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Over the last decades, the practice of representing digital signal processing appli-
cations with formal Models of Computation (MoCs) has developed. Formal MoCs
are used to study application properties (liveness, schedulability, parallelism...) at a
high level, often before implementation details are known. Formal MoCs also serve
as an input for Design Space Exploration (DSE) that evaluates the consequences of
software and hardware decisions on the final system. The development of formal
MoCs is fostered by the design of increasingly complex applications requiring early
estimates on a system’s functional behavior.

On the architectural side of digital signal processing system development, hetero-
geneous systems are becoming ever more complex. Languages and models exist to
formalize performance-related information of a hardware system. They most of the
time represent the topology of the system in terms of interconnected components
and focus on time performance. However, the body of work on what we will call
Models of Architecture (MoAs) in this chapter is much more limited and less neatly
delineated than the one on MoCs. This chapter proposes and argues a definition for
the concept of an MoA and gives an overview of architecture models and languages
that draw near the MoA concept.

1 Introduction

In computer science, system performance is often used as a synonym for real-time
performance, i.e. adequate processing speed. However, most Digital Signal Process-
ing (DSP) systems must, to fit their market, be efficient in many of their aspects and
meet at the same time several efficiency constraints, including high performance,
low cost, and low power consumption. These systems are referred to as high perfor-
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mance embedded systems [38] and include for instance medical image processing
systems [34], wireless transceivers [32], and video compression systems [6].

The holistic optimisation of a system in its different aspects is called Design
Space Exploration (DSE) [31]. Exploring the design space consists in creating a
Pareto chart such as the one in Figure 1 and choosing solutions on the Pareto front,
i.e. solutions that represent the best alternative in at least one dimension and respect
constraints in the other dimensions. As an example, p1 on Figure 1 can be energy
consumption and p2 can be response time. Figure 1 illustrates in 2 dimensions a
problem that, in general, has many more dimensions. In order to make system-level
design efficient, separation of concerns is desirable [16]. Separation of concerns
refers to forcing decisions on different design concerns to be (nearly) independent.
The separation of concerns between application and architecture design makes it
possible to generate many points for the Pareto by varying separately application
and architecture parameters and observing their effects on system efficiency.

better p1

better p2

worse p1

worse p2

constraint on maximum p1

Pareto curve and Pareto-optimal points

explored system with sub-optimal efficiency

non-achieved efficiency

Fig. 1 The problem of Design Space Exploration (DSE) illustrated on a 2-D Pareto chart with
efficiency metrics p1 and p2.

For example, the designer can build an application, test its efficiency on different
platform architectures and, if constraints are not met by any point on the Pareto,
iterate the process until reaching a satisfactory efficiency. This process is illustrated
on Figure 2 and leads to Pareto points in Figure 1. Taking the hypothesis that a
unique contraint is set on the maximum mp1 of property p1, the first six generated
systems in Figure 2 led to p1 > mp1 (corresponding to points over the dotted line
in Figure 1) and different values of p2, p3, etc. The seventh generated system has
p1 ≤ mp1 and thus respects the constraint. Further system generations can be per-
formed to optimize p2, p3, etc. and generate the points under the dotted line in
Figure 1. Such a design effort is feasible only if application and architecture can
be played with efficiently. On the application side, this is possible using Models
of Computation (MoCs) that represent the high-level aspects (e.g. parallelism, ex-
changed data, triggering events...) of an application while hiding its detailed imple-
mentation. Equivalently on the architectural side, Models of Architecture (MoAs)
can be used to extract the fundamental elements affecting efficiency while ignor-
ing the details of circuitry. This chapter aims at reviewing languages and tools for
modeling architectures and precisely defining the scope and capabilities of MoAs.
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The chapter is organised as follows. The context of MoAs is first explained in
Section 2. Then, definitions of an MoA and a quasi-MoA are argued in Section 3.
Sections 4 and 5 give examples of state of the art quasi-MoAs. Finally, Section 6
concludes this chapter.
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Fig. 2 Example of an iterative design process where application is refined and, for each refinement
step, tested with a set of architectures to generate new points for the Pareto chart.

2 The Context of Models of Architecture

2.1 Models of Architecture in the Y-Chart Approach

The main motivation for developing Models of Architecture is for them to formalize
the specification of an architecture in a Y-chart approach of system design. The Y-
chart approach, introduced in [18] and detailed in [2], consists in separating in two
independent models the application-related and architecture-related concerns of a
system’s design.

This concept is refined in Figure 3 where a set of applications is mapped to a
set of architectures to obtain a set of efficiency metrics. In Figure 3, the application
model is required to conform to a specified MoC and the architecture model is re-
quired to conform to a specified MoA. This approach aims at separating What is
implemented from How it is implemented. In this context, the application is qual-
ified by a Quality of Service (QoS) and the architecture, offering resources to this
application, is characterized by a given efficiency when supporting the application.
For the discussion not to remain abstract, next section illustrates the problem on an
example.
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Fig. 3 MoC and MoA in the Y-chart [18].

2.2 Illustrating Iterative Design Process and Y-Chart on an
Example System

QoS and efficiency metrics are multi-dimensional and can take many forms. For a
signal processing application, QoS may be the Signal-to-Noise Ratio (SNR) or the
Bit Error Rate (BER) of a transmission system, the compression rate of an encoding
application, the detection precision of a radar, etc. In terms of architectural deci-
sions, the obtained set of efficiency metrics is composed of some of the following
Non-Functional Properties (NFPs):

• over time:

– latency (also called response time) corresponds to the time duration between
the arrival time of data to process and the production time of processed data,

– throughput is the amount of processed data per time iterval,
– jitter is the difference between maximal and minimal latency over time,

• over energy consumption:

– energy corresponds to the energy consumed to process an amount of data,
– peak power is the maximal instantaneous power required on alimentation to

process data,
– temperature is the effect of dissipated heat from processing,

• over memory:

– Random Access Memory (RAM) requirements corresponds to the amount of
necessary read-write memory to support processing,

– Read-Only Memory (ROM) requirements is the amount of necessary read-only
memory to support processing,

• over security:

– reliability is 1− p f with p f the probability of system failure over time,
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– electromagnetic interference corresponds to the amount of non-desired emit-
ted radiations,

• over space:

– area is the total surface of semiconductor required for a given processing,
– volume corresponds to the total volume of the built system.
– weight corresponds to the total weight of the built system.

• and cost corresponds to the monetary cost of building one system unit under the
assumption of a number of produced units.

The high complexity of automating system design with a Y-chart approach comes
from the extensive freedom (and imagination) of engineers in redesigning both ap-
plication and architecture to fit the efficiency metrics, among this list, falling into
their applicative constraints. Figure 4 is an illustrating example of this freedom on
the application side. Let us consider a video compression system, borrowed from
Chapter [6], to be ported on a platform. As shown in Figure 4 a), the application
initially has only pipeline parallelism. Assuming that all four tasks are equivallent
in complexity and that they receive and send at once a full image as a message,
pipelining can be used to map the application to a multicore processor with 4 cores,
with the objective to rise throughput (in frames per second) when compared to a
monocore execution. However, latency will not be reduced because data will have
to traverse all tasks before being output. In Figure 4 b), the image has been split into
two halves and each half is processed independently. The application QoS in this
second case will be lower, as the redundancy between image halves is not used for
compression. The compression rate or image quality will thus be degraded. How-
ever, by accepting QoS reduction, the designer has created data parallelism that
offers new opportunities for latency reduction, as processing an image half will be
faster than processing a whole image.
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Fig. 4 Illustrating designer’s freedom on the application side with a video compression example.
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In terms of architecture, and depending on money and design time resources,
the designer may choose to run some tasks in hardware and some in software
over processors. He can also choose between different hardware interconnects to
connect these architecture components. For illustrative purpose, Figure 5 shows
different configurations of processors that could run the applications of Figure 4.
rounded rectangles represent Processing Elements (PEs) performing computation
while ovals represent Communication Nodes (CNs) performing inter-PE com-
munication. Different combinations of processors are displayed, leveraging on
high-performance out-of-order ARM Cortex-A15 cores, on high-efficiency in-order
ARM Cortex-A7 cores, on the Multi-Format Codec (MFC) hardware accelerator for
video encoding and decoding, or on Texas Instruments C66x Digital Signal Process-
ing cores. Figure 5 g) corresponds to a 66AK2L06 Multicore DSP+ARM KeyStone
II processor from Texas Instruments where ARM Cortex-A15 cores are combined
with C66x cores connected with a Multicore Shared Memory Controller (MSMC)
[36]. In these examples, all PEs of a given type communicate via shared mem-
ory with either hardware cache coherency (Shared L2) or software cache coherency
(MSMC), and with each other using either the Texas Instruments TeraNet switch fab-
ric or the ARM AXI Coherency Extensions (ACE) with hardware cache coherency
[35].
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Fig. 5 Illustrating designer’s freedom on the architecture side with some current ARM-based and
Digital Signal Processor-based multi-core architectures.

Each architecture configuration and each mapping and scheduling of the appli-
cation onto the architecture leads to different efficiencies in all the previously listed
NFPs. Considering only one mapping per application-architecture couple, models
from Figures 4 and 5 already define 2× 7 = 14 systems. Adding mapping choices
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of tasks to PEs, and considering that they all can execute any of the tasks and ig-
noring the order of task executions, the number of possible system efficiency points
in the Pareto Chart is already roughly 19.000.000. This example shows how, by
modeling application and architecture independently, a large number of potential
systems is generated which makes automated multi-dimensional DSE necessary to
fully explore the design space.

2.3 On the separation between application and architecture
concerns

Separation between application and architectural concerns should not be confused
with software (SW)/hardware (HW) separation of concerns. The software/hardware
separation of concerns is often put forward in the term HW/SW co-design. Soft-
ware and its languages are not necessarily architecture-agnostic representations of
an application and may integrate architecture-oriented features if the performance
is at stake. This is shown for instance by the differences existing between the C++
and CUDA languages. While C++ builds an imperative, object-oriented code for a
processor with a rather centralized instruction decoding and execution, CUDA is
tailored to GPGPUs with a large set of cores. As a rule of thumb, software qualifies
what may be reconfigured in a system while hardware qualifies the static part of the
system.

The separation between application and architecture is very different in the sense
that the application may be transformed into software processes and threads, as well
as into hardware Intellectual Property cores (IPs). Software and Hardware applica-
tion parts may collaborate for a common applicative goal. In the context of DSP, this
goal is to transform, record, detect or synthetize a signal with a given QoS. MoCs
follow the objective of making an application model agnostic of the architectural
choices and of the HW/SW separation. The architecture concern relates to the set of
hardware and software support features that are not specific to the DSP process, but
create the resources handling the application.

On the application side, many MoCs have been designed to represent the behav-
ior of a system. The Ptolemy II project [7] has a considerable influence in promoting
MoCs with precise semantics. Different families of MoCs exist such as finite state
machines, process networks, Petri nets, synchronous MoCs and functional MoCs.
This chapter defines MoAs as the architectural counterparts of MoCs and presents a
state-of-the-art on architecture modeling for DSP systems.

2.4 Scope of this chapter

In this chapter, we focus on architecture modeling for the performance estimation
of a DSP application over a complex distributed execution platform. We keep func-
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tional testing of a system out of the scope of the chapter and rather discuss the early
evaluation of system non-functional properties. As a consequence, virtual platforms
such as QEMU [3], gem5 [4] or Open Virtual Platforms simulator (OVPsim), that
have been created as functional emulators to validate software when silicon is not
available, will not be discussed. MoAs work at a higher level of abstraction where
functional simulation is not central.

The considered systems being dedicated to digital signal processing, the study
concentrates on signal-dominated systems where control is limited and provided
together with data. Such systems are called transformational, as opposed to reactive
systems that can, at any time, react to non-data-carrying events by executing tasks.

Finally, the focus is put on system-level models and design rather than on de-
tailed hardware design, already addressed by large sets of existing literature. Next
section introduces the concept of an MoA, as well as an MoA example named Linear
System-Level Architecture Model (LSLA).

3 The Model of Architecture Concept

The concept of MoA is evoked in 2002 in [19] where it is defined as “a formal rep-
resentation of the operational semantics of networks of functional blocks describing
architectures”. This definition is broad, and allows the concepts of MoC and MoA
to overlap. As an example, a Synchronous Dataflow (SDF) graph [24] [14] repre-
senting a system fully specialized to an application may be considered as a MoC,
because it formalizes the application. It may also be considered as an MoA because
it fully complies with the definition from [19]. The Definition 4 of this chapter,
adapted from [30], is a new definition of an MoA that does not overlap with the
concept of MoC. The LSLA model is then presented to clarify the concept by an
example.

3.1 Definition of an MoA

Prior to defining MoA, the notion of application activity is introduced that en-
sures the separation of MoC and MoA. Figure 6 illustrates how application activity
provides intermediation between application and architecture. Application activity
models the computational load handled by the architecture when executing the ap-
plication.

Definition 1. Application activity A corresponds to the amount of processing and
communication necessary for accomplishing the requirements of the considered ap-
plication during the considered time slot. Application activity is composed of pro-
cessing and communication tokens, themselves composed of quanta.
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Fig. 6 Application activity as an intermediate model between application and architecture.

Definition 2. A quantum q is the smallest unit of application activity. There are two
types of quanta: processing quantum qP and communication quantum qC.

Two distinct processing quanta are equivalent, thus represent the same amount
of activity. Processing and communication quanta do not share the same unit of
measurement. As an example, in a system with a unique clock and byte-addressable
memory, 1 cycle of processing can be chosen as the processing quantum and 1 byte
as the communication quantum.

Definition 3. A token τ ∈ TP∪TC is a non-divisible unit of application activity, com-
posed of a number of quanta. The function size : TP ∪ TC → N associates to each
token the number of quanta composing the token. There are two types of tokens:
processing tokens τP ∈ TP and communication tokens τC ∈ TC.

The activity A of an application is composed of the set:

A = {TP,TC} (1)

where TP = {τ1
P,τ

2
P,τ

3
P...} is the set of processing tokens composing the application

processing and TC = {τ1
C,τ

2
C,τ

3
C...} is the set of communication tokens composing

the application communication.
An example of a processing token is a run-to-completion task with always identi-

cal computation. All tokens representing the execution of this task enclose the same
number N of processing quanta (e.g. N cycles). An example of a communication
token is a message in a message-passing system. The token is then composed of
M communication quanta (e.g. M Bytes). Using the two levels of granularity of a
token and a quantum, an MoA can reflect the cost of managing a quantum, and the
additional cost of managing a token composed of several quanta.

Definition 4. A Model of Architecture (MoA) is an abstract efficiency model
of a system architecture that provides a unique, reproducible cost computa-
tion, unequivocally assessing an architecture efficiency cost when supporting
the activity of an application described with a specified MoC.
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This definition makes three aspects fundamental for an MoA:

• reproducibility: using twice the same MoC and activity computation with a given
MoA, system simulation should return the exact same efficiency cost,

• application independence: the MoC alone carries application information and the
MoA should not comprise application-related information such as the exchanged
data formats, the task representations, the input data or the considered time slot
for application observation. Application activity is an intermediate model be-
tween a MoC and an MoA that prevents both models to intertwine. An applica-
tion activity model reflects the computational load to be handled by architecture
and should be versatile enough to support a large set of MoCs and MoAs, as
demonstrated in [30].

• abstraction: a system efficiency cost, as returned by an MoA, is not bound to
a physical unit. The physical unit is associated to an efficiency cost outside the
scope of the MoA. This is necessary not to redefine the same model again and
again for energy, area, weight, etc.

Definition 4 does not compel an MoA to match the internal structure of the hard-
ware architecture, as long as the generated cost is of interest. An MoA for energy
modeling can for instance be a set of algebraic equations relating application activ-
ity to the energy consumption of a platform. To keep a reasonably large scope, this
chapter concentrates on graphical MoAs defined hereafter:

Definition 5. A graphical MoA is an MoA that represents an architecture with
a graph Λ = 〈M,L, t, p〉 where M is a set of “black-box” components and
L⊆M×M is a set of links between these components.

The graph Λ is associated with two functions t and p. The type function
t : M×L 7→ T associates a type t ∈ T to each component and to each link. The
type dedicates a component for a given service. The properties function p :
M×L×Λ 7→P(P), where P represents powerset, gives a set of properties pi ∈
P to each component, link, and to the graph Λ itself. Properties are features
that relate application activity to implementation efficiency.

When the concept of MoA is evoked throughout this chapter, a graphical MoA is
supposed, respecting Definition 5. When a model of a system architecture is evoked
that only partially compels with this definition, the term quasi-MoA is used, equiv-
alent to quasi-moa in [30] and defined hereafter:

Definition 6. A quasi-MoA is a model respecting some of the aspects of Definition 4
of an MoA but violating at least one of the three fundamental aspects of an MoA,
i.e. reproducibility, application independence, and abstraction.

All state-of-the-art languages and models presented in Sections 4 and 5 define
quasi-MoAs. As an example of a graphical quasi-MoAs, the graphical representa-
tion used in Figure 5 shows graphs Λ = 〈M,L〉 with two types of components (PE
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and CN), and one type of undirected link. However, no information is given on how
to compute a cost when associating this representation with an application repre-
sentation. As a consequence, reproducibility is violated. Next section illustrates the
concept of MoA through the LSLA example.

3.2 Example of an MoA: the Linear System-Level Architecture
Model (LSLA)

The LSLA model computes an additive reproducible cost from a minimalistic rep-
resentation of an architecture [30]. As a consequence, LSLA fully complies with
Definition 5 of a graphical MoA. The LSLA composing elements are illustrated in
Figure 7. An LSLA model specifies two types of components: Processing Elements
and Communication Nodes, and one type of link. LSLA is categorized as linear
because the computed cost is a linear combination of the costs of its components.

Link

PE Processing Element

CN Communication Node

10s+1 Per token cost
(s=size(token))

z
PE2

1s

x y

10s 1sPE110s+1

5s+1 PE4

PE3 2s+1

2s+1
λ=0.3

Fig. 7 LSLA MoA semantics elements.

Definition 7. The Linear System-Level Architecture Model (LSLA) is a Model
of Architecture (MoA) that consists of an undirected graph Λ = (P,C,L,cost,λ )
where:

• P is a set of Processing Elements (PEs). A PE is an abstract processing facility
with no assumption on internal parallelism, Instruction Set Architecture (ISA),
or internal memory. A processing token τP from application activity must be
mapped to a PE p ∈ P to be executed.

• C is the set of architecture Communication Nodes (CNs). A communication to-
ken τC must be mapped to a CN c ∈C to be executed.

• L = {(ni,n j)|ni ∈C,n j ∈C∪P} is a set of undirected links connecting either two
CNs or one CN and one PE. A link models the capacity of a CN to communicate
tokens to/from a PE or to/from another CN.

• cost is a property function associating a cost to different elements in the model.
The cost unit is specific to the non-functional property being modeled. It may be
in mJ for studying energy or in mm2 for studying area. Formally, the generic unit
is denoted ν .
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On the example displayed in Figure 7, PE1−4 represent Processing Elements
(PEs) while x, y and z are Communication Nodes (CNs). As an MoA, LSLA
provides reproducible cost computation when the activity A of an application is
mapped onto the architecture. The cost related to the management of a token τ by a
PE or a CN n is defined by:

cost : TP∪TC×P∪C → R
τ,n 7→ αn.size(τ)+βn,

αn ∈ R,βn ∈ R
(2)

where αn is the fixed cost of a quantum when executed on n and βn is the fixed
overhead of a token when executed on n. For example, in an energy modeling use
case, αn and βn are respectively expressed in energy/quantum and energy/token,
as the cost unit ν represents energy. A token communicated between two PEs con-
nected with a chain of CNs Γ = {x,y,z...} is reproduced card(Γ ) times and each
occurrence of the token is mapped to 1 element of Γ . This procedure is illustrated in
Figure 8. In figures representing LSLA architectures, the size of a token size(τ) is
abbreviated into s and the affine equations near CNs and PEs (e.g. 10s+1) represent
the cost computation related to Equation 2 with αn = 10 and βn = 1.

A token not communicated between two PEs, i.e. internal to one PE, does not
cause any cost. The cost of the execution of application activity A on an LSLA
graph Λ is defined as:

cost(A ,Λ) = ∑τ∈TP cost(τ,map(τ))+
λ ∑τ∈TC

cost(τ,map(τ)) (3)

where map : TP∪TC→ P∪C is a surjective function returning the mapping of each
token onto one of the architecture elements.

• λ ∈ R is a Lagrangian coefficient setting the Computation to Communication
Cost Ratio (CCCR), i.e. the cost of a single communication quantum relative to
the cost of a single processing quantum.

Similarly to the SDF MoC [24], the LSLA MoA does not specify relations to the
outside world. There is no specific PEs type for communicating with non-modeled
parts of the system. This is in contrast with Architecture Analysis and Design Lan-
guage (AADL) processors and devices that separate I/O components from
processing components (Section 4.1). The Definition 1 of activity is sufficient to
support LSLA and other types of additive MoAs. Different forms of activities are
likely to be necessary to define future MoAs. Activity Definition 1 is generic to
several families of MoCs, as demonstrated in [30].

Figure 8 illustrates cost computation for a mapping of the video compression ap-
plication shown in Figure 4 b), described with the SDF MoC onto the big.LITTLE
architecture of Figure 5 f), described with LSLA. The number of tokens, quanta and
the cost parameters are not representative of a real execution but set for illustra-
tive purpose. The natural scope for the cost computation of a couple (SDF, LSLA),
provided that the SDF graph is consistent, is one SDF graph iteration [30].



Models of Architecture for DSP Systems 13

LSLA architecture

activity of an iteration: 
2 colorProc tokens, 
2 Pred tokens,
2 trans&Quant tokens,
2 entropyCod tokens,
1 mux&send token,
8 data tokens

SDF application

tokens relative costs: 
decomposition into quanta.

mapping tokens to PEs and CNs.
communication tokens local from
one PE to the same PE are 
discarded.λ=0.2

10s+1

10s+1 2s1s

3s+1

3s+1

predcolorProc
1 1 trans&

Quant
1 1 1 1 1 2entropy

Cod
mux&
send

ARM72

ARM73 1s

ARM71

ARM74

ARM152

ARM153

ARM151

ARM154

10s+1

10s+1

3s+1

3s+1

SL21 SL22ACE

consuming 2 tokens
and forcing 2 executions
of other actors

Fig. 8 Computing cost of executing an SDF graph on an LSLA architecture. The cost for 1 iteration
is (looking first at processing tokens then at communication tokens from left to right) 31+ 31+
41+41+41+41+13+13+4+0.2× (5+5+5+10+5+5+10+5) = 266 ν (Equation 3).

The SDF application graph has 5 actors colorProc, pred, trans&Quant, entropy-
Cod, and mux&Send and the 4 first actors will execute twice to produce the 2 image
halves required by mux&Send. The LSLA architecture model has 8 PEs ARM jk
with j ∈ {7,15} and k ∈ {1,2,3,4}, and 3 CNs SL21, ACE and SL22. Each actor ex-
ecution during the studied graph iteration is transformed into one processing token.
Each dataflow token transmitted during one iteration is transformed into one com-
munication token. A token is embedding several quanta (white squares), allowing a
designer to describe heterogeneous tokens to represent executions and messages of
different weight.

In Figure 8, each execution of actors colorProc is associated with a cost of 3
quanta and each execution of other actors is associated to a cost of 4 quanta except
mux&Send requiring 1 quantum. Communication tokens (representing one half im-
age transfer) are given 5 quanta each. These costs are arbitrary here but should
represent the relative computational load of the task/communication.

Each processing token is mapped to one PE. Communication tokens are “routed”
to the CNs connecting their producer and consumer PEs. For instance, the fifth and
sixth communication tokens in Figure 8 are generating 3 tokens each mapped to
SL21, ACE and SL22 because the data is carried from ARM71 to ARM151. It is the
responsibility of the mapping process to verify that a link l ∈ L exists between the
elements that constitute a communication route. The resulting cost, computed from
Equations 2 and 3, is 266ν . This cost is reproducible and abstract, making LSLA an
MoA.

LSLA is one example of an architecture model but many such models exist in
literature. Next sections study different languages and models from literature and
explain the quasi-MoAs they define.
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4 Architecture Design Languages and their Architecture Models

This section studies the architecture models provided by three standard Architecture
Design Languages (ADLs) targeting architecture modeling at system-level: AADL,
MCA SHIM, and UML MARTE.

While AADL adopts an abstraction/refinement approach where components are
first roughly modeled, then refined to lower levels of abstraction, UML MARTE
is closer to a Y-Chart approach where the application and the architecture are kept
separated and application is mapped to architecture.

For its part, MCA SHIM describes an architecture with “black box” processors
and communications and puts focus on inter-PE communication simulation. All
these languages have in common the implicit definition of a quasi-MoA (Defini-
tion 6). Indeed, while they define parts of graphical MoAs, none of them respect the
3 rules of MoA Definition 4.

4.1 The AADL Quasi-MoA

Architecture Analysis and Design Language (AADL) [9] is a standard language
released by SAE International, an organization issuing standards for the aerospace
and automotive sectors. The AADL standard is referenced as AS5506 [33] and the
last released version is 2.2. Some of the most active tools supporting AADL are
Ocarina1 [21] and OSATE2 [9].

4.1.1 The Features of the AADL Quasi-MoA

AADL provides semantics to describe a software application, a hardware platform,
and their combination to form a system. AADL can be represented graphically, se-
rialized in XML or described in a textual language [10]. The term architecture in
AADL is used in its broadest sense, i.e. a whole made up of clearly separated el-
ements. A design is constructed by successive refinements, filling “black boxes”
within the AADL context. Figure 9 shows two refinement steps for a video com-
pression system in a camera. Blocks of processing are split based on the application
decomposition of Figure 4 a). First, the system is abstracted with external data enter-
ing a video compression abstract component. Then, 4 software processes
are defined for the processing. Finally, processes are transformed into 4 threads,
mapped onto 2 processes. The platform is defined with 2 cores and a bus and ap-
plication threads are allocated onto platform components. The allocation of threads
to processors is not displayed. Sensor data is assigned a rate of 30 Hz, correspond-

1 https://github.com/OpenAADL/ocarina
2 https://github.com/osate
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ing to 30 frames per second. Next sections detail the semantics of the displayed
components.
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Fig. 9 The AADL successive refinement system design approach.

Software, hardware and systems are described in AADL by a composition of
components. In this chapter, we focus on the hardware platform modeling ca-
pabilities of AADL, composing an implicit graphical quasi-MoA. Partly respecting
Definition 5, AADL represents platform with a graph Λ = 〈M,L, t, p〉 where M is
a set of components, L is a set of links, t associates a type to each component and
link and p gives a set of properties to each component and link. As displayed in
Figure 10, AADL defines 6 types of platform components with specific graphical
representations. The AADL component type set is such that t(c ∈M) ∈ {system,
processor, device, bus, memory, abstract}. There is one type of link
t(l ∈ L) ∈ {connection}. A connection can be set between any two com-
ponents among software, hardware or system. Contrary to the Y-chart approach,
AADL does not separate application from architecture but makes them coexist in a
single model.

device busprocessor memorysystem abstract

Fig. 10 The basic components for describing a hardware architecture in AADL.

AADL is an extensible language but defines some standard component prop-
erties. These properties participate to the definition of the quasi-MoA determined
by the language and make an AADL model portable to several tools. The AADL
standard set of properties targets only the time behavior of components and differs
for each kind of component. AADL tools are intended to compute NFP costs such
as the total minimum and maximum execution latency of an application, as well
as the jitter. An AADL representation can also be used to extract an estimated bus
bandwidth or a subsystem latency [20].
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Processors are sequential execution facilities that must support thread schedul-
ing, with a protocol fixed as a property. AADL platform components are not merely
hardware models but rather model the combination of hardware and low-level soft-
ware that provides services to the application. In that sense, the architecture model
they compose is conform to MoA Definition 4. However, what is mapped on the
platform is software rather than an application. As a consequence, the separation of
concerns between application and architecture is not supported (Section 2.3). For
instance, converting the service offered by a software thread to a hardware IP neces-
sitates to deeply redesign the model. A processor can specify a Clock Period,
a Thread Swap Execution Time and an Assign Time, quantifying the time to access
memory on the processor. Time properties of a processor can thus be precisely set.

A bus can specify a fixed Transmission Time interval representing best- and
worst-case times for transmitting data, as well as a PerByte Transmission Time
interval representing throughput. The time model for a message is thus an affine
model w.r.t. message size. Three models for transfer cost computation are displayed
in Figure 11: linear, affine, and stair. Most models discussed in the next sections
use one of these 3 models. The interpretation of AADL time properties is precisely
defined in [9] Appendix A, making AADL time computation reproducible.
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Fig. 11 Examples of different data transfer cost computation functions (in arbitrary units): a linear
function (with 1 parameter), an affine function (with 2 parameters) and a step function (with 4
parameters).

A memory can be associated to a Read Time, a Write Time, a Word Count and
a Word Size to characterize its occupancy rate. A device can be associated to a
Period, and a Compute Execution Time to study sensors’ and actuators’ latency and
throughput. Platform components are defined to support a software application. The
next section studies application and platform interactions in AADL.
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4.1.2 Combining Application and Architecture in AADL

AADL aims at analyzing the time performance of a system’s architecture, man-
ually exploring the mapping (called binding in AADL) of software onto hard-
ware elements. AADL quasi-MoA is influenced by the supported software model.
AADL is adapted to the currently dominating software representation of Operating
Systems (OS), i.e. the process and thread representation [9]. An application is de-
composed into process and thread components, that are purely software concepts.
A process defines an address space and a thread comes with scheduling policies
and shares the address space of its owner process. A process is not executable by
itself; it must contain a least one thread to execute. AADL Threads are sequential,
preemptive entities [9] and requires scheduling by a processor. Threads may
specify a Dispatch Protocol or a Period property to model a periodic behavior or an
event-triggered callback or routine.

A values or interval of Compute Execution Time can be associated to a thread.
However, in real world, execution time for a thread firing depends on both the code
to execute and the platform speed. Compute Execution Time is not related to the
binding of the thread to a processor but a Scaling Factor property can be set on
the processor to specify its relative speed with regards to a reference processor
for which thread timings have been set. This property is precise when all threads
on a processor undergo the same Scaling Factor, but this is not the case in general.
For instance, if a thread compiled for the ARMv7 instruction set is first executed
on an ARM Cortex-A7 and then on an ARM Cortex-A15 processor, the observed
speedup depends much on the executed task. Speedups between 1.3× and 4.9× are
reported in this context in [30].

AADL provides constructs for data message passing through port features and
data memory-mapped communication through require data access features. These
communications are bound to busses to evaluate their timings.

A flow is neither a completely software nor a completely hardware construct. It
specifies an end-to-end flow of data between sensors and actuators for steady state
and transient timing analysis. A flow has timing properties such as Expected Latency
and Expected Throughput that can be verified through simulation.

4.1.3 Conclusions on the AADL Quasi-MoA

AADL specifies a graphical quasi-MoA, as it does define a graph of platform com-
ponents. AADL violates the abstraction rule because cost properties are explicitly
time and memory. It respects the reproducibility rule because details of timing sim-
ulations are precisely defined in the documentation. Finally, it violates the applica-
tion independence rule because AADL does not conform to the Y-chart approach
and does not separate application and architecture concerns.

AADL is a formalization of current best industrial practices in embedded system
design. It provides formalization and tools to progressively refine a system from
an abstract view to a software and hardware precise composition. AADL targets



18 Maxime Pelcat

all kinds of systems, including transformational DSP systems managing data flows
but also reactive system, reacting to sporadic events. The thread MoC adopted by
AADL is extremely versatile to reactive and transformational systems but has shown
its limits for building deterministic systems [23] [37]. By contrast, the quasi-MoAs
presented in Section 5 are mostly dedicated to transformational systems. They are
thus all used in conjunction with process network MoCs that help building reli-
able DSP systems. The next section studies another state-of-the-art language: MCA
SHIM.

4.2 The MCA SHIM Quasi-MoA

The Software/Hardware Interface for Multicore/Manycore (SHIM) [12] is a hard-
ware description language that aims at providing platform information to multicore
software tools, e.g. compilers or runtime systems. SHIM is a standard developed by
the Multicore Association (MCA). The most recent released version of SHIM is 1.0
(2015) [27]. SHIM is a more focused language than AADL, modeling the platform
properties that influence software performance on multicore processors.

SHIM components provide timing estimates of a multicore software. Contrary
to AADL that mostly models hard real-time systems, SHIM primarily targets best-
effort multicore processing. Timing properties are expressed in clock cycles, sug-
gesting a fully synchronous system. SHIM is built as a set of UML classes and the
considered NFPs in SHIM are time and memory. Timing performances in SHIM are
set by a shim::Performance class that characterizes three types of software ac-
tivity: instruction executions for instructions expressed in the LLVM instruction set,
memory accesses, and inter-core communications. LLVM [22] is used as a portable
assembly code, capable of decomposing a software task into instructions that are
portable to different ISAs.

SHIM does not propose a chart representation of its components. However,
SHIM defines a quasi-MoA partially respecting Definition 5. A shim::System-
Configuration object corresponds to a graph Λ = 〈M,L, t, p〉 where M is the
set of components, L is the set of links, t associates a type to each component and
link and p gives a set of properties to each component and link. A SHIM archi-
tecture description is decomposed into three main sets of elements: Components,
Address Spaces and Communications. We group and rename the compo-
nents (referred to as “objects” in the standard) to makes them easier to compare to
other approaches. SHIM defines 2 types of platform components. The component
types t(c ∈M) are chosen among:

• processor (shim::MasterComponent), representing a core executing soft-
ware. It internally integrates a number of cache memories (shim::Cache)
and is capable of specific data access types to memory (shim::AccessType). A
processor can also be used to represent a Direct Memory Access (DMA),

• memory (shim::SlaveComponent) is bound to an address space (shim::Address-
Space).
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Links t(l ∈ L) are used to set performance costs. They are chosen among:

• communication between two processors. It has 3 subtypes:

– fifo (shim::FIFOCommunication) referring to message passing with buffer-
ing,

– sharedRegister (shim::SharedRegisterCommunication) referring to a semaphore-
protected register,

– event (shim::EventCommunication for polling or shim::InterruptCommuni-
cation for interrupts) referring to inter-core synchronization without data
transfer.

• memoryAccess between a processor and a memory (modeled as a cou-
ple shim::MasterSlaveBinding, shim::Accessor) sets timings to each type of data
read/write accesses to the memory.

• sharedMemory between two processors (modeled as a triple shim::-
SharedMemoryCommunication, shim::MasterSlaveBinding, and shim::Accessor)
sets timing performance to exchanging data over a shared memory,

• InstructionExecution (modeled as a shim::Instruction) between a pro-
cessor and itself sets performance on instruction execution.

Links are thus carrying all the performance properties in this model. Application
activity on a link l is associated to a shim::Performance property, decomposed
into latency and pitch. Latency corresponds to a duration in cycles while pitch is the
inverse (in cycles) of the throughput (in cycles−1) at which a SHIM object can be
managed. A latency of 4 and a pitch of 3 on a communication link, for instance,
mean that the first data will take 4 cycles to pass through a link and then 1 data will
be sent per 3 cycles. This choice of time representation is characteristic of the SHIM
objective to model the average behavior of a system while AADL targets real-time
systems. Instead of specifying time intervals [min..max] like AADL, SHIM defines
triplets [min,mode,max] where mode is the statistical mode. As a consequence, a
richer communication and execution time model can be set in SHIM. However,
no information is given on how to use these performance properties present in the
model. In the case of a communication over a shared memory for instance, the deci-
sion on whether to use the performance of this link or to use the performance of the
shared memory data accesses, also possible to model, is left to the SHIM supporting
tool.

4.2.1 Conclusions on MCA SHIM Quasi-MoA

MCA SHIM specifies a graphical quasi-MoA, as it defines a graph of platform com-
ponents. SHIM violates the abstraction rule because cost properties are limited to
time. It also violates the reproducibility rule because details of timing simulations
are left to the interpretation of the SHIM supporting tools. Finally, it violates the
application independence rule because SHIM supports only software, decomposed
into LLVM instructions.
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The modeling choices of SHIM are tailored to the precise needs of multicore
tooling interoperability. The two types of tools considered as targets for the SHIM
standard are Real-Time Operating Systems (RTOSs) and auto-parallelizing compil-
ers for multicore processors. The very different objectives of SHIM and AADL have
led to different quasi-MoAs. The set of components is more limited in SHIM and
communication with the outside world is not specified. The communication modes
between processors are also more abstract and associated to more sophisticated tim-
ing properties. The software activity in SHIM is concrete software, modeled as a
set of instructions and data accesses while AADL does not go as low in terms of
modeling granularity. To complement the study on a third language, the next section
studies the different quasi-MoAs defined by the Unified Modeling Language (UML)
Modeling And Analysis Of Real-Time Embedded Systems (MARTE) language.

4.3 The UML MARTE Quasi-MoAs

The UML Profile for Modeling And Analysis Of Real-Time Embedded Systems
(MARTE) is standardized by the Object Management Group (OMG) group. The
last version is 1.1 and was released in 2011 [28]. Among the ADLs presented in
this chapter, UML MARTE is the most complex one. It defines hundreds of UML
classes and has been shown to support most AADL constructs [8]. MARTE is de-
signed to coordinate the work of different engineers within a team to build a com-
plex real-time embedded system. Several persons, expert in UML MARTE, should
be able to collaborate in building the system model, annotate and analyze it, and
then build an execution platform from its model. Like AADL, UML MARTE is fo-
cused on hard real-time application and architecture modeling. MARTE is divided
into four packages, themselves divided into clauses. 3 of these clauses define 4 dif-
ferent quasi-MoAs. These quasi-MoAs are named QMoAi

MART E | i ∈ {1,2,3,4} in
this chapter and are located in the structure of UML MARTE clauses illustrated by
the following list:

• The MARTE Foundations package includes:

– the Core Elements clause that gathers constructs for inheritance and composi-
tion of abstract objects, as well as their invocation and communication.

– the Non-Functional Property (NFP) clause that describes ways to specify non-
functional constraints or values (Section 2.2), with a concrete type.

– the Time clause, specific to the time NFP.
– the Generic Resource Modeling (GRM) clause that offers constructs to model,

at a high level of abstraction, both software and hardware elements. It defines a
generic component named Resource, with clocks and non-functional
properties. Resource is the basic element of UML MARTE models of
architecture and application. The quasi-MoA QMoA1

MART E is defined by GRM
and based on Resources. It will be presented in Section 4.3.1.
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– the Allocation Modeling clause that relates higher-level Resources to lower-
level Resources. For instance, it is used to allocate Schedulable-
Resources (e.g. threads) to ComputingResources (e.g. cores).

• The MARTE Design Model package includes:

– the Generic Component Model (GCM) clause that defines structured compo-
nents, connectors and interaction ports to connect core elements.

– the Software Resource Modeling (SRM) clause that details software resources.
– the Hardware Resource Modeling (HRM) clause that details hardware re-

sources and defines QMoA2
MART E and QMoA3

MART E (Section 4.3.2).
– the High-Level Application Modeling (HLAM) clause that models real-time

services in an OS.

• The MARTE Analysis Model package includes:

– the Generic Quantitative Analysis Modeling (GQAM) clause that specifies
methods to observe system performance during a time interval. It defines
QMoA4

MART E .
– the Schedulability Analysis Modeling (UML MARTE) (SAM) clause that refers

to thread and process schedulability analysis. It builds over GQAM and adds
scheduling-related properties to QMoA4

MART E .
– the Performance Analysis Modeling (PAM) clause that performs probabilistic

or deterministic time performance analysis. It also builds over GQAM.

• MARTE Annexes include Repetitive Structure Modeling (RSM) to compactly rep-
resent component networks, and the Clock Constraint Specification Language
(CCSL) to relate clocks.

The link between application time and platform time in UML MARTE is estab-
lished through clock and event relationships expressed in the CCSL language [25].
Time may represent a physical time or a logical time (i.e. a continuous repetition
of events). Clocks can have causal relations (an event of clock A causes an event
of clock B) or a temporal relations with type precedence, coincidence, and exclu-
sion. Such a precise representation of time makes UML MARTE capable of mod-
eling both asynchronous and synchronous distributed systems [26]. UML MARTE
is capable, for instance, of modeling any kind of processor with multiple cores and
independent frequency scaling on each core.

The UML MARTE resource composition mechanisms give the designer
more freedom than AADL by dividing his system into more than 2 layers. For
instance, execution platform resources can be allocated to operating system
resources, themselves allocated to application resourceswhile AADL offers
only a hardware/software separation. Multiple allocations to a single resource
are either time multiplexed (timeScheduling) or distributed in space (spatialDistri-
bution). Next sections explain the 4 quasi-MoAs defined by UML MARTE.
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4.3.1 The UML MARTE Quasi-MoAs 1 and 4

The UML MARTE GRM clause specifies the QMoA1
MART E quasi-MoA. It corre-

sponds to a graph Λ = 〈M,L, t, p〉 where M is a set of Resources, L is a set of
UML Connectors between these resources, t associates types to Resources
and p gives sets of properties to Resources.

«Processing  Resource»
specializes

«Computing  Resource» «Communication Media» «Device  Resource»

«Storage  Resource» «Synchronization Resource»«Timing  Resource»
«Concurrency  Resource»

Fig. 12 Elements of the quasi-MoA define in UML MARTE Generic Resource Modeling (GRM).

7 types of resources are defined in GRM. Some inconsistencies between re-
source relations make the standard ambiguous on resource types. As an example,
CommunicationMedia specializes CommunicationResource on standard
p.96 [28] while CommunicationMedia specializes ProcessingResource
on standard p.99. SynchResource disappears after definition and is possibly
equivalent to the later SwSynchronizationResource. Considering the most
detailed descriptions as reference, types of resources (illustrated in Figure 12) are:

• a Processing Resource, associated to an abstract speed Factor property
that can help the designer compare different Processing Resources. It
has 3 subtypes: Computing Resource models a real or virtual PE storing
and executing program code. It has no property. Device Resource commu-
nicates with the system environment, equivalently to an AADL device. It also
has no property. Communication Media can represent a bus or a higher-
level protocol over an interconnect. It has several properties: a mode among sim-
plex, half-duplex, or full-duplex specifies whether the media is directed or not
and the time multiplexing method for data. Communication Media trans-
fers one data of elementSize bits per clock cycle. A packet time represents the
time to transfer a set of elements. A block time represents the time before the
media can transfer other packets. A data rate is also specified.

• a Timing Resource representing a clock or a timer, fixing a clock rate.
• a Storage Resource representing memory, associated with a unit size and

number of units. Memory read and write occur in 1 clock cycle.
• a Concurrency Resource representing several concurrent flows of execu-

tion. It is a generalization of SchedulableResources that model logical
concurrency in threads and processes.

The communication time model of QMoA1
MART E , set by the Communication

Media, is the affine model illustrated in Figure 11. Precise time properties are set
but the way to correctly compute a timing at system-level from the set of resource
timings is not explicitly elucidated.

QMoA1
MART E can be used for more than just time modeling. ResourceUsage

is a way to associate physical properties to the usage of a resource. When events
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occur, amounts of physical resources can be specified as “consumed”. A resource
consumption amount can be associated to the following types of NFPs values: en-
ergy in Joules, message size in bits, allocated memory in bytes, used memory in
bytes (representing temporary allocation), and power peak in Watts.

The Generic Quantitative Analysis Modeling (GQAM) package defines another
quasi-MoA (QMoA4

MART E ) for performing the following set of analysis: counting
the repetitions of an event, determining the probability of an execution, determin-
ing CPU requirements, determining execution latency, and determining throughput
(time interval between two occurrences). New resources named GaExecHost (Ex-
ecutionHost) and GaCommHost (CommunicationHost) are added to the ones of
QMoA1

MART E and specialize the ProcessingResource for time performance
and schedulability analysis, as well as for the analysis of other NFPs. QMoA4

MART E
is thus close to QMoA1

MART E in terms of resource semantics but additional proper-
ties complement the quasi-MoA. In terms of MoAs, QMoA1

MART E and QMoA4
MART E

have the same properties and none of them clearly states how to use their properties.

4.3.2 The UML MARTE Quasi-MoAs 2 and 3

The UML MARTE Hardware Resource Modeling (HRM) defines two other, more
complex quasi-MoAs than the previously presented ones: QMoA2

MART E (logical
view) and QMoA3

MART E (physical view).
An introduction of the related software model is necessary before presenting

hardware components because the HRM is very linked to the SRM software rep-
resentation. In terms of software, the UML MARTE standard constantly refers
to threads as the basic instance, modeled with a swSchedulableResource.
The swSchedulableResources are thus considered to be managed by an
RTOS and, like AADL, UML MARTE builds on industrial best practices of us-
ing preemptive threads to model concurrent applications. In order to communicate,
a swSchedulableResource references specifically defined software commu-
nication and synchronization resources.

The HW Logical subclause of HRM refers to 5 subpackages: HW Computing,
HW Communication, HW Storage, HW Device, and HW Timing. It com-
poses a complex quasi-MoA referred to as QMoA2

MART E in this chapter. For brevity
and clarity, we will not enter the details of this quasi-MoA but give some informa-
tion on its semantics.

The UML MARTE QMoA2
MART E quasi-MoA is, like AADL, based on a HW/SW

separation of concerns rather than on an application/architecture separation. In terms
of hardware, UML MARTE tends to match very finely the real characteristics of the
physical components. UML MARTE HRM is thus torn between the desire to match
current hardware best practices and the necessity to abstract away system speci-
ficities. A QMoA2

MART E processing element for instance can be a processor, with
an explicit Instruction Set Architecture (ISA), caches, and a Memory Management
Unit (MMU), or it can be a Programmable Logic Device (PLD). In the description of
a PLD, properties go down to the number of available Lookup Tables (LUTs) on the
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PLD. However, modern PLDs such as Field-Programmable Gate Arrays (FPGAs)
are far too heterogeneous to be characterized by a number of LUTs. Moreover, each
FPGA has its own characteristics and in the space domain, for instance, FPGAs
are not based on a RAM configuration memory, as fixed in the MARTE standard,
but rather on a FLASH configuration memory. These details show the interest of
abstracting an MoA in order to be resilient to the fast evolution of hardware archi-
tectures.

HW Physical composes the QMoA3
MART E quasi-MoA and covers coarser-grain

resources than QMoA2
MART E , at the level of a printed circuit board. Properties of

resources include shape, size, position, power consumption, heat dissipation, etc.
Interpreting the technological properties of HRM quasi-MoAs QMoA2

MART E and
QMoA3

MART E is supposed to be done based on designer’s experience because the
UML MARTE properties mirror the terms used for hardware design. This is how-
ever not sufficient to ensure the reproducibility of a cost computation.

4.3.3 Conclusions on UML MARTE Quasi-MoAs

When considering as a whole the 4 UML MARTE quasi-MoAs, the standard does
not specify how the hundreds of NFP standard resource parameters are to be used
during simulation or verification. The use of these parameters is supposed to be
transparent, as the defined resources and parameters match current best practices.
However, best practices evolve over time and specifying precisely cost compu-
tation mechanisms is the only way to ensure tool interoperability in the lon run.
UML MARTE quasi-MoAs do not respect the abstraction rule of MoAs because,
while cost properties target multiple NFPs, each is considered independently with-
out capitalizing on similar behaviors of different NFPs. Finally, QMoA1

MART E and
QMoA4

MART E respect the application independence rule, and even extend it to the
construction of more than 2 layers, while QMoA2

MART E and QMoA3
MART E rather pro-

pose a HW/SW decomposition closer to AADL.

4.4 Conclusions on ADL Languages

AADL and UML MARTE are both complete languages for system-level design that
offer rich constructs to model a system. MCA SHIM is a domain-specific language
targeted to a more precise purpose. While the 3 languages strongly differ, they all
specify quasi-MoAs with the objective of modeling the time behavior of a system, as
well as other non-functional properties. None of these 3 languages fully respects the
three rules of MoA’s Definition 4. In particular, none of them abstracts the studied
NFPs to make generic the computation of a model’s cost from the cost of its con-
stituents. Abstraction is however an important feature of MoAs to avoid redesigning
redundant simulation mechanisms.
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To complement this study on MoAs, the next section covers four formal quasi-
MoAs from literature.

5 Formal Quasi-MoAs

In this Section, we put the focus on graphical quasi-MoAs that aim at providing
system efficiency evaluations when combined with a model of a DSP application.
The models and their contribution are presented chronologically.

5.1 The AAA Methodology Quasi-MoA

In 2003, an architecture model is defined for the Adéquation Algorithm Architec-
ture (AAA) Y-chart methodology, implemented in the SynDEx tool [13]. The AAA
architecture model is tailored to the needs of an application model that splits pro-
cessing into tasks called operations arranged in a Directed Acyclic Graph (DAG)
representing data dependencies between them.

The AAA architecture model is a graphical quasi-MoA Λ = 〈M,L, t, p〉, where M
is a set of components, L is a set of undirected edges connecting these components,
and t and p respectively give a type and a property to components. As illustrated
in Figure 13, there are three types t ∈ T of components, each considered internally
as a Finite State Machine (FSM) performing sequentially application management
services : memory, sequencer, and bus/multiplexer/demultiplexer (B/M/D). For their
part, edges only model the capacity of components to exchange data.

component

operator communicator RAM SAM

RAMP RAMD RAMDP

memory B/M/Dsequencer

B/M/D with arb. B/M/D w/o arb.

specializes

P D DP

arbiter

Fig. 13 Typology of the basic components in the AAA architecture model [13]. Leaf components
are instantiable.

In this model, a memory is a Sequential Access Memory (SAM) or a Random
Access Memory (RAM). A SAM models a First In, First Out data queue (FIFO) for
message passing between components. A SAM can be point-to-point or multipoint
and support or not broadcasting. A SAM with broadcasting only pops a data when
all readers have read the data. A RAM may store only data (RAMD), only programs
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(RAMP) or both (RAMDP). When several sequencers can write to a memory, it has
an implicit arbiter managing writing conflicts.

A sequencer is of type operator or communicator. An operator is a
PE sequentially executing operations stored in a RAMP or RAMDP. An operation
reads and writes data from/to a RAMD or RAMDP connected to the operator. A
communicator models a DMA with a single channel that executes communica-
tions, i.e. operations that transfer data from a memory M1 to a memory M2. For the
transfer to be possible, the communicator must be connected to M1 and M2.

A B/M/D models a bus together with its multiplexer and demultiplexer that im-
plement time division multiplexing of data. As a consequence, a B/M/D represents
a sequential schedule of transfered data. A B/M/D may require an arbiter, solving
write conflicts between multiple sources. In the AAA model, the arbiter has a max-
imum bandwidth BPMax that is shared between writers and readers.

Figure 14 shows an example, inspired by [13], of a model conforming the
AAA quasi-MoA. It models the 66AK2L06 processor [36] from Texas Instru-
ments illustrated in Figure 5 g). Operators must delegate communication to
communicators that access their data memory. The architecture has hardware
cache coherency on ARM side (L2CC for L2 Cache Control) and software cache
coherency on c66x side (SL2C for Software L2 Coherency). The communication
between ARML2 and MSMC memories is difficult to model with AAA FSM com-
ponents because it is performed by a Network-on-Chip (NoC) with complex topol-
ogy and a set of DMAs so it has been represented as a network of B/M/Ds and
communicators in Figure 14.

ARM
Cortex-A15

TI c66xL2
DPSL2C

1024KB

L1P
P

32KB MSMC
DP

2048KB

L2CC
DMA

DMA

DMA

TI c66xL2
DPSL2C

1024KB

TI c66xL2
DPSL2C

1024KB

TI c66xL2
DPSL2C

1024KB

TeraNet
arbiter

ARM
Cortex-A15

L1D
D

32KB L2CC
ARML2

DP
1024KB

TeraNet
arbiter

TeraNet
arbiter

...

...

DMA

DMA

DMA

L1D
D

32KB

L1P
P

32KB

Fig. 14 Example of an architecture description with the AAA quasi-MoA.

Properties p on components and edges define the quasi-MoA. An operator
Op has an associated function δOp setting a Worst Case Execution Time (WCET)
duration to each operation δOp(o) ∈ R≥0 where O is the set of all operations in
the application. This property results from the primary objective of the AAA ar-
chitecture model being the computation of an application WCET. Each edge of the
graph has a maximum bandwidth B in bits/s. The aim of the AAA quasi-MoA is
to feed a multicore scheduling process where application operations are mapped to
operators and data dependencies are mapped to routes between operators,
made of communicators and busses. Each operator and communicator
being an FSM, the execution of operations and communications on a given se-
quencer is totally ordered. The application graph being a DAG, the critical path
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of the application is computed and represents the latency of one execution, i.e. the
time distance beween the beginning of the first operation and the end of the last
operation. The computation of the latency from AAA application model and quasi-
MoA in [13] is implicit. The behavior of the arbiter is not specified in the model so
actual communication times are subject to interpretations, especially regarding the
time quantum for the update of bandwidth utilization.

The AAA syntax-free quasi-MoA is mimicking the temporal behavior of a pro-
cessing hardware in order to derive WCET information on a system. Many hard-
ware features can be modeled, such as DMAs; shared memories and hardware FIFO
queues. Each element in the model is sequential, making a coarse-grain model of an
internally parallel component impossible. There is no cost abstraction but the sepa-
ration between architecture model and application model is respected. The model is
specific to dataflow application latency computation, with some extra features ded-
icated to memory requirement computation. Some performance figures are subject
to interpretation and latency computation for a couple application/architecture is not
specified.

The AAA model contribution is to build a system-level architecture model that
clearly separates architecture concerns from algorithm concerns. Next section dis-
cusses a second quasi-MoA, named CHARMED.

5.2 The CHARMED Quasi-MoA

In 2004, the CHARMED co-synthesis framework [17] is proposed that aims at
optimizing multiple system parameters represented in Pareto fronts. Such a multi-
parameter optimization is essential for DSE activities, as detailed in [31].

In the CHARMED quasi-MoA Λ = 〈M,L, t, p〉, M is a set of PEs, L is a set
of Communication Resources (CR) connecting these components, and t and p re-
spectively give a type and a property to PEs and CRs. There is only one type of
component so in this model, t = PE. Like in the AAA architecture model, PEs
are abstract and may represent programmable microprocessors as well as hardware
IPs. The PE vector of properties p is such that p(PE ∈ M) = [α,κ,µd ,µi,ρidle]

T

where α denotes the area of the PE, κ denotes the price of the PE, µd denotes the
size of its data memory, µi denotes the instruction memory size and ρidle denotes
the idle power consumption of the PE. Each CR edge also has a property vector:
p(CR∈ L) = [ρ,ρidle,θ ]

T where ρ denotes the average power consumption per each
unit of data to be transferred, ρidle denotes idle power consumption and θ denotes
the worst case transmission rate or speed per each unit of data.

This model is close to the concept of MoA as stated by Definition 4. However,
instead of abstracting the computed cost, it defines many costs altogether in a vec-
tor. This approach limits the scope of the approach and CHARMED metrics do not
cover the whole spectrum on NFPs shown in Section 2.2. The CHARMED architec-
ture model is combined with a DAG task graph of a stream processing application
in order to compute costs for different system solutions. A task in the application
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graph is characterized by its required instruction memory µ , its Worst Case Exe-
cution Time WCET and its average power consumption ℘avg while a DAG edge is
associated with a data size δ . The cost for a system x has 6 dimensions: the area
α(x), the price κ(x), the number of used inter-processor routes ln(x), the memory
requirements µ(x), the power consumption ℘(x) and the latency τ(x). Each met-
ric has an optional maximum value and can be set either as a constraint (all values
under the constraint are equally good) or as an objective to maximize.

Cost computation is not fully detailed in the model. We can deduce from defini-
tions that PEs are sequential units of processing where tasks are time-multiplexed
and that a task consumes ℘avg×WCET energy for each execution. The power con-
sumption for a task is considered independent of the PE executing it. The latency
is computed after a complete mapping and scheduling of the application onto the
architecture. The price and area of the system are the sums of PE prices and areas.
Memory requirements are computed from data and instruction information respec-
tively on edges and tasks of the application graph. Using an evolutionary algorithm,
the CHARMED framework produces a set of potential heterogeneous architectures
together with task mappings onto these architectures.

For performing DSE, the CHARMED quasi-MoA has introduced a model that
jointly considers different forms of NFP metrics. The next section presents a third
quasi-MoA named System-Level Architecture Model (S-LAM).

5.3 The System-Level Architecture Model (S-LAM) Quasi-MoA

In 2009, the S-LAM model [29] is proposed to be inserted in the PREESM rapid
prototyping tool. S-LAM is designed to be combined with an application model
based on extensions of the Synchronous Dataflow (SDF) dataflow MoC [14] and a
transformation of a UML MARTE architecture description into S-LAM has been
conducted in [1].

component link
 data link

 directed data link  undirected data link

control link

RAM DMA

communication
enabler

operatorcommunication
node

parallel node contention node

refines

Fig. 15 Typology of the basic components in the S-LAM [29]. Leaf components are instantiable.

S-LAM defines a quasi-MoA Λ = 〈M,L, t, p〉 where M is a set of components,
L is a set of links connecting them, and t and p respectively give a type and a
property to components. As illustrated in Figure 15, there are five instantiable types
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of components: operator, parallel node, contention node, RAM, and
DMA.

Operators represent astract processing elements, capable of executing tasks
(named actors in dataflow models) and of communicating data through links. Ac-
tors’ executions are time-multiplexed over operators, as represented by the black
dot on the graphical view, symbolizing scheduling. There are also data links
and control links. A data link represents the ability to transfer data be-
tween components. Control links specify that an operator can program
a DMA. Two actors cannot be directly connected by a data link. A route must be
built, comprising at least one parallel node or one contention node. A
parallel node Np virtually consists of an infinite number of data channels with
a given speed σ(Np) in Bytes/s. As a consequence, no scheduling is necessary for
the data messages sharing a parallel node. A contention node Nc repre-
sents one data channels with speed σ(Nc). Messages flowing over a contention
node need to be scheduled, as depicted by the black dot in its representation. This
internal component parallelism is the main novelty of S-LAM w.r.t. the AAA model.
When transferring a data from operator O1 to operator O2, three scenarios are con-
sidered:

1. direct messaging: the sender operator itself sends the message and, as a conse-
quence, cannot execute code simultaneously. It may have direct access to the
receiver’s address space or use a messaging component.

2. DMA messaging: the sender delegates the communication to a DMA. A DMA
component must then be connected by a data link to a communication node
of the route between O1 and O2 and a control link models the ability of the
sender operator to program the DMA. In this case, the sender is free to execute
code during message transfer.

3. shared memory: the message is first written to a shared memory by O1, then read
by O2. To model this, a RAM component must be connected by a data link to
a communication node of the route between O1 and O2.

An S-LAM representation of an architecture can be built where different routes
are possible between two operators O1 and O2 [29]. The S-LAM model has for
primary purpose system time simulation. An S-LAM model can be more compact
than an AAA model because of internal component parallelism. Indeed, there is no
representation of a bus or bus arbiter in S-LAM and the same communication facility
may be first represented by a parallel node to limit the amount of necessary
message scheduling, then modeled as one or a set ofcontention nodes with
or without DMA to study the competition for bus resources. Moreover, contrary
to the AAA model, operators can send data themselves. Figure 16 illustrates such
a compact representation on the same platform example than in Figure 14. Local
PE memories are ignored because they are considered embedded in their respective
operator. The TeraNet NoC is modeled with a parallel node, modeling it
as a bus with limited throughput but with virtually infinite inter-message parallelism.

The transfer latency of a message of M Bytes over a route R = (N1,N2, ...,NK),
where Ni are communication nodes, is computed as l(M) = minN∈R(σ(N)) ∗M.
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Fig. 16 Example of an architecture model with the S-LAM quasi-MoA.

It corresponds in the linear model presented in Figure 11 where the slope is de-
termined by the slowest communication node. If the route comprises contention
nodes involved in other simultaneous communications, the latency is increased by
the time multiplexing of messages. Moreover, a DMA has an offset property and, if a
DMA drives the transfer, the latency becomes l(M) = o f f set +minNinR(σ(N))∗M,
corresponding to the affine message cost in Figure 11.

As in the AAA model, an S-LAM operator is a sequential PE. This is a limi-
tation if a hierarchical architecture is considered where PEs have internal observable
parallelism. S-LAM operators have an operator ISA type (for instance ARMv7 or
C66x) and each actor in the dataflow application is associated to an execution time
cost for each operator type. S-LAM clearly separates algorithm from architecture
but it does not specify cost computation and does not abstract computation cost.

S-LAM has introduced a compact quasi-MoA to be used for DSP applications.
The next section presents one last quasi-MoA from literature.

5.4 The MAPS Quasi-MoA

In 2012, a quasi-MoA is proposed in [5] for programming heterogeneous Multipro-
cessor Systems-on-Chips (MPSoCs) in the MAPS compiler environment. It com-
bines the multi-modality of CHARMED with a sophisticated representation of com-
munication costs. The quasi-MoA serves as a theoretical background for mapping
multiple concurrent transformational applications over a single MPSoC. It is com-
bined with Kahn Process Network (KPN) application representations [15] [2] and is
limited to the support of software applications.

The MAPS quasi-MoA is a graph Λ = 〈M,L, t, p〉 where M is a set of PEs, L is a
set of named edges called Communication Primitives (CPs) connecting them, and t
and p respectively give a type and a property to components. Each PE has properties
p(PE ∈M) = (CMPT ,XPT ,V PT ) where CMPT is a set of functions associating NFP
costs to PEs. An example of NFP is ζ PT that associates to a task Ti in the application
an execution time ζ PT (Ti). XPT is a set of PE attributes such as context switch time
of the OS or some resource limitations, and V PT is a set of variables, set late after ap-
plication mapping decisions, such as the processor scheduling policy. A CP models
a software Application Programming Interface (API) that is used to communicate
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among tasks in the KPN application. A CP has its own set of cost model functions
CMCP associating costs of different natures to communication volumes. A function
ζCP ∈ CMCP is defined. It associates a communication time ζCP(N) to a message
of N bytes. Function ζCP is a stair function modeling the message overhead and
performance bursts frequently observed when transferring data for instance with a
DMA and packetization. This function, displayed in Figure 11, is expressed as:

ζ
CP : N 7→=

{
o f f set i f N < start
o f f set + scale height×d(N− start +1)/scale widthe otherwise,

(4)
where start, o f f set, scale height and scale width are 4 CP parameters. The pri-
mary concern of the MAPS quasi-MoA is thus time. No information is given on
whether the sender or the receiver PE can compute a task in parallel to communica-
tion. A CP also refers to a set of Communication Resources (CRs), i.e. a model of a
hardware module used to implement the communication. A CRs has two attributes:
the number of logical channels and the amount of available memory in the module.
For example, a CR may model a shared memory, a local memory, or a hardware
communication queue.

This quasi-MoA does not specify any cost computation procedure from the data
provided in the model. Moreover, the MAPS architecture model, as the other archi-
tecture models presented in this Section, does not abstract the generated costs. Next
section summarizes the results of studying the four formal architecture models.

5.5 Evolution of Formal Architecture Models

The four presented models have inspired the Definition 4 of an MoA. Theses formal
models have progressively introduced the ideas of:

• architecture abstraction by the AAA quasi-MoA [13],
• architecture modeling for multi-dimensional DSE by CHARMED [17],
• internal component parallelism by S-LAM [29],
• complex data transfer models by MAPS [5].

The next section concludes this chapter on MoAs for DSP systems.

6 Concluding Remarks on MoA and quasi-MoAs for DSP
Systems

In this chapter, the notions of Model of Architecture (MoA) and quasi-MoA have
been defined and several models have been studied, including fully abstract models
and language-defined models. To be an MoA, an architecture model must capture
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efficiency-related features of a platform in a reproducible, abstract and application-
agnostic fashion.

The existence of many quasi-MoAs and their strong resemblance demonstrate
the need for architecture modeling semantics. Table 1 summarizes the objectives
and properties of the different studied models. As explained throughout this chapter,
LSLA is, to the extent of our knowledge, the only model to currently comply with
the 3 rules of MoA definition (Definition 4).

Table 1 Properties (from Definition 4) and objectives of the presented MoA and quasi-MoAs.

Model Repro-
ducible

Appli.
Agnostic

Abstract Main Objective

AADL quasi-MoA 3 7 7 HW/SW codesign of hard RT system
MCA SHIM quasi-MoA 7 7 7 multicore performance simulation
UML MARTE quasi-MoAs 7 3/ 7 7 holistic design of a system
AAA quasi-MoA 7 3 7 WCET evaluation of a DSP system
CHARMED quasi-MoA 7 3 7 DSE of a DSP system
S-LAM quasi-MoA 7 3 7 multicore scheduling for DSP
MAPS quasi-MoA 7 3 7 multicore scheduling for DSP
LSLA MoA 3 3 3 System-level modeling of a NFP

LSLA is one example of an MoA but many types of MoAs are imaginable, fo-
cusing on different modalities of application activity such as concurrency or spatial
data locality. A parallel with MoCs on the application side of the Y-chart moti-
vates for the creation of new MoAs. MoCs have the ability to greatly simplify the
system-level view of a design, and in particular of a DSP design. For example, and
as discussed by several chapters in this Handbook, MoCs based on Dataflow Process
Networks (DPNs) are able to simplify the problem of system verification by defin-
ing globally asynchronous systems that synchronize only when needed, i.e. when
data moves from one location to another. DPN MoCs are naturally suited to mod-
eling DSP applications that react upon arrival of data by producing data. MoAs to
be combined with DPN MoCs do not necessarily require the description of complex
relations between data clocks. They may require only to assess the efficiency of
“black box” PEs, as well as the efficiency of transferring, either with shared mem-
ory or with message passing, some data between PEs. This opportunity is exploited
in the semantics of the 4 formal languages presented in Section 5 and can be put in
contrast with the UML MARTE standard that, in order to support all types of trans-
formational and reactive applications, specifies a generic clock relation language
named CCSL [25].

The 3 properties of an MoA open new opportunities for system design. While ab-
straction makes MoAs adaptable to different types of NFPs, cost computation repro-
ducibility can be the basis for advanced tool compatibility. Independence from ap-
plication concerns is moreover a great enabler for Design Space Exploration meth-
ods.
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Architecture models are also being designed in other domains than Digital Sig-
nal Processing. As an example in the High Performance Computing (HPC) domain,
the Open MPI Portable Hardware Locality (hwloc) [11] models processing, memory
and communication resources of a platform with the aim of improving the efficiency
of HPC applications by tailoring thread locality to communication capabilities. Sim-
ilarly to most of the modeling features described in this chapter, the hwloc features
have been chosen to tackle precise and medium-term objectives. The convergence
of all these models into a few generic MoAs covering different aspects of design au-
tomation is a necessary step to manage the complexity of future large scale systems.

Acknowledgements I am grateful to François Berry and Jocelyn Sérot for their valuable advice
and support during the writing of this chapter.

7 List of Acronyms

AAA Adéquation Algorithm Architecture
AADL Architecture Analysis and Design Language
ADL Architecture Design Language
API Application Programming Interface
BER Bit Error Rate
B/M/D bus/multiplexer/demultiplexer
CCCR Computation to Communication Cost Ratio
CCSL Clock Constraint Specification Language
CN Communication Node
CP Communication Primitive
CPU Central Processing Unit
CR Communication Resource
DAG Directed Acyclic Graph
DMA Direct Memory Access
DPN Dataflow Process Network
DSE Design Space Exploration
DSP Digital Signal Processing
EDF Earliest Deadline First
FIFO First In, First Out data queue
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GALS Globally Asynchronous Locally Synchronous
GCM Generic Component Model
GPP General Purpose Processor
GQAM Generic Quantitative Analysis Modeling
GRM Generic Resource Modeling
HLAM High-Level Application Modeling
HPC High Performance Computing
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HRM Hardware Resource Modeling
hwloc Portable Hardware Locality
IP Intellectual Property core
ISA Instruction Set Architecture
KPN Kahn Process Network
LSLA Linear System-Level Architecture Model
LUT Lookup Table
MARTE Modeling And Analysis Of Real-Time Embedded Systems
MCA Multicore Association
MMU Memory Management Unit
MoA Model of Architecture
MoC Model of Computation
MPSoC Multiprocessor System-on-Chip
MSMC Multicore Shared Memory Controller
NFP Non-Functional Property
NoC Network-on-Chip
OMG Object Management Group
OS Operating System
OSI Open Systems Interconnection
PAM Performance Analysis Modeling
PE Processing Element
PLD Programmable Logic Device
PT Processor Type
PU Processing Unit
QoS Quality of Service
RAM Random Access Memory
RM Rate Monotonic
ROM Read-Only Memory
RSM Repetitive Structure Modeling
RTOS Real-Time Operating System
SAM Sequential Access Memory
SAM Schedulability Analysis Modeling (UML MARTE)
SDF Synchronous Dataflow
SHIM Software/Hardware Interface for Multicore/Manycore
S-LAM System-Level Architecture Model
SMP Symmetric Multiprocessing
SNR Signal-to-Noise Ratio
SRM Software Resource Modeling
TLM Transaction-Level Modeling
TU Transfer Unit
UML Unified Modeling Language
WCET Worst Case Execution Time
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