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Abstract—Contextual multi-armed bandits model decision
problems, where the properties of the possible decisions are
initially partially known, but may become better known as
time passes. Such models have numerous applications and many
algorithms have been proposed to provide approximate solutions.

In this paper, we propose an algorithm for computing mul-
tidimensional integration problems. Such problems are very
common and can be solved using the Monte-Carlo method
with the stratified sampling technique. This method consists in
partitioning the integration domain then randomly sampling the
partitions. Our algorithm considers the selection of the best
partition to sample as a multi-armed bandit problem, which can
be solved using the Upper Confidence Bound technique. We have
experimented this approach for several integration problems and
observed faster convergence rates.

Index Terms—numerical integration, stratified sampling, ma-
chine learning, UCB

I. INTRODUCTION

Computing an integral numerically is a common technique
when the analytical result is not known. This oftenly occurs
in some fields (computational physics, computational finance,
image synthesis. . . ) where efficient numerical integration
methods are needed. In one dimension, algorithms based on
numerical quadrature are generally satisfactory and standard
implementations (for instance QUADPACK [1]) are available.
However, the situation is less satisfactory for multidimensional
integrals. Indeed, the number of function evaluations required
by the quadrature methods, grows exponentially with the
dimension leading to the so-called curse of dimensionality [2].

Several methods have been proposed for computing multi-
dimensional integrals [3]. The cubature method is an extension
of the quadrature method to high dimensions. It is often
implemented with a deterministic algorithm using an adaptive
subdivision strategy (DCUHRE algorithms [4]). The sparse grid
method [5], [6] is also based on quadrature formulas but uses a
linear combination of tensor products (the Smolyak algorithm
[7]). These deterministic methods can give good results but
are generally limited to a moderate number of dimensions or
smooth integrands.

The Monte-Carlo method is a classic numerical integration
method for high dimensions. Indeed, the method is based on
function evaluations at random samples and does not depend
on the dimension [8]. However, its convergence rate is slow
so many variance-reduction techniques have been proposed

to improve the method, for instance importance sampling
and stratified sampling [9]. The idea of importance sampling
is to choose a sampling distribution which encourages the
interesting regions of the integrand. The sampling distribution
greatly impacts the efficiency of the technique; it can be
constructed iteratively, as in the VEGAS algorithm [2]. The
idea of stratified sampling is to subdivide the integration
domain and then to apply the Monte-Carlo method on each
subdivision. Here the subdivision scheme is important; it can
be constructed recursively as in the MISER algorithm [10].

Finally, the Bayesian Quadrature method [11], [12] is a
model-based approach for computing multidimensional inte-
gration. Here, the integrand is modeled as a Gaussian Process;
a posterior distribution is inferred from prior samples and the
integral is approximated as the mean of this distribution.

In this paper, we propose an improvement of the stratified
sampling technique for the Monte-Carlo method. Our method
uses a reinforcement learning technique to successively select
the most interesting subdivision to sample (i.e. a multi-armed
bandit problem). We compare our algorithm to other classic al-
gorithms on numerous testing integrands, including the classic
TESTPACK integrands [13].

II. BACKGROUND

A. Monte-Carlo integration

The Monte-Carlo method is commonly used for computing
complex integration problems [9], [14]. Such problems can be
defined by:

I =

∫
Ω

f(x)dµ(x) (1)

where Ω is the integration domain (monodimensional or mul-
tidimensional), f : Ω → R is the function to integrate and µ
is a measure function on Ω.

The Monte-Carlo method uses random sampling to estimate
the value of the integral. In its simpliest form (where the
domain Ω is the unit hypercube and the random samples Xk

are chosen uniformly and independently), the Monte-Carlo
estimator can be written as:

F =
1

K

K∑
k=1

f(Xk). (2)



The estimator F converges to I at a rate of O(K−1/2); this
can be shown by computing the expected value of F and the
evolution of the standard deviation with K.

B. Stratified sampling

Stratified sampling is a variance reduction technique which
can improve the convergence rate of the Monte-Carlo method.
The basic idea is to partition the integration domain in strata
Ωn:

Ω =

N⋃
n=1

Ωn, (3)

and then to consider a given number of samples Kn in each
stratum Ωn, with:

K =

N∑
n=1

Kn. (4)

The corresponding estimator is:

F ′ =

N∑
n=1

vn
1

Kn

Kn∑
k=1

f(Xn,k), (5)

where vn = µ(Ωn) is the volume of the stratum Ωn. The
variance of F ′ is then:

Var(F ′) =

N∑
n=1

v2
nσ

2
n

Kn
, (6)

where σ2
n = Var(f(Xn,k)). Assuming (for simplification) that

Kn = vnK, then the variance of the stratified estimator is:

Var(F ′) =
1

K

N∑
n=1

vnσ
2
n. (7)

It can be shown that the variance of the unstratified estimator
is [14]:

Var(F ) =
1

K

[
N∑

n=1

vnσ
2
n +

N∑
n=1

vn(µn − I)2

]
, (8)

where µn is the mean value of f in the stratum Ωn. This
implies that the variance of the stratified estimator is always
less than or equal to the variance of the unstratified estimator,
i.e. Var(F ′) ≤ Var(F ). However, the effective reduction of
variance depends on the partition of the integration domain
and on the number of samples chosen in each stratum.

C. Multi-Armed Bandit

One historical paradigm for online learning is defined as
the multi-armed bandit problem [15]. This problem involves
N bandit arms with unknown reward probabilities pn. At each
step a player or a program selects an arm and receives a new
reward rk where rk = 1 with probability pn and 0 otherwise.
The goal is to maximize the cumulated reward gathered over
all time steps K. This is equivalent to minimize the regret,
defined as the loss incured compared to the best arm. The
regret is defined as:

Kp∗ −
K∑

k=1

rk, (9)

where p∗ is the maximal reward probability among p1, . . . , pN .
One recent way for dealing with this problem is the Upper

Bound Confidence (UCB) algorithm [16]. This algorithm pro-
vides an optimal asymptotic bound on the regret in O(ln(K)).
At each step k, the algorithm selects an arm n which maxi-
mizes the formula:

p̂j,k +

√√√√√√2 ln

(
N∑

n=1

Kn,k

)
Kj,k

, (10)

where p̂j,k is the average reward for the arm j and Kn,k is
the number of times the arm n has already been selected.

This formula is a trade-off between exploitation and ex-
ploration. The first part of the formula corresponds to the
exploitation part as it tends to select the arm with the optimal
average reward. The second part of the formula corresponds
to the exploration part as it tends to select the arm which has
been selected the most rarely.

III. PROPOSED METHOD

In this paper, we propose a multidimensional integration
method, called UCBATURE, which combines the stratified
sampling technique and the UCB algorithm, introduced in
section II. The UCBATURE function is shown in Algorithm
1 and explained in this section.

A. Preliminary description

As the stratified sampling technique, our algorithm first
divides the integration domain Ω into regions (the strata par-
titioning defined in equation 3). If the integrand is sufficiently
“complex”, some regions of the integration domain may be
more interesting to sample. This can be seen as a multi-armed
bandit problem: each region Ωn is an arm and we have to
decide which arm to select (i.e. which region to sample).

Thus, rather than taking the same number of samples in
every partitions (as stratified sampling does), we can imple-
ment an UCB strategy to distribute the samples in a cleverer
way, using an online learning process. The algorithm will then
tend to concentrate function evaluations in interesting regions,
where the integrand varies the most or has the largest values.

B. Initializing with stratified sampling

The first step of the proposed method is the initialization
of the regions (lines 1 to 10 of Algorithm 1). Any set of
non-overlapping regions satisfying equation 3 can be used to
partition the integration domain. To simplify implementation,
we use a regular grid (i.e. all cells have the same volume), but
this is not a restriction of the method. If we split the integration
domain into N0 parts for each of the D dimensions, we get
N = ND

0 regions.
Then, the algorithm computes Kn,0 initial random samples

in each region n to approximate the mean value and the
variance of the regions. This can be seen as a stratified
sampling step, giving a rough estimation of the relevance
of every regions, in order to initialize the next step of the
algorithm (online learning).



Algorithm 1: Ucbature
Input:
N : number of regions
Ωn: region of index n
vn: volume of the region Ωn

Kn,0: number of initial samples for Ωn

K: total number of samples
f : integrand

Output:
F ′: estimation of the integral of f

1 begin
2 {initialization using stratified sampling}
3 for n← 1 to N do
4 for k ← 1 to Kn,0 do
5 sample x in Ωn

6 y← f(x)
7 Sn ← Sn + y
8 S′n ← S′n + y2

9 kn ← Kn,0

10 Vn ← S′
n

kn
−
(

Sn

kn

)2

11 {multi-armed bandit}
12 for k ←

∑N
n Kn,0 to K do

13 n← arg maxn [Ucb(k, kn, Vn)]
14 sample x in Ωn

15 y← f(x)
16 Sn ← Sn + y
17 S′n ← S′n + y2

18 kn ← kn + 1

19 Vn ← S′
n

kn
−
(

Sn

kn

)2

20 {final result}
21 F ′ ←

∑N
n vn

Sn

kn

In classic stratified sampling applications, it is generally
recommended to compute at least 10 samples in each region
[17]. Here, the stratified sampling step only aims to initialize
the following step of the algorithm so this size can be reduced
(in our experiments, we used Kn,0 = 2,∀n). Moreover, if we
have a total number of samples K, increasing the number
of initial samples for the stratified sampling step implies
decreasing the remaining number of samples for the online

learning step (to K −
N∑

n=1

Kn,0).

With these initial samples, we can compute an initial estima-
tion of the mean value and of the variance, in every regions.
Since we have to update these values with new samples, in
the online learning step, we compute the variances (without
storing the samples) thanks to the König-Huygens formula
[18], defined by:

Var(X) = E[X2]− E[X]2. (11)

Indeed, if we store, for each region n, the sum of the

integrand evaluations (Sn), the sum of the squared integrand
evaluations (S′n) and the number of samples already taken in
the region (kn), then the current variance of the region is:

Vn =
S′n
kn
−
(
Sn

kn

)2

. (12)

C. Sampling with UCB

Once regions are initialized (with their corresponding vari-
ances, sums and number of samples), we can easily apply an
UCB strategy to iteratively select the most interesting region
to sample (lines 11 to 19 of Algorithm 1).

To define the reward process of this multi-armed bandit
problem (see equation 10), we specify the score of an arm
(i.e. region) as:

Ucb(k, kn, Vn) =
Vn√
kn

+R

√
ln k

kn
, (13)

where k is the total number of function evaluations, kn is the
number of function evaluations for the arm n (which is roughly
the number of times the arm has already been selected), Vn is
the variance of the respective region (interpreted as the reward
of the arm), and R is an exploration parameter.

The left term in equation 13 is the exploitation part: it tends
to encourage regions that have a high reward (variance). The
right term is the exploration part: it tends to encourage the
arms that have not been selected many times. The parameter R
defines the importance granted to exploration: if R has a high
value the algorithm tends to sample equally in every region
(similarly to the stratified sampling technique). Thus, equation
13 ensures the trade-off discussed in section II-C.

The main loop of our algorithm consists in determining
the current best region to sample (according to UCB scores),
computing a sample in this region, and then updating the
region (variance, sums, number of samples). This process is
repeated until we reach the number of function evaluations
(K). In this way, we expect that the algorithm will preferably
sample inside interesting regions, while not totally ignoring
other regions that appear to be less attractive.

D. Computing final result

When all samples are computed, the last step consists in
computing the final value of the integral. Since the algorithm
is based on stratified sampling, equation 5 can be used. In
Algorithm 1, this means computing:

F ′ =

N∑
n=1

vn
Sn

kn
, (14)

where vn is the volume of the region n.

IV. EXPERIMENTS

In this section, we present the integrand functions we use
for evaluating the performance of the proposed method. We
also detail the testing procedure and we present and discuss
some of our results.



A. Integrand functions

We use the classic TESTPACK suite of multidimensional
integrand functions [13]. We also use more complex functions,
defined as follow:

fsphere(x) =

{
1 if ‖x‖L2

< 1

0 otherwise
, (15)

fsinc(x) = 0.2 +
0.8

D

D∑
i=1

sin(παixi)

παixi
(16)

and
fsinc2cos(x) = max [0 , fsinc2cos’(T(x))] (17)

where T is a rotation group and

fsinc2cos’(y) = [0.5 + fsinc(0.5× y)]

× 0.5

D

D∑
i=1

cos(αiyi + βi)

×

[
1 +

0.1

D

D∑
i=1

cos(50× yi)

]
.

In these definitions, D is the dimension of the integration
domain, and α and β are two parameters that affect the shape
of the integrand functions: α is a scaling vector (e.g. peak
width) and β is a displacement vector (e.g. peak location).
Thus, the previous equations define several families of func-
tions and the two parameters enable us to define different
functions and difficulties, from these families.

Some of the test integrand functions used in our experiments
are depicted Fig. 1.

B. Testing procedure

We use the classic procedure described in [13] for testing
multidimensional integration algorithms. This procedure con-
sists in applying the integration algorithm to various integrand
functions using the function families described previously. To
this end, we randomly choose two parameter vectors α and β
and normalize α to a given difficulty (the greater the norm, the
more difficult the problem is). Then, we estimate the ground-
truth of the corresponding integral using a Monte-Carlo sim-
ulation performed with a very high number of samples (10
millions). Finally, we run the integration algorithms we want
to compare on the integrand function and repeat the whole
procedure, for another random integrand.

To evaluate the results of an algorithm, we compute the
mean absolute error, defined by:

1

M

M∑
m=1

∣∣∣Im − Îm∣∣∣ (18)

where M is the number of random integrands (in our ex-
periments: one thousand for each family), Im is the estimated
ground-truth for the integrand i and Îm is the resulting integral
returned by the algorithm.

C. Results and discussion

We compare the UCBATURE algorithm with two clas-
sic numerical integration algorithms: MONTE-CARLO and
STRATIFIED-SAMPLING. For UCBATURE and STRATIFIED-
SAMPLING, we partition each dimension into N0 = 3 parts,
which means the total number of regions is N = 3D. For
the exploration parameter R of UCBATURE, we tried several
values and selected the best one, for each integrand family.
These parameters may be tuned more finely, since the dimen-
sion, the number of regions and the bounds of the integration
domain may affect the performance of the algorithms. We do
not investigate deeply the tuning of the common parameters
because this affect similarly all the algorithms, and our goal
is to study their differences.

Our results show that UCBATURE generally converges faster
than MONTE-CARLO and STRATIFIED-SAMPLING (see Table
I and Fig. 2): for a given number of integrand evaluations,
our algorithm has a lower average error than the two other
algorithms. This benefit is clearly noticeable on single-peak
integrands (e.g. gaussian and discontinuous), however it is
less noticeable on more global integrands (e.g. oscillatory
and sinc2cos). This can be explained by the fact that “global
integrands” have a large but homogeneous variance across
all regions, therefore no region is significantly more interest-
ing than the other ones. Thus, UCBATURE mainly performs
exploration hence performances are similar to STRATIFIED
SAMPLING. A thinner partitioning should make the regions
more heterogeneous and increase UCBATURE efficiency.

In higher dimensions, we observe a slightly slower learn-
ing process (see Table II and Fig. 3): with few integrand
evaluations UCBATURE has generally greater errors than
STRATIFIED-SAMPLING but with more integrand evaluations
UCBATURE becomes better. This can be explained by the
higher number of regions: since the algorithm privileges ex-
ploitation during the first integrand evaluations, it needs more
samples to learn the interesting regions to sample.

V. CONCLUSION

In this paper, we propose an online learning approach to
compute multidimensional numerical integration. Our method
is based on the Monte-Carlo method with the stratified sam-
pling technique, and uses the Upper Counfidence Bound
technique to iteratively select the most interesting region to
sample. Our experiments indicate that this approach brings
noticeable benefits and, more generally, that machine learning
methods seem promising for solving numerical integration
problems.

Since we use a naive partitioning scheme, the proposed
algorithm is limited to moderate dimensions [19]. In future
works, we would investigate using an adaptive stratification
scheme or a post-stratification method [20] to overcome this
problem. Finally, we would simplify the use of the algorithm
by automatically tuning the exploration parameter.



(a) Oscillatory (TESTPACK [13]) (b) Product peak (TESTPACK [13])

(c) fsinc (equation 16) (d) fsinc2cos (equation 17)

Fig. 1: Some of the integrand functions used in our experiments (for a 2D integration domain).

TABLE I: Integration error of the three algorithms for the tested integrand families, in 2D.

integrand 103 evaluations 106 evaluations
MONTE-CARLO STRATIFIED UCBATURE MONTE-CARLO STRATIFIED UCBATURE

oscillatory 0.070 0.068 0.052 0.0024 0.0023 0.0017
product peak 39.89 31.83 19.04 1.27 1.04 0.70
gaussian 0.0096 0.0086 0.0053 0.00030 0.00028 0.00019
C0-continuous 0.0071 0.0062 0.0043 0.00024 0.00022 0.00016
discontinuous 0.0039 0.0040 0.0030 0.00013 0.00012 0.00010
sphere 0.041 0.037 0.03 0.0014 0.0011 0.0009
sinusc 1.74 1.26 1.14 0.057 0.042 0.037
sinc2cos 0.36 0.30 0.22 0.012 0.01 0.008

TABLE II: Integration error of the three algorithms for the tested integrand families, in 5D.

integrand 103 evaluations 106 evaluations
MONTE-CARLO STRATIFIED UCBATURE MONTE-CARLO STRATIFIED UCBATURE

oscillatory 0.54 0.32 0.30 0.017 0.011 0.011
product peak 1342 1032 1058 41 34 28
gaussian 0.020 0.017 0.019 0.00065 0.00057 0.00043
C0-continuous 0.010 0.0084 0.0087 0.00034 0.00029 0.00024
discontinuous 0.0020 0.0018 0.0013 6.40e−5 6.27e−5 5.18e−5
sphere 0.31 0.25 0.31 0.01 0.008 0.007
sinusc 8422 6545 8025 392 291 280
sinc2cos 175 163 165 5.65 4.98 4.63
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Fig. 2: Evolution of the integration error for the 2D gaussian
integrand family, according to the number of integrand evalu-
ations (R = 0.01, N0 = 3).
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Fig. 3: Evolution of the integration error for the 5D gaussian
integrand family, according to the number of integrand evalu-
ations (R = 0.0125, N0 = 3).
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