z∞. The latter scenario was also noticed
in some cases when the sphere detached from the interface in a quasi-static manner;
an example is discussed in detail in § 3.2 of PM2. We never observed complete
periods of oscillation for z(t) close to the interface, which leads us to conclude that,
under the present conditions, all floating spheres behave as overdamped or weakly
underdamped oscillators. In some cases, the arrival of the sphere at the interface
was found to generate small-amplitude interfacial capillary–gravity waves which
propagated away from the sphere, but this had no discernible effect on the evolution
of the sphere position.

4.1. A static model in the low- and high-Bond-number limits
The flotation of small objects at a fluid interface is a generic problem with a wide
range of applications, from the removal of impurities in steel elaboration to the
locomotion of water-walking insects, through the design of encapsulation processes
(Vella 2015). To rationalize the present observations, a model predicting the conditions
under which a sphere with a relative density contrast ζp/ζ can float steadily at an
arbitrary Bond number is required. In this section, we establish such a model under
strictly static conditions and compare its predictions with our full set of observations.
To derive this model, which has several parts in common with previous work on
the subject (Maru et al. 1971; Vella, Lee & Kim 2006; Bonhomme et al. 2012), we
assume that the sphere surface stands entirely in fluid 1, its bottom part, say z 6 zs
(with zs 6 0), being coated with a very thin film of that fluid, which defines the cap
angle ψ from the negative z semi-axis to the pseudo-contact line between the sphere
and the plane z= zs (figure 9).

Neglecting the film thickness and assuming total wetting, the vertical component
of the capillary force acting on the pseudo-contact line is Fγ = 2πγRsin2ψ . The
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FIGURE 9. (Colour online) A sphere standing at the interface.

buoyancy force experienced by the sphere may be shown to be

FB = g{ρ1(V − Vspc)+ ρ2Vspc + (ρ2 − ρ1)Vcyl}. (4.1)

The first two contributions in (4.1) correspond to the buoyancy force that would exist
if there were no meniscus, Vspc = (1/3)πR3(2 − 3cosψ + cos3ψ) being the volume
of the spherical cap located below the plane z = zs. The last contribution is due to
the shift introduced by the meniscus between that plane and the undisturbed interface
z = 0. Keller (1998) (see also Mansfield, Sepangi & Eastwood (1997)) showed that
this shift results in an additional buoyancy force proportional to the density difference
ρ2 − ρ1 and acting on the vertical cylinder of volume Vcyl = −zsπ(Rsinψ)2 which
stands on the pseudo-contact line and is limited by the above two planes. The sphere
can float at the interface only if the sum of the above two forces exceeds its weight
FP = −ρpVg. Introducing the dimensionless ‘submergence’ z∗s = zs/R, this condition
yields the inequality

3
2Bo

sin2ψ −
ζp

ζ
+

1
4
(2− 3cosψ + cos3ψ)−

3
4

z∗s sin2ψ > 0. (4.2)

Evaluation of the left-hand side of (4.2) requires zs to be known as a function of
ψ , which amounts to determining the shape of the meniscus. This shape is governed
by the Young–Laplace equation (ρ2 − ρ1)gz= γ∇ · n(z), where n is the unit normal
to the meniscus surface, subject to suitable boundary conditions. The solution of the
corresponding problem can only be obtained numerically when the Bond number is
finite. However, in the small-Bond-number limit, the problem was solved by O’Brien
(1996), using a matched asymptotic expansion procedure directly inspired by that
developed by James (1974) for a circular cylinder. In the present notation, his result
for the submergence z∗s is written, assuming total wetting, as

z∗s (ψ)=
(
γE − log

4
√

Bo(sinψ(1+ cosψ))

)
sin2ψ +O

(
Bo
[
log(
√

Bo)
]2
)
, (4.3)

where γE ' 0.577 is the Euler constant. The submergence is seen to be a decreasing
function of the Bond number. Indeed, for a given ψ , the smaller Bo is the larger the
energy required to bend the interface is, and hence the broader the region over which
it deviates from its initial flat shape is. Inserting (4.3) into (4.2), one first has to notice
that, for small Bond numbers, the most efficient configuration regarding the magnitude
of positive terms on the left-hand side is reached when ψ =π/2. Hence, flotation is
possible only for spheres such that

ζp

ζ
6

3
2Bo
+

1
2
+

3
4

(
log

4
√

Bo
− γE

)
. (4.4)
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The leading-order term on the right-hand side is identical to that obtained by Vella
et al. (2006), still in the low-Bond-number limit. It is worth noting that comparison of
the submergence determined by solving the exact Young–Laplace problem numerically
(see PM2) with the low-Bo asymptotic prediction (4.3) reveals that the latter (hence
the flotation criterion (4.4)) remains a valid approximation up to Bo=O(1): for Bo=1,
(4.3) overestimates the submergence by 20 %, so that (4.4) overestimates the critical
ζp/ζ only by 6 %.

It must be stressed that (4.4) only provides a necessary condition for flotation to
be possible. As it was derived in the framework of a strictly static approach, it is
unable to account for the influence of any initial sphere motion, which is expected to
lower the critical density ratio, allowing the sphere to float, i.e. its velocity to vanish
before the meniscus snaps. Incorporation of dynamic effects requires the viscous drag
acting on the sphere to be evaluated. This was empirically achieved by Lee & Kim
(2011) in the case of a sphere crossing a gas–liquid interface, by considering that the
local velocity and pressure distributions over the part of the sphere surface immersed
in the liquid are identical to those found in the Stokes flow past a sphere settling
in an unbounded fluid. Extension of this approach to the present two-fluid problem
is appealing, but the viscosity contrast would generate a pressure jump across the
interface, making the conclusions doubtful.

For finite Bond numbers, the shape of the meniscus can only be determined through
a numerical solution of the Young–Laplace problem. Nevertheless, a rough model
assuming that the meniscus takes the form of an arc of a circle with a radius rψ
has been derived to evaluate the minimum size allowing rigid spheres or gas bubbles
to fall or rise across an interface (Maru et al. 1971; Bonhomme et al. 2012). The
requirement that the meniscus be tangent to the sphere on the plane z = zs as well
as on the undisturbed interface yields rψ = {−1 + [1 + 4Bo(1 − cos ψ)]1/2}{2Bo(1 −
cosψ)}−1, from which the submergence z∗s =−rψ(1− cosψ) is obtained. In the limit
of large Bond numbers, this model predicts z∗s ∝ Bo−1/2, so that the dominant terms
in (4.2) are now those due to the buoyancy force. Consequently, the cap angle ψmax
at which this force is maximum is close to π. More precisely, one finds ψmax ≈π−
2(2Bo)−1/4, for which z∗s ≈ −(2/Bo)1/2. It should be noted that the column enclosed
within the meniscus is very thin under such conditions (its minimum dimensionless
radius is 2(2Bo)−1/4), but pinch-off is not reached yet. Use of these results in (4.2)
yields the approximate flotation condition

ζp

ζ
6 1+

3
2Bo
+O(Bo−3/2). (4.5)

The criteria (4.4) and (4.5) coincide for Bo ≈ 2.5. Fortuitously, the prefactor of the
Bo−1 term is the same in both of them. Hence, as may be seen in figure 10, there is
not much difference between the two predictions in the low-Bo range, although (4.5)
is not expected to be valid there.

4.2. Observations versus model predictions
Figure 10 gathers observations performed in the six pairs of fluids in which, depending
on the sphere density and size, either flotation or tailing configurations were noticed.
Some data recorded by Maru et al. (1971) have also been included. Not surprisingly,
the shape of the frontier separating the two regimes is qualitatively similar to that
drawn in the phase diagram of figure 6. In addition to the approximate criteria
(4.4) and (4.5), we also plot the prediction obtained by solving the Young–Laplace
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FIGURE 10. (Colour online) The configurations reached by spheres settling in various
pairs of fluids in the (ζp/ζ = (ρp − ρ1)/(ρ2 − ρ1), Bo = (ρ2 − ρ1)gR2/γ ) plane. Closed
(respectively open) symbols refer to cases in which the sphere floats at (respectively
crosses) the interface. Solid line, low-Bo criterion (4.4); dashed line, high-Bo criterion
(4.5); dash-dotted line, exact solution of the Young–Laplace problem; squares, V5/water–
glycerin; circles, V50/water–glycerin; triangles (up), V500/water–glycerin; pentagons,
V5/water; diamonds, V50/water; triangles (down), V500/water. Data from Maru et al.
(1971) corresponding to +, floating conditions (plexiglas and Teflon spheres in a
mineral oil/water-96 % glycerin set-up); ×, breakthrough conditions (glass spheres in a
cyclohexanol/water-62 % glycerin set-up).

equation numerically throughout the whole range of Bond numbers (the corresponding
numerical procedure is described in appendix B of PM2). This numerical solution
allowed us to obtain the submergence z∗s (ψ, Bo) for arbitrary values of ψ . With this
information at hand, we could determine the optimum cap angle ψo(Bo) maximizing
ζp/ζ in the inequality (4.2) for each value of Bo (ψo(Bo) ranges from π/2 for Bo. 1
to approximately 3π/4 for Bo = 10). The difference between this exact prediction
and those provided by the approximate criteria is clearly small, with a maximum
of approximately 15 % in the range 1.5 . Bo . 3. Overall, the behaviour observed
in experiments is consistent with the theoretical predictions. Not surprisingly, some
experiments corresponding to conditions located slightly below the critical curve
provided by (4.4) resulted in a tailing configuration. They may be considered as a
confirmation of the fact that the above two criteria only provide a necessary condition
for flotation to be possible. However, experimental uncertainty regarding the interfacial
tension may also play some role, since it is directly reflected in the critical value
of ζp/ζ . Departures from the total wetting assumption may also have also some
influence in these marginal cases: if the meniscus makes a finite angle, say Φ, with
the tangent to the sphere at the pseudo-contact line, it is readily shown that the sin2ψ
factor in front of the first term on the right-hand sides of (4.2) and (4.3) is changed
into sin ψ sin(ψ −Φ), whereas the cos ψ term in (4.3) is changed into cos(ψ −Φ).
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For small Bo, the total buoyancy force sustaining the sphere is then maximized when
ψ ≈ π/2+Φ/2 instead of ψ = π/2, so that its dominant contribution is reduced by
a factor of (1/2) cos2 Φ.

Two situations observed in the V5/water–glycerin pair may be noticed to lead to
tailing configurations, although the corresponding values of ζp/ζ clearly satisfy (4.4).
These are the two points Bo = 0.37, ζp/ζ = 4.29 and Bo = 1.12, ζp/ζ = 1.53 in
figure 10. The latter, which is analysed in detail in PM2 with the help of numerical
simulations, corresponds to configuration 13a in figure 4(a), which was seen to
experience a quasi-steady detachment. It is of interest to notice that, among the
various combinations of fluids we employed, the V5/water–glycerin pair is the one
in which inertia effects induced by the sphere motion are the largest in the upper
fluid, and deformation of the interface is the most energy-consuming, due to the
large viscosity ratio (λ = 18.3) and the significant fluid density contrast (ζ = 0.32).
Consequently, the deceleration experienced by the sphere when it reaches the interface
is maximum in this pair of fluids, and one can expect the corresponding dynamical
effects to deeply alter the quasi-static force balance (4.2), and hence the flotation
criterion (4.4).

4.3. How do dynamical effects alter the static balance?
The qualitative picture of these effects is as follows. The sphere velocity in the
upper fluid is of O((ζpgR)1/2) and the sphere almost comes to rest within a distance
of O(R) when it reaches the interface. Hence, it undergoes a negative acceleration
dV/dt= V dV/dz which is initially of O(ζpg) and produces a downward inertia force
−(4/3)πR3(ρp + ρ1CM(t)) dV/dt, where CM(t) denotes the added-mass coefficient.
In the present situation, this coefficient depends on time, increasing as the sphere
gets closer to the interface (Milne-Thomson 1962). This inertia force provides an
additional dimensionless contribution of the order of −(ζp + 1 + CM(t))ζp/ζ on
the left-hand side of (4.2). The magnitude of this force decreases as the sphere
decelerates and is reduced to a fraction of its initial value by the time the sphere
velocity vanishes (which happens for ψ ≈π/2, as figures 3(c) and ( j) of PM2 show).
However, a ‘history’ force, qualitatively similar to the Boussinesq–Basset force in the
low-Reynolds-number regime, has taken over in the meantime. This force is due to
the downthrust produced by the progressive collapse of the sphere wake. At time t,
it depends on the cumulated changes induced by the deceleration on the wake over
previous times through a kernel K(t− τ), with −∞6 τ 6 t. This kernel is inertial by
nature in the present situation where Ar� 1, since wake disturbances are advected
with the velocity V�µ1/(ρ1R). The closely related situation of a sudden stop of the
sphere at t = 0 was considered by Lovalenti & Brady (1993) in the Oseen regime.
They showed that the corresponding ‘history’ effect results in a force that reduces the
net drag and is written at leading order as 6πµ1RV[(3/4)R(Vt)−1

] = (9/2)πµ1R2t−1.
This prediction was extended to arbitrary Reynolds number by Lawrence & Mei
(1995). Their analysis, confirmed by numerical simulations, showed that the ratio of
the ‘history’ contribution to the steady drag at the corresponding Reynolds number
is still −(3/4)R(|V|t)−1. Here, the steady drag balances the net weight of the sphere
in the upper fluid, so that the contribution of the ‘history’ effect to the left-hand side
of (4.2) in the case of a sudden stop would be −(3/4)R(|V|t)−1ζp/ζ , i.e. it would be
of O(ζp/ζ ) over a time period of O(R/|V|) = O({R/(ζpg)}1/2). Although the sphere
does not experience a strict sudden stop in the present experiments, the characteristic
time (R/(ζpg))1/2 is much smaller than the viscous time scale ρ1R2/µ1, making the
sudden stop model qualitatively relevant.
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FIGURE 11. The post-pinch-off evolution of the attached drop past a R= 7 mm
polyacetal sphere in the V50/water–glycerin system (configuration 7a, λ= 1.7, ζ = 0.26).

To summarize, the above analysis shows that in situations where the stopping of
the sphere takes place over an O(R) distance, which is the case when Ar� 1 and
λ� 1, the various inertia effects due to this stopping result in an additional negative
contribution proportional to ζp/ζ on the left-hand side of (4.4). As the prefactor of
this contribution is of O(1) during the entire deceleration stage and even during some
time after the sphere velocity has almost vanished, due to the t−1 decay of the ‘history’
force, the actual critical density ratio below which the sphere can float is reduced by a
factor of the order of 2 when ψ =π/2 compared with the prediction (4.4). Under such
conditions, it is clear that the aforementioned two spheres released in the V5/water–
glycerin pair cannot float. According to figure 10, the only sphere that is observed
to float in this pair of fluids is the smallest polyacetal sphere (configuration 10(a) in
figure 4(a)) with Bo= 0.36 and ζp/ζ = 1.57, a density ratio nearly four times smaller
than the critical value predicted by the static criterion (4.4).

5. How does the volume of attached drops scale?

In the quasi-static detachment and tailing regimes, after the meniscus has snapped
or the tail has pinched off, a certain amount of light fluid recedes towards the sphere,
resulting eventually in a drop that remains attached to its upper part. Figure 11 shows
a typical post-pinch-off evolution of the interface separating the outer fluid from the
volume of light fluid enclosing the sphere. The film that covers the front half of the
sphere thins down over most of the sequence, bringing fluid towards the rear half,
hence increasing the drop volume. Clearly, there is a significant interaction between
the film and the drop through this mass exchange during this transient. Simultaneously,
the drop lengthens and its curvature at the apex increases, due to the shearing by
the outer flow. This shearing process takes a significant time in the present example
because the two fluids have similar viscosities; it is much longer when λ � 1, so
that the drop evolves very slowly and may not have reached a strictly final shape at
the end of the observations. The corresponding transient is much shorter when λ is
large. Since there is virtually no shear at the drop/outer-fluid interface in that case,
this transient corresponds to the time required for the normal stress distribution at the
drop surface to develop.

https://doi.org/10.1017/jfm.2017.747
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


(a) (b) (c) (d) (e) ( f )

FIGURE 12. Some compound sphere + drop bodies. (a–c) In the V5/water + glycerin
system (λ= 18.3, ζ = 0.32) with (a) an R= 2 mm aluminium sphere, (b) an R= 3.5 mm
glass sphere (configuration 14a) and (c) an R = 7 mm polyacetal sphere (configuration
16a); (d–f ) in the V500/water system (λ = 1.9 × 10−3, ζ = 2.7 × 10−2) with (d) an R =
2 mm aluminium sphere, (e) an R = 3.5 mm aluminium sphere and ( f ) an R = 5 mm
polyacetal sphere.

Some examples of the observed drops, once they have reached their final or quasi-
final shape, are displayed in figure 12. Those in figure 12(a–c) have quite prolate
shapes, whereas those in figure 12(d–f ) are roughly spherical. Moreover, the volume
of the latter is much larger, and may in some cases be of the same order as or
even larger than that of the sphere (e.g. figure 12(e)); in such cases, the drop entirely
covers the upper half of the sphere. One should note the differences between 12(a)
and (d), which correspond to the same sphere but were taken in different fluid pairs,
underlining the strong influence of the density and viscosity contrasts (both pairs have
similar interfacial tensions).

5.1. Overall force balances
Theoretical determination of the final drop volume, say Vd, under general conditions
is a very complex free-boundary problem which is beyond the scope of this study.
Nevertheless, the wide range of conditions covered in the present experiments makes
it desirable to develop a qualitative understanding of the influence of the various flow
parameters on Vd. Previous studies of this problem have focused on strictly static
aspects by solving the Young–Laplace equation in order to determine the shape of the
interface for a given drop volume (Shoukry, Hafez & Hartland 1975; Smith & Van de
Den 1985). However, other effects come into play when the sphere moves, due to the
fluid motion within and around the drop, as the transient stage described by figure 11
makes clear. Such effects were first considered theoretically by Johnson (1981) in the
limit of thin drops, but buoyancy effects were not included. Here, to better understand
the consequences of the sphere motion on the volume of entrained drops, we use as
a guide the stationary force balance on the compound ‘sphere + drop’ body, and on
the attached drop itself.

We establish these balances in the limit of vanishingly small inertia effects (Ar� 1).
The drag force acting on the compound body settling with velocity V may be written
in the form FD = −6πµ2(1 + K)RV , where K is a correction factor to Stokes’ law
resulting from the prolate geometry induced by the presence of the drop (which tends
to increase the drag) and influenced by the recirculating flow within it, which can
be significant if λ is of O(1) or larger and may even decrease the overall drag if λ
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FIGURE 13. (Colour online) The geometry of the attached drop configuration in a
reference frame translating with the sphere.

is large enough (Johnson 1981). Taking into account the weight and buoyancy forces
yields at equilibrium

ρ2(V + Vd)g− (ρpV + ρ1Vd)g− 6πµ2(1+K)RV = 0. (5.1)

Let us now examine the force balance on the drop itself. We assume that the drop
no longer interacts with the thin film that still coats the sphere in the region located
ahead of the cap angle φ=φd (with φ= 0 at the top of the sphere). Although there is
no strict contact line there, this position corresponds to a pseudo-contact line where
the tangent to the drop/outer-fluid interface makes a finite angle Φ with the sphere
surface, as figure 13 shows. Interfacial tension induces a net downward force at φ=φd,
the vertical component of which is FγC =−2πγR sin φd sin(φd +Φ). The hydrostatic
pressure component acting over the drop surface yields the usual buoyancy force FB=

g(ρ2−ρ1)Vd. However, the drop/sphere interface also contributes to the overall balance
though capillary and hydrostatic effects. Introducing the radius of curvature, R0, of the
drop at its apex, and the distance, h0, from the apex to the top of the sphere (see
figure 13), it is readily shown that the corresponding contribution yields a net vertical
force with an upward capillary component FγS = 2πγ (R2/R0) sin2 φd and a ‘downward
buoyancy’ force FBS =−(ρ2 − ρ1)gV0, where V0 = πR2

{h0 sin2 φd + R(1− 3 cos2 φd +

2 cos3 φd)/3} is the volume enclosed within the cylindrical surface with radius R sinφd

in between the sphere surface and the horizontal plane tangent to the drop apex. Thus,
the net vertical component of the capillary force acting on the drop is Fγ = FγC +

FγS =−2πγR sin φd{sin(φd +Φ)− (R/R0) sin φd}, whereas the net buoyancy force is
FB+FBS. The former acts to stick the drop onto the sphere only if the contribution of
the pseudo-contact line dominates, which requires R0 >R sinφd/sin(φd+Φ). Similarly,
the latter is directed upwards only if the drop volume exceeds V0.

Within the drop, the fluid is set in motion by the stress distribution applied by the
outer fluid on their common interface. The condition of zero flow rate across the drop
at any angular position φ implies that this internal flow recirculates, reducing to a
lubrication flow with a parabolic velocity profile in the limit of thin drops (h0/R� 1),
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and generating a traction at the drop/sphere interface that is half of that at the
drop/outer-fluid interface (Johnson 1981). Hence, in that limit, the shear stress applied
by the outer fluid results in an upward force on both interfaces, the sum of which,
say FDs, is proportional to the area of the spherical cap covered by the drop, i.e. to
1− cos φd. Still in the limit h0/R� 1, the pressure (more generally the normal stress)
is almost constant across the drop at a given φ, thus contributing to the net viscous
force only through a small form drag, say FDn, proportional to the difference between
the areas of the two interfaces, which itself is proportional to (1− cosφd)h0/R, i.e. to
the drop volume. The total drag acting on the drop, FDd=FDs+FDn, may be formally
written as FDd =−6πµ2KdRV , with Kd depending on both the viscosity ratio and the
drop geometry.

Collecting all contributions finally yields the vertical force balance on the drop in
the form

−2πRγ sinφd

{
sin(φd +Φ)−

R
R0

sin φd

}
+ (ρ2 − ρ1)(Vd − V0)g− 6πµ2KdRV = 0.

(5.2)
Condition (5.1) governs the settling velocity of the compound body, while (5.2) may
be thought of as a global constraint relating the geometrical parameters of the drop,
namely φd, Φ, R0, h0 and Vd. Injecting the solution of (5.1) into (5.2) yields

3
2Bo

sin2 φd

(
sin(φd +Φ)

sin φd
−

R
R0

)
+ V∗0 − V∗d −

(
ζp

ζ
− 1− V∗d

)
Kd

1+K
= 0, (5.3)

where V∗d and V∗0 stand for V∗d /V and V0/V respectively. When the sphere is at
rest, the last term becomes irrelevant and (5.3) is then simply an integral constraint
resulting from the Young–Laplace problem that governs the classical pendant drop
configuration. In contrast, when the sphere moves with respect to the fluid, the
drop volume is influenced by the last term on the left-hand side, and hence by the
sphere-to-fluid density contrast through the factor ζp/ζ − 1= (ρp−ρ2)/(ρ2−ρ1). With
Kd > 0, this term tends to make the drop volume decrease compared with the static
situation.

5.2. Experimental results and scaling laws for the drop volume
We determined the drop volumes by post-processing raw images using a contour
detection technique and assuming axisymmetric shapes. To compare the corresponding
results with drop volumes found with a sphere at rest, we examined the numerical
predictions obtained by Shoukry et al. (1975) (for Φ= 0◦, up to Bo= 100) and Smith
& Van de Den (1985) (for all Φ, up to Bo = 1). We found that these results are
accurately fitted (at least up to Φ = 30◦, the largest pseudo-contact angle observed in
our experiments) by the empirical formula V∗d = 0.89(1− 0.37Φ2)Bo−1.12. It should be
noted that in this formula the Bond number has a slightly larger negative exponent
than suggested by the explicit Bo−1 dependence in (5.3). This is because the drop
geometry, i.e. the relation between h0, R0 and φd, also varies with Bo.

Figure 14(a) displays the drop volumes determined from a number of experimental
tests versus the Bond number, using log–log coordinates. Also drawn in the figure
are two lines corresponding to the aforementioned fit for Φ = 0◦ and 30◦ respectively.
First of all, it is clear from this figure that, apart from two exceptions, all measured
volumes are smaller than those found in the static configuration. This confirms that
the flow at the drop surface acts against capillary effects, reducing the size of drops
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FIGURE 14. (Colour online) The volume of attached drops under various experimental
conditions: (a) V∗d versus Bo for various spheres in ×, V5/water–glycerin (ζ = 0.32,
λ = 18.3); f, V50/water–glycerin (ζ = 0.26, λ = 1.7); D, V500/water–glycerin (ζ = 0.24,
λ = 0.17); �, V5/water (ζ ≈ 0.09, λ = 0.21); @, V50/water (ζ ≈ 0.04, λ = 1.9 ×
10−2); ∗, V500/water (ζ ≈ 0.03, λ = 1.9 × 10−3); solid and dashed lines, empirical fit
for the pendant drop configuration, V∗d = 0.89(1 − 0.37Φ2)Bo−1.12 for Φ = 0 and π/6
respectively; (b) V∗d versus Bol for various spheres in @, V50/water; ∗, V500/water;
solid line, guide-to-the-eye line with a +1 slope. Panel (b) also shows data from Pitois,
Moucheront & Weill (1999) obtained in a PDMS oil/water system (ζ = 2.9 × 10−2,
λ= 1.× 10−4); C, steel spheres with various radii;q, glass spheres with various radii.

that can remain attached to the sphere. This figure also reveals that data obtained
in the V50/water and V500/water pairs of fluids with spheres of different densities
and diameters do not exhibit any clear trend, implying that the Bond number is not
a relevant scaling parameter under such conditions. To understand why, one has to
notice that, among the pairs of fluids considered here, these are the two with the
smallest density (and viscosity) contrasts. According to (5.3), the smaller ζ is, the
larger the influence of the last term on the left-hand side, i.e. of the sphere motion,
is on the drop volume. Hence, the corresponding problem has little in common with
the static pendant drop configuration and there is no reason why volumes of drops
attached to spheres with different ζp values should exhibit any systematic variation
with respect to Bo in that limit. Then, it appears relevant to consider (5.3) in the limit
ζ→ 0. As terms due to buoyancy effects then become negligibly small, (5.3) may be
simplified to

3
2Bol

sin2 φd

(
sin(φd +Φ)

sin φd
−

R
R0

)
≈

Kd

1+K
, (5.4)

with Bol= (ζp/ζ − 1)Bo as defined earlier. Condition (5.4) suggests that drop volumes
primarily depend on Bol when ζ is small. Figure 14(b) confirms this conjecture for the
aforementioned two series which have ζ = 0.04 and 0.03 respectively. Although the
plot contains a non-negligible scatter, drop volumes are seen to increase consistently
with Bol, mostly in a linear manner. The figure also displays data from Pitois et al.
(1999), who, under quite similar conditions, concluded that V∗d varies approximately
as the logarithm of Bol.
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The other three series in figure 14(a) behave more consistently, all of them
exhibiting a clear decrease of V∗d as Bo increases. However, the average slope in
each series is always less than −0.8, and hence significantly smaller than the one
observed in the pendant drop configuration. Although materials are not specified in
the figure, the sphere density increases from right to left in the two series involving
the water–glycerin mixture, i.e. those with the largest ζ (since small ‘light’ spheres
float, only small ‘heavy’ spheres are capable of entraining a drop). The role of
this parameter may be readily appreciated in the case of the V5/water–glycerin
pair, for which λ = 18.3. With this large λ, the shear stress at the drop surface
is almost zero, making the drag force on the drop, FDd, reduce essentially to the
contribution of the normal stress, FDn. As we showed above, in the limit h0/R� 1,
the latter is proportional to the drop volume. Hence, in (5.3), Kd ∝ V∗d , so that
the term (ζp/ζ − 1)Kd/(1 + K) merely acts as an additional buoyancy force, thus
reducing the drop volume for a given Bo (in the limit V∗d � 1, K ≈ −1/3 because
the presence of the low-viscosity film and drop makes the compound body behave
nearly as a bubble, and the drag force on a spherical bubble is 2/3 of that on
a rigid sphere). A comparison of corresponding data in figure 14(a) with the fit
determined for static pendant drops reveals how dramatic the reduction of V∗d due
to the solid-to-fluid density contrast is: while the drop volume measured for the
largest and lightest sphere (Bo = 4.5, ζp/ζ − 1 ≈ 0.53) is close to that predicted by
the fit for this specific Bo, it is roughly four times less for the smallest and heaviest
sphere (Bo= 0.37, ζp/ζ − 1≈ 9.1). Hence, in figure 14(a), the reduction of the drop
volume through the influence of the solid-to-fluid density contrast is larger on the
left part of the series (small Bo, large ζp/ζ ) than on the right part (large Bo, small
ζp/ζ ), resulting in variations with the Bond number looking weaker than those of
static pendant drops. This implies that a proper representation of the V∗d variations
should make use of the three-dimensional space (V∗d , Bo, ζp/ζ ), the representation
in the (V∗d , Bo) plane mixing two distinct effects. However, there is a priori no
reason why the static exponent −1.12 should be recovered for a given ζp/ζ in that
three-dimensional representation because the influence of the outer flow certainly
alters the drop geometry, i.e. the relation between Vd, h0, R0 and φd, as the sequence
in figure 11 suggests. Unfortunately, we have no means to evaluate this possible
alteration at the present stage, as this would require significantly more data with each
material in each pair of fluids.

The situation described above for fluid pairs having significant density contrasts
indicates that none of the terms on the left-hand side of (5.3) are really negligible
under such conditions. This state of affairs, combined with the subtle interdependence
of the geometric parameters, R0, h0 and φd, makes the prediction of exact scaling laws
for the drop volume based on simple models for the drag factors Kd and K presumably
out of reach. The situation simplifies in the limit ζ → 0, where the linear increase
of V∗d with Bol can be readily inferred from (5.4). For this, one first has to notice
that the corresponding drops have a quite flat top (see panels (d–f ) in figure 12).
Thus, the radius of curvature R0 is larger than R, and the positive difference 1 −
R/R0 increases with h0, and hence with V∗d (one would have 1 − R/R0 ≈ h0/R for
a thin spherical drop). For small Φ and φd ≈ π/2 (which is qualitatively consistent
with the aforementioned panels), the left-hand side of (5.4) is then virtually directly
proportional to V∗d /Bol. In the present experiments, pairs of fluids with small ζ also
have small λ, so that the outer fluid almost obeys a no-slip condition at the drop
surface. In the limit h0/R� 1, the drag force on the drop, FDd, is then dominated by
the shear-induced contribution, FDs. As shown above, the latter is proportional to the
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area of the spherical cap covered by the drop, implying Kd ∝ 1− cos φd. In the same
limit, 1+ K→ 1, because the compound body behaves essentially as a solid sphere,
so that the right-hand side of (5.4), Kd/(1+K), tends towards a non-zero value which
only depends on the cap angle φd (note the difference with the case discussed above
for λ� 1, where Kd/(1+K)∝V∗d ). Balancing both sides of (5.4) then requires V∗d to
increase linearly with Bol.

Finally, it is important to keep in mind that in the present experiments, pairs of
fluids with small ζ also have small λ, while those with significant ζ have moderate-
to-large λ. Therefore, it is not clear how far the observed tendencies for V∗d to decrease
with increasing Bo for ζ & 0.1, and to increase with increasing Bol for smaller ζ , are
independent of λ. Additional experiments with selected fluid pairs having significant
ζ but small λ and vice versa are desirable to complete this picture.

6. Tail fragmentation
6.1. Observations and underlying mechanisms

Figure 15 displays three sequences showing the early stages of the fragmentation
process in the tail past a 14 mm steel sphere falling in water (these correspond to
configurations 18b, 27a and 27as in § 3.2 respectively). All three cases therefore
share the same value of Arl, namely Arl ≈ 4.8 × 103. They essentially differ by the
viscosity of the upper fluid, which is 10 times larger in (b) and (c) than in (a), and
the presence of Triton X-100 in (c), which makes the Bond number Bol rise up
to Bol = 1.01 × 103, whereas Bol = 115 and 111 in (a) and (b) respectively. Videos
displaying the corresponding three sequences are available online in the supplementary
material. No fragmentation takes place in the wake of the same steel sphere with
the V500/water pair of fluids (configuration 27b), although Arl is unchanged and the
Bond number is similar to those of cases (a) and (b) (Bol = 123). This is a clear
indication that, for a given kinetic energy of the sphere and given levels of capillary
and viscous stresses exerted by the outer fluid, fragmentation can only occur if the
viscosity of the inner fluid is low enough to allow large deformation of fluid parcels.
The development of the breakup process in cases (a) and (b), as well as the absence
of breakup in the aforementioned case, can be appreciated in more detail in the
videos available as supplementary material https://doi.org/10.1017/jfm.2017.747.

In all three sequences of figure 15, longitudinal ligaments, which are usual
precursors of fragmentation in shear flows (Villermaux 2007), develop at the back
of the sphere, invading the entire tail progressively. However, these ligaments start
to form immediately after the sphere crosses the interface in the case of the least
viscous oil, whereas the tail remains axisymmetric and exhibits prominent corollas
during a significant period of time in (b) and (c). The reason for this difference
must be sought in the upper fluid: as the corresponding Ar is of O(103) with the
least viscous oil, the flow in the wake becomes unstable well before the sphere
reaches the interface, quickly generating three-dimensional vortex structures and
small but non-zero horizontal displacements and rotations of the sphere. This may be
appreciated in the top part of the sequence (a), where the funnel-shaped entrained
column just below the interface is seen to be significantly non-vertical. In contrast,
in (b) and (c), Ar is of O(102), so that the flow past the sphere is still almost
axisymmetric when it reaches the interface (see § 3.3). Wake instability, and hence
three-dimensionality, then takes a finite time to develop while the sphere settles in
the lower fluid, and it is only after this time lapse that ligaments start to form.

In the case of liquid jets sheared by a gas stream, the Rayleigh–Taylor instability
has been shown to be key in ligament formation (Marmottant & Villermaux 2004).
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(a)

(b)

(c)

FIGURE 15. Fragmentation in the tail past a 14 mm steel sphere in (a) the V5/water pair
(configuration 18b; λ= 0.21, ζ = 0.09, ζp= 7.6,Ar= 970,Bo= 1.3), (b) the V50/water pair
(configuration 27a; λ= 0.02, ζ = 0.04, ζp= 7.2, Ar= 91, Bo= 0.55) and (c) the V50/water
pair with Triton X-100 (configuration 27as; same parameters as in (b) except that here
Bo= 5.1).

Here, the capillary length lc in (b) is approximately 9.3 mm, i.e. 1.3R, due to
the weak density contrast between the two fluids. As the radius of the entrained
column is of O(R), the largest wavelength that can form in the azimuthal direction
corresponds to a wavenumber km ≈ R−1. Thus, km ≈ 1.3l−1

c , which is beyond the
cutoff wavenumber kco = l−1

c of the Rayleigh–Taylor instability (Chandrasekar 1961).
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(a)

(b)

FIGURE 16. The evolution of the fragmented wake of a 14 mm steel sphere in the
V5/water pair (a) and the V50/water pair (b).

Thus, this mechanism cannot be responsible for the formation of the ligaments in
that case. Due to the presence of Triton X-100, lc is decreased to ≈3 mm in (c),
i.e. kmlc ≈ 0.45, which makes the largest structures in the tail potentially unstable
through the Rayleigh–Taylor mechanism. Nevertheless, most of the three-dimensional
structures seen to develop in (c) are of much smaller size, again making this
mechanism unable to explain their formation. Wake instability, which eventually
results in a turbulent wake, is thus responsible for the generation of three-dimensional
structures, and hence of longitudinal ligaments, in all three sequences of figure 15.

Visual inspection of these three sequences also makes it clear that the average
size of the ligaments and large droplets that form in the wake is smaller in (a)
than in (b). This may be even better appreciated from figure 16, which provides a
closer view of the wake evolution for these two cases. In figure 16(b), one notices
the fairly cylindrical shape of the ligaments, at the tip of which droplets are seen
to form; the ligaments clearly exhibit more wrinkled shapes in figure 16(a). We
confirmed the difference in the average size of the large droplets formed during wake
fragmentation by processing images taken at later time in the three sequences (with
the sphere standing approximately 25R below the initial interface). More precisely,
we identified a group of 40–80 nearly circular drops in each series of images using a
contour detection routine, and employed Hough transform to determine the circle that
best fitted each of them. We repeated the analysis with three separate runs in each
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series of experiments, to reduce statistical uncertainty. Unfortunately, the detection
technique could not properly identify fragments smaller than 3–5 pixels, limiting our
analysis to droplets larger than 0.30± 0.08 mm in diameter with the present optical
device. This restriction and the too limited available samples of drops prevented us
from determining other statistical properties of the size distribution, especially its
probability density function. For the population of ‘large’ droplets we considered, the
above procedure yielded mean radii of 0.625, 0.84 and 0.78 mm in (a), (b) and (c)
respectively, with a 1 pixel uncertainty amounting to ±0.04 mm. Since the pairs of
fluids in series (a) and (b) have almost identical interfacial tensions, the noticeable
difference in the corresponding two mean radii underlines the strong influence of
the viscosity of the upper fluid (i.e. the one that forms the tail) on the outcome of
the fragmentation process. In contrast, the fairly small difference in the mean radii
found for series (b) and (c), which have identical viscosities but interfacial tensions
differing by one order of magnitude, is quite remarkable.

6.2. A phenomenological statistical model
The influence of surface tension and viscosity on the statistical characteristics
of drop and bubble distributions resulting from turbulent breakup is well known,
and considerable effort has been invested to quantify it in various types of flows,
especially in the context of chemical engineering applications (see, e.g., Coulaloglou
& Tavlarides (1977), Tsouris & Tavlarides (1994), Luo & Svendsen (1996) and
references therein). However, the present situation, in which the wake is in a
transitional state, makes it useful to revisit the underlying stress balances in the
more general context of inertia-dominated carrying flows in which the efficient spatial
scales comparable with the droplet size do not necessarily obey the usual scaling
laws of high-Reynolds-number turbulence.

If λ is large, making the effects of the internal viscosity negligible, breakup is
expected to occur as soon as the pressure difference 1p(r) along the surface of a
ligament with radius r exceeds the restoring capillary pressure, which is of O(γ /r).
Assuming that the motion in the outer fluid is dominated by inertia, one has 1p(r)∝
ρ2(1u(r))2 ≈ ρ2(Γu(r)r)

2, where 1u(r) denotes the norm of the velocity variation
over the distance r and Γu(r) is the norm of the corresponding velocity gradient,
both quantities being defined as ensemble averages if the flow is turbulent. In that
case, assuming that the flow satisfies the various hypotheses on which Kolmogorov’s
K41 theory is grounded (Frisch 1995), the root-mean-square value of the velocity
gradient at scale r within the inertial subrange depends only on r and on the averaged
dissipation rate per unit volume, εK , so that Γu(r)∝ (εK/r

2)1/3. Inserting this estimate
into 1p(r) and equating to γ /r yields the classical equilibrium mean drop radius,
which may be thought of as the statistical average of the maximum stable drop size,
as (Kolmogorov 1949; Hinze 1955)

r= r0γ ∝ (γ /ρ2)
3/5ε

−2/5
K , (6.1)

which implicitly assumes that r0γ stands within the inertial subrange. Although
still dominated by inertia, the flow in the outer fluid may be laminar or at least
governed by non-local characteristics with a well-defined spatial scale, in which case
Γu becomes independent of r for distances smaller than the smallest of these scales.
Hence, Γu(r)=Γ0, where Γ0 is governed by outer scales. Setting Γu(r)=Γ0 in 1p(r)
now yields

r= r0γ ∝ (γ /ρ2)
1/3Γ

−2/3
0 . (6.2)
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Both scalings indicate that the equilibrium drop radius increases with γ , but the two
exponents differ, the influence of surface tension being almost twice as large in the
fully turbulent case.

The above classical reasoning assumes that capillarity is the only cohesive force
present in the system. However, as already recognized by Hinze (1955), a viscous
drop offers more resistance to breakup than a bubble with a vanishingly small
viscosity because the dissipation associated with internal straining motions consumes
a part of the energy supplied by the outer flow. The remark at the beginning of this
section about the absence of fragmentation in the wake of the largest steel sphere
falling in the V500/water pair of fluids provides a clear illustration of this influence.
The fraction of the available energy transmitted by fluid 2 to a ligament of fluid
1 results in internal velocity differences over a distance r that are proportional to
(1 + ζ )1/2∆u(r) (due to kinetic energy conservation), thus inducing viscous stresses
of O((1+ ζ )1/2µ1Γu(r)). If µ1 is very large or γ is very small, this fraction is close
to unity, so that the capillary force does not play any further role and the equilibrium
mean drop radius is obtained by equating the viscous stress to ρ2(1u(r))2, which
yields either

r= r0µ ∝ (1+ ζ )−3/8(µ1/ρ1)
3/4ε

−1/4
K , (6.3)

if the carrying flow is fully turbulent, or

r= r0µ ∝ (1+ ζ )−1/4(µ1/ρ1)
1/2Γ

−1/2
0 , (6.4)

if it is ‘laminar’. Again, the dependence upon fluid properties is stronger in the
turbulent case.

Applying (6.1) (respectively (6.2)) to series (b) and (c), in which viscosities are
identical, predicts that the equilibrium mean radius should be 3.75 (respectively
2.1) larger in case (b), whereas experiments indicate a bare 1.08 ratio. Similarly,
predictions (6.3) (respectively (6.4)) applied to series (a) and (b), which have almost
the same surface tension, yield an equilibrium mean radius 5.85 (respectively 3.25)
larger in the latter case, which is in stark contrast to the observed 1.35 ratio. Clearly,
none of the above predictions which only consider effects of surface tension or
viscosity capture the actual stress balance controlling the fragmentation process
properly. In other words, the actual equilibrium drop radius results from both capillary
and internal viscous stresses, and their interaction mitigates the influence of each of
the two physical properties taken separately.

In the general case where both types of effects act together, the total cohesive stress
involved in the system may be formally written in the form (γ /r)H(G), where H is
an unknown function and G(r) ∝ (1 + ζ )1/2(µ1/γ )rΓu(r) is the ratio of the viscous
and capillary stresses. Since the initial estimate yielded Γu(r0γ ) ≈ (γ /(ρ2r

3
0γ ))

1/2,
one also has G(r) ≈ (1 + ζ )1/2µ1(ρ2γ r)

−1/2r3/2Γu(r)/(r
3/2
0γ Γu(r0γ )) = Oh1(r)(r/r0γ )

3/2

Γu(r)/Γu(r0γ ), where Oh1(r) = µ1/(ρ1γ r)
1/2 is the Ohnesorge number at scale r in

fluid 1. In the simplest case, the equilibrium mean radius, r0a, depends on four
physical properties (ρ1, ρ2, µ1, γ ), one length scale (r0γ ) and one strain rate (Γ0 or
(εkr

−2
0a )

1/3). Hence, the problem involves four dimensionless parameters, three of which
are r0a/r0γ , ρ2/ρ1= 1+ ζ and Oh1(r0a). The last one is, for instance, the characteristic
drop Reynolds number, Re1(r0a) = ρ1ε

1/3
K r

4/3
0a /µ1 or Re1(r0a) = ρ1Γ0r

2
0a/µ1, according

to the nature of the outer flow. The unknown function H therefore depends on these
four parameters, and this dependence must be such that H → 1 when Oh1 → 0
and must also guarantee that the scalings (6.3) and (6.4) are recovered in the limit
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Oh1 → ∞. Seeking H in the form of products of these parameters and applying
the above constraints provides the ratio of the equilibrium mean radius r0a for an
arbitrary triplet (Oh1,Re1, ζ ) to its value r0γ in the pure capillary limit Oh1→ 0 as(

r0a

r0γ

)5/3

= 1+ AT(1+ ζ )3/16Re3/8
1 (r0a)Oh1(r0a)

(
r0a

r0γ

)5/6

, (6.5)

in the fully turbulent case, or(
r0a

r0γ

)3

= 1+ AL(1+ ζ )1/8Re1/4
1 (r0a)Oh1(r0a)

(
r0a

r0γ

)3/2

, (6.6)

under ‘laminar’ conditions, AT and AL being two unknown constants. The overall
validity of an equivalent of (6.5) has been confirmed by Calabrese, Chang & Dang
(1986) and Wang & Calabrese (1986), who performed extensive experiments with
numerous liquid–liquid systems, varying λ and γ over three and nearly two orders
of magnitude respectively.

The mean radii found under conditions (a), (b) and (c) defined above yield
Oh1(r0a) ≈ 0.037, 0.34 and 1.05 respectively. In the turbulent case, Re1(r) may
be evaluated assuming that εK ∝ V3/R ∝ ((ζp − ζ )/(1+ ζ )g)3/2R1/2, which yields
Re1(r)= ((ζp − ζ )/(ζp(1+ ζ )))1/2Ar(r/R)4/3. In the ‘laminar’ situation, one first has to
identify the relevant outer scales that determine Γ0. The sphere settling velocity V and
the thickness δ2 of the boundary layer that develops in the outer fluid along the tail
seem to be natural candidates, yielding Γ0= S=V/δ2, where S stands for the average
shear rate in the boundary layer. Nevertheless, since the tail/outer-fluid interface is
close to vertical, baroclinic effects are also likely to take place. Over the same distance
δ2 (which is the smallest length scale involved in the system), the ratio of baroclinic
to shear effects may be expressed through the Richardson number Ri = N2/S2, with
N2
= 2(ρ2 − ρ1)/(ρ2 + ρ1)(g/δ2), and one might alternatively choose Γ0 = N. The

boundary layer thickness δ2(t) evolves as δ2(t) = (µ2t/ρ2)
1/2
∝ (µ2L(t)/(ρ2V))1/2, i.e.

(RL(t)/Arl)
1/2, where L(t) is the depth (measured from the initial interface) reached

by the sphere at the time t when r0a is determined. Use of the above estimate for
δ2 reveals that the ratio N/S does not exceed a few per cent (3 % in the case of
the V5/water pair, which has the largest density contrast among the fluid systems
in which fragmentation was observed). This confirms S as the relevant choice to
characterize the strain rate applied by the outer fluid to the tail, whereas baroclinic
effects only play a minor role. Hence, with Γ0= S= ((ζp − ζ )/(1+ ζ )gR)1/2/δ2(t), one
finds Re1(r) = ((ζp − ζ )/(ζp(1+ ζ ))Arl(R/L))1/2Ar(r/R)2. Each of the two definitions
of Re1 involves an arbitrary prefactor, but the latter does not vary among the three
experimental sequences, so that it can be lumped into the corresponding constant AT
or AL.

With r0a, Oh1(r0a) and Re1(r0a) at hand in each case, (6.5) and (6.6) may be used
to estimate AT and AL and possibly determine which scaling is the most appropriate.
To this end, we employed the following procedure. First, noting that Oh1 is small in
case (a), the corresponding r0a is close to r0γ and may be used as an initial guess
to determine the latter. Starting with this guess, we computed a first estimate of r0γ
for case (c) (in which γ is one order of magnitude smaller), using either (6.1) or
(6.2), and extracted a first estimate of AT and AL by solving (6.5) and (6.6), still
for case (c), which has the largest Oh1, and hence the largest sensitivity to viscous
effects. Then, we used these values of AT and AL in (6.5) and (6.6) to obtain a first
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correction to r0γ for case (a). We repeated this process until convergence, obtaining
AT ≈ 2.07 (respectively AL ≈ 2.18) and r0γ = 0.52 mm (respectively 0.57 mm) in
case (a), and hence r0γ = 0.14 mm (respectively 0.275 mm) in case (c). Since the
interfacial tension is virtually the same in fluid pairs (a) and (b), so is r0γ , and
we could then make use of the previously determined r0γ to assess which value
of AT (respectively AL) is necessary for (6.5) (respectively (6.6)) to predict the
experimentally observed value of req in case (b). This procedure yielded AT ≈ 1.30
and AL ≈ 1.80. Hence, the two values of AL obtained from cases (a) and (c) are
close to one another (20 % difference), whereas those of AT clearly differ by nearly
60 %. This suggests that, in the flow under consideration, the appropriate scaling
almost corresponds to ‘laminar’ conditions, the larger ‘fully turbulent’ exponents
associated with the physical properties γ and µ1 in (6.1) and (6.3) overestimating
the sensitivity of r0a to these properties. This conclusion supports the view that
the shear resulting from the boundary layer that develops around the tail is the
main source of fragmentation under the present conditions. This does not mean that
turbulence is absent from the wake, but rather that its intensity is not large enough
in the relevant range of scales for the resulting strain rates to compete with the
strong shear provided by the boundary layer. This situation is reminiscent of the
findings of Eastwood, Armi & Lasheras (2004), who performed experiments in a
turbulent water jet with known characteristics, in which small amounts of various
liquids were released on the centreline through a needle. They observed that droplets
resulting from the breakup process did not follow the Hinze–Kolmogorov scaling
(6.1), whereas bubbles produced in the same device using the same protocol did, as
previously noticed by Martinez-Bazán, Montañes & Lasheras (1999). They attributed
this remarkable difference to the fact that the small-scale nearly isotropic turbulent
motions present in the jet are sufficiently energetic to break air filaments, whereas
liquid filaments with much larger densities and viscosities can only break under the
action of large-scale organized vortices.

Assuming an ‘averaged’ value AL = 2.0, (6.6) predicts r0a = 0.625, 0.89 and
0.75 mm for cases (a), (b) and (c) respectively. Given the 0.08 mm uncertainty
on the optical determination of r0a and the significant statistical uncertainty due to
the limited sample of drops we considered, these predictions may be considered to
compare well with the experimental values of r0a = 0.625, 0.84 and 0.78 mm in
all three cases. Hence, (6.5) with AL = 2.0 appears to be a simple but potentially
useful model for predicting the average size of drops resulting from fragmentation
in ‘quasi-laminar’ liquid–liquid systems involving significant viscous effects in the
dispersed phase, at least down to λ = O(10−2). More experiments covering a wider
range of physical properties and flow conditions, supplemented by extensive data
processing, are of course necessary to confirm this provisional conclusion.

7. Summary
In this paper, we reported on a series of experiments aimed at characterizing various

aspects of the breakthrough process of a rigid sphere settling across a two-layer
system made of two superimposed immiscible Newtonian fluids, namely a thick layer
of silicone oil on top of a water or glycerin+water bath. By varying the physical
characteristics of the two fluids, especially their viscosities, employing spheres made
of different materials and varying their diameter, we were able to produce conditions
under which the viscosity ratio and the ratio of inertia to viscous effects acting on
the sphere spanned almost four orders of magnitude, while the solid-to-fluid density
contrast spanned more than one order of magnitude.
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Under most flow conditions, once the sphere reaches the interface, it penetrates
more or less easily into the lower fluid, while pulling a column or tail of the upper
fluid which elongates as time proceeds. However, in several configurations, small light
spheres remain trapped steadily at the interface. In the opposite limit corresponding
to the heaviest and largest spheres, the column is often observed to disintegrate
quickly into a very large number of droplets, which corresponds to a situation of
liquid–liquid fragmentation. In between these two limits, the characteristics of the
column deeply depend on the viscosity ratio and Archimedes number, but also on
the density contrast between the two fluids. In particular, in the region close to the
sphere, the geometry of the column carries the footprint of the wake structure that
develops during the time period in which the sphere settles in the upper fluid. That
is, the bottom part of the column displays a fully three-dimensional geometry with
hairpin-like regions for Archimedes numbers of O(102) or more, which is in line
with the available knowledge regarding the breakdown of wake axisymmetry past a
sphere translating in a uniform fluid. For lower Archimedes numbers, the column
remains axisymmetric. When the viscosity of the lower fluid is large, it tends to
pinch off close to the initial position of the interface when the sphere is light and
small enough, and, for Ar in the range [10, 100], exhibits a thick cylindrical bottom
part reflecting the geometry of the standing eddy. In contrast, when the viscosity of
the lower fluid is low, the column breaks up close to the top of the sphere, which
then falls with an oil drop attached to its top half. We derived scaling laws for the
pinch-off time which rationalize experimental observations, showing, in particular,
that the transition from ‘shallow’ pinch-off close to the interface to ‘deep’ pinch-off
close to the sphere takes place when the Bond number exceeds a critical value that
depends on the sphere inertia. These scaling laws also qualitatively explain how, by
forcing the sphere to accelerate or decelerate during the breakthrough, the viscosity
and fluid density contrasts act to favour a ‘deep’ or a ‘shallow’ pinch-off respectively.

An important conclusion that may be drawn from the present observations is that,
as far as the sphere remains connected to the tail, the dynamics of its wake is driven
by the properties (especially the viscosity) of the upper fluid, not by those of the
lower one. This is especially clear when the viscosity of the upper fluid is much larger
than that of the lower one, in which case the tail remains axisymmetric until possible
instabilities develop at the interface between the two fluids. When the sphere inertia is
large enough, such instabilities arise at the bottom of the tail, leading to the formation
of thin axisymmetric corollas surrounding its central part and propagating upwards.
This specific configuration precedes the onset of fragmentation, which occurs when
the sphere inertia is increased somewhat further. We rationalized the ‘zoology’ of
configurations encountered in the various pairs of fluids in two regime maps based on
the dimensionless parameters most relevant to ‘small light’ and ‘large heavy’ spheres
respectively.

The rest of the paper focused on three specific phenomena encountered during
the course of the experiments, namely flotation of light spheres at the interface,
characteristics of drops remaining attached to the sphere after the tail has pinched off
and wake fragmentation.

Light enough spheres were observed to float steadily at the interface in several pairs
of fluids. To rationalize these observations, we derived a necessary criterion based on
a quasi-steady force balance in which only the capillary force and the net buoyancy
force on the sphere, which includes a contribution from the meniscus, were taken into
account. Comparison with experimental data showed that, under most conditions, this
criterion predicts accurately the critical characteristics, i.e. density and radius, making
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spheres able to float. However, we also identified some situations in which spheres
succeed in crossing the interface although this criterion is satisfied. We found that this
occurs when the viscosity and density contrasts are such that the sphere experiences
a strong deceleration when it reaches the interface and stops within a short distance.
In such cases, the collapse of the wake results in a supplementary downward force
which still acts for some time after the sphere has momentarily stopped, making it
able to eventually overcome capillary and buoyancy effects.

In cases where the tail pinches off close to the sphere and a drop remains attached
to its top part, we attempted to clarify the way in which the drop volume varies
with the characteristics of the fluids and the sphere. For that purpose, we established
the force budget on the drop itself and on the compound body made of the sphere
plus the drop. This allowed us to obtain qualitative predictions in two limiting cases.
When the densities of the two fluids are close (ζ � 1) and the viscosity of the lower
fluid is much smaller than that of the upper one (λ� 1), this volume is governed by
the balance between the capillary force and the drag force acting on the drop. In that
case, the drop volume increases with the sphere size and the solid-to-fluid density
ratio, and decreases with the interfacial tension. The situation is more complex when
the fluid density contrast is significant. Although the corresponding configurations
keep connections with the classical static pendant drop problem, so that the drop
volume decreases as the Bond number is increased, we observed that this volume
remains sensitive to the solid-to-fluid density ratio. Capillary, buoyancy and viscous
forces are then in balance and we could only draw firm conclusions from this balance
when the lower fluid had a much larger viscosity than the upper one (λ� 1), in which
case the viscous force on the drop was shown to act as an additional buoyancy force,
decreasing the drop volume as ζp/ζ increased for a given Bo. Experimental data
obtained in the various pairs of fluids confirmed these predictions.

In the last part, we considered the fragmentation process observed in the fluid
column pulled by the largest and heaviest spheres when they sink in a low-viscosity
lower fluid, provided that the viscosity of the upper fluid is not ‘too’ large. We
processed the images obtained with different pairs of fluids to determine the average
size of the resulting oil droplets. With these results at hand, we developed a model
based on dimensional analysis arguments to better understand how the effects of
interfacial tension and tail viscosity combine to influence the mean droplet size. We
did so by considering both a turbulent and a quasi-laminar scaling, the difference
between the two being that the strain rate in the outer fluid at the droplet scale
is scale-dependent in the former case while it is governed by the thickness of
the boundary layer that surrounds the tail in the latter case. In each case, the
corresponding model involves only one empirical parameter. Comparison of the two
series of predictions with experimental data revealed that the quasi-laminar scaling
is the only one predicting correctly the mild variations of the droplet size observed
when viscosity and interfacial tension are varied by one order of magnitude, which
gives credit to the scenario of a fragmentation process driven by the boundary layer.

The present paper left the dynamics of the sphere and tail almost untouched: we
did not examine the evolution of the sphere velocity during the breakthrough process,
or that of the tail volume. Similarly, the post-pinch-off dynamics of the tail was
not considered, although it can be expected that it exhibits very different features,
depending on the viscosity contrast between the two fluids. This is the subject of the
companion paper.
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Appendix A. Mechanisms governing the pinch-off style
Derivation of a quantitative model aimed at predicting the pinch-off location is

beyond the scope of this paper. As the inner and outer fluids have comparable inertias,
the dynamics is much more complex than in the case of air cavities created by a
sphere impacting a free surface, where simple models based on the radial dynamics
of the outer flow, assumed to be irrotational, have proved successful (Duclaux et al.
2007; Aristoff & Bush 2009). Nevertheless, qualitative arguments may be developed
to help to interpret present observations. For this, let us consider that at a distance z
below the interface (z< 0), the tail radius is R(z, t) and the cross-sectional average of
the vertical fluid velocity W(r, z, t) within the tail is W(z, t). The radial inertial force
acting on the tail, which involves the acceleration d2R/dt2, is driven by the vertical
variation of the sum of capillary, buoyancy and dynamic pressure contributions, which
can be modelled in a first approach as ∂z{γ /R− (ρ2− ρ1)gz+ (1/2)ρ1W2

}, assuming
that the tail curvature in the vertical diametrical plane is small and neglecting effects
due to possible local velocity differences W − W within the tail (these effects can
actually become significant when λ is large, since the velocity distribution is then
close to a Poiseuille profile, where |W/W| may locally be up to 1/2). As both fluids
have comparable densities, the radial acceleration term is weighted by a combination
of their densities, say (1 − k)ρ1 + kρ2 = ρ1(1 + kζ ), where k is an O(1) constant
(0< k< 1) that depends on the nature of the two flows and of their couplings.

If W varies slowly with z and t, two limit cases may occur. At small depths,
buoyancy effects are negligible, so that pinch-off is driven by interfacial tension.
Balancing the capillary pressure gradient and radial acceleration terms reveals that
the characteristic pinch-off time, τγ , required to reduce R from an O(R) initial value
to zero scales as (ρ1(1 + kζ )R3/γ )1/2. Hence, the dimensionless time τ ∗γ = τγVc/R,
normalized by the characteristic sphere velocity scale Vc = (ζpgR)1/2 and radius R, is
such that τ ∗γ ∼{(1+ kζ )(ζp/ζ )Bo}1/2. Since the sphere stands at depth |z|c∼Vcτγ when
pinch-off occurs, τ ∗γ represents the dimensionless length of the tail by the pinch-off
time. Conversely, buoyancy is dominant at depths such that |z|/R�Bo−1. Keeping in
mind that the sphere has to settle in the lower fluid during a time t ∼ |z|/Vc before
reaching a depth |z|, the balance between the buoyancy and the radial acceleration
terms indicates that the corresponding dimensionless pinch-off time, τ ∗g , scales as
τ ∗g ∼ {(1+ kζ )(ζp/ζ )}

1/3. A shallow (respectively deep) seal configuration is observed
only if τ ∗γ < τ

∗

g (respectively τ ∗γ > τ
∗

g ). Hence, the transition between the two regimes
is expected to take place at a critical Bond number Bot ∼ {(1+ kζ )(ζp/ζ )}

−1/3, only
deep (respectively shallow) seal being possible at larger (respectively smaller) Bond
numbers. For small fluid density contrasts (ζ � 1), the above predictions reduce to

τ ∗γ ∼ ((ζp/ζ )Bo)1/2, τ ∗g ∼ (ζp/ζ )
1/3 and Bot ∼ (ζp/ζ )

−1/3 (A 1a−c)
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respectively. In contrast, if the lower fluid is much denser than the upper one, as in
air–water impacts, they become τ ∗γ ∼ (ζpBo)1/2, τ ∗g ∼ ζ

1/3
p and Bot ∼ ζ

−1/3
p respectively.

In that case, noting that ζ 1/2
p = Vc/(gR)1/2 may be interpreted as the Froude number

of the system, say Fr, and introducing the Weber number We = ρ2V2
c R/γ = BoFr2,

one also has τ ∗γ ∼We1/2 and τ ∗g ∼ Fr2/3, which yields a critical Bond number Bot ∼

We−1/2. The latter three scalings agree with predictions derived by Aristoff & Bush
(2009) in the case of cylindrical cavities. It should be noted that viscous stresses at the
tail surface were disregarded throughout the above reasoning. However, they of course
play a role if their magnitude comes to be comparable to that of inertial contributions.
The ratio of the radial acceleration term to the z-derivative of the normal viscous stress
provided by the outer fluid results in a viscous time scale τv ∼ ρ1(1+ kζ )R2/µ2, i.e.
τ ∗v ∼ (1+ kζ )Ar/λ (≈ Arl when ζ � 1). Hence, the above scalings are valid only as
far as τ ∗v �max(τ ∗γ , τ

∗

g ), which requires large enough Arl.
The above reasoning assumes that the sphere settles through the lower fluid with

a constant velocity equal to the terminal velocity VT1 it acquired before reaching the
interface, which is generally barely realistic. Effects of the deceleration of a sphere
impacting a free surface were examined in detail by Aristoff et al. (2010). Here,
changes in the sphere velocity are expected to influence the pinch-off position because
the average fluid velocity W(z, t) within the bottom part of the tail is necessarily
close to the sphere velocity V(t) at all times. Expanding W(z, t) in the form
W(z, t)≈W0(t)+ zWz0(t)+ · · · , with W0(t)=W(z= 0, t) and Wz0(t)= (∂zW)(z= 0, t),
the dynamic pressure within the tail is seen to comprise a contribution ρ1(W0Wz0)z
varying linearly with depth (the quadratic contribution (1/2)ρ1(Wz0z)2 and higher-order
terms in the expansion may be neglected as far as the relative variation of W over
the range of z of interest remains small). The above linear term may be regarded as
an additional buoyancy effect. More precisely, one can define the dimensionless
acceleration ratio χ = −g−1W0Wz0, and write the sphere velocity in the form
V(t) = VT1F(t), with F(0) = 1, so that the effective buoyancy contribution involved
in the evaluation of the characteristic time τg is written as −ρ1ζgz(1+ ζ−1χ). Instead
of τ ∗g ∼ {(1 + kζ )(ζp/ζ )}

1/3, one then has τ ∗g ∼ {ζp(1 + kζ )/[(ζ + χ)〈F〉]}1/3, so that
for small ζ the critical Bond number now scales as

Bot ∼ (ζp/ζ )
−1/3
{(1+ χ/ζ )〈F〉}−2/3, (A 2)

where 〈F〉 denotes the average of F(t) from t = 0 to t = τg. Thus, if the sphere
accelerates in the lower fluid, i.e. 〈F〉 > 1 and χ > 0 (since z is directed upwards),
τ ∗g and Bot are reduced compared with the case where V does not change over time.
Consequently, for a given ζp/ζ , the deep (respectively shallow) seal configuration is
found over a broader range of Bond numbers when the sphere accelerates (respectively
decelerates).

One extra step is necessary to estimate more quantitatively how the interplay
between λ, ζ and ζp may result in significant acceleration/deceleration effects with a
direct influence on the pinch-off style. Equating the drag force acting on the sphere
with its net weight, on the one hand before it reaches the interface, on the other hand
after the tail has pinched off (the possible influence of the drop that remains attached
to the sphere being neglected here), the two terminal Reynolds numbers, ReT1 and
ReT2, are seen to obey the relation

CD(ReT2)Re2
T2

CD(ReT1)Re2
T1
= λ−2(1+ ζ )

ζp − ζ

ζp
, (A 3)
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where CD denotes the drag coefficient. If Ar and Arl are both large, inertia effects
dominate in both fluids. Under such conditions, one may consider that CD varies
approximately as the power −1/3 of the corresponding Reynolds number (this is
close to the behaviour expressed by the usual drag correlations for a sphere when
the Reynolds number is large, see, e.g., Clift, Grace & Weber (1978)). Then, the
previous balance yields the ratio of the two terminal velocities, VT2 and VT1, as

VT2

VT1
≈ λ−1/5(1+ ζ )−2/5

(
1−

ζ

ζp

)3/5

. (A 4)

This relation shows approximately how much V(t) decreases due to the fluid density
contrast and increases (respectively decreases) due to the viscosity contrast when λ�
1 (respectively λ� 1). It should be noted that there would be no dependence with
respect to λ, had CD been assumed independent of Re; in contrast, VT2/VT1 would
vary as λ−1 if the two terminal Reynolds numbers were small.

We checked (A 4) under various conditions. For instance, in configuration 14a,
which has λ = 18.3, ζ = 0.32 and ζp = 1.74, it predicts VT2/VT1 ≈ 0.44, which
compares well with the value 0.40 determined from experiments and simulations.
Similarly, in the case of a 10 mm Teflon sphere settling in the V500/water set-up
(λ = 1.9 × 10−3, ζ = 0.03 and ζp = 1.23), (A 4) predicts VT2/VT1 ≈ 3.4, whereas
VT2/VT1 ≈ 3.2 is inferred from figure 13(a) of PM2. It would then be natural
to determine the corresponding acceleration/deceleration by considering the force
balance on the sphere just after its top has crossed the interface, a stage during
which its velocity is still close to VT1. We attempted this by using a standard
approach including added-mass, capillary and buoyancy forces and employing the
above expression for the friction drag. However, we found that a composite drag
model, considering the front part of the sphere (which is immersed in the lower
fluid) and its rear part (which is still connected to the upper fluid) separately, is
required to obtain quantitative predictions. This approach goes beyond the scope
of the present paper. This is why here we simply make use of experimental and
numerical data to extract dV/dt = V dV/dz at the time when the sphere starts to
settle in the lower fluid. Considering that W nearly equals V at the top of the sphere,
which implies W0∂zWz0 ≈ V dV/d z throughout this early stage, the acceleration ratio
χ is readily obtained. In the above two cases, we find χ ≈ −0.47 and χ ≈ +0.41
respectively. In the former case, the deceleration decreases the influence of buoyancy
by a factor of nearly two, while in the latter case, the acceleration enhances it by
approximately 40 %.

Appendix B. Connections and differences with impact problems
The problem of a sphere impacting a free surface was given a new perspective

in recent years (see the review by Truscott et al. (2014)), and some discussion
about the connections and differences with the present situation is in order. The
comparison with experiments and modelling achieved during the last 10 years with
hydrophobic spheres is relevant, since in the present experiments the spheres remain
coated by silicone oil throughout the breakthrough, without any direct contact with the
lower fluid. However, many fundamental differences exist. In impact configurations,
the sphere reaches the free surface with a velocity, Vi, that is generally close to
the free-fall velocity corresponding to the altitude zi at which it is released, i.e.
Vi≈
√

2gzi. Varying zi allows Vi to be varied independently from all other parameters
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of the system, especially the sphere density, and introduces the Froude number,
Fr = Vi/

√
gR, as a relevant control parameter. As the air–water viscosity ratio is

small (λ ≈ 55 � 1 under standard conditions) and the impact Reynolds number,
Rei = ρ2ViR/µ2, is usually large, viscous effects only have a small influence on
the short-time evolution of the sphere and cavity dynamics. Moreover, the air–water
density ratio is very small (ζ ≈ 830� 1), making inertia negligible within the cavity.
Therefore, among the five dimensionless parameters governing the liquid–liquid
systems considered here, only Bo and ζp/ζ ≈ ρp/ρ2 are usually relevant in air–water
impact configurations. Thus, most impact problems may be characterized using Fr,Bo
and ζp/ζ as independent parameters (Fr or Bo may be replaced by the Weber number,
We= ρ2V2

i R/γ = BoFr2). Here, in contrast, the sphere reaches the interface with the
terminal velocity it acquires in the upper fluid, Vi ∼

√
ζpgR. Hence, Fr ∼

√
ζp, so

that the Froude number does not appear as an extra control parameter and its value
only spans the narrow range [0.65, 2.75]. In other terms, the present experimental
conditions all correspond to Fr=O(1), and this is the reason why no splash can take
place at the interface, since a splash curtain can only form under high-Fr conditions
(Fr & 101 (Truscott et al. 2014)). Only weak disturbances may appear at the interface,
especially in the form of small-amplitude waves (e.g. figures 5 and 7 in PM2).

That ζ and λ take large values in impact problems deeply affects the behaviour
of the entire flow. First, air motion within the cavity has virtually no influence on
the water flow, due to the negligible inertia of air. In particular, the pressure keeps
an almost constant value in the cavity. Second, the large viscosity contrast implies
that the outer flow almost obeys a shear-free condition at the cavity surface, which
drastically limits the vorticity magnitude in the water, since, under such conditions,
the tangential component of the vorticity at the surface is directly proportional to
the interface curvature (Batchelor 1967). This causes non-negligible vorticity levels
in the water to be essentially confined within a thin boundary layer, except in two
subregions: the one close to the sphere, where the vorticity source is the approximate
no-slip condition at the sphere surface (although the sphere hydrophobicity may result
in a small non-zero effective slip length), and the splash curtain at the free surface
when Fr is large enough, where the curvature of the interface may locally be very
large. (These characteristics may, for instance, be appreciated in figures 8 and 14 of
Do-Quang & Amberg (2009).) Because of these two properties, the cavity dynamics
may be considered as a free-surface problem driven by an outer irrotational flow. This
is the essence of the approach followed in most studies on this problem (Birkhoff &
Zarantonello 1957; Duclaux et al. 2007; Aristoff & Bush 2009).

Neither of the above two conditions is generally satisfied in the present experiments.
First, the viscosity contrast ranges from O(101) in the configurations of figure 4(a)
to O(10−3) in those of 5(b). Thus, only in the former case is the shear-free boundary
condition at the interface approximately satisfied in the outer fluid. That the vorticity
distribution then exhibits the structure described above for air–water impacts is
confirmed in PM2, where results of a direct numerical simulation of configuration
14a are reported (figure 5). The opposite limit corresponding to λ� 1 yields strikingly
different vorticity distributions, as may be observed in figures 12 and 16 of PM2:
except for the vicinity of the sphere, the flow within the tail is almost irrotational,
whereas a boundary layer with large vorticity levels develops along the tail in the
outer fluid. As discussed in § 5 of PM2, this boundary layer plays a central role in
the overall dynamics of the system, being responsible for the generation of corollas
that precede tail fragmentation.
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Second, the fluid density contrast is always small (ζ 6 0.32), so that inertia is
comparable in the two fluids, imposing a complete coupling of the two flows. In
particular, the pressure varies greatly along the tail, not only because of the hydrostatic
component but also because of dynamic effects due to the vertical motion of the
inner fluid (the (1/2)ρ1W2 contribution discussed in appendix A). We showed that the
possible z-variation of this contribution, due to an acceleration or a deceleration of the
sphere, may be responsible for a significant shift of the critical Bond number at which
the shallow seal/deep seal transition takes place. No such effect exists in air–water
impact problems, due to the negligible inertia of air. In that case, the only way in
which the sphere velocity may affect the pinch-off dynamics is through the conditions
at the contact line between the cavity and the sphere. More precisely, the effects of the
sphere deceleration were considered by Aristoff et al. (2010), assuming that the cavity
remains attached to the sphere at a fixed angular position where the cavity wall makes
a non-zero angle with the vertical (i.e. the bottom part of the cavity is conical). With
such boundary conditions, the radial velocity of the cavity wall is obviously directly
proportional to the instantaneous sphere velocity. However, this implies that the sphere
velocity has no effect at all on a cylindrical cavity, whereas such effects always exist
in the liquid–liquid case, irrespective of the details of the tail geometry (we may note
in passing that the shapes of the bottom parts of the tails encountered throughout the
present investigation have generally little to do with the conical geometry observed in
impact problems).

The above features show that the flows and cavity dynamics resulting from the
impact of a sphere at a free surface generally differ greatly from those induced by the
settling of a sphere through a liquid–liquid interface. The basic pinch-off ingredients,
i.e. capillary and buoyancy forces, and the influence of the sphere velocity through
the bottom part of the tail or cavity, are of course similar. Connections also exist
on specific aspects (e.g. the vorticity distribution when λ � 1, or the scaling of
pinch-off times for shallow and deep seals, once expressed in the convenient control
parameters). However, the fact that the two fluids have comparable densities in
liquid–liquid systems makes a major difference since the tail is not passive, in
contrast to an air cavity. From a modelling viewpoint, this key feature requires the
coupling of the two flows to be considered, which of course greatly complicates the
development of simple models. Moreover, since the vorticity always reaches a large
level in at least one of the fluids, no modelling approach totally ignoring its existence
can be expected to provide relevant predictions in the situations of interest here.
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