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Hybrid Approach for Modeling and Solving of Kinematics of
Compact Bionic Handling Assistant Manipulator

Othman Lakhal, Achille Melingui, and Rochdi Merzouki

Abstract—This paper deals with a methodology for a real-time
solving of a complex kinematics of a class of continuum manipu-
lators, namely the Compact Bionic Handling Assistant (CBHA).
First, a quantitative approach is used to model kinematically the
CBHA inspired from the modeling of parallel rigid manipulators.
For this case, the CBHA is modeled as a series of vertebrae, where
each vertebra is connected to the next one through a flexible link.
The latter named an inter-vertebra is modeled by a 3UPS-1UP
(Universal-Prismatic-Spherical) joints. The kinematic models of
the CBHA are derived from the Inverse Kinematic Equations
(IKE) of each inter-vertebra. A qualitative approach based on
neural networks is used to provide approximated solutions of
the IKE for real-time implementation. Thus, the combination
of the advantages of quantitative and qualitative approaches
allows proposing a hybrid methodology for accurate modeling
and solving the kinematics of this class of continuum robots. A
set of experiments are conducted using a CBHA in order evaluate
the level of efficiency of the proposed hybrid approach.

I. INTRODUCTION

In the last decade, continuum robots have been the subject
of intensive research [1]–[4] mainly thanks to their ability to
reproduce some biological behaviors such as elephant trunks
[5], octopus [6], or tentacles [7]. They are manufactured
with flexible materials, allowing them to adapt and maneuver
in congested and narrow environments [8]. These properties
make them suited for a large number of applications, including
surveillance, rescue and exploration.

Continuum robots are often kinematically redundant and
highly nonlinear. The lack of sufficient discrete joints ren-
ders their kinematic analysis more complex than their rigid-
link counterparts. Contributions on kinematic modeling of
continuum robots can be distinguished from two approaches:
qualitative and quantitative approaches. All of them are based
on the available information to describe the robot’s behaviors.
Qualitative approaches consist of dividing the parametric space
into many classes according to the functioning modes. The
mathematical and approximative relations between the effects
(observation of experts, sensor measurements and statistical
data) and causes (input references) are determined using
learning techniques. For quantitative approaches, the existing
methods are also called model-based methods, which are
induced from the physical model (Kinematic, Differential or
Dynamic) of the robot in normal functioning mode.
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Regarding model-based methods, various approaches have
been proposed for solving the kinematic problem of continuum
robots. Hannan et al. [9] used differential geometry and the
Denavit-Hartenberg procedure to develop an intuitive kine-
matic model of a continuum manipulator for planar and spatial
scenarios. Generally, this geometrical approach considers the
structural assumption of constant curvature of the backbone
[10]. Jones and Walker [3] extended this result by considering
multiple sections of the manipulator. The same approach was
used in [11] to control a flexible endoscopic system, and in
[12] to describe the kinematics of a tendon-based manipu-
lator. Godage et al. [13] presented a new three dimensional
kinematic model for multi-section continuum arms using a
novel shape function-based approach [14], which incorporates
geometrically constrained structure of the arm. Another inter-
esting approach is the one presented in [15]; where the authors
used torus segments to represent the sections of the Bionic
Handling Assistant (BHA) manipulator. Escande et al. [16]
developed the forward kinematic model of the Compact Bionic
Handling Assistant(CBHA) based on the constant curvature
assumption.This singularity can be well handled as studied in
[17] and [18]. A geometrical approach to solve the inverse
kinematics of continuum robots was proposed and applied
to OctArm in [19], where the endpoint for all sections of
a multi-section arm are assumed to be known. However,
most of the aforementioned modeling techniques lead to less
accurate models especially when precision is needed in the
robot task, such as handling. In addition, it is often difficult
to deduce the inverse kinematics directly from the forward
kinematics. Usually, we make use of numerical methods (least
squares [20], Newton-Raphson methods [21], etc.) which are
computationally intensive.

Concerning qualitative approaches, Giorelli et al. [22] ap-
proximated the Inverse Kinematic Model (IKM) of a soft
manipulator using a feed-forward Neural Networks (NN). To
control a soft extensible manipulator, Braganza et al. [23]
used NN to compensate for the dynamic uncertainties. Rolf
et al. [2] introduced goal babbling approach to solve the
inverse kinematic model of the Bionic Handling Assistant
(BHA) robot. Melingui et al. [24] used NN in distal supervised
learning scheme to approximate the IKM of the CBHA robot.
Then, an adaptive neural network control of the CBHA robot
is proposed in [25]. Generally, qualitative approaches lead
to more approximate accurately complex models. However,
the higher the degree of freedom robots becomes significant
(beyond 10 DOF) over the calculation of their kinematic
models becomes difficult or long to obtain.

Concerning the modeling of kinematic behaviors of con-
tinuum manipulators as a series of parallel robots, Mahl et
al. [26] proposed a forward kinematic model of a continuum
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robot considering each section as a series of 3-DOF parallel
mechanisms. Rongjie et al. [27] solved the problem of multiple
solutions of the inverse kinematic model of continuum manip-
ulators using a spline interpolation method. The latter is used
to generate the backbone curve of the manipulator assuming
that the proximal and distal parts of the continuum manipulator
remain straight, and the bends only occur on the middle part
of the manipulator. Chirikjian and Burdick [28] developed a
modal-approach for hyper-redundant manipulator kinematics.
The hyper-redundant manipulators are abstractly represented
by backbone curves that either exactly or closely capture the
important macroscopic geometric features of the robot. An
optimal curve is used to generate the continuous backbone
curve. The optimality criteria are used to choose the curve that
satisfies task constraints, while optimizing additional criterion.
A serial-parallel platforms have been modeled as a basic
element of a hyper-redundant robot in Chibani et al [29]. An
emulation to the CBHA robot has been produced. Espinoza et
al [30] proposed an inverse kinematic modeling for a 10 DOF
hyper-redundant robot based on error optimization algorithms.

An alternative to model the kinematic behavior of robots is
to combine the two previous approaches in order to take the
best of them. In literature, the use of qualitative approaches to
improve the performance of quantitative models can be found
in [31]–[34], where neural networks were used to approximate
a large number of robot manipulator models in presence
of nonlinearities. In our previous work, A multilayer neural
network has been used in [35] to approximate the solutions of
the inverse kinematic equations of the CBHA robot, where the
time-allocation for the learning process was considerable, due
to the complex kinematic of the robot. A qualitative approach
has also been used to approximate the CBHA kinematics [24],
[36] and to develop a kinematic controller [25], [37].

Hybrid approach introduced in this paper is an extension
of initiated works on CBHA modeling [35] and [25], to a
real-time solving in the CBHA modeling is extended in this
proposed work by adding a real-time resolution and imple-
mentation in case of trajectory tracking. A methodology of
kinematic modeling and synthesis of its approximate solutions
is proposed for the case of continuum manipulator of type
CBHA. The modeling approach is issued from a quanti-
tative modeling of parallel rigid manipulators. Structurally,
the CBHA is assimilated to a series of parallel manipulator
under the following assumptions: the CBHA’s backbone rep-
resents a series of vertebrae, an inter-vertebra is modeled as
three Universal-Prismatic-Spheric and one Universal-Prismatic
(3UPS-1UP) joints, the robot torsion is not considered because
the robot is driven at low velocities, also its memory effect
of the material. The CBHA’s kinematic models are deduced
merely from the inverse kinematic equations of each inter-
vertebra and generalized for whole the hyper-redundant robot.
The obtained inverse kinematic equations are highly nonlinear
and mathematically intractable for the CBHA manipulators.
For this issue, a multilayer neural network is used to provide
approximated solutions of the IKE which can be used for real-
time implementation. The advantages of the proposed hybrid
modeling-solving approach compared to quantitative methods
is that the obtained models are more accurate and compu-

tationally inexpensive. Compared to qualitative approaches,
the proposed approach can be implemented for platforms
including a significant number of DoFs; because the training
database is deducted directly using the inverse kinematic
equations. This avoids to operate the robot for a long-period
for learning database.

The remainder of the paper is organized as follows: the next
Section describes the CBHA manipulator. Section III develops
the IKE of the inter-vertebra which is considered as 3UPS-
1UP joints. Section IV and Section V present respectively the
forward and inverse kinematic modeling of the CBHA using
a multilayer neural network for solving the nonlinearity of the
inter-vertebra. Section VI describes the obtained experimental
results and section VII gives a conclusion and future work.

II. COMPACT BIONIC HANDLING ASSISTANT
MANIPULATOR

The CBHA manipulator is mounted on an omnidirectional
mobile platform named Robotino. This combination forms a
mobile-bionic manipulator called RobotinoXT, as shown in
Fig.1.

Fig. 1. RobotinoXT

The CBHA consists of 2 sections made from elastic mate-
rial, a rotational wrist, and a compliant gripper as depicted in
Fig. 2. The key feature of the CBHA is the flexibility of its
sections formed by 3 polyamide tubes, controlled by electro-
pneumatic actuators. These tubes change their posture when
air flow is circulating through them. Since each section is
formed by 3 tubes, a bending section can be controlled by
applying differential pressures in the tubes. If equal pressures

Fig. 2. The CBHA of the RobotinoXT

are applied to each tube, the manipulator extends in a straight
line. This extension is limited by an inextensible cable placed
in the middle of the backbone, as shown in Fig. 3. The elon-
gations of each tube can be measured from wire-potentiometer
sensors placed along each tube. The voltages provided by wire-
potentiometer sensors are proportional to the extension of each
tube li,j , where i = 1, .., 3 and j = 1, 2 correspond to the wire-
potentiometer and section number, respectively. Finally, the
CBHA is a class of continuum manipulators, with a continuous
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shape and two sections. Each section has 3 DoF of mobility
and under actuated.

Fig. 3. Length Measurements on the CBHA

III. CBHA MANIPULATOR KINEMATICS

As we have stated in the introduction section, the kinematic
behaviors of continuum manipulators can be reproduced under
functional and structural assumptions. In this section, the as-
sumptions used for the kinematic modeling are first introduced,
and the IKE are derived thereafter.

A. Assumptions

The kinematic models of the CBHA are developed under
some assumptions, described below:
• The manipulator is considered as a series of N = 17

vertebrae.
• An inter-vertebra is flexible and non deformable with a

3DoF mobility. It is modeled with a 3UPS-1UP joints.
• The manipulator’s yaw motion is not allowed wih the

existing mechanical links between the tubes.
Based on these assumptions, a parallel robot composed by
two rigid platforms and 3 DoF of mobility is used to emulate
the behavior of each inter-vertebra. Knowing that the robot
comprises 17 vertebrae, the entire CBHA can be emulated by a
series of 16 parallel robots each comprising 3 DoF. Using such
modeling, CBHA can be considered as a 48 DoF system. That
is why the CBHA robot has the properties of hyper-redundant
robots. The schema of an inter-vertebra is given in Fig. 4. It
consists of a lower and a upper vertebrae connected by three
limbs with identical kinematic configuration, and a central
leg. The limbs are modeled by a kinematic configuration
of type UPS, in which only the prismatic joints are active
allowing to control the position and orientation of the upper
vertebra relative to the lower vertebra. qm,k represents the
variation of length of prismatic joint, where m = 1, .., 3 is
the number of active joints and k = 1, .., N − 1 is the number
of inter-vertebrae. The central leg is modeled by a kinematic
configuration of type PU located in the center of an inter-
vertebra. It is considered as a passive joint.

B. Inverse Kinematic Equation of the CBHA’s Inter-Vertebra

The IKEs of an inter-vertebra are obtained by calculating the
joint variables qm,k corresponding to the pose (position and
orientation) of the upper vertebra’s centre relative to the lower
vertebra frame. In the case of CBHA manipulator, the inter-
vertebra is considered as a 3-DoF parallel robot, because of

Fig. 4. Schematic of an inter-vertebra modeled as parallel robot with 3UPS-
1UP

movements constraints related to the passive kinematic chain
UP. In fact, the rotation with respect to the z axis, denoted by
Rot(z,Φk), and the translations relative to the x and y axes
denoted by Trans(x,Xk) and Trans(y, Yk), respectively, are
not considered, because it does not exist a movement on these
axis. Only the translation along the z axis is possible which is
denoted by Trans(z, Zk). Hence, the IKEs can be formulated
as follows:

qm,k = f(Zk, ψk, θk) (1)

where the angles θk and ψk indicate pitch and roll angles,
respectively.

Fig. 5. Configuration of spatial 3UPS-1UP manipulator

Am,k represents the connection point between the ex-
tensible driving leg m = 1, .., 3 and the vertebra k =
1, .., N − 1, as shows the Fig 5. For each vertebra, the
points A1,k A2,k A3,k form an equilateral triangle. The
frame <k+1 {Ok+1, xk+1, yk+1, zk+1} is attached to the up-
per vertebra of origin Ok+1, located at the centre of
the equilateral triangle A1,k+1A2,k+1A3,k+1, and the frame
<k {Ok, xk, yk, zk} is attached to the lower vertebra of origin
Ok, centre of the triangle A1,kA2,kA3,k. Knowing that the
entire shape of the CBHA is conical, it is necessary to de-
termine the circumcircle radius rn of the considered vertebra,
where n = 1, .., N is the number of vertebrae. Let rmax and
rmin, respectively the radius of the base and the apex of the
backbone, the radius of each vertebra rn can be calculated by:

rn =
k

N
(rmin − rmax) + rmax (2)

where N = 17 is the number of vertebrae. Thus, the co-
ordinates of the three connection points are given by the
coordinates (3), relative to the centre of the nth vertebra.
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A1,k =

−rk0
0

 ;A2,k =

 1
2rk√
3
2 rk
0

 ;A3,k =

 1
2rk

−
√
3
2 rk
0

 . (3)

The length of the prismatic joint for the active kinematic chain
of each UPS is represented by: qm,k with m = 1, .., 3 and k =
1, .., N − 1. The coordinates of the connection point Am,k+1

relative to the frame Am,k are given as follows:[
Qm,k

1

]
=k

k+1 T

[
Am,k+1

1

]
−
[
Am,k

1

]
(4)

where, k
k+1T is the transformation matrix of the upper vertebra

frame relative to the lower vertebra. Qm,k is 3x1 vector like
Am,k+1.

k
k+1T =


Cθk SθkSψk SθkCψk 0

0 Cψk −Sψk 0
−Sθk SψkCθk CθkCψk Zk

0 0 0 1

 . (5)

The notations C and S mean cosine and sine functions,
respectively. Thus, the prismatic variable qm,k is equal to the
distance between the connection points Am,k+1 and Am,k:

q2m,k = Qm,k
TQm,k (6)

Therefore, after introducing of (3) into (4), the equation (6)
can be rewritten in the format of (1):

q1,k = sqrt
(
Z2
k + 2Zkrk+1Sθk − 2rk+1rkCθk + r2k+1 + r2k

)
,

(7)
q2,k = sqrt

(
Z2
k + Zkrk+1

(√
3CθkSψk − Sθk

)
− rk+1rk(√

3
2 SθkSψk + 3

2Cψk + 1
2Cθk

)
+r2k+1 + r2k

) ,

(8)
q3,k = sqrt

(
Z2
k − Zkrk+1

(√
3CθkSψk + Sθk

)
+ rk+1rk(√

3
2 SθkSψk − 3

2Cψk − 1
2Cθk

)
+ r2k+1 + r2k

)
.

(9)

IV. FORWARD KINEMATIC MODEL OF THE CBHA

In this section, the Forward Kinematic Model (FKM) of
an inter-vertebra is first derived from the IKE using neural
networks approximation. The FKM of the entire CBHA’s
backbone is deduced thereafter.

A. Forward Kinematic Model of the CBHA’s inter-vertebra

The relation between the joint configuration qm,k of an
inter-vertebra and the parameters of the upper-vertebra (Zk,
θk, and ψk) relative to the lower vertebra frame is the FKM
of the parallel robot module 3UPS-1UP, defined as:

[Zk, θk, ψk] = f−1(qm,k). (10)

The pose [Zk, θk, ψk] of the upper vertebra frame corre-
sponding to a particular joint configuration qm,k relative to
the lower vertebra frame can be obtained by solving the
IKEs ((7), (8), and (9)). However, as we can notice, these
equations are highly nonlinear. Numerical techniques such as

least square, Newton-Raphson methods [38] which are used
to provide approximated solutions are usually computationally
intensive. In this work, an approximated solution is provided
by a Multilayer Neural Network (MNN). The approximation
of the solution can be summarized to a regression problem
with non-noisy data, because the IKEs are supposed to be
well identified.

Neural Network (NN) is a technique that models mech-
anisms based on learning and problem solving functions
of the human brain. NNs possess many useful properties
and capabilities [39] in terms of nonlinearity approximation,
input-output mapping, adaptive controlling, very-large-scale
integration, implementability, etc. In NN model, the signals
flow consecutively through the different layers from the input
to the output layer. The intermediary layers are called hidden
layers. In each layer, each elementary unit calculates a scalar
product between a vector of weights and the output vector
given by the previous layer. The choice of the appropriate
network architecture (i.e. number of hidden layers, number
of nodes in each layer, activation function, etc.) has to be
identified during the training process [39]. After the choice
of the NN architecture, the values of the weights are adjusted
via the training process (back-propagation, delta rule, etc.).
The performance of the obtained model is closely related to
the type and quality of the input-output data pairs, and noisy
data can significantly degrade its performance.

Multilayer Perceptron (MLP) is one of the typical examples
of Artificial NNs and consists of an input layer, some hidden
layers, and an output layer. NNs are considered as "universal
approximators"; Hornik et al. [40] proved that an MLP with
two layers of weights and sigmoid activation functions can
approximate any nonlinear functional relationship (mapping)
with an arbitrary accuracy, provided that enough of hidden
neurons are available. The solution of the IKEs based on NN
approximation offers advantages such as reduced computa-
tional resources and rapid execution for real-time purposes.

In this work, each bending section of the CBHA is di-
vided into a finite number of inter-vertebrae. However, the
measurement of the length of each inter-vertebra increases
the implementation cost. Ideally for the case of the CBHA,
the measurement of the length of each inter-vertebra requires
48 length sensors for each section, 92 length sensors for
the entire CBHA’s backbone. An alternative is to fragment,
when possible the wire-cable length sensor to provide the
length of each parallel platform module. A fragmentation
based on the minimum potential energy approximation has
been proposed in [41] for the BHA robot. However, the latter
is still based on assumptions: disregard of the potential energy
due to gravitation, potential energy of the trunk is equal
to energy stored in its spring-like bellows actuators, which
are not always verified. Referred to CBHA, the length of
each inter-vertebra is different due to tapered structure of the
CBHA, with tilted position on the mobile platform (Robotino).
However, since the length of an inter-vertebra is a fraction of
the tube length, the elongation of each inter-vertebra at any
time represents a percentage of the total length of the tube.
This percentage can be obtained by considering the minimum
and the maximum elongations of each inter-vertebra listed in
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Table I. The first and the fourth rows represent the index of
the vertebra. The second and the fifth rows give the minimum
elongations, while the third and the sixth give maximum
elongations. The percentage distribution of the inter-vertebra’s
length for the entire CBHA is depicted in Fig. 6.

Fig. 6. Elongation of the inter-vertebrae during movement

For FKM modeling, each section of the CBHA is modeled
by one NN model of 24-inputs to 24-outputs. The lengths of
the inter-vertebrae (q1,k, q2,k, q3,k) are considered as inputs,
while the variable Zk, the pitch (θk), and the yaw (ψk) angles
are considered as outputs. k = 1, 2, ..., 8 for the first section,
and k = 9, 10, ..., 16 for the second sections.

TABLE I
LIMIT ELONGATION OF kth INTER-VERTEBRA IN MILLIMETER FOR THE

CASE OF CBHA

kth 1 2 3 4 5 6 7 8
qmin (mm) 8.5 8.5 8.5 7 7 7 8.5 10
qmax (mm) 19.5 19.5 19.5 16.5 16.5 16.5 20 22

kth 9 10 11 12 13 14 15 16
qmin (mm) 6.5 8 8 7.5 7.5 7 7 6.5
qmax (mm) 16 20.5 20.5 19 19 18 18 16

min=-30°≤ k ≤ max =30°  
 min=-30°≤  k ≤  max =30° 

11mm≤ Zk
1 ≤13mm 

10mm≤ Zk
2 ≤12mm 

(q1,k, q2,k, q3,k)=f(Zk, rk, rk+1, k,  k)
 

qmin≤ qm,k ≤ qmax 
 

Save 
 

Yes 
 

Non 
 

Fig. 7. Database of learning generation

As it is listed in Table I, each inter-vertebra length is
bounded. These bounds allow fixing the range of the pitch
(θk) and the yaw (ψk) angles. In fact, the variables Zk, θk,
and ψk are initialized with a large range, as shown in Fig.7.
According to Fig. 7, the IKEs are computed, and the samples
of input-output pairs included in the range of the lengths of

the inter-vertebrae (q1,k, q2,k, q3,k) are saved. A learning base
of 30071 samples is obtained; 11559 samples for the first
section and 18512 samples for the second section, respectively.
The learning base is divided randomly: 70% for the training
set, 15% for the validation set, and 15% for the test set. The
training set is used during the learning phase and the test set is
only employed to assess the performance of the neural network
model. The validation set is used during the learning phase.

In order to minimize the Mean Square Error (MSE) calcu-
lated in the validation set, the weight matrices are adjusted
by means of the back-propagation descent method, including
the momentum term. For an optimal generalization of neural
network models and to avoid over-fitting, the early-stopping
method for training is implemented. The latter requires that
after a period of training (epochs) using the training set, the
weight matrices of the NN are fixed, and the NN operates
in the forward mode using the validation set. The process
is repeated until the MSE on the validation set reaches its
minimum value. In order to empirically select the best model
for each regressors, the value of each parameter was varied in
a given predefined range according to a grid search over the
learning base. A MLP of two layers is used for each CBHA’s
section, and it is tested with 2 up to 20 neurons (with a step of
2 neurons) in each hidden layer. The optimal MLP architecture
is obtained for an architecture with 18 neurons in each hidden
layer for the two sections by taking the MSE in the validation
set as a performance criterion . The assessment of the trained
MLP in terms of MSE on the test-samples yields the values
reported in Table II.

TABLE II
RESULTS ACHIEVED BY EACH NEURAL NETWORK MODEL ON THE TEST

SAMPLES

Neural networks topologies Neurons MSE
MLP, section 1 (2 layers) 18 6.4612.10−5

MLP, section 2 (2 layers) 18 8.2425.10−5

In the view of the obtained performance, we notice that each
NN model approximates the variables Zk, θk, and ψk with a
good degree of accuracy. In next subsection, the FKM of the
entire CBHA is deduced.

B. FKM of the CBHA manipulator

Fig. 8 depicts the different frames used to describe the
kinematics of the CBHA:
• The first frame {Xbase, Ybase, Zbase} is attached to the

base of the CBHA robot;
• The second frame {Xs1, Ys1, Zs1} is attached to the top

of the first bending section;
• And the last one {Xs2, Ys2, Zs2} is attached to the top

of the second bending section;
The coordinates of the frames {Xs1, Ys1, Zs1} and
{Xt, Yt, Zt} are given relative to the base frame
{Xbase, Ybase, Zbase}, while those of the frame
{Xs2, Ys2, Zs2} are expressed relative to frame
{Xs1, Ys1, Zs1}.
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Fig. 8. The associated frames of the CBHA

Fig. 9. Forward kinematic algorithm

The modeling process of the FKM is summarized in Fig.
9. The lengths provide by the tube-length’s sensors are di-
vided with respect of the percentage distribution of the inter-
vertebrae. The elongations qm,k obtained are used as inputs of
the NN models. NN1 model provides the predicted pose of the
vertebrae of the first section, while those of the second section
are provided by NN2 model. The Cartesian coordinate of the
tip arm {Xt, Yt, Zt} is obtained by using the transformation
matrices k

k+1T , for k = 1, .., N − 1.

V. INVERSE KINEMATIC MODEL OF THE CBHA

In this section, the IKM of the CBHA is presented. As
we stated at Section III, the entire CBHA is emulated by a
series of 16 parallel robots each comprising 3 DoF. Using
such modeling, the CBHA can be considered as a 48 DoF
manipulator. Numerically, it is sufficient to calculate the IKM
of each vertebra system, making the relation between the
center of the upper-platform with the joint coordinates of the
inter-vertebra. It comes more complicated for deducing the
numerical relationship between the top of the CBHA and
the 48 joint coordinates. Based on the approximation and
generalization capabilities of the learning-based techniques
the IKM can be solved. The principle is to compute the

corresponding lengths of each inter-vertebra from a given Tool
Center Position (TCP). At the end, the IKM of the CBHA is
obtained by summing the elongations of the inter-vertebrae.

In contrast to FKM, four MLPs are used to approximate
the IKM of the CBHA. The first one approximates the end-
position {Xs1, Ys1, Zs1} of the first section from the Cartesian
coordinates of the CBHA’s tip {Xt, Yt, Zt}. The last three
models use the position of the arm’s tip {Xt, Yt, Zt} and the
end-position of the first section {Xs1, Ys1, Zs1} as inputs, and
provides Zk, θk, and ψk as outputs.

Fig. 10. Algorithm for Inverse kinematic modeling

Fig.10 summarizes the process of the IKM solving. The
same learning base developed for the Forward kinematics is
used to derive the inverse kinematics. Table III shows the
results achieved by each neural network model on the test
set samples. The performance is less accurate for the end-
position of the first section. This is mainly due to CBHA
hyper-redondancy, because many solutions of the CBHA’s tip
are possible for the same end-position of the first section.
Nevertheless, the performance achieved remains acceptable.
To select a particular inverse kinematics function, a squared
penalty term is added to the objective function of the neural
network. The cost functional yields:

J =
1

2
(Xd −X)

T
(Xd −X) + λ

1

2
‖X‖2 (11)

where X and Xd are respectively the predicted and the
desired position. ‖.‖ denotes the Euclidean norm. In [42], it
has been demonstrated that, if the coefficient λ is larger, X
becomes small. The penalty term λ provides a possibility to
control efficiency the magnitude of X . This allows selecting
a particular inverse solution.

TABLE III
RESULTS ACHIEVED BY EACH NEURAL NETWORK MODEL ON THE TEST

SAMPLES

Neural networks topologies Neurons MSE
MLP, NN1 (2 layers) 18 4.9840.10−4

MLP, NN2 (2 layers) 12 1.2363.10−5

MLP, NN3 (2 layers) 16 4.0503.10−5

MLP, NN4 (2 layers) 16 3.4651.10−5

The whole MSE listed in Table III and Table II are the errors
obtained on the test samples. The database has been divided
in three sets: training, validation, and test. During the NN
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training, the matrices are updated using the MSE calculated
at the same stage. MSE in validation set is used for stopping
the training, and the MSE in the test set is used for assessing
the performance of the NN model.

VI. EXPERIMENTAL RESULTS

This section focuses on the validation of the developed kine-
matic models. Regarding the comparative study, performances
of modeling approaches vary from one robot to another [2],
[22], [23], [43], [44]. They depend on the structure of the
continuum manipulator, the state of its actuators, and its
geometry (sizes, shape). Hence, a direct comparison of these
approaches can be done, if and only if the latter can be
implemented on the same manipulator. This paper discusses
only recent contributions done on the CBHA and the BHA
manipulators. The structure is almost the same, the difference
being that the CBHA possesses two sections, while the BHA
has three sections. In this section, the optical 3-D stereo-vision
system is first presented for the real-time trajectory tracking.
The validations of the FKM and IKM are presented thereafter.
The section ends with a discussion.

A. Trajectory Generation

For generating the trajectory of the CBHA’s tip, three
reflective markers are attached to each head of its two sections.
The reflective markers are tracked by a stereo-vision system in
order to reconstruct the trajectory generated by each head. The
desired trajectory of the tip of the manipulator is generated by
pressure variation. The process of the trajectory tracking is
presented in Fig. 11. The trajectory generated by the head of
the second CBHA’s section is considered as desired trajectory.

Fig. 11. Stereo-vision system for trajectory generation

The tracking set-up is based on the motion capture system
OptiTrack by NaturalPoint, and consists of a set of 10 infrared
cameras capable of an accurate 3D tracking of a point cloud
within their combined visible workspace, in our case approx-
imately a cube of 1 meter side. After calibration, the system
has a precision of 0.3 mm for measuring the 3D displacements
of the two sections, as well as the base point considered as
the inertial frame of the system. The system has already been
used in [45].

B. Validation of the forward kinematic model of the CBHA.

The forward kinematics of the CBHA are validated by
following the experimental setup presented in Fig. 12. The
desired posture of the CBHA is generated by applying a

Fig. 12. Architecture of the FKM validation

set of the desired pressures to CBHA’s tubes. During the
trunk displacements, the values provided by the length sensors
are used as inputs to the FKM. The predicted positions
are compared to those provided by the stereo-vision system.
Results of the FKM validation are represented in Fig. 13. The
trajectories generated by the FKM and the stereo-vision system
are depicted in Fig. 13 (a). The associated Euclidean errors are
represented in Fig. 13-(b)-(c)-(d).

Refer to Euclidean errors presented in Fig. 13, it can be
concluded that the proposed FKM is able to predict the
CBHA’s tip pose with positioning errors of less than 8mm.
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Fig. 13. Kinematic Validation: (a) Desired and Estimated trajectories; (b)
Euclidean error in X axis; (c) Euclidean error in Y axis; and (d) Euclidean
error in Z axis.

C. Validation of the inverse kinematics of the CBHA

The validation of the inverse CBHA’s kinematics is pro-
ceeded as shown on Fig. 14. The desired posture of the
CBHA is generated by applying a set of the desired pressures
to CBHA’s tubes. The desired positions of CBHA’s tip is
applied to IKM, and the predicted lengths generated by the
IKM are used as input to length-pressure controller. The
pressures generated by the controller are applied to CBHA
robot by mean of the internal PID controllers. The elongations
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Fig. 14. Architecture of the kinematic models validation

provided by the length sensors are used as inputs to FKM.
The outputs of the FKM constitute the predicted positions.
These positions are compared to those provided by the stereo
vision system. Note that the CBHA system embeds six internal
PID controllers allowing the control of the pressure in each
tube. The length-pressure controller has been developed in our
previous works [37].

Fig. 15 presents the results achieved by the IKM. Fig.15-
(a) depicts the trajectories of the IKM and the stereo vision
system. Fig. 15-(b)-(c)-(d) represent the associated Euclidean
errors. Euclidean errors in Fig. 15 conclude that the proposed
IKM is able to predict the CBHA’s lengths which lead to tip
pose with positioning errors less than 11 mm. The posture
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Fig. 15. Inverse kinematic Validation: (a) Desired and IKM trajectories; (b)
Euclidean error in X axis; (c) Euclidean error in Y axis; and (d) Euclidean
error in Z axis.

of the CBHA can also be deduced from the positions and
orientations of the vertebrae, as shown in Fig. 16. The pre-
dicted CBHA’s postures obtained by using the IKM and FKM
models are represented in Fig. 16-(a)-(b). The real CBHA’s
posture obtained by using the values provided by the length
sensors is represented in 16 (c). We notice that both predicted
CBHA’s postures are closed to the real CBHA’s posture, and
those obtained by FKM function are the closest.

D. Discussions
In the view of the obtained results, the proposed kinematic

models achieve good performance. The proposed FKM is able
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Fig. 16. Posture of the CBHA: (a) Estimated posture with the IKM ; (b)
Estimated posture with the FKM; and (c) real posture of the CBHA.

to predict the CBHA’s tip pose with positioning errors of less
than 8mm, which represents 2.2% of the total length of the
CBHA. The IKM predicts the CBHA’s lengths which lead
to the tip pose with positioning errors of less than 11mm,
which represents 3% of the total length of the CBHA. The
CBHA includes memory effects and non-stationary behaviors
due to trunk’s materials (polyamide). When the CBHA’s trunk
spends long time in bending-posture, it does not return to
its initial posture when it is released. These non-stationary
behaviors appear mainly in high CBHA dynamics, and cannot
be coped by a simple kinematic controller [37]. Remaining
models’ errors are expected to result from torsional effects
which have been neglected in modeling process. Table IV
lists recent contributions in kinematic modeling of continuum
robots. We notice that in the case of the CBHA modeling
and real-time implementation, learning-based methods achieve
good performance, while quantitative methods are less accu-
rate. This lack of performance should result from modeling
assumptions inherent in quantitative approaches. The proposed
hybrid approach is intermediary to previous approaches, and
shows average performance. The accuracy of tracking tasks
by the CBHA is shown through the video [46], for online
targets tracking. These targets correspond to the centre of
tool coordinates of an external rigid robot manipulator which
communicate with the CBHA through the network inside the
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TABLE IV
RECENT CONTRIBUTIONS IN KINEMATIC MODELING OF CBHA AND BHA ROBOT

Robots Characteristics Modeling Method Kinematic modeling

CBHA
Continuous Shape, Structure: Soft, 2 sections,
3 tubes per section, 17 vertebras,
3 DoF per inter-vertebra, Pneumatic actuation,
Length: 0.50 m.

Hybrid approach: Geome-
try and Neural Network,
Proposed approach

Forward (FKM), accuracy: 8 mm;
Inverse (IKM), accuracy: 11 mm;
Validation: Simulation and real-
time experiments.

Quantitative: Geometrical-
based approach Escande et
al. [43]

Forward (FKM), accuracy: 8 mm;
Validation: Simulation and real-
time experiments.

Qualiative: Neural
Network, Melingui et
al. [24], [36]

Forward (FKM), accuracy: 4 mm;
Inverse (IKM), accuracy: 5 mm;
Validation: Simulation and real-
time experiments.

BHA
Continuous shape, Structure: Soft, 3 sections,
3 tubes per section, Pneumatic actuation,
30 vertebrae, 3 DoF per inter-vertebra,
Length: 1.00 m

Quantitative: Geometrical-
based approach, Mahl et al.
[41]

Forward (FKM), accuracy: 20
mm, Inverse (IKM), accuracy:
50 mm,Validation: Simulation and
real-time experiments

Qualitative: Goal babbling
learning, Rolf et al. [2]

Forward (FKM), accuracy: 5 mm;
Inverse (IKM), accuracy: 6 mm;
Validation: Simulation and real-
time experiments.

CBHA’s workspace. The aim is that the rigid manipulator
transfers to the CBHA the coordinates of its centre of tool
at the end of each trajectory, calculated in the local CBHA’s
frame. Then, the CBHA free-load tracks the imposed target
with a good accuracy.

VII. CONCLUSIONS

In this paper, we presented a methodology of kinematic
modeling calculation of a class of continuum manipulator,
including its approximate modeling for real-time solving and
implementation. The proposed modeling approach is able to
model hyper-redundant or continuum manipulators that consist
of multiple bending sections. The difficulty of solving the
inverse kinematic equations is circumvented by providing
approximated solutions based on neural network approach.
Both the forward and inverse kinematics are derived from the
inverse kinematic equations. The obtained kinematic models
are computationally inexpensive and can be easily imple-
mented in real-time. They can reconstruct the tool center
position of a free load CBHA with an interesting degree of
accuracy. The validation of the kinematic models using a 3-D
stereo vision system for trajectory tracking demonstrate the
efficiency of the proposed modeling approach. In future work,
dynamic behaviors of the CBHA in interaction with external
environment can be considered for control purpose.
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