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Abstract

There is a need to enhance the performance of Solar Power Tower (SPT)
systems in view of their significant capital costs. In this context, the preliminary
design step is of great interest as improvements here can reduce the global
cost. This paper presents an optimization method that approaches optimal
SPT system design through the coupling of a Particle Swarm Optimization
algorithm and a Monte Carlo algorithm, in order to assess both the yearly
heliostat field optical efficiency and the thermal energy collected annually by
an SPT system. This global optimization approach is then validated on a well-
known SPT system, ie the PS10 Solar Thermal Power plant. First, the direct
model is compared to in-situ measurements and simulation results. Then, the
PS10 heliostat field is redesigned using the optimization tool. This redesign
step leads to an annual gain between 3.34 % and 23.5 % in terms of the thermal
energy collected and up to about 9 % in terms of the heliostat field optical
efficiency from case to case.

Keywords: global optimization, solar power tower, lifetime performance,
heliostat field layout

1. Introduction

A Solar Power Tower (SPT) system is a complex set composed of several dif-
ferent subsystems. It consists of a heliostat field, tower, receiver, heat transport
system, power conversion system, plant control, optionally a thermal energy
storage system, etc. The solar radiation is reflected and concentrated by the he-
liostat field onto a receiver. In the receiver, the concentrated energy is typically
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used to generate heat to produce electricity through a thermodynamic cycle, to
synthesize solar fuels or supply an industrial process. According to Kolb et al.
(2007), a large proportion of the cost of an SPT is devoted to the heliostat field
(up to 50%). As a consequence, it is important to obtain an optimal design
for this element. Heliostat fields have been widely researched since the 1970’s,
with several studies particularly dedicated to the optimization of this subsys-
tem. Among the most recent developments, some interesting articles can be
mentionned: (Pitz-Paal et al., 2011), (Carrizosa et al., 2015), (Wei et al., 2007),
(Zhang et al., 2016) and (Ramos and Ramos, 2012) focuse on SPT optimization
notably with global optimization methods ; (Noone et al., 2012), (Yao et al.,
2015) and (Zhang et al., 2016) introduce innovative pattern for heliostat lay-
out (in particular phyllotactic spiral) ; (Sánchez and Romero, 2006) propose a
new quantity (yearly normalized energy surfaces) as the reference criterion for
heliostat field generation. All the above-mentioned articles are based either on
a computation of the power collected at one or more specifically chosen peri-
ods of the year, considered to be representative of the central receiver’s overall
performance, or on an approximation of the yearly performance of the solar
plant, obtained by making significant assumptions. The choice of the Monte
Carlo method to perform this study is an appropriate one, because it allows the
simulation of complex geometries and becomes particularly useful when a large
number of parameters are involved. This work therefore proposes the use of
an efficient Monte Carlo algorithm that will provide an accurate estimation of
both the yearly heliostat field optical efficiency and the yearly thermal energy
collected (Farges et al., 2015). In order to select the best set of parameters to
optimize the optical efficiency of the sub-system, this Monte Carlo algorithm is
then coupled with a population-based stochastic algorithm, namely the Parti-
cle Swarm Optimization (PSO) algorithm (Kennedy and Eberhart, 1995). The
section 2 is devoted to a brief description of the direct model to summarize the
previous work by Farges et al. (2015) and to introduce the yearly heliostat field
optical efficiency model. In section 3, all parameters taken into account during
the optimization process are defined with their lower and upper bounds. In
section 4, the optimization algorithm (PSO) is presented and its application to
concentrated solar power plant design is discussed. The direct model and the
global numerical tool are presented in section 5. This methodology is then ap-
plied to a test case: the PS10 Solar Thermal Power plant. The accuracy of the
direct model is first compared to the existing system for validation purposes.
Then a redesign of the PS10 heliostat field is carried out for various heliostat
size classes and results for both systems (existing and redesigned) are compared.

2. Description of the direct model

This paper presents a new approach using a direct model based on Monte
Carlo methods that is further combined with a stochastic optimization algo-
rithm. Achievement of an optimization task requires an efficient direct model
of the target function called during the optimization process.
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2.1. Modelling the yearly heliostat field optical efficiency
In the present case, the direct model estimates the annual performance of

an SPT. A model dealing with heliostat field optical efficiency commonly found
in academic literature results in the product of instantaneaous optical efficiency
terms related to optical behavour of heliostat fields. These terms deal with
cosine effect, shading, blocking and spillage phenomena, interception efficiency,
atmospheric attenuation and mirror reflectivity. Equation (1) presents this cur-
rent formula (Noone et al., 2012), (Zhang et al., 2016), (Yao et al., 2015). This
instantaneous optical efficiency makes it possible to calculate an annual optical
efficiency.

η = ηcos × ηsb × ηitc × ηaa × ηref (1)

This work introduces an optical efficiency model which differs from this com-
monly used model. Assuming that each sun ray has its self efficiency ηray, this
efficiency is equal to 1 when the ray hits the receiver and equal to 0 other-
wise. This ray efficiency takes into account optical phenomena such as shading,
blocking and spillage effect as well as interception efficiency. Then, a ray could:

• hit the receiver ⇒ ηray = 1

• be shaded (Shading effect) ⇒ ηray = 0

• be blocked (Blocking effect) ⇒ ηray = 0

• miss the receiver (Spillage effect) ⇒ ηray = 0

As a consequence, the instantaneous efficiency ηi of a ray i is presented in eq. (2):

ηi = ηray × ηcos × ηaa × ρH (2)

with:

ηcos Cosine efficiency: calculation of the cosine efficiency is straightforward us-
ing the Law of Reflection: it consists in a dot product between the incident
direction of the sun ray ωS and the normal direction to the heliostat at
the reflection location nh, as presented in eq. (3)

ηaa Atmospheric attenuation: sun radiation reflected by an heliostat towards
the receiver is going to be impacted by radiative losses due to atmospheric
attenuation. This attenuation is calculated as presented in eq. (4) with d
the distance between both ends of a sun ray (Schmitz et al., 2006).

ρh Heliostats reflectivity

ηcos = ωS · nh (3)

ηaa =

{
0.99321− 0.0001176d+ 1.97 · 10−8d2 d ≤ 1000m
exp(−0.0001106d) d > 1000m

}
(4)
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Thus, instantaneous heliostat field optical efficiency is obtained by averaging
efficency of Nr sun rays as presented in eq. (5). Nevertheless, it is much more
interesting to focus on yearly heliostat field optical efficiency ηY . Rays are
sampled at any time of the year and yearly heliostat field optical efficiency is
obtained by averaging efficency of Nr sun rays as a fonction of time ηi(t) as
presented in eq. (6). This model tracks sun positions imitating a typical year’s
cycle. Heliostats are redirected according to the position of the sun in the sky,
making the geometry of the SPT dynamic.

η =

∑Nr

i=1 ηi
Nr

(5)

ηY =

∑Nr

i=1 ηi(t)

Nr
(6)

2.2. Modelling the yearly energy collected
In addition to the yearly heliostat field optical efficiency, it is possible to

evaluate, at the same time and without computational overtime, the yearly
energy collected. From a radiative point of view, the evaluated quantity is the
solar energy E at the entrance of the receiver after concentration by the heliostat
field. As presented in previous section, this model tracks sun positions. The
quantity of interest is taken from the solar radiation data for a chosen area,
coming from the Typical Meteorological Year (TMY) file. Being a function
of the Direct Normal Irradiance (DNI), the yearly energy estimation requires
a DNI value for each instant. This value is obtained from linear interpolation
between consecutive TMY data, sampled every hour. As a fonction of both DNI
and heliostat field optical efficiency, this model has the advantage of taking into
account the unequal annual distribution of solar resource beside the optical
efficiency model.

2.3. MCST Monte Carlo algorithm
This Monte Carlo algorithm, previously presented as the MCST1 algorithm

(Farges et al., 2015), takes advantage of Monte Carlo integral formulation as
outlined by de La Torre et al. (2014). An overview of the specific Monte Carlo
algorithm, dealing with the sun’s positions in the sky, is presented in fig. 1. Some
dates are sampled using an importance sampling approach, then locations on the
heliostat field where the sun rays are first reflected are uniformly sampled, after
which the algorithm follows the behaviour of the rays in the SPT, ie computes
reflections until each ray hits the final receiver or is lost. The MCST algorithm
is thoroughly explained in (de La Torre et al., 2014), so it was decided not to
go into detail here but only to reintroduce this algorithm with the addition of
the yearly heliostat field optical efficiency estimation:

1MCST : Monte Carlo Sun Tracking
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(1) A DNI is uniformly sampled over the lifetime period according to pτ (t)
and the corresponding one-hour time-integral is retained

(2) A location r1 is uniformly sampled on the reflective surface of the whole
heliostat field H+ of surface SH+

(3) A direction ωS is uniformly sampled within the solar cone ΩS of angular
radius θS .

(4) An effective normal vector nh is sampled around the ideal normal vector n1

at r1 representing reflection and pointing out imperfections. ω1 corresponds
to the specular reflection of −ωS by a surface normal to nh

(5) r0 is defined as the first intersection with a solid surface of the ray starting
at r1 in the direction ωS

(a) If r0 belongs to a heliostat surface H or to the receiver R, a shading
effect appears and Monte Carlo weights are ŵηY

= 0 and ŵE = 0 ;
(b) If r0 doesn’t exist (or is at the sun), the location r2 is defined as the

first intersection with a solid surface of the ray starting at r1 in the
direction ω1

(i) If r2 belongs to something other than the receiver R, there is a
blocking effect and Monte Carlo weights are ŵηY

= 0 and ŵE = 0;
(ii) If r2 does not exist there is a spillage effect and Monte Carlo

weights are ŵηY
= 0 and ŵE = 0;

(iii) If r2 belongs to the receiver R, Monte Carlo weights are ŵηY
=

ρh × ηcos(t)× ηaa(t)

pτ (t)
and ŵE = ŵηY

×DNI(t)× SH+

The related integral formulation is recalled in eq. (7):

(ηY , E) =

∫
Lifetime

pτ (t) dt

∫
DH+

pR1(r1) dr∫
DΩS

(t)

pΩS(t)(ωS(t)) dω

∫
DNh

pNh
(nh|ωS(t); b) dn (ŵηY

(t), ŵE(t))
(7)

with time-dependent probability density functions

pΩS(t) =
1∫

ΩS(t)
dωS(t)

=
1

2π(1− cos θS(t))
(8)

pNh
(nh|ωS(t); b) =

(
1 +

1

b

)
× (nh · n1)

1+ 1
b

2π ×
(
1− cos2+

1
b

(
π

4
− 1

2
× arccos (ωS(t) · n1)

)) (9)

pτ (t) =
DNI(t)∫

Lifetime DNI(t) dt
(10)
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and Monte Carlo weights

ŵηY
(t) =


H(r0 ∈ H ∪R)× 0

+H(r0 /∈ H ∪R)×

H(r2 /∈ R)× 0

+H(r2 ∈ R)× ρh × ηcos(t)× ηaa(t)

pτ (t)


(11)

ŵE(t) = ŵηY
(t)×DNI(t)× SH+ (12)

r1

r0

ωS

ΩS

nh

n1

ω1

r2

R

H

Figure 1: Schematic representation of the ray tracing process on a Solar Power Tower system
with MCST

2.4. A specific computing framework
The direct model is implemented in the numerical framework EDStaR (de

La Torre et al., 2014). This tool yields the practical implementation of a Monte
Carlo algorithm for the radiative heat transfer model, making use of an integral
formulation, and takes into consideration zero-variance approaches and sensi-
tivity estimation as presented by Hoogenboom (2008) and Roger et al. (2005).
Taking advantage of advanced rendering techniques developed by the computer
graphics community, it can manage complex geometries with the use of the
numerical library PBRT (Physically Based Rendering Techniques) (Pharr and
Humphreys, 2010). It benefits from all the modern possibilities of computing
such as massive parallelization and acceleration of ray tracing in a complex ge-
ometry. Different solar applications have already been simulated with this tool
(de La Torre et al., 2014). EDStaR permits very efficient implementation of the
direct model. With this tool, updating of the geometry is performed quickly and
a simulation process can be achieved very rapidly, as presented in section 5.2.
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3. Optimization

This section presents the parameters of the optimization tool dedicated to
the design of Solar Power Tower systems. This tool couples the Monte Carlo
algorithm presented in section 2.3 with an optimization method. The numerical
code deals with several parameters defining the SPT geometry, such as tower
size, receiver size, heliostat shape and size, field layout, etc. All these parameters
need to be taken into account by any target function which results in a complex
mix of opposite effect specifications.

3.1. Target function and parameters
The direct model estimates both the yearly heliostat field optical efficiency

and the yearly thermal energy collected by an SPT. Thus, these two values can
represent the target function of the optimization process. In both cases, the
chosen target function ft is influenced by several parameters defining the helio-
stat field and the tower of an SPT. A well-known geometrical pattern has been
chosen to design the heliostat field: a radial staggered layout. The MUEEN
method (Siala and Elayeb, 2001) is then implemented. This graphical method,
consisting of a no-blocking radial staggered layout, is an iterative algorithm
which adds a heliostat to the field until a regulatory limit is reached. This
layout is based on groups of uniform heliostats. According to land occupation,
a new group will be created in order to cover the available space. This spe-
cific function standardizes heliostat shapes: as each heliostat is represented as
a curvated mirror, this curvature will be set for a whole group. The heliostat
field is then formed by a number NG of heliostat groups of the same shape.
This characteristic should lead to a reduction in the cost of the heliostat field.
Likewise, with a view to both economy and optical efficiency, the size of the he-
liostat is also standardized. As regards the tower and the receiver, optimization
parameters are mainly size parameters. Thus, the design parameters consist of:

• The width wh and height hh of the heliostats

• The width wr and height hr of the receiver

• The tilt angle of the receiver αr

• The height of the tower Ht

The design of an SPT is subject to several constraints. As a consequence, lower
and upper bounds restrict free parameters. The aim of optimization is to maxi-
mize the target function ft dealing with these parameters. To identify the most
suitable method, the particularities of the target function ft need to be investi-
gated. Derivatives to parameters that modify the domain of integration cannot
easily be obtained by the Monte Carlo method, as demonstrated by Roger et al.
(2004). As a consequence, gradient-based methods cannot be applied efficiently
in this case. Moreover, the non-smooth behaviour of the target function ft can
be deduced intuitively, given the complexity of the whole system. Due to its
non-smooth behaviour, the target function ft may have many local optima. It
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seems clear that global optimization methods are a suitable solution to investi-
gate this kind of issue. Other work on SPT optimization has already analysed
this possibility (Pitz-Paal et al., 2011), (Ramos and Ramos, 2012), (Carrizosa
et al., 2015). This Monte Carlo based direct model is then coupled with a
particle swarm optimizer (PSO) in order to achieve SPT optimal design.

4. Stochastic optimization with PSO

Many optimization approaches could be applied to the direct model intro-
duced above. Among all these existing optimization methods, a stochastic par-
ticle swarm optimizer (PSO) algorithm is selected. There are several reasons for
this, one being that it has been proven by Wetter and Wright (2004) that PSO
is an efficient optimization method when dealing with non-smooth simulation-
based optimization. Moreover, a particle swarm optimization algorithm, as a
zero order optimization method, does not need to have derivatives with respect
to one of the free parameters. Furthermore, PSO is a stochastic method and
thus allows us to find the global optimum among all the local optima.

4.1. The standard PSO algorithm
This well-known population-based optimization method was first introduced

by Kennedy and Eberhart (1995). According to this algorithm, each particle i
of the swarm has, at iteration k, a position xk

i in the search space, a velocity
vki and a personal best position pi. This personal best position corresponds to
the xi maximizing the target function ft. Additionally, the algorithm considers
g, which is the global best position, i.e. among the particles of the swarm,
the position of the one giving the highest target function. At iteration k + 1,
each particle position xk+1

i is updated with its previous position xk
i and its

updated velocity vk+1
i , as presented in Eqs. eqs. (13) and (14). The 2 numbers

r1 and r2 are random numbers uniformly sampled in [0, 1] and used to effect
the stochastic nature of the algorithm. The weight inertia w is used to control
the convergence behaviour of the PSO. The coefficients c1 and c2 control how
far a particle will move in the search space in a single iteration. c1 leads the
individual behaviour of the particle whereas c2 leads its social behaviour2. In
addition, a velocity clamping is set with a maximum velocity gain vmax defined
by |vmax| = k×(xmax−xmin)/2 with k a user-supplied velocity clamping factor
fixed to 0.1.

vk+1
i = w × vki + c1 × r1 × (pi − xk

i ) + c2 × r2 × (g − xk
i ) (13)

xk+1
i = xk

i + vk+1
i (14)

2As this work is not focused on PSO performance, set values for c1 and c2 parameters are
determined in accordance with PSO basic principles: c1 = c2 = 1
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Each particle generated by the PSO (i.e. each generated SPT system geometry
described with a set of parameters) is evaluated with the direct model. Simu-
lation results are used to establish particle performance, as they are the inputs
of the target function ft.

5. Results

In order to validate our method, an existing Central Receiver System is
studied. PS10, the 11 MWe power plant, has been the subject of several studies
and its main interest is that a considerable amount of data is available, notably
proposed by Noone et al. (2012), Osuna et al. (2004) and Yao et al. (2015).

5.1. The PS10 solar thermal power plant test case
The PS10 Solar Power Plant is the world’s first commercial concentrated

solar tower power plant. This plant is located near Seville, in Andalusia, Spain.
PS10 characteristics are presented in several scientific publications (Noone et al.,
2012) (Osuna et al., 2004). The heliostat field consists of 624 heliostats following
a radial staggered layout. Each heliostat has a surface measuring roughly 121 2m
concentrating sun rays to the receiver. This solar receiver is placed on the top
of a 115 m high tower and feeds a steam turbine. This power plant is designed
to achieve a yearly production of 23 GW he and about 95 GW hth(Osuna et al.,
2006). The characteristic parameters of this solar power plant are summarized
in table 1 and the solar field is depicted in fig. 2.

5.2. Application of the direct model with PS10 specifications
The example of application is the existing PS10 solar thermal power plant.

The original PS10 heliostat field is accurately reproduced using available data,
particularly concerning the heliostat coordinates. Appropriate irradiance data
are obtained, as explained in section 2.2, from a Typical Meteorological Year
file concerning Seville weather data (Blair et al., 2014). Achieving this simu-
lation process took less than a minute for 50000 realizations on a laptop com-
puter3. The resulting yearly thermal energy at the entrance of the collector
is 89.80 ± 0.11 GW hth which corresponds to the capacity of the PS10 SPT:
95 GW hth in (Osuna et al., 2006). The yearly optical efficiency is also com-
puted, leading to a consistent value: ηY = 0.632. This value is very closed
to the yearly optical efficiency obtained with WinDELSOL1.0: ηY = 0.6401
(Noone et al., 2012). It can be concluded that the model is accurate, taking
into account the significant variation that can appear between data for a typical
meteorological year and the real weather conditions.

3The computation time is given for a desktop PC with AMD Phenom II X6 1055T 2.8 GHz
and 12 Go RAM.
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Figure 2: Original PS10 solar field

5.3. Redesign of PS10
In order to redesign the PS10 heliostat field, some assumptions are made.

Firstly, the present work focused on yearly thermal energy and yearly heliostat
field optical efficiency: this optimization process did not take into account cost
criteria. A constraint is set on the land surface area according to the PS10
specifications. The optimized heliostat field layouts are obtained by optimizing
only heliostat geometry. Hence, the tower and the receiver characteristics are
kept constant. As previously discussed, the heliostat field pattern is defined
according to the MUEEN method (Siala and Elayeb, 2001). As a consequence,
the parameters used for the optimization are width and height of heliostats.
Several cases are studied, divided into 6 heliostats size groups, for both quan-
tities of interest, ie yearly thermal energy E and yearly heliostat field optical
efficiency ηY . This breakdown allows to identify several optimal heliostat fields
with comparable levels of performance. This leads to 12 redesigned heliostat
fields, as presented in table 2 which set out lower and upper bounds of consid-
ered parameters. PSO parameters used for optimization processes are presented
in table 3. Using these assumptions, the 12 optimization processes are run. Ta-
bles 4 and 5 summarize the overall results. Table 4 provides outcomes related
to heliostat fields geometry parameters and table 5 presents performance for
each case in terms of yearly energy and yearly optical efficiency. The amount of
yearly thermal energy collected at the entrance of the receiver increased from
89.8 GW hth to at most 110.9 GW hth, leading to a net increase of about 23.5 %
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(SPT Ref. A1). The yearly heliostat field optical efficiency increased from 0.632
to at most 0.69, leading to a net increase of about 9.2 % (SPT Ref. B2). One
can notice a significant increase of the optimized quantities: between 12.5 %
and 23.5 % towards yearly energy and between 7.59 % and 9.2 % with regards
to yearly optical efficiency. When focusing on the total mirror surface (fig. 3)
to analyse table 5, it appears that for ft = E cases, the yearly energy increase
observed for each case is mainly due to a mirror surface increase like in case A1.
On the other hand, it implies a negative impact on the yearly optical efficiency
(−2.37 %) On the contrary, for ft = ηY cases, with a mirror surface in the same
range as the original PS10 heliostat field, the yearly heliostat field optical effi-
ciency is significantly increased because of an improved layout: the localisation
of each heliostat has been designed to be optimal.

Results on yearly energy are shown on fig. 4. A global trend can be seen:
no matter the objective function, the amount of thermal energy collected by
an optimized SPT increased when heliostat size decreased. This is mainly be-
cause of an improved floor area occupation.This trend is notably observable at
the Ivanpah solar electric generating system (BrightSource, 2015), where each
heliostat measures an area of 15 m2. The opposite effect can be seen on fig. 5
when the optimized quantity is the yearly energy E: the yearly optical effi-
ciency is adversely affected by the heliostat size decreasing. On the contrary,
when the optimized quantity is the yearly heliostat field optical efficiency ηY ,
fig. 5 shows a constant trend independently of size variations. Optimized helio-
stat fields layouts are presented on figs. 6 and 7. A comparison between these
heliostat fields and the original one, presented on fig. 2 reveales high discrepan-
cies. It is remarkable that the land cover of the original heliostat field is more
uniform whereas optimized layouts appeared more scattered. Moreover, the re-
designed heliostat field benefits from the group-based behaviour of the MUEEN
method: there are only a limited number of heliostat geometries for the whole
field: from 4 groups to 7 groups. In terms of optical efficiency, this leads to a
non-negligible standardization effect. The computational time devoted to one
optimization routine is approximately 4 h on a laptop computer4.

6. Conclusion

This work presents a new tool to optimally design solar power tower systems.
The aim of the optimization step, based on a Particle Swarm Optimization
algorithm, is to maximize the yearly thermal energy collected at the entrance
of a solar receiver and/or the yearly heliostat field optical efficiency, using an
efficient Monte Carlo algorithm. These quantities could easily be estimated for
the solar plant lifetime (ie 50 years) rather than for a single year, as presented
here. In doing so, ageing effects of components and potential climate change
for the considered location could be studied. The PS10 solar thermal power

4The computation time is given for a desktop PC with AMD Phenom II X6 1055T 2.8 GHz
and 12 Go RAM.
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plant is used as a validation case for the direct model using the Monte Carlo
method. This power plant is also redesigned using this methodology leading to
a significant improvement, between 3.34 % and 23.5 % in terms of yearly thermal
energy collected and up to about 9 % in terms of yearly heliostat field optical
efficiency. These significant gains confirms our expectation that considering
accurate time-integrated performance of an SPT system during the design step
leads to remarkable improvement. A geometrical pattern is used for the redesign
step. Based on a radial staggered layout (MUEEN method), this pattern is
particularly restrictive when considering the blocking effect. Implementation of
a more flexible pattern should increase the SPT performance. However, this
pattern allows some standardization of heliostat shapes. In forthcoming work,
the direct model will integrate the estimation of the final output, ie electricity
production, and the SPT system investment cost, so as to optimize the Levelized
Cost of Energy (LCOE) rather than the yearly thermal energy collected and/or
the yearly heliostat field optical efficiency.
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Figure 6: Redesigned PS10 solar fields (1)
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Figure 7: Redesigned PS10 solar fields (2)
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Nomenclature

Roman symbols
AH Area of each heliostat in m2

At Total area of mirror in m2

c1 Attraction parameter for in-
dividual behaviour of the
particle

c2 Attraction parameter for so-
cial behaviour of the particle

d Distance between both ends
of a sun ray in m

DNI Direct normal irradiance in
W m−2

E Yearly average energy in
GW h

ft Target function
g Global best position of the

swarm
H Heliostat surface (the expo-

nent + indicates the active
side)

H The Heaviside step function
hr Receiver height in m
Ht Height of the Tower in m
k User-supplied PSO velocity

clamping factor
kmax Number of iterations per-

formed during PSO run
n1 Ideal normal at x1

nh Effective normal at x1

around the ideal normal n1

NG Number of MUEEN pattern
heliostat group

Nh Number of heliostats in the
field

Nr Number of sun rays
pi Particle i best position
PSO Particle Swarm Optimizer
rj Point in the geometry
r1 Random number r1 ∼ U(0, 1)
r2 Random number r2 ∼ U(0, 1)
SPT Solar Power Tower

R Receiver (the exponent + in-
dicates the active side)

t Time in s
TMY Typical Meteorological Year
vki Current velocity of the i par-

ticle at the k iteration
vr Receiver vertical shift in m
w Inertia weight
hh Heliostat height in m
wh Heliostat width in m
ŵi Monte Carlo weight of the i

variable
wr Receiver width in m
xk
i Current position of the i par-

ticle at the k iteration
xmax Maximal position for a par-

ticle
xmin Minimal position for a parti-

cle
Greek symbols
αr Receiver tilt angle in rad
η Instantaneous heliostat field

optical efficiency
ηaa Atmospheric attenuation

efficiency
ηcos Cosine efficiency
ηi Global sun ray efficiency
ηitc Interception efficiency
ηray Sun ray efficiency
ηsb Shading and blocking effi-

ciency
ηY Yearly heliostat field optical

efficiency
Ωs Solar cone in sr
ω1 Direction after reflection in

rad
ωs Direction inside the solar

cone in rad
ρh Heliostat reflectivity
σh Heliostat optical error
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Table 1: PS10 characteristics

Location Sanlùcar La Mayor
Latitude 37.2°N
Latitude 6.25°W

Heliostats
Number 624
Reflectivity ρh 0.88
Optical error σh 2.9 mrad
Width wh 12.84 m
Height hh 9.45 m

Receiver
Vertical shift vr 100.5 m
Tilt angle αr 12.5°
Width wr 13.78 m
Height hr 12 m

Table 2: Lower and upper bounds of parameters

ft Heliostat parameters Lower bound Upper bound SPT Ref.
m m

E wh, hh 0.5 6.0 A1

ηY wh, hh 0.5 6.0 A2

E wh, hh 3 9.0 B1

ηY wh, hh 3 9.0 B2

E wh, hh 6.0 12.0 C1

ηY wh, hh 6.0 12.0 C2

E wh, hh 9.0 15.0 D1

ηY wh, hh 9.0 15.0 D2

E wh, hh 12.0 18.0 E1

ηY wh, hh 12.0 18.0 E2

E wh, hh 15.0 20.0 F1

ηY wh, hh 15.0 20.0 F2

Table 3: PSO specifications

PSO parameters
Individual behaviour c1 1
Social behaviour c2 1
Inertia w 0.6
Number of particles 50
Number of iteration w 200
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Table 4: Comparison of characteristics of redesigned heliostat fields

SPT Ref. Nh Ah wh hh At ∆At NG

m2 m m m2 %
PS10 624 121 12.84 9.45 75 504
A1 11 331 8.4 3.89 2.15 94 766 25.5 6
A2 9461 8.4 3.07 2.74 79 584 5.4 7
B1 3040 30.6 7.24 4.22 92 880 23 5
B2 1618 46.9 7.24 6.49 75 920 0.5 5
C1 1651 53.2 8.87 6 87 866 16 3 5
C2 1048 75 9.37 8.0 78 558 4 5
D1 705 123.2 13.02 9.46 86 834 15 4
D2 426 169.4 14.09 12.02 72 148 −4.4 4
E1 333 251 17.99 13.95 83 569 10.7 4
E2 278 254.4 16.63 15.3 70 734 −6.3 4
F1 272 295.9 18.32 16.15 80 476 6.5 4
F2 248 291 18.49 15.74 72 176 −4.4 4

Table 5: Comparison of performance of redesigned heliostat fields

SPT Ref. E ∆E ηY ∆ηY

GW hth % %
PS10 89.8 0.63
A1 110.9 23.5 0.617 −2.37
A2 103.4 15.14 0.689 9.02
B1 110 22.49 0.627 −0.79
B2 99 10.24 0.69 9.18
C1 107.2 19.38 0.647 2.37
C2 101.4 12.92 0.683 8.07
D1 106.6 18.71 0.651 3.01
D2 92.9 3.45 0.68 7.59
E1 103.8 15.59 0.656 3.8
E2 91.1 1.45 0.682 7.91
F1 101 12.47 0.66 4.43
F2 92.8 3.34 0.68 7.59
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