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Inertial settling of a sphere through an interface.
Part 2. Sphere and tail dynamics

Jean-Lou Pierson1,‡ and Jacques Magnaudet1,†

1Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS,
Toulouse, France

Selected situations in which a rigid sphere settles through a two-layer system obtained
by superimposing two immiscible Newtonian fluids are studied using a combination
of experiments and direct numerical simulations. By varying the viscosity of the two
fluids and the sphere size and inertia, the flow conditions cover situations driven
by capillary and viscous effects, in which case the sphere detaches slowly from
the interface and may even rise for a period of time, as well as highly inertial
cases where its motion is barely affected by the interface and essentially reacts to
the change in the fluid viscosity and density. The evolutions of the sphere velocity,
effective drag force and entrained volume of upper fluid are analysed. In most cases
considered here, this entrained volume first takes the form of an axisymmetric tail
which elongates as time proceeds until it pinches off at some point. We examine the
post-pinch-off dynamics of this tail under various conditions. When the viscosity of
the lower fluid is comparable or larger than that of the upper one, an end-pinching
process initiated near the initial pinch-off position develops and propagates along the
tail, gradually transforming it into a series of primary and satellite drops; the size
of the former is correctly predicted by the linear stability theory. In contrast, when
the lower fluid is much less viscous than the upper one, the tail recedes without
pinching off again. During a certain stage of the process, the tip velocity keeps a
constant value which is significantly underpredicted by the classical Taylor–Culick
model. An improved theoretical prediction, shown to agree well with observations,
is obtained by incorporating buoyancy effects resulting from the density difference
between the two fluids. Spheres with large enough inertia settling in a low-viscosity
lower fluid are found to exhibit specific tail dynamics prefiguring wake fragmentation.
Indeed, an interfacial instability quickly develops near the top of the sphere, resulting
in the formation of thin axisymmetric corollas surrounding the central part of the
tail and propagating upwards. A simplified inviscid model considering the role of
the boundary layer around the tail and including surface tension effects is found to
predict correctly the characteristics of the observed instability which turns out to be
governed by the Kelvin–Helmholtz mechanism.
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1. Introduction

In the first part of this investigation (Pierson & Magnaudet (2017), hereinafter
referred to as PM1), we analysed the results of a series of experiments in which a
rigid sphere settles toward an initially horizontal interface separating two Newtonian
fluids. Although small light enough spheres were observed to remain trapped at the
interface, most of them were found to succeed in crossing it, entraining a certain
amount of the upper fluid in their fall. This entrained volume of fluid was noticed
to take a broad variety of shapes, depending on the sphere inertia, viscous, buoyancy
and capillary effects.

When the sphere relative weight and the viscous force exerted by the lower fluid
on the deformed interface are of comparable magnitude, the breakthrough process was
observed to be slow, in line with available knowledge: under such conditions, the
upper fluid contained in the film which forms ahead of the sphere is progressively
squeezed out and the meniscus connecting this film to the undisturbed part of the
interface lengthens gradually. At some point, the film may rupture due to van der
Waals forces (this is the so-called film drainage configuration reviewed by Jeffreys &
Davies 1971), or the meniscus may become unstable if the angle at which it matches
with the film exceeds a critical value (O’Brien 1996). The sphere is released in the
lower fluid after the first of these ‘catastrophic’ events happens; only the remaining
fluid contained within the film or that enclosed within the lower part of the meniscus
is entrained, eventually forming a small drop at the top of the sphere.

For larger sphere inertias, the breakthrough process was observed to be must faster,
the sphere being able to cross the initial position of the interface without being much
slowed down by capillary effects or buoyancy due to the fluid density contrast. Under
such conditions, it remains connected to the upper fluid layer by a column (or tail)
which lengthens as it settles within the lower fluid. This corresponds to the tailing
configuration first described by Maru, Wasan & Kintner (1971) and later explored
numerically in the creeping flow limit by Geller, Lee & Leal (1986). In PM1, the
geometry of this column was found to strongly depend not only on the density and
viscosity contrasts between the two fluids but also on the relative magnitude of inertia
and viscous effects experienced by the sphere during its descent in the upper layer.
This is not unlikely since their ratio determines the stability of the sphere wake, hence
the possible breakdown of the flow axisymmetry past the sphere before it reaches
the interface. Beyond some critical value of this ratio, the entrained column exhibits
a fully three-dimensional geometry which strongly evokes that of vortices shed past
axisymmetric bluff bodies translating in a homogeneous fluid, especially hairpin-like
structures (see figure 4 in PM1). In contrast, when the aforementioned ratio stays
below the critical value (although inertial effects are generally dominant), the column
remains axisymmetric, except when a three-dimensional instability is able to develop
at its surface. The latter situation was found to occur only with spheres of very high
inertia sinking in a low-viscosity fluid, yielding a fragmentation process generating a
large number of droplets. Leaving this situation apart, the axisymmetric column was
observed to stretch until pinching off either close to the sphere or in the vicinity of
the initial interface, depending on the competition between several processes.

Although the post-pinch-off dynamics of the column has little influence on the late
stages of the sphere motion, it is worth studying in itself. Indeed, until it pinches
off, the column may be seen as a fluid ligament continuously stretched between
the initial interface and the sphere. Therefore one can expect its post-pinch-off
dynamics to share strong similarities with the relaxation of initially extended drops
and cylindrical liquid threads. The generic behaviours of such fluid objects were



observed and analysed in detail by Stone, Bentley & Leal (1986) and Stone & Leal
(1989) (see also Stone (1994) and Eggers & Villermaux (2008) for reviews). In these
seminal investigations, it was established that when such a pre-extended thread is
embedded in a more viscous fluid, a so-called ‘end-pinching’ capillary instability
develops in the neck region located close to its extremities, eventually leading to
pinch-off, hence to the generation of drops at both ends. In contrast, no end-pinching
instability was found to take place in the opposite limit where the thread is much
more viscous than the surrounding fluid, the shrinking of the neck then being slowed
down by the inner resistance of the thread, which makes the tips capable of receding
fast enough to prevent pinch-off. Existence of a non-zero viscosity in the outer fluid
was also shown to modify dramatically the nature of the self-similar evolution of
the near-pinch-off thread geometry: while the radius-to-length aspect ratio tends to
zero when the surrounding fluid is dynamically passive (Eggers 1993; Papageorgiou
1995), inertia plays ultimately no role when both fluids are viscous, yielding O(1)
near-pinch-off aspect ratios (Cohen et al. 1998; Lister & Stone 1998). The recent
book by Eggers & Fontelos (2015) provides an up-to-date overview of fundamental
aspects related to the near- and post-pinch-off dynamics.

Considering the various observations summarized above, many questions emerge,
among which some of the most significant are as follows.

(i) What kind of sphere dynamics may be expected when the sphere inertia is
barely sufficient to allow it to cross the interface, making the breakthrough
process controlled by capillary, buoyancy and viscous forces? How much of the
upper fluid can the sphere entrain under such conditions?

(ii) For given sphere properties (i.e. radius and density), how do the kinematic and
dynamic characteristics of the sphere motion (e.g. its velocity and the drag force
acting on it) vary with the viscosity and density contrasts of the two fluids in the
tailing regime? How much are these characteristics influenced by the amount of
entrained fluid and tail geometry?

(iii) Which mechanisms govern the tail geometry?
(iv) Up to which point is the post-pinch-off behaviour of the tail similar to that of

a cylindrical liquid thread? Does the asymmetry in the geometry and boundary
conditions at the column extremities result in some structural differences? Do
buoyancy effects resulting from the density contrast between the two fluids have
any influence on this behaviour?

(v) Which types of instability can develop at the interface between the tail and the
lower fluid? Under which conditions?

These are the main questions we wish to address in the present work. To make
some progress on these various aspects, we jointly use experimental and computational
approaches, as they nicely complement each other. For instance the hydrodynamic
force acting on the sphere is much more easily obtained in computations, owing
to the variety of physical effects contributing to it. Similarly, due to differences in
the optical indices of the two fluids, the vorticity distribution in both fluids around
the fluid–fluid interface is difficult to determine in experiments. Conversely, some
small-scale phenomena, such as the late stages of film drainage and pinch-off events,
may not be properly captured in computations, owing to limitations in the spatial
resolution and to the approximate representation of capillary and viscous forces
(Bonhomme et al. 2012). This may not be a serious issue, except if these small-scale
features have a direct impact on the next stages of the overall dynamics. Experiments
remain the ultimate ‘justice of the peace’ to appreciate this influence. In what follows,



we restrict ourselves to axisymmetric geometries which contain the essence of most
phenomena related to the viscosity contrast and to buoyancy and capillary effects and
allow accurate computational solutions to be obtained at a reasonable cost. Hence,
situations in which the tail exhibits a non-axisymmetric geometry, reminiscent of the
structure of transitional wakes past axisymmetric bluff bodies, are not considered.

The experimental protocol and measurement techniques were described in PM1 and
this description will not be repeated here. Physical properties of the various fluids
and spheres were also detailed in PM1. For the sake of self-consistency, let us simply
recall that the two-layer fluid systems involve a layer of silicone oil on top of a bath
made either of distilled water or of a glycerine–water mixture with a viscosity 88
times that of water. Three different silicone oils, hereinafter referred to as V5, V50
and V500, respectively, with viscosities 4.8, 52 and 520 times larger than that of
water, respectively, are employed and all fluid pairs have interfacial tensions close to
0.03 Nm−1.

Computations are performed by solving the full Navier–Stokes equations using a
combination of the volume of fluid approach to track the interface evolution and the
immersed boundary technique to take into account the presence of the sphere and
determine the evolution of its position. The characteristics of this approach and those
of the grid geometry are described in the next section; technical details regarding the
immersed boundary technique and its validation are provided in appendix A. The rest
of the paper deals with the analysis of the experimental and computational results
obtained in three different groups of configurations. Section 3 considers two situations
in which capillary and viscous effects play a leading role, making the breakthrough
process dominated by the meniscus dynamics; when this process is very slow, the
meniscus evolution is compared with that predicted by the Young–Laplace equation
whose numerical resolution is outlined in appendix B. Sections 4 and 5 deal with
situations in which the sphere acquires a sufficient energy in the upper fluid to easily
cross the interface. In the configurations considered in § 4, the viscosities of the two
fluids are close, whereas the lower fluid is much less viscous than the upper one in the
situations examined in § 5. These differences in the viscosity contrast, together with
those in the solid-to-fluid density contrast, yield strikingly different dynamics of the
entrained column, both at short time, when it is still directly connected to the sphere,
and at longer time, after its primary pinch-off. Several aspects of this dynamics are
compared with existing theories in both sections. To better understand the origin of
some behaviours described in § 5, theoretical models are developed in appendices C
and D and their predictions are compared with observations. Section 6 summarizes
the main findings of this investigation and concludes with some prospects.

2. Computational approach

2.1. Governing equations

The sphere and the two immiscible fluids form a three-phase system. The evolution of
this system is described within the framework of a one-fluid approach coupled with an
immersed boundary method (IBM). To this end, the local fluid medium is considered
as a mixture of the two Newtonian pure fluids. It may be characterized by the local
volume fraction C of the upper fluid and by density and viscosity fields which depend
only on C and on the intrinsic physical properties of each pure fluid. The volume
fraction C obeys the hyperbolic transport equation

∂C

∂t
+ (U · ∇)C = 0, (2.1)



and the local density and viscosity of the mixture are respectively given by

ρ = Cρ1 + (1 − C)ρ2, µ= Cµ1 + (1 − C)µ2, (2.2a,b)

where indices 1 and 2 refer to the upper and lower fluids, respectively.
The flow is assumed to be incompressible and is characterized by a single velocity

field U and a pressure field P throughout the mixture. The governing equations,
applied throughout the fluid and solid domains, are given by

∇ · U = 0, (2.3)

ρ

{

∂U

∂t
+ (U · ∇)U

}

= ρg − ∇P + ∇ · {µ(∇U + T
∇U)} + Fγ + FIBM, (2.4)

where Fγ is the capillary force per unit volume, FIBM is an additional force density
introduced to take into account the presence of the sphere in the way described below
and g denotes gravity. The capillary force is computed using the continuum surface
force model designed by Brackbill, Kothe & Zemach (1992), namely

Fγ = −γ∇ ·

{

∇C

‖∇C‖

}

∇C, (2.5)

where γ is the interfacial tension which we assume to be uniform.
The IBM approach (Mittal & Iaccarino 2005; Prosperetti & Tryggvason 2007)

employed to account for the presence of the moving sphere is of the body-force type
(Yuki, Takeuchi & Kajishima 2007). That is, the force density FIBM is chosen in the
form

FIBM = αρ
UD − U

τ
, (2.6)

where UD is the desired velocity assigned to the medium at the considered location
and τ denotes a characteristic time which in computational practice coincides with
the time step 1t. The volume fraction α equals 1 in the solid and 0 in the free fluid.
Within the solid, UD is set to V + Ω × r, where V and Ω are the translational and
rotational body velocities, respectively, and r is the local distance to the body centre
of inertia. As τ goes to zero, any difference between the fluid and body velocities
tends to generate an infinite force density at locations where α 6= 0, thus enforcing
the no-slip condition.

The sphere moves according to Newton’s second law. For a rigid body of volume
V and density ρp, the corresponding overall momentum balance is given by

ρpV
dV

dt
=
∫

S

Σ · n dS + ρpVg, (2.7)

where Σ = −PI + µ(∇U + T
∇U) is the stress tensor and n is the local unit normal

to the body surface S , I denoting the unit tensor. In general the torque balance
is required to determine the rotation rate Ω . However we shall only consider
axisymmetric situations, so that no such rotation exists, making (2.7) sufficient
to predict the sphere motion.

Finally, it is important to recall that the experimental tests reported in § 2 of PM1
provide evidence that silicone oil always wets the sphere surface entirely. Hence no
contact line exists, so that no contact angle model is introduced in the computational
approach.



2.2. Numerical techniques and grid characteristics

Computations are carried out with the JADIM code developed in our team. This code
makes use of a finite volume discretization combined with a third-order Runge–Kutta
Crank–Nicolson time-advancement algorithm. Centred schemes are used to evaluate
the various spatial derivatives in (2.4). Incompressibility is enforced at the end of the
complete time step through a projection technique (Calmet & Magnaudet 1997). The
corresponding solutions of the Navier–Stokes equations are second-order accurate in
both time and space. The solution of (2.1) is based on a flux corrected transport
technique split along each grid direction, as described in Bonometti & Magnaudet
(2007). This algorithm provides solutions for the volume fraction C with first-order
accuracy in time. No explicit interface reconstruction is carried out after the C
distribution is computed, so that the interface may be regarded as ‘diffuse’ in this
approach. For this reason, the interfacial layer where 0 < C < 1 may not keep a
strictly constant thickness, becoming thicker (respectively thinner) in regions where
the surrounding flow tends to move apart (respectively compress) the iso-C lines. An
example of this behaviour may be seen in figure 1(g–h), where the iso-C contours
are almost superimposed along the bottom half of the sphere while some spreading is
visible along the meniscus surface. With this ‘diffuse’ approach, no specific procedure
or criterion is required to capture the breakup of a fluid thread or drop. Here, such
a topological change is simply a ‘through’ with C ≈ 0 in between two fluid regions
where C ≈ 1 or vice versa. As the transition from C ≈ 0 to C ≈ 1 is achieved
within 2–3 grid cells, observing such an event typically requires the two ‘plateaus’
where C ≈ 1 to be separated by 4–6 cells. Details about the evaluation of each
term in the governing equations and implementation of the various algorithms may
be found in the above two references. The performances of this code in situations
approaching those on which we focus here may be appreciated in the study of
Bonhomme et al. (2012), where the dynamics of air bubbles crossing an interface
between two immiscible liquids was considered. Few computational studies have been
carried out so far on approaching three-phase problems. One may mention the work
by Blanchette & Shapiro (2012) who considered the settling of nearly spherical drops
across a two-layer arrangement of miscible fluids with identical viscosities.

Compared to the aforementioned studies, the novelty here is that we need to account
for the presence of a rigid body and its interaction with the interface. As we treat
the two-phase flow on a fixed grid through the volume of fluid approach, it is natural
to deal with the body using the IBM technique which does not require the grid to
deform with the body motion. The initial IBM approach implemented in the JADIM
code is extensively described in Bigot et al. (2014). In this approach, equation (2.7)
is solved using the technique proposed by Uhlmann (2005), i.e. the surface integral
∫

S
Σ · n dS, whose evaluation is complex, is replaced by ρV(dV/dt − g)−

∫

V
FIBM dV

which is much simpler to compute. Nevertheless, preliminary tests revealed that
several improvements beyond the implementation described by Bigot et al. (2014)
were desirable. A detailed presentation of these changes may be found in Pierson
(2015); we summarize them in appendix A.

The axisymmetric computations whose results are discussed below were performed
in a cylindrical domain with a minimum radius of 12R (R is the sphere radius) and a
length which depends on the case under consideration, especially on the time period
over which we wish to observe the dynamics of the tail towed by the sphere; this
length ranges typically from 18R to 30R. The interface is usually located initially
12R from the top of the domain. The grid is uniform in the vertical direction, z,
with typically 50 cells per sphere radius. In the radial direction, r, 200 cells are



generally distributed uniformly in the central region, 0 < r 6 4R, so as to properly
describe the boundary layer and the film that surround the sphere over a wide range of
conditions; this grid density (as well as that in the z direction) is doubled in the most
inertial cases for which small-scale phenomena are expected, as well as in situations
where film drainage is expected to play an important role. In the outer region, r >

4R, the grid is non-uniform, with cells distributed following an arithmetic law. In
appendix A, numerical predictions are compared with experimental data describing
the settling of a sphere in a homogeneous fluid up to a Reynolds number ReT ≈ 20
(based on the sphere radius and terminal velocity). Very good agreement is obtained
with the improved IBM technique, provided the grid comprises a minimum of 20 cells
per sphere radius. We checked that the boundary layer is properly described when
it contains 4–5 cells. Since its thickness is of O(RRe

−1/2
T ), we are confident that the

selected grid distribution with 50 cells per sphere radius provides accurate predictions
up to Reynolds numbers in the range 100 . ReT . 150, i.e. at least up to the critical
Reynolds number Rec at which the axisymmetric flow past a freely falling sphere
becomes unstable, Rec ≈ 103, as determined by Fabre, Tchoufag & Magnaudet (2012).

3. Two cases of meniscus-driven dynamics

In the three sections to come, we analyse in detail several configurations that were
considered both experimentally and computationally. They are discussed in order of
increasing magnitude of inertia effects during or after the breakthrough stage, from
quasi-static detachment, to the regime preceding fragmentation in which corollas form
at the back of the sphere.

The discussions to come frequently involve the five dimensionless numbers which
characterize the three-phase system and were defined in PM1. Taking the upper
fluid (fluid 1) as reference, these are the viscosity ratio λ = µ2/µ1, the fluid and
solid-to-fluid density contrasts ζ = ρ2/ρ1 − 1 and ζp = ρp/ρ1 − 1, respectively,
the interfacial Bond number Bo = (ρ2 − ρ1)R

2/γ and the Archimedes number
Ar = ρ1(ζpg)1/2R3/2/µ1. We shall also make frequent use of the Archimedes
number Arl based on the properties of the lower fluid, which is such that Arl =
1/λ((ζp − ζ )(1 + ζ )/ζp)

1/2Ar. Consistent with these definitions, we normalize positions,
volumes and forces by the sphere radius R, volume V = (4/3)πR3 and weight ρpVg,
respectively, time by the gravitational time scale (R/(ζpg))1/2, hence velocity and
vorticity by (ζpgR)1/2 and (ζpg/R)1/2, respectively.

3.1. A quasi-static detachment situation

We first consider the early evolution of the flow past a 14 mm diameter polyacetal
sphere settling in the V500/water–glycerine pair of fluids (configuration 7b in figure 3
of PM1). The associated dimensionless parameters are Ar = 2.2, Bo = 3.65, λ= 0.17,
ζ = 0.24 and ζp = 0.40.

The static force analysis developed in § 4 of PM1 led to the conclusion that
flotation of the sphere at the interface is possible only if ζp/ζ 6 3/2Bo + 1/2 +
3/4(log (4/Bo1/2) − γE) (equation (4.4) in PM1) for Bond numbers up to O(1), γE

denoting the Euler constant. Therefore it can be concluded that, given its weight and
the magnitude of the buoyancy and capillary forces, the sphere cannot float under the
present conditions. However the ratio ζp/ζ is only slightly larger than the sum of the
terms in the right-hand side of the above inequality (see figure 7 of PM1), so that
the sphere is expected to detach slowly from the interface. This is indeed the case,
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FIGURE 1. (Colour online) Four stages of the quasi-static detachment of a 14 mm
diameter polyacetal sphere from a V500/water–glycerine interface. (a–d) Experimental
sequence, the dashed line representing the corresponding static meniscus profile obtained
by solving numerically the Young–Laplace problem (see appendix B; the film coating the
spherical cap located below the meniscus is neglected in this approach). (e–h) Numerical
sequence at the same instants of time, with levels of azimuthal vorticity ωa = ∂ur/∂z −
∂uz/∂r, from −0.1 to +0.1, according to the colour scale; the thick solid line materializing
the interface is actually made of iso-contours C = 0.1, 0.3, 0.5, 0.7, 0.9 of the volume
fraction defined in (2.1).

and we observed that it takes approximatively 30 s for the meniscus to pinch off and
the sphere to start settling in the lower fluid.

Figure 1 displays four snapshots of the meniscus evolution, from the time at which
the sphere is half-immersed in each fluid to that at which it stands entirely below the
initial position of the interface. These four views are selected because they correspond
to specific values of the angle ψ at which the film located ahead of the sphere and
the meniscus match, namely ψ = 3π/8, π/2, 5π/8 and 3π/4, respectively (with
ψ = 0 at the sphere bottom). Figure 1(a–d) compares the experimental shape of the
interface with the prediction provided by the numerical solution of the Young–Laplace
problem (see (B 1)–(B 2) in appendix B). The agreement is very good, indicating that
the system essentially undergoes a quasi-static evolution. The experimental and
computational sequences show the progressive drainage of the film which first forms
ahead of the sphere. As ψ increases, the change in the interface curvature in the
subregion where the film and the meniscus match becomes more abrupt and locally
induces a large pressure gradient within the inner (i.e. upper) fluid. The corresponding
fluid acceleration results in a ‘dimple’ of the film near the equator of the sphere
when ψ becomes close to π/2 (figure 1b, f ), in line with the asymptotic prediction of
Jones & Wilson (1978). Throughout the sequence, one may notice a region of positive
vorticity in the lower fluid in the meniscus region; it originates in the negative radial
velocities going with the deformation of the interface, first all along the meniscus
(panel e), then in the dimple subregion ( f,g) and eventually above the neck (h). This
last frame corresponds to the stage at which the meniscus is close to snapping: as
shown by O’Brien (1996), the Young–Laplace problem does not have a solution for
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FIGURE 2. (Colour online) Evolution of three characteristics of the quasi-static
breakthrough in the configuration considered in figure 1. (a) Settling velocity V as a
function of the distance z0 from the sphere centre to the initial position of the interface;
(b) displaced volume Ve from the initial position of the sphere (z0 →−∞) until its current
position; (c) film thickness h(t) at the bottom of the sphere. Solid line: computational
prediction; triangles, squares and circles refer to three different experimental tests. In (c),
the dash-dotted line is a guide to the eye with a −0.65 slope; the experimental uncertainty
1h is estimated to ±3 pixels, making 1h/h increase as h → 0.

all ψ and, in the low-Bo limit, a static equilibrium is not possible when ψ & 3π/4.
Hence somewhat later the sphere starts falling freely in the lower fluid.

Figure 2 shows how three key characteristics of this flow configuration, namely
the sphere velocity V , the volume Ve displaced through the lower fluid and the film
thickness h ahead of the sphere, vary with the position z0 of the sphere centre of mass
(defined with respect to the initial position of the interface, with z0 < 0 (respectively
> 0) when the sphere stands above (respectively below) the interface). As shown in
figure 2(a), after having reached its equilibrium value V ≈ 0.35 in the upper fluid, the
sphere velocity starts decreasing sharply one diameter above the interface (z0 ≈−2). It
falls to zero and remains negligibly small within the range 06 z0 6 1.5 corresponding
to figure 1(a–d). The meniscus snaps when the sphere stands at z0 ≈ 1.5, as will be
confirmed by examining figure 2(b). Then the sphere is released in the lower fluid and
accelerates progressively. Computational and experimental evolutions are in excellent
agreement up to z0 = 2.5. The 9 % overestimate of the final settling velocity is due
to a slight underestimate in the film thickness and entrained drop volume, Vd: the
net weight of the compound settling body being (ρp − ρ2)gV(1 − ζ/(ζp − ζ )(Vd/V)),
with here ζ/(ζp − ζ )≈ 1.54, an underestimate of the relative entrained volume Vd/V

by 0.035 is sufficient to generate the observed overestimate in V . Assuming that
the shape of the compound body is close to a sphere, this corresponds to a 1 %
underestimate in its equivalent radius, which is consistent with the limitation imposed
by the computational grid, which in this case involves 100 cells per sphere radius.

Figure 2(b) shows how the displaced volume Ve, defined as the volume comprised
between the current and initial positions of the interface, i.e. Ve(t) =
2π

∫

z<0 C(r, z, t)r dr dz, varies with z0 (note that this volume includes that of the
sphere, so that the normalized entrained volume of light fluid Vd/V equals Ve − 1).
The computational prediction indicates that Ve increases almost linearly from z0 ≈ −6
to z0 = 0 (z0 = 0 corresponds to figure 1a), where the displaced volume of fluid
approximately equals that of the sphere. Hence the interface starts deforming well
before the sphere gets close to it. This is of course the signature of the slow spatial
decay of the disturbance generated by the sphere in the present O(1) Reynolds number



regime. Owing to a combination of limitations inherent to optical resolution, finite
field of view and post-processing procedure, this early growth of Ve is not captured in
experimental data, where interface deformations appear only much later, when z0 ≈−2.
However the two determinations further converge, providing similar peak values at
z0 = 0 and being in good agreement in later stages. Starting from its maximum at
z0 = 0, Ve first decreases sharply due to film drainage. Then it increases again slightly
owing to the lengthening of the meniscus, until the latter snaps at z0 ≈ 1.5. The upper
part of the meniscus then recedes toward the initial position of the interface, making
Ve − 1 decrease towards a non-zero final value of approximately 0.2 (note the good
agreement between the experimental and computational final values, although the latter
is slightly smaller than the former, in line with the aforementioned underestimate).
The latter is provided by the lower part of the meniscus which recedes toward the
sphere, giving birth to a spherical cap drop attached to its top part and approximately
limited by the cap angle ψd = 3π/4 at which the meniscus snapped. The way the
volume of drops remaining attached to the sphere varies with the dimensionless
parameters of the system was discussed in § 5 of PM1. It was shown that when the
viscosity ratio is large and the sphere is light, i.e. λ≫ 1 and ζp/ζ = O(1), the drop
volume is close to that found under static conditions in the so-called pendant drop
configuration. For that problem, predictions resulting from the numerical solution
of the Young–Laplace problem are available in the literature (Shoukry, Hafez &
Hartland 1975; Smith & Van de Den 1985). Fitting corresponding results revealed
that the drop volume varies approximately as Ve − 1 = 0.89Bo−1.12. In the present
case, Bo = 3.65, so that this fit indicates that Ve − 1 should be approximately 0.21,
in excellent agreement with the final value observed in figure 2(b). It is interesting
to notice that, in an attempt to predict the motion of small porous spheres across a
sharp stratification separating two miscible fluids, Camassa et al. (2013) developed
a model in which Stokes drag, buoyancy and the instantaneous sphere weight are
in balance. They found that this model was unable to predict correctly the retention
time of the sphere at the interface, unless its radius was increased so as to take
into account schematically the entrainment of light fluid, thus modifying the effective
buoyancy force. Yick et al. (2009) also examined the influence of fluid entrainment
on the drag of a sphere settling in a linearly stratified fluid and showed that drag
enhancement is essentially due to the entrainment of light fluid within a thin region
surrounding the sphere, the size of which is determined by the fluid viscosity and
the Brunt–Väisälä frequency. Here, the fluids are immiscible and entrainment of light
fluid takes the form of an attached drop, which indeed decreases the net weight of
the compound body by nearly 30 % and slightly increases the friction drag, thus
significantly delaying the release of the sphere in the lower fluid.

The evolution of the dimensionless film thickness h(t) at the bottom of the sphere
is shown in figure 2(c). During a first stage, h quickly decreases since the sphere
is not yet slowed down by the interface. Then the film starts to be drained when
h. 0.2, which yields a t−0.65 decrease at later times. Experimental and computational
results are in fairly good agreement throughout this two-stage evolution and both of
them exhibit the above decay law (differences noticed during the drainage are most
likely related to the treatment of the transition region around the sphere in the IBM
technique, and the aforementioned limitation of the spatial resolution). The decay
observed in figure 2(c) is somewhat faster than the well-known t−1/2 law derived
by Hartland (1969) and Jones & Wilson (1978). The most probable reason for this
difference is the influence of buoyancy, which was neglected in these two studies.
Indeed, Smith & Van de Ven (1984) showed that buoyancy effects due to the density



contrast between the two fluids reduce the film thickness in the region close to the
symmetry axis of the system (i.e. near the bottom of the sphere), thus accelerating
the drainage. Considering the present situation with Bo = 3.7 in which the drainage
starts approximately when h = 0.2, their results with ψ = π/3 indicate that the time
it takes for the bottom region of the film to be entirely drained (i.e. h = 0) is two
orders of magnitude shorter than in the low Bond number limit, giving strong credit
to a faster decrease of h(t) due to buoyancy in the present case.

3.2. When the sphere hesitates

We now consider the motion and flow induced by a 7 mm diameter polyacetal sphere
settling through a V5/water–glycerine arrangement. This situation (which corresponds
to configuration 13a in PM1) is quite similar to that examined above, except that the
upper fluid is a hundred times less viscous and somewhat lighter. The corresponding
dimensionless parameters are Ar = 86, Bo = 1.1, λ = 18.3, ζ = 0.32 and ζp = 0.48.
According to the flotation criterion mentioned above, the sphere would float at the
interface if released from rest just above it (we performed this test and found that
the sphere was still floating 24 h after it was released). However, under the present
conditions, it reaches the interface with a significant velocity. As figure 3 shows, it
turns out that the corresponding kinetic energy is sufficient to overcome capillary
effects, allowing the sphere to detach from the interface (the inertial mechanisms
involved in this process were discussed in § 4 of PM1). However, owing to the strong
viscosity contrast, the Archimedes number in the lower fluid is only Arl ≈ 3.2. Hence
viscous effects are expected to play an important role in the post-detachment stage.
Moreover the fluid density contrast is significant, so that the apparent weight of the
sphere is reduced by one-third in the lower fluid. These two characteristics hamper its
penetration in that fluid and generate a ‘rebound’ during which its velocity is positive,
so that the sphere tends to come back toward the interface (figure 3d,e,k,l). A similar
reversal of the motion of a sphere sedimenting in a sharp two-layer configuration
with fresh water on top of salt water was reported by Abaid et al. (2004), who
modelled the phenomenon by considering the effective buoyancy force resulting from
the entrained fluid.

Comparing interface shapes in figure 3(a–d) with those of figure 1 suggests that
the meniscus does not obey a quasi-static equilibrium in the present case. Indeed,
the maximum ‘submergence’ (i.e. the distance from the sphere centre to the initial
interface) found under quasi-static conditions in the limit Bo ≪ 1 (see equation (4.3)
in PM1) is approximately 1.2 while it is twice as large in figure 3(c). This larger
submergence is made possible by the collapse of the sphere wake which provides
an additional downward impulse (see the evolution of the vorticity distribution in the
upper fluid in figure 3i,j). Then, when this collapse is completed, the residual kinetic
energy of the sphere+fluid system is no longer sufficient to balance the large buoyancy
effects resulting from the deflection of the meniscus (see § 4 in PM1), forcing the
meniscus to recede in order to lower its height. This recession is accompanied by the
rise of the sphere. At the same time, fluid is expelled upward from the neck of the
meniscus, generating positive vorticity on both sides of the interface since the lower
fluid is much more viscous and thus rises more slowly (figure 3l). Owing to volume
conservation, this upward fluid motion forces the neck to shrink, making the meniscus
enter an unstable state and leading inescapably to its pinch-off. The sphere may then
fall in the lower fluid with a small drop of light fluid standing on its top part and
still connected to the very thin film which goes on coating the rest of its surface
(figure 3f,g,m,n).
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FIGURE 3. (Colour online) A 7 mm diameter polyacetal sphere settling in the V5/water–
glycerine pair of fluids. (a–g) Experimental sequence; (h–n) numerical sequence at the
same instants of time (see figure 1 for legend); the time interval between two panels is
1t = 2.2.
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FIGURE 4. (Colour online) Evolution of four characteristics of the configuration
considered in figure 3. (a) Settling velocity V(z0) and effective drag force F(z0);
(b) displaced volume Ve(z0); (c) radius rn(t) of the neck. Triangles, squares and circles
refer to three different experiments. In (a), the solid and dotted lines refer to the
computational prediction for V and F, respectively, and the dash-dotted line corresponds
to the Oseen prediction for V; in (b) the solid and dotted lines refer to the entrained
volume computed as 2π

∫

z<0 Cr dr dz and 2π

∫

z<−1 Cr dr dz, respectively; in (c) the solid
line is the best fit of experimental data with a 2/3 slope and tγ stands for the capillary
time scale, tγ = (ρR3/γ )1/2.

Figure 4(a) reveals that V starts decreasing only when z0 ≈ −1, i.e. when the
sphere almost touches the interface. Somewhat earlier, the dimensionless vertical
force, F = F · ez, defined from (2.7) as ρpgVF = ez ·

∫

S
Σ · n dS − ρ1Vg (ez being

the unit vector in the vertical direction), starts to increase sharply (this definition
implies that F → ζp/(1 + ζp) when z0 → ±∞ if the sphere moves with constant
velocity). This is the consequence of the large viscosity of the lower fluid and of
the significant fluid density contrast: both make the interface hard to deform, so that



the present situation resembles that of a sphere sedimenting toward a horizontal rigid
wall. The force more than doubles from z0 = −2 to z0 = 0. A splitting of this force at
z0 = 0 (not shown in the figure) indicates that the capillary component and the extra
buoyancy components resulting from the fluid density contrast and the deflection of
the meniscus (i.e. the contributions associated with volumes Vcyl and Vspc in (4.1) of
PM1) contribute to F by 40 % and 20 %, respectively, the last 40 % being provided
by the dynamic component, essentially through the quasi-steady drag. The velocity
goes on decreasing linearly almost up to the maximum submergence, z0 ≈ 2.5, where
V falls abruptly to zero. The force experienced by the sphere decreases regularly from
z0 = 0 to z0 = 2.5, where the total static contribution (not shown) made of the capillary
force plus the various buoyancy contributions is found to be about 1.85F, owing to
the large buoyancy force induced by the light fluid enclosed in the meniscus. This
splitting is interesting because it reveals that dynamic effects related to the sphere
deceleration provide a large negative (i.e. downward) contribution, about −0.85F,
so that the resulting hydrodynamic force is only F. After the sphere has reached
the position z0 = 2.5, the sign of its velocity reverses and it rises up to z0 ≈ 1.5,
where V vanishes again. This rise is associated with a decrease in F, since the drag
resulting from this upward motion is directed downward. It may be noticed that a
loop, qualitatively similar to that observed here, was also observed in several of the
aforementioned experiments by Abaid et al. (2004). As the fluids were miscible in
that case, this similarity indicates that buoyancy alone is capable of generating this
intriguing behaviour. When the sphere is eventually released in the lower fluid, V
recovers its initial sign and quickly reaches its final value, VT . As Arl is of O(1), VT

may be compared with Oseen’s prediction. In the latter, the dimensional drag force is
6πµ2RV∗

T(1 + (3/8)ReT) (Batchelor 1967), with ReT =ρ2RV∗
T/µ2 and V∗

T = (ζpgR)1/2VT ,
which yields VT = (4/3)((ζp − ζ )/ζp(1 + ζ ))1/2Ar−1

l {−1 + (1 + Ar2
l /3)

1/2}. As shown
in figure 4(a), this prediction is in excellent agreement with the experimental and
computational observations.

Figure 4(b) shows that the entrained volume of light fluid is about three times that
of the sphere when the meniscus reaches its maximum depth (z0 ≈ 2.5). At later times,
the entrained volume computed through the usual definition Ve = 2π

∫

z<0 Cr dr dz
exhibits an oscillatory behaviour, the origin of which stands in the capillary-gravity
waves which develop on the interface after the meniscus has snapped. To avoid
these oscillations which have nothing to do with the volume entrained by the sphere
(although they are a genuine feature of the flow field), we remove the top part of the
integration domain and define a modified entrained volume Vem = 2π

∫

z<−1 Cr dr dz.
Although it obviously underestimates the rise and maximum of Ve for z0 6 2.5,
the evolution of Vem agrees well with the experimental determination of Ve once
the meniscus has snapped, and both indicate that the sphere eventually carries a
thin drop with a volume approximately 0.15V . The above agreement between the
terminal velocity of the compound sphere and Oseen’s prediction indicates that the
drop has little net effect on the drag, which may seem surprising since its presence
increases the overall buoyancy force by nearly 30 %. The reason for this lies in
the large viscosity ratio (λ = 18.3): as shown by Johnson (1981), the recirculating
flow within the drop, which is significant when λ is large, decreases the net drag
on the compound sphere. Here it turns out that the two effects almost compensate
each other.

During the stage when the sphere rises, a ‘neck’ forms on the meniscus (see
figure 3(d,k,l), where pinch-off eventually takes place. The evolution of the neck
radius, rn, determined from experimental data, is plotted in figure 4(c) versus the



time difference (tp − t)/tγ , where tp is the time at which pinch-off happens and
tγ = (ρR3/γ )1/2 denotes the capillary time scale. For (tp − t)/tγ of O(1) or less, data
are found to closely follow the power law rn(t) ∝ (tp − t)2/3 corresponding to the
self-similar behaviour of a capillary contraction in which the fluid contained within
a volume of O(r3

n) exits through a surface with an area of O(r2
n) (Marmottant &

Villermaux 2004a; Eggers & Villermaux 2008).

4. The end-pinching regime

In this section, we discuss two configurations in which the sphere has enough inertia
to cross the interface easily, then towing a long column of light fluid which pinches
off at some point and eventually turns into a series of droplets. The regime observed
in these two cases is characteristic of the evolution of the three-phase system when
the viscosity ratio is in the range 0.1 . λ. 10 and the relative density contrast ζp/ζ

is significantly larger than unity.

4.1. When some more inertia makes life easier

Keeping the two fluids and the sphere size unchanged with respect to the previous
subsection, we first consider the flow and interface evolution generated by the settling
of a glass sphere instead of a polyacetal one (configuration 14a in PM1). Hence
we still have Bo = 1.1, λ = 18.3 and ζ = 0.32, but now ζp = 1.74 (instead of 0.48)
and Ar = 164 (instead of 86). As the experimental sequence in figure 5 reveals, the
penetration of the sphere into the lower fluid first generates a deep, nearly cylindrical
meniscus on the upper part of which a neck promptly forms (panel (c)). This meniscus
still elongates, turning into a long tail which eventually pinches off at its very top
under the influence of capillary effects (panel (g)), which corresponds to a ‘shallow’
pinch-off according to the terminology of Aristoff & Bush (2009). This evolution
is strikingly different from the ‘rebound’ sequence observed in the previous case,
underlining the influence of the sphere-to-fluid density ratio. A noticeable feature in
the present experimental sequence is the non-axisymmetric geometry of the interface.
This is no surprise: although the Archimedes number is fairly small in the lower
fluid (Arl = 9.3), its large value in the upper fluid is well beyond the threshold
Arc = 55.0 at which the path of a freely moving sphere becomes non-vertical (Fabre
et al. 2012). Therefore the sphere does not follow a strictly vertical path before it
reaches the interface and its wake is not axisymmetric, yielding a non-axisymmetric
tail somewhat later. Nevertheless, the departure from axisymmetry remains moderate
and the corresponding evolution is still close, at least qualitatively, to the predictions
provided by axisymmetric computations, as the comparison between the two sequences
in figure 5 indicates.

Here it is of interest to comment on the vorticity distribution revealed by the
numerical sequence of figure 5. Examining the outer fluid along the tail, especially
in snapshot (h), it is clear that the flow is almost irrotational, except in the region
where vorticity generated at the sphere surface is advected upwards. In particular,
vorticity remains negligibly small in that fluid along the tail, as well as below the
quasi-horizontal part of the interface. This contrasts with the flow within the tail,
where significant levels of vorticity are observed in snapshots (d–h). As discussed
in appendix B of PM1, such a vorticity distribution results from the large viscosity
contrast (λ= 18.3), which makes the flow around the tail obey virtually a shear-free
condition at the interface, limiting drastically the vorticity magnitude in the outer
fluid. This situation is qualitatively similar to the one observed in impact problems
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FIGURE 5. (Colour online) Passage of a 7 mm diameter glass sphere through a V5/water–
glycerine interface. Experimental and computational images are taken at the same instant
of time in each pair of panels; the time interval between two successive pairs is 1t = 8.4.
See figure 1 for legend.

at an air–water interface, where λ ≈ 55 under standard conditions. Looking at the
upper fluid just above the quasi-horizontal part of the interface in snapshots ( f )
and (h), one notices that the negative vorticity left in the far wake of the sphere
convects outwards along the interface. Simultaneously, vorticity of opposite sign is
generated at the interface, around and below the expanding vortex ring. This vortex
structure is reminiscent of that observed in the case of a sphere impacting a rigid
wall (Thompson, Leweke & Hourigan 2007). The radial motion of the ‘old’ negative
vorticity is induced by its image with respect to the wall and this radial motion in
turn induces a positive shear responsible for the generation of the secondary vortex
ring. The strong interaction between the two rings of opposite sign stops the outward
motion a short distance from the axis. Here, the sphere is seriously slowed down as
it penetrates in the lower fluid (its velocity is divided by a factor of two over a 8R

distance) owing to the combined effect of the reduced buoyancy (ζ = 0.32) and much
larger viscous resistance (λ= 18.3) in the latter. Thus, although the dynamics taking
place above the nearly horizontal part of the interface is less intense than if the latter
were a real wall, they are similar in nature.

To save space, we do not comment in detail on the variations of the sphere
velocity, entrained volume and hydrodynamic force with the vertical position, as they
are qualitatively similar to those displayed in figure 9(a–c) to be discussed later.
The major point is that there is no severe drop of the sphere velocity during the
breakthrough, in contrast to the behaviours observed in the previous section. This is a
clear indication that in the present case, capillary effects and buoyancy effects related



to entrainment of the upper fluid only play a secondary role compared to inertia.
The sphere velocity reaches a maximum value V ≈ 2.15 at z0 = 0, before decreasing
gently toward a terminal value V ≈ 0.8 which is reached at z0 ≈ 15. This decrease
results from both the large viscosity jump (λ = 18.3) and the drop of the buoyancy
force experienced by the sphere once it is immersed in the lower fluid (ζ = 0.32).

The late evolution of the system, after the tail separates from the flat interface,
is depicted in figure 6. The initial pinch-off marks the end of the period during
which the tail is stretched between the sphere and the interface. Then it behaves
as a pre-elongated liquid thread embedded in a more viscous fluid, a configuration
known to be prone to the development of a capillary instability (Mikami, Cox &
Mason 1975). Indeed, an interfacial instability to be described below sets in and
propagates downwards, generating a series of drops of decreasing size (panels (b–d).
Then a second pinch-off takes place just above the sphere and leaves a small drop
attached to its top (in between panels ( f ) and (h) in the numerical sequence). This
second pinch-off, which is due to buoyancy effects and corresponds to the ‘deep
seal’ situation identified by Aristoff & Bush (2009), is the starting point of a second
instability of the same type which propagates upwards and results in another series
of drops of increasing size. Simultaneously, since buoyancy effects are significant,
the daughter drops resulting from the first instability (especially the biggest ones)
rise toward the flat interface. They do so with a nearly constant velocity, as may
be observed by tracking the position of the biggest of them between panels ( f ) and
(l) in the numerical sequence. They eventually coalesce with the upper fluid layer,
generating a local bump on the otherwise flat interface (panel (k)). The two instability
fronts get closer until the tail reduces to a string of drops, the size of which decreases
with depth (panel (l) and beyond).

The situation just described is typical of the so-called ‘end-pinching’ instability
of liquid threads (Stone et al. 1986; Stone & Leal 1989). The recession of the
initial thread tip first results in a bulbous, nearly spherical end, i.e. a blob. Owing
to the capillary pressure jump, the intermediate region where this blob connects to
the nearly cylindrical central part of the thread corresponds to a pressure minimum,
since the curvature within the thread cross-sectional plane is locally negative. If the
thread viscosity is small enough compared to that of the outer fluid as it is here, this
longitudinal pressure gradient drives a flow from the central cylindrical part toward
this connecting region, making the pressure minimum more pronounced. This in
turn forces the two radii of curvature to decrease in that region, inescapably leading
to pinch-off. The process can then repeat, generating a series of daughter drops
which may eventually give rise to satellite droplets (some of which are visible in the
numerical sequence of figure 6) and making the cylindrical part shorten progressively.
The propagation of the pinch-off process (hence of the tip position of the remaining
thread) was examined from a stability viewpoint by Powers et al. (1998) who showed
that the associated propagation speed, Vf , obeys a law of the form Vf = k(λ)γ /µ2,
the pre-factor k being a slightly increasing function of λ.

Here the details of the process are somewhat more complicated than in the
aforementioned studies, especially because there is a significant time lag between
the two primary pinch-off events and the tail cross-section varies in a non-uniform
manner from top to bottom, inducing dramatic variations in the size of the successive
daughter drops generated during the process. These variations hamper a quantitative
comparison of the drop size with theoretical predictions elaborated in idealized
configurations. This is why we postpone it to the next subsection where the tail
geometry is closer to that considered in theoretical analyses. Nevertheless, according
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FIGURE 6. (Colour online) Late evolution of the tail in the configuration of figure 5. The
time interval between two successive pairs of panels is 1t = 4.15.

to Powers et al. (1998), the speed at which the front of the instability propagates does
not depend on the local thread radius, making a comparison of the present results
with their prediction for the pre-factor k possible. From the successive positions
of both the upper and lower tips of what remains from the tail (snapshots (d–h)
and (h–l) respectively in figure 6), one finds Vfµ2/γ ≈ 0.69, which is close to the
value k(λ= 18.3)≈ 0.77 determined by Powers et al. (1998) using boundary integral
computations (see their figure 6).

4.2. An archetypal end-pinching configuration with λ= O(1)

To better explore the end-pinching regime, we now consider the situation where a
10 mm diameter Teflon sphere settles through a V50/water–glycerine set-up. The
corresponding dimensionless parameters are Bo = 1.9, Ar = 23.1, λ = 1.7, ζ = 0.26
and ζp = 1.25.

The two sequences displayed in figure 7 show that the sphere penetrates into
the lower fluid with only a modest velocity variation, which indicates that capillary
effects play little role in the breakthrough process. A slender tail then forms and
goes on connecting the sphere to the flat interface, at least up to z0 ≈ 18 (panels
( f ) and (l)). As the tail thins down, its radius is seen to exhibit a broad minimum
which gets closer to the sphere (panels (d–f ) and ( j–l)). At the same time, the fluid
contained in the upper part of the tail tends to recede toward the initial position of the
interface, as the positive vorticity levels indicate (panels ( j,k)). This upward motion
has two important consequences. First, given the O(1) viscosity ratio, a significant
region of heavy fluid is entrained upwards (see the positive vorticity levels in panel
(k)). This upwelling disturbs the initially flat interface, generating interfacial waves.
These are clearly gravity-driven waves, as their wavelength is typically ten times the
capillary length lc = {γ /(ρ2–ρ1)g}1/2. Second, owing to the negative (i.e. downward)
pressure gradient this flow induces along the tail, the mean curvature at the top has to
decrease to satisfy the normal stress balance. As explained in the previous subsection,
this yields the formation of a neck at the junction between the tail and the (almost)
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FIGURE 7. (Colour online) Passage of a 10 mm diameter Teflon sphere through a
V50/water–glycerine interface. Experimental (a–f ) and numerical (g–l) sequences; the time
interval between two successive frames in each sequence is 1t = 5.0. See figure 1 for
legend.

horizontal interface (panels (e, f ) and (k,l)). Considering the situation in the last stage
of figure 7, one could guess that pinch-off is going to take place at this neck. This
is actually not the case, as the computational sequence displayed in figure 8 reveals.
This sequence enlightens the strong coupling existing between the evolution of the
neck radius and that of the vertical displacement of the wavy part of the interface: as
panels (a–c) (respectively (d–f )) show, the latter experiences an upward (respectively
downward) motion throughout the stage during which the neck shrinks (respectively
re-opens). This one-to-one coupling may be readily understood by noting that the
time rate-of-change of the interfacial energy is (d/dt)

∫

SI
γ dS = γ

∫

SI
(∇ · n)(u · n) dS,

while that of the potential energy is −(1/2)(ρ2–ρ1)g(d/dt)
∫

SI
z2(n · ez) dS, where SI

denotes the surface separating the two fluids and n is directed towards the interior
of the lower fluid. Hence, neglecting dissipative effects and variations of the kinetic
energy over the whole fluid volume, when the neck narrows (u · n< 0), the interfacial
energy decreases (since the mean curvature ∇ · n keeps a positive sign), and this
decrease is essentially balanced by the upward displacement of the nearly horizontal
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FIGURE 8. (Colour online) Zoom of a computational sequence showing the re-opening of
the neck at the top of the tail; the time interval between two successive panels is 1t = 2.5.

part of the interface (on which the vertical component n · ez of the normal is negative).
However, the upward flow rate through the neck decreases as the neck radius goes to
zero, which at some point stops the ‘feeding’ of the light fluid layer by the tail. The
restoring effect of the density difference ρ2–ρ1 then drives a downward motion of
the near-axis region of the wavy interface (figure 8c–e), thus lowering the potential
energy and allowing the interfacial energy to increase through a re-opening of the neck
(u · n> 0). This is how the tail escapes from pinching thanks to the restoring effect
of the buoyancy force. This escape process is totally different from that identified by
Hoepffner & Paré (2013) in the case of an isolated receding liquid thread, where the
key mechanism is the detachment of a vortex ring from the neck, which propagates
toward the tip (i.e. through the blob) and creates a pressure loss therein.

The variations of V , Ve and F throughout the range of vertical positions of the
sphere considered up to now are plotted in figure 9. Owing to the limited height
of the tank, the sphere does not reach its terminal velocity before touching the
interface, which is why V and F go on increasing until it reaches the position
z0 ≈ −1 (using an empirical drag law, the terminal velocity in an unbounded fluid
may be approximately estimated to 1.42). The mild decrease of V in the range
−1 6 z0 6 8 is mostly due to the fluid density contrast and, to a lesser extent, to
the slightly larger viscosity of the lower fluid. Indeed, balancing the drag force with
the net weight of the sphere and assuming the drag coefficient to be the same in
both fluids, the ratio of the terminal velocities in the lower and upper fluids would
be ((ζp − ζ )/ζp(1 + ζ ))1/2 ≈ 0.79, whereas if the sphere were settling in the Stokes
regime, this ratio would be (ζp − ζ )/λζp ≈ 0.58. According to figure 9(a), the ratio
V(z0 = 20)/V(z0 ≈ 0)≈ 0.73 lies in between these two estimates, which supports the
above view. Perhaps the most interesting feature in that figure is the minimum of
V which may be observed at z0 ≈ 8, corresponding to the situation of figure 7(d,j).
Estimates of the static forces discussed in § 4 of PM1 indicate that at this position
(where the cap angle is approximately 2π/3), the tail-induced buoyancy force is
approximately 4.2 times larger than the buoyancy force acting on the sphere itself,
whereas the capillary force plays virtually no role. Hence the observed minimum is a
direct consequence of the maximum reached by the volume of the tail at this position.
This prediction is confirmed in figure 9(b) where it is seen that the entrained volume
Ve − 1 goes through a maximum value about 6.0 at z0 ≈ 8. As already observed
in figure 4(b), the computational prediction greatly overestimates the tail volume at
larger depths, as it becomes dominated by the contribution of the interfacial wave
system which develops when z0 > 11. Figure 9(c) shows that the force acting on
the sphere experiences a significant bump when −1 6 z0 6 8. A crude reasoning
considering that, when the sphere crosses the position z0 = 0, half of it is immersed
in each fluid and there is no meniscus (i.e. ψ =π/2), indicates that the corresponding
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FIGURE 9. (Colour online) Evolution of three characteristics of the configuration
considered in figure 7: (a) settling velocity V(z0); (b) displaced volume Ve(z0); (c) effective
drag force F(z0). For legend, see figure 4.

contribution of the capillary force should be approximately 0.09, while that of the
extra buoyancy force due to the fluid density contrast should be approximately 0.06.
These estimates predict an increase of the total force about 0.15 at z0 = 0, in good
agreement with the computational result.

Figure 10 shows how the tail evolves after its very top escaped from pinching.
Whilst the sphere goes on settling, the lower part of the tail becomes very thin
and pinch-off eventually takes place near the top of the sphere, which is then
released in the lower fluid with an attached drop about one-third its own volume.
An end-pinching sequence starts and propagates upward, generating larger drops
as the front rises, owing to the increasing tail radius (panels b,d). In panel (d),
satellite droplets are seen to form in between the daughter drops. Moreover, capillary
waves associated with the Rayleigh–Plateau instability propagate ahead of the front.
Throughout this stage, the upper half of the tail still recedes toward the horizontal
part of the interface and a new neck starts to form at its very top (panels a,b).
However the tail is now much thinner than it was in figure 7( j–l). Consequently the
upward flow rate is much smaller and barely disturbs the horizontal interface. This
is why the previously described restoring buoyancy mechanism is no longer able to
stop the shrinking of the neck and a new pinch-off takes place at the top of the tail
just after panels (c,d). A second end-pinching front then propagates downward. Thus
the remaining slender ligament still present in panels (e, f ) quickly breaks almost
symmetrically from both extremities (panels g,h), generating a new series of daughter
drops and satellites.

The formation of satellite droplets is known to occur in between daughter drops,
either due to the classical capillary wave instability mechanism or, as is the case
here, to the end-pinching process which takes place along the cylindrical ligament
left after a daughter drop has formed at each of its extremities. It has been shown to
be a self-repeating process in which the larger λ the larger the number of successive
generations of satellites (Tjahjadi, Stone & Ottino 1992). Unfortunately, neither the
resolution of the camera nor that of the computational grid allows us to draw firm
conclusions on this dependence from figures 6 and 10. It is much easier to compare
the characteristic size of the observed daughter drops with theoretical predictions
provided by linear stability theory. In the situation of interest here, namely a nearly
cylindrical viscous thread surrounded by another viscous fluid at rest, the relevant
theory was established in the Stokes flow limit by Tomotika (1935). Provided the
density contrast between the two fluids is small and the viscosity ratio is of O(1), his
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FIGURE 10. (Colour online) Late evolution of the tail in the configuration of figure 7.
The time step between two successive panels is 1t = 7.4.

results indicate that the wavelength of the most amplified eigenmode, Λ, normalized
by the thread radius, Rt, depends only on λ. Specifically, for λ = 1.7, his theory
predicts Λ/Rt ≈ 10.65. Assuming that the growth of this mode eventually leads to the
breakup of Λ-long cylindrical pieces, each of which turns into a spherical drop, the
radius Rd of these drops is expected to be Rd = ((3/4)ΛR2

t )
1/3, so that Rd/Rt ≈ 2.0

for λ = 1.7. Here the tail is not cylindrical but has a slowly varying cross-section.
Hence, in the present context, the above prediction must be considered as local,
assuming that Rd and Rt vary slowly with the position along the tail. Considering
the tail geometry just prior to the initial pinch-off in figure 10(a,b), figure 11 shows
how the size of the drops identified in the experimental and computational sequences
compare with Tomotika’s prediction. The lower group of data must be excluded from
that comparison because it corresponds to satellite droplets, the formation of which
is driven by nonlinear processes (Tjahjadi et al. 1992). The rest of the data display
good agreement with the linear prediction, although the computational series exhibits
a somewhat smaller slope, presumably because of marginally sufficient resolution.
Interestingly, the inviscid linear theory (Rayleigh 1878) predicting Λ/Rt ≈ 9.02, i.e.
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FIGURE 11. (Colour online) Variation of the drop radius versus the local tail radius (both
normalized by R). Solid line: theoretical prediction (Tomotika 1935); ×, ∗: numerical
results for the primary and satellite drops, respectively, the error bars correspond to
±1 grid cell; close (respectively open) symbols: experimental results for the primary
(respectively satellite) drops, the error bars correspond to ±3 pixels.

Rd/Rt ≈ 1.89, it is observed that the stabilizing effect of viscosity increases the drop
size by only 6 % in the present case.

5. Sinking in a low-viscosity fluid

In this section we consider two situations belonging to figure 5(b) of PM1 in which
inertia effects are fairly modest in the upper fluid but become large in the lower one,
owing to the huge viscosity contrast of the V500/water pair of fluids. Hence the tail
develops within a nearly inviscid fluid. A noticeable feature in these configurations
is that the sphere goes on settling vertically during the whole observation period,
although the Archimedes number Arl characterizing its motion within the lower fluid is
well beyond the path instability threshold known for a homogenous fluid (Arc = 55.0).
As already explained in 3.3 of PM1, the reason for this is that the relevant ratio
between inertia and viscous effects to assess the stability of the sphere path and wake
is the one involving the viscosity within the tail. Even though the terminal velocity
of the sphere in the lower fluid, say Vt2, may be up to four times that in the upper
fluid as we shall see, this increase is not large enough for the Reynolds number
ρ1Vt2R/µ1 to reach the threshold corresponding to path instability, thus keeping the
straight vertical path stable. Hence the only instabilities to be expected in the regimes
examined below are those which may develop at the interface between the two fluids.

5.1. An archetypal retraction process with Arl = O(103)

We start by examining the settling of a 10 mm diameter Teflon sphere. This situation,
close to that corresponding to configuration 23b in figure 5(b) of PM1, is characterized
by dimensionless parameters Ar = 2.3, Bo = 0.24, λ= 1.9 × 10−3, ζ = 0.03 and ζp =
1.23, hence Arl ≈ 1.19 × 103.

Although the Bond number is small, figure 12(b,h) indicates that the interface starts
to deform well before the sphere reaches it. This is no surprise: given the modest



(a) (b) (c) (d ) (e) ( f )

(g) (h) (i) ( j) (k) (l)

1–1 0

FIGURE 12. (Colour online) Settling of a 10 mm diameter Teflon sphere through the
V500/water pair of fluids. Experimental (a–f ) and numerical (g–l) sequences; the time
interval between two successive panels in each sequence is 1t = 4.5. See figure 1 for
legend.

value of Ar, the spatial structure of the flow disturbance in the upper fluid is close
to that corresponding to the Stokes limit, as confirmed by the approximate fore–aft
symmetry of the vorticity field in figure 12(g,h). Hence the leading contribution to the
velocity disturbance decays as the inverse of the distance to the sphere position (Lee,
Chadwick & Leal 1979), making it able to bend the interface significantly as soon as
|z0| . 5. The Bond number being small, surface tension effects tend to maintain the
deformed part of the interface broad in order to limit the increase of the interfacial
energy. This contrasts with figure 7 where the Bond number is an order of magnitude
larger, then allowing the development of a much more localized deflected region. The
entrained column lengthens gradually and thins above the sphere. Pinch-off eventually
takes place when z0 ≈ 20, leaving the top part of the sphere covered with a thick
spherical cap droplet, the front part being still encapsulated in a thin film (figure 12f,l).
As may be seen in snapshots (i–k), the large viscosity contrast forces the velocity
profile within any cross-section of the tail to become nearly flat, reducing gradually
the magnitude of the vorticity around the sphere. In snapshot (k), the diameter of the
column is still of the same order as that of the sphere, and vorticity is essentially
concentrated within a thin shear layer surrounding the bottom part of the tail. It
reaches its maximum just above the sphere, since the straining of the column makes
the velocity of the entrained fluid maximum there. Things become different when
pinch-off is about to occur (snapshot l). At that stage, the compound body made of
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FIGURE 13. (Colour online) Evolution of three characteristics of the configuration
considered in figure 12: (a) settling velocity V(z0); (b) displaced volume Ve(z0); (c)
effective drag force F(z0). For legend, see figure 4.

the sphere and the drop that encapsulates it falls within the lower, low-viscosity fluid,
maintaining a connection with the rest of the column only through a very thin thread.
Therefore the wake which develops past the sphere is essentially similar to that past
a freely translating nearly spheroidal bluff body. The corresponding Reynolds number
is approximately 2.6 × 103, which of course promptly results in the development of
a large separated wake.

Figure 13(a) shows that the sphere velocity remains almost unaltered by interfacial
effects up to z0 ≈ 3. Beyond that point, the sphere experiences a strong acceleration,
tripling approximately its velocity between z0 = 3 and z0 = 11. Then, the settling
velocity increases more slowly, reaching its terminal value shortly after pinch-off
occurs at the bottom of the tail. The ratio of the terminal velocity in the lower
fluid to that in the upper one is about 3.2, close to the approximate prediction 3.4
provided by (A 3) of PM1. As shown by figure 13(b), fluid entrainment below the
initial level of the interface starts significantly before the sphere has reached the
corresponding position, owing to the low-Reynolds-number behaviour already pointed
out. Then the entrained volume goes on increasing regularly and reaches a maximum
value approximately 30 times the sphere volume. This maximum takes place before
pinch-off occurs, which is not unlikely since the upper part of the column has already
started to recede at that time. The force experienced by the sphere (figure 13c) is
seen to decrease sharply in the range 2 6 z0 6 7, owing to the small friction exerted
by the low-viscosity outer fluid on the very viscous tail. This results in an increase
of the sphere velocity, hence of the aforementioned friction, so that the force stops
decreasing after some time and exhibits a ‘plateau’ in the range 7 6 z0 6 10. The
development of the sphere wake for z0 > 10 (i.e. in between panels (k) and (l) of
figure 12) increases the energy dissipation in the outer fluid near the top of the
sphere, which, on average, yields an increase of the force until it recovers a level
close to its initial value. Nevertheless, oscillations due to transient effects affecting
the wake, especially the release of vortex rings and the retraction of the bottom part
of the column (see figure 14 below), are seen to take place during that stage.

Pinch-off takes place close to the sphere when z0 ≈ 22. As may be discerned in
figure 14(a), just before it occurs, the bottom part of the very thin thread that still
connects the column to the drop covering the sphere is no longer axisymmetric and
exhibits some bending. Although this asymmetry is reminiscent of the coiling of
viscous filaments (Ribe, Habibi & Bonn 2012), we believe that it is a manifestation
of the three-dimensional effects which develop in the sphere wake, owing to the
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FIGURE 14. (Colour online) Near- and post-pinch-off evolution of the tail; 1t = 6.0.

current large Reynolds number. After pinch-off happens the initially conical thread
starts to recede and capillary effects quickly turn its tip into a blob (figure 14c,d).
The now nearly cylindrical thread thickens and continues to recede (figure 14e–h)
until it eventually disappears, leaving the two fluids separated by a flat interface. In
contrast to the situations examined in the previous section, no end-pinching instability
happens during this recession. This is in line with previous findings which showed
that, in cases where λ≪ 1, the formation of a neck in the tip region is slowed down
by the inner resistance of the thread, making the blob capable of receding fast enough
to prevent the thread from breaking (Stone et al. 1986; Stone & Leal 1989).

The velocity VB at which the tip recedes, still normalized by (ζpgR)1/2, is plotted
as a function of its position in figure 15. After an initial deceleration (when z0 & 9),
experimental and numerical data exhibit a clear ‘plateau’ with VB ≈ 0.75 in the range
4. z0 .9. In the late stage (z0 .4), the residual column thickens rapidly as it shortens,
making the retraction velocity decrease sharply over time. The intermediate plateau
is reminiscent of the Taylor–Culick inviscid prediction (Taylor 1959; Culick 1960),
according to which the capillary-driven retraction velocity of a planar sheet having
a uniform thickness R is VTC = (2γ /(ρ1R))

1/2. Later, this analysis was extended to
cylindrical threads by Keller (1983) who concluded that the same result still applies,
R then being the thread radius. However, it was recently pointed out (Hoepffner
& Paré 2013) that the correct velocity in that case is actually VTC = (γ /(ρ1R))

1/2.
This prediction is confirmed in appendix C using a more general argument based
on an exact momentum balance over the entire column, similar to that employed by
Savva & Bush (2009) for a planar sheet. In particular, the above result is shown to
hold in the presence of viscous effects, provided several conditions are satisfied. The
corresponding prediction is plotted in figure 15 and is seen to underestimate the actual
velocity during the plateau by more than 40 %. The analysis developed in appendix C
reveals that buoyancy effects due to the density difference between the two fluids are
responsible for this disagreement, their magnitude being similar to that of capillary
effects. An extended version of the Taylor–Culick prediction including both effects
is derived in (C 10). At short time, the modified retraction velocity is shown to be
VTCg = (ζgL0 + γ /(ρ1R))

1/2, L0 denoting the initial length of the column. Hence the
two effects cooperate in a simple manner to strengthen the retraction process, and
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FIGURE 15. (Colour online) Evolution of the normalized retraction velocity VB of the tip
of the tail as a function of its position. Dotted squares, triangles and circles refer to three
different sets of experimental data, while closed squares refer to computational results.
Lower horizontal band: original Taylor–Culick prediction with an average thread radius
Rm ranging from 0.4R (bottom line) to 0.3R (top line); upper band: prediction including
buoyancy effects, with the same two extreme values of Rm and an initial length of the
column ranging from L0 = 10R (bottom line) to L0 = 15R (top line); see appendix C for
the determination of Rm and L0.

the longer the column the larger the buoyancy contribution. As figure 15 reveals, this
prediction is in excellent agreement with observations. Keeping in mind that ζ = 0.03
in the present case, the 40 %–50 % difference between VTC and VTCg emphasizes the
prominent role played by buoyancy effects, even with modest density contrasts, in
the retraction dynamics.

5.2. Increasing Arl again

In this last case, we keep the same fluids arrangement as in the previous subsection
but consider a bigger (R = 7 mm) and heavier (steel) sphere, which yields Bond and
Archimedes numbers two and four times larger, respectively; this is the most inertial
situation displayed in figure 5(b) of PM1 (configuration 27b). The corresponding
dimensionless parameters are now Bo = 0.46, Ar = 9.2, λ= 1.9 × 10−3, ζ = 0.03 and
ζp = 7.15, so that Arl ≈ 4.8 × 103.

In the early stages, the dynamics of the flow is very similar to that observed in the
previous case. Note however that the film ahead of the sphere is drained significantly
faster (compare panels (c) and (h) in figure 16 with panels (d) and ( j) in figure 12).
This is a direct consequence of the larger sphere inertia which yields a larger velocity
at the interface of the two fluids, making the drainage easier (the thickness of the
film at a given time is expected to vary as ζ−1/2

p when ζ ≈ 0 (Hartland 1968, 1969)).
The most spectacular novelty compared to the previous case occurs somewhat later,
when disturbances are seen to propagate upward along the interface at the back
of the sphere, generating a series of thin axisymmetric corollas or ‘inverted skirts’
around the core of the column while the latter remains attached to the sphere (panels
(d,e) and (i,j)). Similar observations in the same pair of fluids were reported with
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FIGURE 16. (Colour online) Settling of a 14 mm diameter steel sphere through the
V500/water pair of fluids. Experimental (a–e) and numerical ( f –j) sequences; the time
interval between two successive panels in each sequence is 1t = 4.5. See figure 1 for
legend.
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FIGURE 17. (Colour online) Evolution of three characteristics of the configuration
considered in figure 16: (a) settling velocity V(z0); (b) displaced volume Ve(z0); (c)
effective drag force F(z0). For legend, see figure 4.

large ceramic spheres by Kemiha (2006) (see Dietrich, Poncin & Li 2011). The
vorticity distribution around these corollas (panels (i,j)) reveals an alternation of
strong positive and negative values, which is indicative of an intense generation of
small-scale vortices. Visually, the phenomenon is reminiscent of the early stages of
the disintegration of a cylindrical liquid jet peeled off by a fast coaxial gas stream
(Marmottant & Villermaux 2004b). We shall see later up to which point the analogy
holds.



Figure 17(a) shows that, owing to its large inertia, the sphere accelerates throughout
the whole range of positions corresponding to the viewing window (due to the limited
height of the device, its velocity is only approximately 75 % of the terminal value
when z0 = 0). The settling velocity experiences a mild regular increase and displays
no signature of an additional resistance when the sphere crosses the initial position
of the interface, nor of a sudden increase below it, in contrast to the behaviour
observed in figure 13(a). This is an indication that, throughout the sphere descent,
inertia effects are large enough for the drag force to depend only weakly on the
fluid viscosity. The displaced volume (figure 17b) obeys a similar evolution. It is
noticeable that its ‘final’ value at z0 = 20 is about half that found in figure 13(b).
Again this is an effect of the larger sphere inertia which, for a given z0, reduces
fluid entrainment, yielding a somewhat thinner column, especially in the top region
which contributes most to Ve (compare for instance figures 16(c) and 16(d) with
figures 12(d) and 12(e), respectively). The small divergence between the experimental
and numerical determinations of Ve observed for z0 & 7 arises because the entire
volume of fluid enclosed within the corollas artificially contributes to the entrained
volume in the former, the weak optical contrast between the two fluids preventing
the image processing software from discriminating them properly in that region.
The mechanisms governing the evolution of the effective drag force displayed in
figure 17(c) are essentially similar to those discussed in the previous subsection but
two noticeable differences have to be mentioned. First, the nearly six times larger
solid-to-fluid density contrast yields an approximately four times larger maximum
sphere acceleration, (d|V|/dt)max ≈ 0.5g for z0 ≈ 3, which results in a larger drop of
the force. Second, the wake develops more rapidly (see figure 16i) which corresponds
to z0 ≈ 7), making F again increase as soon as z0 & 4, without any significant
intermediate plateau.

Figure 18 displays a sequence revealing the various stages of the formation of
corollas in the bottom part of the tail (the whole sequence takes place in between
panels (c) and (e) of figure 16). At the very beginning, bumps are seen to form
at the interface along the rear half of the sphere, quickly yielding a highly visible
ring-like protrusion at its back. The top part of this protrusion then starts to hollow
out and stretch in the vertical direction, giving rise to a well-defined corolla. During
that time, new bumps form at the interface along the sphere, even on its front part,
exhibiting crenel-like shapes with sharp angles. Once a bump has reached the top
of the sphere and has transformed into a protrusion, a new corolla starts to form.
Hence, after some time, the central column is surrounded by an annular region of
heavy fluid which itself is surrounded by a series of thin corollas, the lowest corolla
and the tail remaining connected just at the back of the sphere.

Several generic instability mechanisms may be suspected to drive the generation of
this remarkable tail geometry. They may in principle be discriminated by comparing
their growth rates at the most amplified wavenumber, i.e. the one corresponding to
the separation distance between two successive bumps during the early stage of the
instability (approximately in the second panel of figure 18). Such a comparison is
attempted in appendix D. The Rayleigh–Taylor mechanism is easily ruled out because
the observed wavenumber is found to lie far beyond the capillary cutoff, owing to the
large capillary length. Although the strongly non-parallel geometry of the flow past
the sphere may partly hamper application of classical theoretical predictions, a simple
three-layer inviscid model with a piecewise linear velocity profile is then developed to
examine the relevance of the Kelvin–Helmholtz mechanism. Crucial in this model is
the thickness of the boundary layer in the outer fluid, which we evaluate as a function



FIGURE 18. Sequence showing the development of the corollas at the back of the sphere.
The time step between two successive images is 1t = 0.6. Note that, although each image
corresponds to a side view, the corollas are thin enough for light to cross them and reveal
their inner contour, together with the shape of the central column.

of the vertical position of the sphere by analogy with the growth of the viscous layer
in Stokes’ first problem. Incorporating capillary effects into the dispersion relation, we
find that the most amplified wavenumber predicted by this model closely matches
visual observations. In the situation considered in § 5.1, a precursor bulge is also
clearly visible on the interface near the sphere equator (panels (e,k) in figure 12)
but no instability develops subsequently. In that case, the same model predicts that
capillary effects are strong enough to damp the initial disturbance. These predictions
give strong support to the scenario based on the Kelvin–Helmholtz mechanism. In
appendix D we also examine the possibility of a viscous instability due to the large
viscosity difference between the two fluids. It turns out that no theoretical result is
currently available to predict the behaviour of this type of instability in the present
configuration, owing to the broad range of characteristic length scales induced by the
huge viscosity contrast. Nevertheless, results of two numerical investigations of the
linear instability problem (Boeck & Zaleski 2005; Otto, Rossi & Boeck 2013), where
the behaviour of inviscid and viscous modes was compared for various fluid density
contrasts, indicate that the inviscid mode dominates when λ≪ 1 and ζ → 0, which
corresponds to the present conditions. Hence all arguments concur to conclude that
the mechanism that initiates the observed corollas is a Kelvin–Helmholtz instability.

We note that there is now a general consensus that this instability is also at the
root of the primary stage of the disintegration of a liquid jet by a fast gas stream,
although the role of viscous effects is still in debate (Otto et al. 2013; Matas 2015).
Nevertheless, a crucial difference occurs during the next stage. In the latter case,
interfacial protrusions are accelerated in the streamwise direction by the high gas
velocity, resulting in a Rayleigh–Taylor instability which has been identified as
responsible for the formation of longitudinal ligaments (Marmottant & Villermaux
2004b; Eggers & Villermaux 2008). Here, as already discussed in § 6 of PM1, the
capillary length is large, making the Rayleigh–Taylor mechanism unable to amplify
azimuthal disturbances within the tail. Wake instability being the only significant
source left for axial symmetry breaking, corollas preserve their axisymmetry even
during the late stages of their evolution, as seen in figure 16(e), until the first
three-dimensional structures resulting from this instability occur in the near wake.

6. Summary and concluding remarks

We used a combination of experiments and computations to explore the axisymmetric
dynamics that takes place under certain conditions when a rigid sphere settles through
a two-layer system made up of two superimposed immiscible Newtonian fluids. We



considered a wide range of conditions, from slow breakthrough situations controlled
by film drainage and meniscus instability, to inertia-dominated configurations where
remarkable skirt-like structures develop at the surface of the column pulled by the
sphere.

We started with two configurations in which the interface represents a real barrier
to the sphere settling, owing to the dominant influence of capillary and buoyancy
effects. In § 3.1, the sphere descent in the upper fluid was governed by viscous effects.
The sphere was virtually stopped at the interface for a long time, during which the
film around it was drained in a quasi-static manner; after the meniscus snapped, the
sphere was finally released in the lower fluid with a small drop attached to its top,
the presence of which significantly increases the overall buoyancy force. In the second
case (§ 3.2), the sphere reached the interface with a significant kinetic energy and was
followed by a well-developed wake. Then, although a static approach suggests that
it should remain trapped at the interface, it was found to eventually cross it after a
complex process including a transient ‘levitation’ stage during which it rose toward
the interface. We showed that this intriguing behaviour is due to the collapse of the
wake, the sphere being severely decelerated at the interface, owing to the significant
density contrast between the two fluids and large viscosity of the lower fluid.

In all other situations considered here, the sphere-to-fluid density contrast was
sufficient for the sphere to cross the interface without being appreciably slowed down
by capillary effects. Under such conditions, the breakthrough is always achieved
through a ‘tailing’ configuration. The maximum of the tail volume is dramatically
influenced by the density contrast and viscosity ratio. When the two fluid densities
are close and/or the viscosity of the lower fluid is small, the entrained volume may
be very large (up to thirty times the sphere volume) because fluid elements located
below the interface displace and deform easily, allowing the top part of the tail to
adopt a flared conical shape which provides a large contribution to the entrained
volume. Conversely, only relatively thin cylindrical columns can develop when the
density contrast is significant and/or the viscosity of the lower fluid is large, yielding
much smaller entrained volumes (only up to 6–7 times the sphere volume in the
situations examined here). This geometrical difference also influences the position
of the primary pinch-off, as already discussed in PM1: the tail breaks close to the
sphere (deep seal) when the top region of the column is conical, and generally at
its very top when it is nearly cylindrical (shallow seal). For moderate sphere-to-fluid
density ratios, the switch between these two locations takes place when the two fluids
have comparable viscosities. In that case, a subtle competition between antagonistic
mechanisms may take place, as seen in § 4.2 where the neck that forms at the top of
the tail eventually re-opens thanks to energy transfer from interfacial waves present
on the nearly flat part of the interface.

Once the tail has pinched off at one of its extremities, it behaves as a pre-elongated
axisymmetric liquid thread relaxing under the combined effect of capillary, viscous
and buoyancy forces. When the viscosity of the outer fluid is larger than or of
the same order as that of the inner one (§ 4), the tail experiences an end-pinching
instability. Actually, since its two extremities do not pinch off simultaneously, two
successive end-pinching sequences propagate in opposite directions, resulting in
the formation of a series of daughter drops, with satellite droplets in between two
successive drops. When the longitudinal variation of the tail radius is moderate,
the size of the daughter drops compares well with the predictions of the classical
Rayleigh–Tomotika linear theory (§ 4.2).

When the outer fluid is much less viscous than the inner one, the tail recedes as a
whole and no noticeable neck forms in the tip region. After a deceleration stage, the



velocity at which this tip recedes exhibits a clear ‘plateau’ reminiscent of the inviscid
Taylor–Culick regime (§ 5.1). However, this velocity was found to significantly exceed
the classical prediction. Using overall mass and momentum balances (appendix C),
we showed that capillary and buoyancy effects combine in an additive manner to
increase the tip velocity, and the larger the initial length of the column the stronger
the buoyancy contribution.

Still in the case where the tail is much more viscous than the outer fluid, but
only for large enough sphere inertias, thin axisymmetric corollas or ‘inverted skirts’
grow behind the sphere and propagate upwards well before the tail breaks. As the
regime map in § 3.3 of PM1 made clear, this peculiar interfacial structure represents
the last axisymmetric step before three-dimensional fragmentation occurs. We showed
that shear instability is the most likely mechanism to explain the generation of these
corollas and explored this possibility by considering an inviscid model in which
uniform flows within the tail and in the outer fluid are separated by a thin boundary
layer surrounding the interface (appendix D). In the configuration examined in § 5.1,
no corollas take place and the model correctly predicts that all disturbances are
damped by capillary effects. Conversely, in the case where corollas are observed
(§ 5.2), the model predicts a positive maximum growth rate and a corresponding
wavelength which agrees well with observations. These results strongly support the
view that the fragmentation process is initiated by a Kelvin–Helmholtz instability.

Considering the variety of phenomena which were identified during this investigation,
the very simple configuration consisting of a sphere settling through a two-layer
system of immiscible viscous fluids appears as a generic ‘device’ capable of providing
a body of fundamental insight into several classes of apparently unrelated fluid
dynamics problems. One of them is obviously the dynamics of objects of any sort
moving across an interface in the presence of surface tension, viscosity contrast and
buoyancy effects. This ranges from small, light objects close to flotation conditions,
for which the dynamics of the meniscus plays a key role, to bodies with a large
inertia for which the central issue is to determine the evolution of the tail volume,
as it has a direct impact on the effective drag. Another class of problems where
this ‘device’ may be helpful is the dynamics of stretched fluid filaments. In that
context, it may be seen to some extent as a surrogate for the Taylor four-roll mill
apparatus, since it allows the evolution of such ligaments to be studied under a broad
variety of conditions. These include highly inertial situations which may result in
tail fragmentation. Hence, by properly selecting the fluids and sphere properties, this
system may also be used as a simple and well manageable substitute to the usual
open-flow configurations, such as two-phase coaxial jets or mixing layers, to study
fundamental mechanisms involved in the initiation of the fragmentation process.

The present paper only considered axisymmetric configurations, so that the
transition to three-dimensional wake and tail dynamics was not examined. The
non-axisymmetric tail geometries reported in figure 4 of PM1 suggest that the two
dynamics are closely coupled. However we have no clue for the time being to figure
out how the presence of a sharp interface involving a (possibly) large viscosity jump,
not mentioning effects of density contrast and interfacial tension, alters the established
transition scenario for the wake past a sphere in a homogeneous fluid. We believe that
this is an original aspect of the present class of flows deserving future consideration.

Last, the modelling of the various contributions to the hydrodynamic force
experienced by the sphere was not addressed here, although it clearly represents
a major objective in terms of applications. The static limit corresponding to the
sphere floating at the interface is reasonably well understood, although rigorous



predictions are available only in the limit where capillary effects are large compared
to buoyancy effects induced by the fluid density contrast (see § 4 of PM1). Some
attempts have also been reported in the literature to account for the influence of
the entrained fluid in the context of linearly stratified flows or miscible fluids under
specific conditions, especially in the inviscid and Stokes flow limits. The key issue
for future studies is of course to derive tractable models capable of predicting how
the geometry, hence the volume, of the entrained tail evolves, both with miscible and
immiscible fluids, under a broad range of conditions. Such models should also include
a prediction of the pinch-off location, as it determines how much fluid remains stuck
to the sphere. Significant progress was recently achieved in that direction in the case
of a sphere impacting a free surface. However, in liquid–liquid configurations, fluid
inertia within the tail requires more sophisticated approaches. This is why deriving a
rational modelling approach encompassing all main phenomena influencing the sphere
motion and capable of dealing (through semi-empirical extensions) with situations in
which inertia and viscosity of both fluids interplay remains a real challenge.
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Appendix A. Technical aspects of the immersed boundary technique

Preliminary tests carried out with the version of the IBM technique described by
Bigot et al. (2014) revealed some limitations or inaccuracies. Therefore we introduced
several modifications which significantly improve the quality of the numerical
predictions and the range of applicability of this technique in the framework of
the JADIM code. A detailed presentation of these changes may be found in Pierson
(2015) and we only summarize them below.

First, we modified the distribution of the volume fraction α involved in (2.6) to
avoid an excessive spreading of the forcing over pure fluid regions, while maintaining
a smooth variation across the sphere surface ‖r‖ = R to prevent the occurrence of
spurious oscillations of the fluid–solid coupling. For this purpose, we followed the
suggestion of Nakayama & Yamamoto (2005) and imposed a sine distribution of α
within a spherical shell R−∆6‖r‖6R+∆ so as to smoothly match with the uniform
distributions α = 1 (respectively 0) in the regions ‖r‖ < R − ∆ (respectively ‖r‖ >
R +∆). Extensive tests showed that the best choice for ∆ is ∆= (3/2)1x, where 1x

stands for the cell size.
A second improvement dealt with the way the prescribed velocity UD is defined

in the fluid part of the transition region corresponding to 0< α < 1/2. Various tests
revealed that imposing UD = V in that region tends to overestimate boundary layer
effects (hence the drag on the body) because it constrains the fluid to move with
the body velocity within the peripheral shell R 6 ‖r‖ 6 R +∆. To reduce this effect
and better account for the influence of the surrounding fluid, we impose UD = αV +
(1 − α)UI, where UI is a local fluid velocity resulting from a multidirectional linear



interpolation of U over the neighbouring cells, along the scheme proposed by Ikeno
& Kajishima (2007).

We also implemented an important improvement due to Kempe & Fröhlich (2012)
within each substep of the third-order Runge–Kutta/Crank–Nicolson advancement
scheme. This change removes the well-known limitation experienced with Ulhmann’s
(2005) technique when dealing with ‘light’ bodies, i.e. those for which ρp/ρ is
of O(1) or less. Indeed, replacing

∫

S
Σ · n dS by ρ(dV/dt − g)V −

∫

V
FIBMdV

as proposed by Uhlmann (2005), one readily finds that (2.7) yields dV/dt =
g − {(ρp − ρ)V}−1

∫

V
FIBM dV , which obviously diverges when the density difference

ρp − ρ tends toward zero. Kempe & Fröhlich (2012) pointed out that the origin
of the problem stems from the fact that Uhlmann’s surrogate for

∫

S
Σ · n dS,

in which the material derivative d/dt
∫

V
ρU dV is transformed into ρV dV/dt,

requires the fluid velocity field U within V to correspond to a rigid-body motion,
which may not be strictly the case in the course of the iterations. Removing this
assumption, equation (2.7) yields the body acceleration in the more general form
dV/dt = (1 − ρ/ρp)g + {ρpV}−1{d/dt

∫

V
ρU dV −

∫

V
FIBM dV} which removes the

divergence. As suggested by Kempe & Fröhlich (2012), we evaluate the time
derivative of the fluid momentum

∫

V
ρU dV within each substep of the Runge–Kutta

algorithm using a forward Euler scheme.
The last modification we introduced is intended to reduce the inconsistency usually

experienced when an explicit treatment of the forcing term FIBM is combined with
an implicit (or partly implicit) time advancement of the Navier–Stokes equation. In
the present case, the Crank–Nicolson algorithm used to advance the viscous term
in (2.4) requires the solution of an unsteady Stokes equation, and the corresponding
increment in the fluid velocity, say δU, may be shown to be proportional to ν1t2.
Usually, the forcing (2.6) is evaluated explicitly at the end of each Runge–Kutta
substep, prior to the corresponding Crank–Nicolson step. Hence after the latter, the
fluid and body velocities within the body volume V differ from each other by δU,
and the smaller the Reynolds number the larger this difference. Kempe & Fröhlich
(2012) showed that this issue may be fixed, i.e. the no-slip condition may be properly
enforced, by creating a forcing loop. We adapted their suggestion by introducing a
loop on the entire forcing/Crank–Nicolson step, using the fluid velocity resulting from
the solution of the unsteady Stokes equation at iteration n − 1 to evaluate the force
FIBM at iteration n and involving the latter in the right-hand side of the unsteady
Stokes equation at the next iteration. In practice, we found that two iterations of this
sequential process suffice to obtain negligible slip velocities U − V within the body
at the end of a complete Runge–Kutta/Crank–Nicolson step.

Figure 19 shows how the modified method incorporating the above four changes
works for O(1) solid-to-fluid density ratios in the case of a single sphere sedimenting
in the low-to-moderate Reynolds number regime. The reference experiments are those
of Ten Cate et al. (2002); raw data files were kindly provided by Dr Ten Cate. Only
20 cells are distributed over one sphere radius (to compare with the predictions
of Kempe & Fröhlich 2012) but the results show that the evolution of the settling
velocity is faithfully captured in all four cases during the (negative) acceleration time
period and the ‘plateau’ which follows. During the final stage, a slight shift increasing
as the Reynolds number decreases may be noticed. It merely results from the slight
overestimate of the settling velocity which exists throughout the descent, a result
of the coarse resolution which does not entirely capture the velocity gradients close
to the sphere and hence somewhat underestimates its drag. This effect accumulates
over longer times in the low-Reynolds-number regime, making the sphere reach the
neighbourhood of the lower wall somewhat too early.
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FIGURE 19. (Colour online) Comparison of computational predictions (solid lines) and
experiments (symbols) from Ten Cate et al. (2002) for the settling velocity of a sphere
sedimenting in a homogeneous fluid. The height and radius of the computational domain
are 21.3R and 6.7R, respectively, just as the experimental tank, and the sphere is released
from rest 4.3R from the top surface. On the four curves, from top to bottom, the solid-
to-fluid density ratio and the particle Reynolds number based on the particle radius and
sedimentation velocity in an unbounded medium are (1.155, 0.75), (1.160, 2.05), (1.164,
15.8) and (1.167, 15.95), respectively.

Appendix B. Numerical solution of the Young–Laplace problem

To obtain an accurate description of the meniscus under quasi-static conditions, one
generally has to resort to a numerical solution of the Young–Laplace equation (ρ2 −
ρ1)gz = γ∇ · n(z), where n is the outer unit normal to the meniscus surface. Setting
r∗ = r/R and z∗ = z/R (where r stands for the radial distance to the symmetry axis)
and considering that this surface is defined by the equation r∗ = η(z∗), the radial and
axial components of n are 1/(1 + η′2)1/2 and −η′/(1 + η′2)1/2, respectively, the prime
denoting differentiation with respect to z∗. Hence one has to solve

Boz∗ =
1

η

1

(1 + η′2)1/2
−

η′′

(1 + η′2)3/2
. (B 1)

Introducing the cap angle ψ such that ψ = 0 at the bottom of the sphere, the meniscus
joins the sphere at a vertical position z∗ = z∗

s and a radial position η = sin ψ with a
slope η′ = cotψ , assuming total wetting (see figure 6 in PM1). It connects tangentially
to the horizontal interface when z∗ → 0. Hence the whole set of boundary conditions
reads

η(z∗
s )= sinψ,

η′(z∗
s )= cotψ,

η(z∗)→ +∞ for z∗ → 0,
η′(z∗)→ +∞ for z∗ → 0.











(B 2)

Following Huh & Scriven (1969) and Rapacchietta & Neumann (1977), we solve
this problem using a shooting method combined with a fourth-order Runge–Kutta
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FIGURE 20. (Colour online) Meniscus profile for three different cap angles and two
different Bond numbers. In each image, the left and right halves correspond to Bo = 10
and Bo = 0.1, respectively.

integration scheme for (B 1). To this end, we first assume z∗
s to be given by the

approximate high-Bo model discussed in PM1 (see also Maru et al. 1971; Bonhomme
et al. 2012), i.e. z∗

s = {1 −
√

1 + 4Bo(1 − cosψ)}/2Bo, enforce the two boundary
conditions at the sphere surface and iterate the solution until the two boundary
conditions at infinity are satisfied.

The shape of the meniscus obtained through this procedure is plotted in figure 20
for three different cap angles and two Bond numbers. The crucial influence of Bo

may be appreciated in each image: the interface always deforms over a distance of
the order of the capillary length lc =

√
γ /((ρ2 − ρ1)g), i.e. lc/R = Bo−1/2. Hence this

deformation is limited to a small zone around the contact line when Bo ≫ 1, whereas
it extends over a wide region whose radius is much larger than the sphere radius in
the opposite limit.

Appendix C. Influence of buoyancy on the retraction of a fluid thread

In this appendix we revisit the problem of the retraction of a thin column of viscous
fluid surrounded by another, much less viscous fluid. We are primarily interested in
reasons which can make the retraction velocity different from the classical Taylor–
Culick prediction (Taylor 1959; Culick 1960), especially in the possible influence of
buoyancy effects.

To begin with, we recall the equations governing the flow within the column,
assuming an axisymmetric (r, z) geometry (with, throughout this appendix, the
z axis pointing upwards) and considering the slender-body (or long-wave) limit
ǫ = R/L ≪ 1, where L(t) denotes the length of the column and R(z, t) its local
radius. Expanding the streamwise momentum balance in powers of ǫ, it is readily
found that the streamwise velocity, uz(r, z, t), results from the linear superposition of
a leading-order plug profile, W(z, t), and a second-order Poiseuille-like contribution,
A(z, t)r2. Mass conservation also implies that, at leading order, the radial velocity,
ur(r, z, t), obeys ur = −(r/2)Wz, where the subscript stands for the partial derivative.
The shear-free condition at the column surface may then be expressed in terms of
derivatives of W only, and is satisfied by selecting A = (3/2)(Rz/R)Wz + (1/4)Wzz.
Finally, at order ǫ0, the radial momentum balance implies that the leading-order
pressure, P, does not depend on the radial position. Hence, neglecting viscous and
dynamic effects in the outer fluid, the normal stress balance at the column surface
yields P(z, t) = −ρ2gz + γ∇ · n − µ1Wz, where n denotes the outer unit normal to



the surface r =R(z, t). Combining these results, the mass and streamwise momentum
balances are found to read, respectively,

Rt + WRz = − 1
2 WzR, (C 1)

ρ1(Wt + WWz)= (ρ2–ρ1)g − γ (∇ · n)z + 3
µ1

R2
(R2Wz)z. (C 2)

These equations are identical to those obtained by Eggers & Dupont (1994), with
the exception of the ρ2g contribution since these authors neglected any influence of
the surrounding medium. Multiplying (C 1) by 2RW, (C 2) by R2, introducing the
explicit expression of the mean curvature as given in (B 1) and rearranging yields the
conservation equation for the momentum density ρ1R

2W in the form

(ρ1R
2W)t +

{

ρ1W2
R

2 − 3µ1R
2Wz − γ

[

R

(1 +R2
z )

1/2
+

R2Rzz

(1 +R2
z )

3/2

]}

z

= (ρ2–ρ1)gR
2.

(C 3)
Assuming that the column extends from z = 0 to z = −L(t), its volume and total
momentum are Vc = π

∫ 0
−L(t)

R2 dz and Pc = π

∫ 0
−L(t)

ρ1R
2W dz, respectively. Then,

noting that R vanishes at the tip, i.e. R(z = −L(t))= 0 ∀ t, integration of (C 1) (once
multiplied by 2R) and (C 3) yields, respectively,

dVc

dt
= −πρ1WR

2|z=0, (C 4)

dPc

dt
= (ρ2–ρ1)gVc − πρ1W2

R
2|z=0 + 3πµ1R

2Wz|z=0

+ πγ

[

R

(1 +R2
z )

1/2
+

R2Rzz

(1 +R2
z )

3/2

]

z=0

. (C 5)

Provided that (i) the density contrast between the two fluids is negligible (or the
column is horizontal), (ii) the fluid is at rest at z = 0, i.e. W|z=0 = Wz|z=0 = 0, and
(iii) the radius of the column does not change in the vicinity of z = 0, i.e. Rz|z=0 =
Rzz|z=0 = 0, equation (C 5) reduces to

dPc

dt
= πγR|z=0. (C 6)

The classical reasoning (Taylor 1959; Culick 1960; Keller 1983; Keller, King & Ting
1995; Savva & Bush 2009) assumes that (iv) the full mass of fluid set in motion by
the retraction process feeds a spherical blob (or a circular rim in the two-dimensional
case) at the tip, while the fluid located in between the blob and the basis of the
column or sheet stays at rest. The velocity at which the blob recedes is −dL/dt and
the mass flowrate entering it is −πρ1R

2
B dL/dt, where RB stands for the radius just

past the blob. Hence, after the initial transient during with d2L/dt2 6= 0, the momentum
rate of change reduces to dPc/dt =πρ1R

2
B(dL/dt)2. With the final assumption that (v)

the radius does not vary from the position of the blob to z = 0, i.e. R|z=0 =RB, one
obtains the Taylor–Culick velocity WTC = −dL/dt, namely

WTC =
√

γ

ρ1RB

. (C 7)



This result differs from the one originally obtained by Keller (1983) by a factor of√
2 but agrees with that of Hoepffner & Paré (2013). Both groups performed an

inviscid momentum balance over the entire blob, but Keller omitted to take into
account the capillary contribution γ /RB within the cylindrical part of the column.
The latter reduces the pressure difference with the blob interior by a factor of two,
which is why the correct result is (C 7). Although the schematic view corresponding
to assumption (iv) is valid in most cases, Brenner & Gueyffier (1999) showed that
it does not apply when the Reynolds number of the column, ReL = ρ1VTCL/µ1, is
small (strictly speaking ≪ 1), in which case no rim or blob forms at the tip and the
column merely thickens uniformly as it recedes.

The situation considered in § 5.1 is far from satisfying the whole set of conditions
(i)–(v). In particular, the column broadens dramatically at its top, making (iii) and (v)
unrealistic. Moreover, the ratio of the first and last terms in the right-hand side of (C 5)
is of O((ρ2–ρ1)gRL/γ )= O(BoRL/R2). According to figure 14(a,b), the top region
within which R strongly varies with the vertical position extends approximately over
5 sphere radii. Hence, the initial length L0 of the remaining part of the column, on
which the rest of this analysis focuses, is typically 10–15R. Its average radius, Rm,
may be estimated from figure 14(c,d), which yields Rm ≈ 0.3R–0.4R. Since Bo =
0.24, these estimates indicate that 0.7 . BoRmL0/R

2 . 1.4. Hence, buoyancy and
capillary contributions are of the same order of magnitude, so that assumption (i) is
not satisfied. In contrast, (ii) (with now z = −5R instead of z = 0) looks reasonable as
far as the column remains long enough for the flow rate through its base to remain
small. Finally, setting RB = Rm in (C 7) and L = L0 in the definition of ReL, the
column Reynolds number is found to be in the range 10–20. Hence assumption (iv)
is satisfied, as confirmed by figure 14(c–f ) in which a blob is clearly present.

Based on the above estimates, the simplest model which can reasonably hold in the
present situation is that of a cylindrical column of radius Rm and initial length L0 in
which the retraction dynamics obey the approximate form of (C 5)

dPcm

dt
= (ρ2–ρ1)gVcm + πγRm, (C 8)

with Vcm = πR2
mL and dPcm/dt = πρ1R

2
m(dL/dt)2. This model yields the differential

equation
(

dL

dt

)2

= ζgL+
γ

ρ1Rm

with L(t = 0)=L0, (C 9)

the solution of which provides the buoyancy-modified Taylor–Culick velocity WTCg =
−dL/dt as

WTCg =
√

ζgL0 +
γ

ρ1Rm

−
1

2
ζgt. (C 10)

The shortening of the column makes WTCg decrease linearly over time. However, for
short enough times, i.e. t ≪

√

L0/(ζg)+ γ /(ζ 2ρ1Rmg2), the model still predicts a
virtually constant velocity which is larger than the classical Taylor–Culick prediction,
WTC, owing to the cooperative effect of buoyancy. Using the above estimates for the
situation of § 5.1, equation (C 10) yields 1.4 . WTCg/WTC . 1.5, so that buoyancy is
found to increase the purely capillary-driven retraction velocity by 40 %–50 %.



Appendix D. Interfacial instability past high-inertia spheres sinking in a

low-viscosity fluid

In this appendix we investigate the possible instability scenarios which may explain
the initiation of the corollas observed in the wake of high-inertia spheres settling in a
weakly viscous fluid. According to the second panel in figure 18, the wavelength of
the disturbance which develops along the sphere is approximately 0.6R, corresponding
to a wavenumber k ≈ 10.5R−1, and the thickness h of the film surrounding the sphere
in that region is 0.2–0.3R. This wavelength being approximately one-tenth the sphere
circumference (also one-tenth the circumference of the column whose radius is of
O(R) close to the sphere), it is enough to consider the problem in a plane. We also
note that kh ≈ 2.1–3.2, which suggests that finite-depth effects within the film are
small since 1.004 6 coth kh 6 1.03. A first candidate to explain the growth of the
observed disturbance could be the Rayleigh–Taylor instability, since the heavier fluid
stands on top of the lighter one in some parts of this region. Nevertheless, the capillary
length lc = RBo−1/2 being approximately 1.5R since the density contrast is small, klc is
about 16, which is well beyond the cutoff wavenumber kco = l−1

c (Chandrasekar 1961).
This clearly rules out this possibility and makes shear-induced instabilities, be they
viscous or inviscid by nature, the most plausible explanation.

To explore this second possibility, we first need an estimate of the shear stress on
both sides of the interface, keeping in mind that the outer fluid is at rest far from
the column but its central region is entrained downwards, owing to the matching of
the shear stresses at the interface (see figure 21). To determine the thickness δ2(z)

of the corresponding boundary layer at a local position z, a crude reasoning consists
in assuming that the entire column goes down with the (now dimensional) sphere
velocity V and entrains a layer of outer fluid whose local thickness is approximately√

πµ2t/ρ2, where t denotes the time a material particle standing at position z on the
column surface has been in contact with the lower fluid after the sphere has crossed
the initial flat interface. This estimate is directly inspired by Stokes’ first problem
where a fluid layer is set in motion by the impulsive start of a plate which then moves
with a constant velocity (with this definition of δ2, the velocity falls to zero at the
edge of the boundary layer, assuming a uniform shear rate V/δ2 throughout it). Thus,
on the sphere equator, t =

∫ L

0 V−1(z0) dz0 when the sphere centre stands at a depth L

from the initial interface position. Provided that V has varied in a quasi-steady manner
since z0 = 0, one then has δ2(L) ≈ (πµ2/ρ2

∫ L

0 V−1(z0) dz0)
1/2, which yields ∆2 =

δ2(L)/R ≈ 0.06 when L/R ≈ 5 which corresponds to the second panel of figure 18;
this estimate is qualitatively consistent with the thickness of the interfacial vortical
layers in figure 16(h,i). The shear rate within the boundary layer being V/δ2, the
matching of viscous stresses at the column surface implies that, in the bottom part
of the column, the shear rate G1 at the interface is λV/δ2(L), which allows us to
define the viscous length scale lµ1 = (µ1/(ρ1G1))

1/2, i.e. lµ1/R ≈ 1.6 still when L/R ≈ 5.
This viscous length being of O(R), the flow within the column is influenced up to
the axis by the interfacial shear stress (in particular, the quadratic contribution A(z)r2

to the vertical velocity uz(r, z, t) described in appendix C comprises an additional
term −2λV(t)(R(z)δ2(z))

−1r2). Around the sphere itself, the outer fluid is accelerated
from the front pole to the equator (which is why the initial bump occurs close to the
latter), making the velocity difference 1U between the film and the outer fluid just
outside the boundary layer be 3V/2 on the equator instead of V along the column, as
shown in figure 21. As far as the boundary layer around the sphere is growing due
to diffusion, its thickness remains close to δ2(L) down to the equator, which implies
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FIGURE 21. (Colour online) Sketch of the flow past the sphere and the bottom part of
the tail in a reference frame translating with the sphere.

that the shear rate is approximately increased to (3/2)V/δ2(L) there. Having estimated
δ2(L), lµ1 and 1U, we can now examine the two families of shear instabilities which
can develop at the interface in the vicinity of the sphere.

The first of them is of course the Kelvin–Helmholtz instability. The radial velocity
gradient in the potential flow past the sphere is of O(V/R) and the shear within
the film is of O(G1), both of which are small compared to V/δ2(L). Hence, as a
first approximation, the flow near the sphere equator may be considered as made
of two uniform streams with a velocity difference 1U = (3/2)V , separated by a
uniform shear layer with a thickness δU = δ2(L), which allows us to make use of
classical predictions established for a piecewise linear velocity profile (Rayleigh 1879;
Chandrasekar 1961). In such a case, neglecting surface tension, the wavenumber kKH

of the most amplified disturbance is known to satisfy kKHδU ≈ 0.8, which here yields
kKHR ≈ 13.7; the corresponding growth rate βKH is 0.21U/δU, i.e. 0.3λ−1G1 = 150G1.
These classical results may be readily modified to include surface tension effects
in the corresponding dispersion relation (see e.g. Marmottant & Villermaux 2004b).
Defining the Weber number WeT = ρ1δU(1U)2/γ and assuming ρ2 = ρ1, it may be
shown that for large WeT , the most amplified wavenumber and the associated growth
rate become, respectively,

kKHδU ≈ 0.8(1 − 4.0We−1
T ) and βKH

δU

1U
≈ 0.2(1 − 3.2We−1

T ). (D 1a,b)

These approximations are in excellent agreement with the results of the complete
numerical calculations reported by Alabduljalil & Rangel (2006). Here WeT ≈ 19.7, so
that (D 1) yields kKHR ≈ 10.9 and βKH/G1 ≈ 125, respectively. Although the very small
difference (<5 %) between the predicted kKH and the measured wavenumber k should
not be taken too seriously, given the uncertainty on δ2 and the non-parallel character of



the base flow, the fact that kKH/k = O(1) suggests that the Kelvin–Helmholtz instability
is a plausible candidate to explain the evolution observed in figure 18.

This view is reinforced by the fact that (D 1) also explains why no instability is
observed in the situation considered in § 5.1, although a bulge is clearly present in
figure 12(e,k) near the sphere equator. In that case, the sphere velocity is almost three
times smaller than in the previous configuration, owing to the much smaller sphere
inertia and slightly smaller radius. In figure 12(e,k), L/R ≈ 9.5, so that V/(ζpgR)1/2 ≈
1.1 according to figure 13(a), which implies ∆2 ≈ 0.19. As may be noticed in panel
(k), this value of ∆2 is consistent with the thickness of the vortical layer near the
bottom of the column. Since 1U = V there, one has WeT ≈ 2.5, which yields βTH ≈
−30G1 according to the second of (D 1), predicting correctly that the disturbance is
damped in that region. Near the sphere equator, the boundary layer is seen to be much
thinner than the above value of ∆2, in contrast to our previous assumption. This is
because it stopped growing earlier, the balance between advection and radial diffusion
of vorticity about the sphere having already been achieved. Clearly, the actual ∆2 is
2–3 times smaller than the above estimate in that second region. Hence, despite the
increase of 1U to 3V/2, WeT stays approximately in the range 1.9–2.8, keeping the
local growth rate negative according to (D 1).

A second type of shear instability is known to exist under certain conditions
in the presence of a viscosity stratification. It has been extensively studied since
Yih’s pioneering investigation (Yih 1967); a comprehensive classification of the
corresponding instabilities was given by Charru & Hinch (2000) and a review of
the field was recently provided by Govindarajan & Sahu (2014). In a bounded
two-layer Couette configuration with each layer characterized by a thickness hi and
a shear rate Gi (i = 1, 2), the behaviour of such instabilities crucially depends on the
length scale ratios khi and klµi

, with lµi
= (µi/(ρiGi))

1/2. Yih’s analysis corresponds
to the long-wave limit khi ≪ 1 and klµi

≪ 1, in which case it is found that the
flow is unstable when the thinner layer is the more viscous. This qualitative result
extends, although with a larger growth rate, to the semi-bounded case corresponding
to kh2 → ∞ (Hooper 1985). The opposite short-wave limit, khi ≫ 1 and klµi

≫ 1, was
considered by Hooper & Boyd (1983) who showed that, provided λ 6= 1, the interface
is always unstable to such perturbations (in the absence of surface tension). Wall
effects were examined in the semi-bounded configuration by Hooper & Boyd (1987),
especially with the intermediate combination klµi

≪ 1 and h/lµ1 ≫ 1, where another
unstable mode was identified when the bounded layer is the less viscous.

Although this is generally not stated explicitly, all these investigations actually
assume that the viscosity ratio is ‘not too far’ from unity. This is apparent in the
fact that klµi

is assumed to be simultaneously small or large in both fluids, although
the continuity of shear stresses merely implies lµ2 = λ(1 + ζ )1/2lµ1 . The disturbance
observed experimentally here corresponds to klµ1 ≈ 17. However, since λ= 2.× 10−3,
one has klµ2 ≈ 0.035, which shows that this disturbance is much shorter than the
viscous scale in the more viscous fluid but much longer than its counterpart in the
outer fluid. To the best of our knowledge, such a mixed situation has not been
worked out theoretically, leaving us without any clear indication about the growth
rate of the corresponding potentially unstable modes. In addition, one has to notice
that kh1 ≈ 2.5 and kδ2 ≈ 0.6, so that additional effects due to the finite thickness
of both shear layers are expected; in particular, the O(1) value of kδ2 suggests that
the problem actually involves three layers rather than two, since the disturbance
certainly interacts with the unbounded outer fluid as it does in the above simplified
model of the Kelvin–Helmholtz instability. The only clue at hand to go one step



further is provided by the numerical investigations of Boeck & Zaleski (2005) and
Otto et al. (2013) who solved the Orr–Sommerfeld problem for two-phase mixing
layers characterized by error function or piecewise linear velocity profiles. Although
they were mostly interested in gas–liquid configurations characterized by very small
density ratios, i.e. ζ → −1, they also examined the influence of ζ for some specific
viscosity ratios, identifying the nature of the dominant mode by comparing viscous
and inviscid predictions. Their results (which correspond to high-Reynolds-number
conditions, with Reynolds numbers based on the boundary layer thickness 3–30
times higher than in the present configuration) indicate that unstable modes due to
viscosity stratification are indeed present but that the inviscid (Kelvin–Helmholtz)
mode dominates as soon as the two fluid densities are close enough. More precisely,
they found it to be dominant for ζ > −0.5 when λ = 10−1 and for ζ > −0.9 when
λ= 10−2. Since λ= 2.× 10−3 and ζ = 0.03 here, this is a strong indication that the
Kelvin–Helmholtz mode also dominates under the present conditions.

It is of interest to notice that a horizontal sharp density stratification, such as
that existing here due to the density jump between the tail and the outer fluid,
may be responsible for a specific shear-induced, Reynolds-number-independent,
long-wave instability, qualitatively similar to that analysed by Yih (1967). This
instability was studied by Camassa et al. (2012), who considered, both theoretically
and experimentally, a configuration in which a vertical infinite fibre is towed at a
constant velocity in a two-layer fluid arrangement with uniform viscosity. Viscous
entrainment then generates a column of heavy fluid around the fibre. Their theoretical
analysis shows that, for large enough column radii, i.e. long enough times, the flow
and column surface are unstable to long-wave disturbances. However, similar to
instabilities due to viscous stratification, this instability exhibits very small growth
rates, and for this reason could not be observed during the finite time of their
experiments. This characteristic, combined with the fact that the viscosity contrast
is much larger than the density contrast in the configurations considered here
(λ ≈ 2 × 10−3, ζ ≈ 0.03), makes it very unlikely that this instability may play a
role under the present conditions.
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