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THE PRIMAL-DUAL ACTIVE SET STRATEGY AS A SEMISMOOTH
NEWTON METHOD

M. HINTERMÜLLER† , K. ITO‡ , AND K. KUNISCH†

Abstract. This paper addresses complementarity problems motivated by constrained optimal
control problems. It is shown that the primal-dual active set strategy, which is known to be extremely
efficient for this class of problems, and a specific semismooth Newton method lead to identical
algorithms. The notion of slant differentiability is recalled and it is argued that the max-function
is slantly differentiable in Lp-spaces when appropriately combined with a two-norm concept. This
leads to new local convergence results of the primal-dual active set strategy. Global unconditional
convergence results are obtained by means of appropriate merit functions.

Key words. complementarity problems, function spaces, semismooth Newton method

1. Introduction. This paper is motivated by linearly constrained quadratic
problems of the type {

minJ(y) = 1
2 (y,Ay) − (f, y)

subject to y ≤ ψ,
(P)

where A is positive definite and f, ψ are given. In previous contributions [IK1, IK2,
BIK, BHHK] we proposed a primal-dual active set strategy as an extremely efficient
method to solve (P). We shall show in the present work that the primal-dual active
set method can be interpreted as a semismooth Newton method. This opens up a
new interpretation and perspective of analyzing the primal-dual active set method.
Both the finite dimensional case with y ∈ R

n and the infinite dimensional case with
y ∈ L2(Ω) will be considered. While our results are quite generally applicable the
main motivation arises from infinite dimensional constrained variational problems
and their discretization. Frequently such problems have a special structure which
can be exploited. For example, in the case of discretized obstacle problems A can be
an M-matrix, and for constrained optimal control problems A is a smooth additive
perturbation of the identity operator.

The analysis of semismooth problems and the Newton algorithm to solve
such problems has a long history for finite dimensional problems. We refer to se-
lected papers [Q1, Q2, QS] and the references therein. Typically, under appropriate
semismoothness and regularity assumptions locally superlinear convergence rates of
semismooth Newton methods are obtained. Since many definitions used in the above
papers depend on Rademacher’s theorem, which has no analogue in infinite dimen-
sions, very recently, e.g., in [CNQ, U] new concepts for generalized derivatives and
semismoothness in infinite dimensional spaces were introduced. In our work we pri-
marily use the notion of slant differentiability from [CNQ] which we recall for the
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reader’s convenience at the end of this section. For the problem under considera-
tion it coincides with the differentiability concept in [U]. This will be explained in
section 4.

Let us briefly outline the structure of the paper. In section 2 the relationship
between the primal-dual active set method and semismooth Newton methods is ex-
plained. Local as well as global convergence for finite dimensional problems, which is
unconditional with respect to initialization in certain cases, is addressed in section 3.
The global convergence results depend on properties of the matrix A. For instance,
the M-matrix property required in Theorem 3.2 is typically obtained when discretizing
obstacle problems (see, e.g., [H, KNT]) by finite differences or finite elements. The-
orem 3.3 can be connected to discretizations of control constrained optimal control
problems. Some relevant numerical aspects of the conditions of Theorem 3.3 are dis-
cussed at the end of section 4. An instance of the perturbation result of Theorem 3.4
is given by discretized optimal control problems with sufficiently small cost parameter.
Perturbations of M-matrices resulting from discretized obstacle problems and state
constrained optimal control problems (see, e.g., [Ca]) fit into the framework of The-
orem 3.4. In section 4 slant differentiability properties of the max-function between
function spaces are analyzed. Superlinear convergence of semismooth Newton meth-
ods for optimal control problems with pointwise control constraints is proved. Several
alternative methods were analyzed to solve optimal control problems with pointwise
constraints on the controls. Among them are the projected Newton method, analyzed,
e.g., in [HKT, KS] and affine scaling interior point Newton methods [UU]. We plan to
address nonlinear problems in a future work. Let us stress, however, that nonlinear
iterative methods frequently rely on solving auxiliary problems of the type (P), and
solving them efficiently is important.

To briefly describe some of the previous work in the primal-dual active set method,
we recall that this method arose as a special case of generalized Moreau–Yosida ap-
proximations to nondifferentiable convex functions [IK1]. Global convergence proofs
based on a modified augmented Lagrangian merit function are contained in [BIK]. In
[BHHK] comparisons between the primal-dual active set method and interior point
methods are carried out. In [IK2] the primal-dual active set method was used to
solve optimal control of variational inequalities problems. For this class of problems,
convergence proofs are not yet available.

We now turn to the notion of differentiability which will be used in this paper.
Let X and Z be Banach spaces and consider the nonlinear equation

F (x) = 0 ,(1.1)

where F : D ⊂ X → Z, and D is an open subset of X.
Definition 1. The mapping F : D ⊂ X → Z is called slantly differentiable in

the open subset U ⊂ D if there exists a family of mappings G : U → L(X,Z) such
that

lim
h→0

1

‖h‖ ‖F (x + h) − F (x) −G(x + h)h‖ = 0(A)

for every x ∈ U .
We refer to G as a slanting function for F in U . Note that G is not required to be

unique to be a slanting function for F in U . The definition of slant differentiability
in an open set is a slight adaptation of the terminology introduced in [CNQ], where
in addition it is required that {G(x) : x ∈ U} is bounded in L(X,Z). In [CNQ] also
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the term slant differentiability at a point is introduced. In applications to Newton’s
method this presupposes knowledge of the solution, whereas slant differentiability of
F in U requires knowledge of a set which contains the solution. Under the assump-
tion of slant differentiability in an open set, Newton’s method converges superlinearly
for appropriate choices of the initialization. While this discussion is perhaps more
philosophical than mathematical, we mention it because the assumption of slant dif-
ferentiability in an open set parallels the hypothesis of knowledge of the domain within
which a second order sufficient optimality condition is satisfied for smooth problems.

Kummer [K2] introduced a notion similar to slant differentiability at a point
and coined the name Newton map. He also pointed out the discrepancy between
the requirements needed for numerical realization and for the proof of superlinear
convergence of the semismooth Newton method.

The following convergence result is already known [CNQ].
Theorem 1.1. Suppose that x∗ is a solution to (1.1) and that F is slantly

differentiable in an open neighborhood U containing x∗ with slanting function G(x).
If G(x) is nonsingular for all x ∈ U and {‖G(x)−1‖ : x ∈ U} is bounded, then the
Newton iteration

xk+1 = xk −G(xk)−1F (xk)

converges superlinearly to x∗, provided that ‖x0 − x∗‖ is sufficiently small.
We provide the short proof since it will be used to illustrate the subsequent

discussion.
Proof. Note that the Newton iterates satisfy

‖xk+1 − x∗‖ ≤ ‖G(xk)−1‖ ‖F (xk) − F (x∗) −G(xk)(xk − x∗)‖,(1.2)

provided that xk ∈ U . Let B(x∗, r) denote a ball of radius r centered at x∗ contained
in U and let M be such that ‖G(x)−1‖ ≤ M for all x ∈ B(x∗, r). We apply (A) with
x = x∗. Let η ∈ (0, 1] be arbitrary. Then there exists ρ ∈ (0, r) such that

‖F (x∗ + h) − F (x∗) −G(x∗ + h)h‖ <
η

M
‖h‖ ≤ 1

M
‖h‖(1.3)

for all ‖h‖ < ρ. Consequently, if we choose x0 such that ‖x0 − x∗‖ < ρ, then
by induction from (1.2), (1.3) with h = xk − x∗ we have ‖xk+1 − x∗‖ < ρ and in
particular xk+1 ∈ B(x∗, ρ). It follows that the iterates are well-defined. Moreover,
since η ∈ (0, 1] is chosen arbitrarily xk → x∗ converges superlinearly.

Note that replacing property (A) by a condition of the type

lim
h→0

1

‖h‖ ‖F (x) − F (x− h) −G(x)h‖ = 0

would require a uniformity assumption with respect to x ∈ U for Theorem 1.1 to
remain valid in the case where X is infinite dimensional.

Let us put the concept of slant differentiability into perspective with the notion of
semismoothness as introduced in [Mi] for real-valued functions and extended in [QS]
to finite dimensional vector-valued functions. Semismoothness of F : U ⊂ R

n → R
m

in the sense of Qi and Sun [QS] implies

‖F (x + h) − F (x) − V h‖ = O(‖h‖)(1.4)
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for x ∈ U , where V is an arbitrary element of the generalized Jacobian ∂F (x + h)
in the sense of Clarke [C, Prop. 2.6.2]. Thus, slant differentiability introduced in
Definition 1 is a more general concept. In fact, the slanting functions according to
Definition 1 are not required to be elements of ∂F (x+h). On the other hand, if (1.4)
holds for x ∈ U ⊂ R

n, then a single-valued selection V (x) ∈ ∂F (x), x ∈ U , serves as
a slanting function in the sense of Definition 1.

We shall require the notion of a P-matrix which we recall next.
Definition 2. An n × n-matrix is called a P-matrix if all its principal minors

are positive.
It is well known [BP] that A is a P-matrix if and only if all real eigenvalues of A

and of its principal submatrices are positive. Here B is called a principal submatrix
of A if it arises from A by deletion of rows and columns from the same index set
J ⊂ {1, . . . , n}.

2. The primal-dual active set strategy as semismooth Newton method.
In this section we consider complementarity problems of the form{

Ay + λ = f,
y ≤ ψ, λ ≥ 0, (λ, y − ψ) = 0 ,

(2.1)

where (·, ·) denotes the inner product in R
n, A is an n × n-valued P-matrix, and f ,

ψ ∈ R
n. The assumption that A is a P-matrix guarantees the existence of a unique

solution (y∗, λ∗) ∈ R
n × R

n of (2.1) [BP]. In the case where A is symmetric positive
definite (2.1) is the optimality system for⎧⎨

⎩minJ(y) =
1

2
(y,Ay) − (f, y)

subject to y ≤ ψ.
(P)

Note that the complementarity system given by the second line in (2.1) can equiva-
lently be expressed as

C(y, λ) = 0, where C(y, λ) = λ− max(0, λ + c(y − ψ))(2.2)

for each c > 0. Here the max-operation is understood componentwise.
Consequently, (2.1) is equivalent to{

Ay + λ = f,
C(y, λ) = 0.

(2.3)

The primal-dual active set method is based on using (2.2) as a prediction strategy;
i.e., given a current primal-dual pair (y, λ), the choice for the next active and inactive
sets is given by

I = {i : λi + c(y − ψ)i ≤ 0} and A = {i : λi + c(y − ψ)i > 0}.
This leads to the following algorithm.

Primal-dual active set algorithm.

(i) Initialize y0, λ0. Set k = 0.
(ii) Set Ik = {i : λk

i + c(yk − ψ)i ≤ 0}, Ak = {i : λk
i + c(yk − ψ)i > 0}.

(iii) Solve

Ayk+1 + λk+1 = f,

yk+1 = ψ on Ak, λ
k+1 = 0 on Ik.
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(iv) Stop, or set k = k + 1 and return to (ii).
Above we utilize yk+1 = ψ on Ak to stand for yk+1

i = ψi for i ∈ Ak. Let us now
argue that the above algorithm can be interpreted as a semismooth Newton method.
For this purpose it will be convenient to arrange the coordinates in such a way that
the active and inactive ones occur in consecutive order. This leads to the block matrix
representation of A as

A =

(
AIk

AIkAk

AAkIk
AAk

)
,

where AIk
= AIkIk

and analogously for AAk
. Analogously the vector y is partitioned

according to y = (yIk
, yAk

) and similarly for f and ψ. In section 3 we shall argue
that v → max(0, v) from R

n → R
n is slantly differentiable with a slanting function

given by the diagonal matrix Gm(v) with diagonal elements

Gm(v)ii =

{
1 if vi > 0,
0 if vi ≤ 0.

Here we use the subscript m to indicate particular choices for the slanting function of
the max-function. Note that Gm is also an element of the generalized Jacobian (see [C,
Definition 2.6.1]) of the max-function. Semismooth Newton methods for generalized
Jacobians in Clarke’s sense were considered, e.g., in [Q1, QS].

The choice Gm suggests a semismooth Newton step of the form⎛
⎜⎜⎝

AIk
AIkAk

IIk
0

AAkIk
AAk

0 IAk

0 0 IIk
0

0 −cIAk
0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

δyIk

δyAk

δλIk

δλAk

⎞
⎟⎟⎠= −

⎛
⎜⎜⎝

(Ayk + λk − f)Ik

(Ayk + λk − f)Ak

λk
Ik−c(yk − ψ)Ak

⎞
⎟⎟⎠ ,(2.4)

where IIk
and IAk

are identity matrices of dimensions card(Ik) and card(Ak). The
third equation in (2.4) implies that

λk+1
Ik

= λk
Ik

+ δλIk
= 0(2.5)

and the last one yields

yk+1
Ak

= ψAk
.(2.6)

Equations (2.5) and (2.6) coincide with the conditions in the second line of step (iii)
in the primal-dual active set algorithm. The first two equations in (2.4) are equivalent
to Ayk+1 + λk+1 = f , which is the first equation in step (iii).

Combining these observations we can conclude that the semismooth Newton up-
date based on (2.4) is equivalent to the primal-dual active set strategy.

We also note that the system (2.4) is solvable since the first equation in (2.4)
together with (2.5) gives

(A δy)Ik
+ (A yk)Ik

= fIk
,

and consequently by (2.6)

AIk
yk+1
Ik

= fIk
−AIkAk

ψAk
.(2.7)

Since A is a P-matrix, AIk
is regular and (2.7) determines yk+1

Ik
. The second equation

in (2.4) is equivalent to

λk+1
Ak

= fAk
− (Ayk+1)Ak

.(2.8)

In section 4 we shall consider (P) in the space L2(Ω). Again one can show that
the semismooth Newton update and the primal-dual active set strategy coincide.
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3. Convergence analysis: The finite dimensional case. This section is
devoted to local as well as global convergence analysis of the primal-dual active set
algorithm to solve {

Ay + λ = f,
λ− max(0, λ + c(y − ψ)) = 0,

(3.1)

where f ∈ R
n, ψ ∈ R

n, A ∈ R
n×n is a P-matrix, and the max-operation is understood

componentwise. To discuss slant differentiability of the max-function we define for an
arbitrarily fixed δ ∈ R

n the matrix-valued function Gm : R
n → R

n×n by

Gm(y) = diag (g1(y1), . . . , gn(yn)),(3.2)

where gi : R → R is given by

gi(z) =

⎧⎨
⎩

0 if z < 0 ,
1 if z > 0 ,
δi if z = 0 .

Lemma 3.1. The mapping y → max(0, y) from R
n to R

n is slantly differentiable
on R

n, and Gm defined in (3.2) is a slanting function for every δ ∈ R
n.

Proof. Clearly, Gm ∈ L(Rn) and {‖Gm(y)‖ : y ∈ R
n} is bounded. We introduce

D : R
n × R

n → R by

D(y, h) = ‖max(0, y + h) − max(0, y) −Gm(y + h)h‖.
It is simple to check that

D(y, h) = 0 if ‖h‖∞ < min {|yi| : yi �= 0} =: β.

Consequently, the max-function is slantly differentiable.
Remark 3.1. Note that the value of the generalized derivative Gm of the max-

function can be assigned an arbitrary value at the coordinates satisfying yi = 0. The
numerator D in Definition 1 satisfies D(y, h) = 0 if ‖h‖∞ < β. Moreover, for every
γ > β there exists h satisfying

D(y, h) ≥ β and ‖h‖∞ = γ.

Here we assume that β := 0 whenever {i|yi �= 0} = ∅. Consequently, for β > 0 the
mapping

γ 
→ sup {‖max(0, y + h) − max(0, y) −Gm(y + h)h‖∞ : ‖h‖∞ = γ}
is discontinuous at γ = β and equals zero for γ ∈ (0, β).

Let us now turn to the convergence analysis of the primal-dual active set method
or, equivalently, the semismooth Newton method for (3.1). Note that the choice Gm

for the slanting function in section 2 corresponds to a slanting function with δ = 0.
In view of (2.5)–(2.8) for k ≥ 1 the Newton update (2.4) is equivalent to(

AIk
0

AAkIk
IAk

)(
δyIk

δλAk

)
= −

(
AIkAk

δyAk
+ δλIk

AAk
δyAk

)
(3.3)

and

δλi = −λk
i , i ∈ Ik, and δyi = ψi − yki , i ∈ Ak.(3.4)
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Let us introduce F : R
n × R

n → R
n × R

n by

F (y, λ) =

(
Ay + λ− f
λ− max(0, λ + c(y − ψ))

)
,

and note that (3.1) is equivalent to F (y, λ) = 0. As a consequence of Lemma 3.1 the
mapping F is slantly differentiable and the system matrix of (2.4) is a slanting function
for F with the particular choice Gm for the slanting function of the max-function.
We henceforth denote the slanting function of F by GF .

Let (y∗, λ∗) denote the unique solution to (3.1) and x0 = (y0, λ0) the initial values
of the iteration. From Theorem 1.1 we deduce the following fact.

Theorem 3.1. The primal-dual active set method or, equivalently, the semi-
smooth Newton method converge superlinearly to x∗ = (y∗, λ∗), provided that ‖x0−x∗‖
is sufficiently small.

The boundedness requirement of (GF )−1 according to Theorem 1.1 can be derived
analogously to the infinite dimensional case; see the proof of Theorem 4.1.

In our finite dimensional setting this result can be obtained alternatively by ob-
serving that Gm corresponds to a generalized Jacobian in Clarke’s sense combined
with the convergence results for semismooth Newton methods in [Q1, QS]. In fact,
from (2.4) we infer that GF (x∗) is a nonsingular generalized Jacobian, and Lemma 3.1
proves the semismoothness of F at x∗. Hence, Theorem 3.2 of [QS] yields the locally
superlinear convergence property. For a discussion of the semismoothness concept in
finite dimensions we refer the reader to [Q1, QS].

Furthermore, since (3.1) is strongly semismooth, by utilizing Theorem 3.2 of [QS]
the convergence rate can even be improved. Indeed, the primal-dual active set strategy
converges locally with a q-quadratic rate. For the definition of strong semismoothness
we refer the reader to [FFKP].

We also observe that if the iterates xk = (yk, λk) converge to x∗ = (y∗, λ∗), then
they converge in finitely many steps. In fact, there are only finitely many choices of
active/inactive sets and if the algorithm would determine the same sets twice, then
this contradicts convergence of xk to x∗. We refer to [FK] for a similar observation
for a nonsmooth Newton method of the types discussed in [Q1, QS, K1], for example.

Let us address global convergence next. In the following two results sufficient
conditions for convergence for arbitrary initial data x0 = (y0, λ0) are given. We recall
that A is referred to as an M-matrix, if it is nonsingular, (mij) ≤ 0, for i �= j, and
M−1 ≥ 0. Our notion of an M-matrix coincides with that of nonsingular M-matrices
as defined in [BP].

Theorem 3.2. Assume that A is an M-matrix. Then xk → x∗ for arbitrary
initial data. Moreover, y∗ ≤ yk+1 ≤ yk for all k ≥ 1 and yk ≤ ψ for all k ≥ 2.

For a proof of Theorem 3.2 we can utilize the proof of Theorem 1 in [H], where a
(primal) active set algorithm is proposed and analyzed. However, we provide a proof
in Appendix A since, in contrast to the algorithm in [H], the primal-dual active set
strategy makes use of the dual variable λ and includes arbitrarily fixed c > 0. From
the proof in Appendix A it can be seen that for unilaterally constrained problems c
drops out after the first iteration. We point out that, provided the active and inactive
sets coincide, the linear systems that have to be solved in every iteration of both
algorithms coincide. In practice, however, λ and c play a significant role and make a
distinct difference between the performance of the algorithm in [H] and the primal-
dual active set strategy. In fact, the primal-dual active set strategy fixes λk+1

i = 0
for i ∈ Ik. The decision whether an inactive index i ∈ Ik becomes an active one,
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i.e., whether i ∈ Ak+1, is based on

λk+1
i + c(yk+1

i − ψi) > 0 .

In contrast, the (primal) active set algorithm in [H] uses the criterion

fi − (Ayk+1)i + (yk+1
i − ψi) > 0

instead. Clearly, if the linear system of both algorithms are solved approximately
(e.g., by some iterative procedure) then the numerical behavior may differ.

Remark 3.2. Concerning the applicability of Theorem 3.2 we recall that many
discretizations of second order differential operators give rise to M-matrices.

For a rectangular matrix B ∈ R
n×m we denote by ‖ · ‖1 the subordinate matrix

norm when both R
n and R

m are endowed with the one-norms. Moreover, B+ denotes
the n ×m-matrix containing the positive parts of the elements of B. The following
result can be applied to discretizations of constrained optimal control problems. We
refer to the end of section 4 for a discussion of the conditions of Theorem 3.3 in the
case of control constrained optimal control problems.

Theorem 3.3. If A is a P-matrix and for every partitioning of the index set
into disjoint subsets I and A we have ‖(A−1

I AIA)+‖1 < 1 and
∑

i∈I(A−1
I yI)i ≥ 0

for yI ≥ 0, then limk→∞ xk = x∗.
Proof. From (3.3) we have

(yk+1 − ψ)Ik
= (yk − ψ)Ik

+ A−1
Ik

AIkAk
(yk − ψ)Ak

+ A−1
Ik

λk
Ik

and upon summation over the inactive indices∑
Ik

(yk+1
i − ψi) =

∑
Ik

(yki − ψi) +
∑
Ik

(
A−1

Ik
AIkAk

(yk − ψ)Ak

)
i

+
∑
Ik

(A−1
Ik

λk
Ik

)i.
(3.5)

Adding the obvious equality∑
Ak

(yk+1
i − ψi) −

∑
Ak

(yki − ψi) = −
∑
Ak

(yki − ψi)

to (3.5) implies

n∑
i=1

(yk+1
i − yki ) ≤ −

∑
Ak

(yki − ψi) +
∑
Ik

(A−1
Ik

AIkAk
(yk − ψ)Ak

)i .(3.6)

Here we used the fact λk
Ik

= −δλIk
≤ 0, established in the proof of Theorem 3.2.

There it was also argued that ykAk
≥ ψAk

. Hence, it follows that

n∑
i=1

(yk+1
i − yki ) ≤ −‖yk − ψ‖1,Ak

+ ‖(A−1
Ik

AIkAk
)+‖1 ‖yk − ψ‖1,Ak

< 0 ,(3.7)

unless yk+1 = yk. Consequently,

yk → M(yk) =

n∑
i=1

yki

8



acts as a merit function for the algorithm. Since there are only finitely many possible
choices for active/inactive sets there exists an iteration index k̄ such that Ik̄ = Ik̄+1.

Moreover, (yk̄+1, λk̄+1) is a solution to (3.1). In fact, in view of (iii) of the algorithm
it suffices to show that yk̄+1 and λk̄+1 are feasible. This follows from the fact that

due to Ik̄ = Ik̄+1 we have c(yk̄+1
i − ψi) = λk̄+1

i + c(yk̄+1
i − ψi) ≤ 0 for i ∈ Ik̄ and

λk̄+1
i + c(yk̄+1

i − ψi) > 0 for i ∈ Ak̄. Thus the algorithm converges in finitely many
steps.

Remark 3.3. Let us note as a corollary to the proof of Theorem 3.3 that in the
case where A is an M-matrix then M(yk) =

∑n
i=1 y

k
i is always a merit function. In

fact, in this case the conditions of Theorem 3.3 are obviously satisfied.
A perturbation result. We now discuss the primal-dual active set strategy for the

case where the matrix A can be expressed as an additive perturbation of an M-matrix.
Theorem 3.4. Assume that A = M + K with M an M-matrix and with K an

n×n-matrix. Then, if ‖K‖1 is sufficiently small, (3.1) admits a unique solution x∗ =
(y∗, λ∗), the primal-dual active set algorithm is well-defined, and limk→∞ xk = x∗.

Proof. Recall that as a consequence of the assumption that M is an M-matrix all
principal submatrices of M are nonsingular M-matrices as well [BP]. Let S denote
the set of all subsets of {1, . . . , n}, and define

ρ = sup
I∈S

‖M−1
I KI‖1 .

Let K be chosen such that ρ < 1
2 . For every subset I ∈ S the inverse of AI exists

and can be expressed as

A−1
I =

(
II +

∞∑
i=1

(−M−1
I KI

)i)
M−1

I .

As a consequence the algorithm is well-defined. Proceeding as in the proof of Theo-
rem 3.3 we arrive at

n∑
i=1

(yk+1
i − yki ) = −

∑
i∈A

(yki − ψi) +
∑
i∈I

(
A−1

I AIA(yk − ψ)A
)
i

+
∑
i∈I

(A−1
I λk

I)i ,

(3.8)

where λk
i ≤ 0 for i ∈ I and yki ≥ ψi for i ∈ A. Here and below we drop the index k

with Ik and Ak. Setting g = −A−1
I λk

I ∈ R
|I| and since ρ < 1

2 we find

∑
i∈I

gi ≥ ‖M−1
I λk

I‖1 −
∞∑
i=1

‖M−1
I KI‖i1‖M−1

I λk
I‖1

≥ 1 − 2ρ

1 − ρ
‖M−1λk

I‖1 ≥ 0 ,

and consequently by (3.8)

n∑
i=1

(yk+1
i − yki ) ≤ −

∑
i∈A

(yki − ψi) +
∑
i∈I

(A−1
I AIA(yk − ψ)A)i .

Note that A−1
I AIA ≤ M−1

I KIA − M−1
I KI(M + K)−1

I AIA. Here we have used
(M + K)−1

I −M−1
I = −M−1

I KI(M + K)−1
I and M−1

I MIA ≤ 0. Since yk ≥ ψ on A,
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it follows that ‖K‖1 can be chosen sufficiently small such that
∑n

i=1(y
k+1
i − yki ) < 0

unless yk+1 = yk, and hence

yk 
→ M(yk) =

n∑
i=1

yki

is a merit function for the algorithm. The proof is now completed in the same manner
as that of Theorem 3.3.

The assumptions of Theorem 3.4 do not require A to be a P-matrix. From its
conclusions existence of a solution to (3.1) for arbitrary f follows. This is equivalent to
the fact that A is a P-matrix [BP, Thm. 10.2.15]. Hence, it follows that Theorem 3.4
represents a sufficient condition for A to be a P-matrix.

Observe further that the M-matrix property is not stable under arbitrarily small
perturbations since off-diagonal elements may become positive. This implies certain
limitations of the applicability of Theorem 3.2. Theorem 3.4 guarantees that conver-
gence of the primal-dual active set strategy for arbitrary initial data is preserved for
sufficiently small perturbations K of an M-matrix. Therefore, Theorem 3.4 is also of
interest in connection with numerical implementations of the primal-dual active set
algorithm.

Remark 3.4. The primal-dual active set strategy can be interpreted as a predic-
tion strategy which, on the basis of (yk, λk), predicts the true active and inactive sets,
i.e.,

A∗ = {i : λ∗
i + c(y∗i − ψi) > 0} and I∗ = {1, . . . , n} \ A∗ .

To further pursue this point we define the following partitioning of the index set at
iteration level k:

IG = Ik ∩ I∗, IB = Ik ∩ A∗, AG = Ak ∩ A∗, AB = Ak ∩ I∗ .

The sets IG, AG give a good prediction, the sets IB and AB a bad prediction. Let us
denote by GF (xk) the system matrix of (2.4) and let Δy = yk+1−y∗, Δλ = λk+1−λ∗.
If the primal-dual active set method is interpreted as a semismooth Newton method,
then the convergence analysis is based on the identity

GF (xk)

⎛
⎜⎜⎝

ΔyIk

ΔyAk

ΔλIk

ΔλAk

⎞
⎟⎟⎠ = − (F (xk) − F (x∗) −GF (xk)(xk − x∗)

)
=: Ψ(xk) .(3.9)

Without loss of generality we can assume that the components of the equation λ −
max{0, λ + c(y − ψ)} = 0 are ordered as (IG, IB ,AG,AB). Then the right-hand side
of (3.9) has the form

Ψ(xk) = −col
(
0Ik

, 0Ak
, 0IG

, λ∗
IB

, 0AG
, c(ψ − y∗)AB

)
,(3.10)

where 0Ik
denotes a vector of zeros of length |Ik|, λ∗

IB
denotes a vector of λ∗ coordi-

nates with index set IB , and analogously for the remaining terms. Since yk ≥ ψ on
Ak and λk ≤ 0 on Ik we have

‖ψ − y∗‖AB
≤ ‖yk − y∗‖AB

and ‖λ∗‖IB
≤ ‖λk − λ∗‖IB

.(3.11)
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Exploiting the structure of GF (xk) and (3.10) we find

ΔyAG
= 0, ΔyAB

= (ψ − y∗)AB
, ΔλIG

= 0, ΔλIB
= −λ∗

IB
.(3.12)

On the basis of (3.9)–(3.12) we can draw the following conclusions:
(i) If xk → x∗, then there exists an index k̄ such that IB = AB = ∅ for all

k ≥ k̄. Consequently, Ψ(xk̄) = 0 and, as we noted before, if xk → x∗, then
convergence occurs in finitely many steps.

(ii) By (3.9)–(3.11) there exists a constant κ ≥ 1 independent of k such that

‖Δy‖ + ‖Δλ‖ ≤ κ
(‖(yk − y∗)AB

‖ + ‖(λk − λ∗)IB
‖) .

Thus if the incorrectly predicted sets are small in the sense that

‖(yk − y∗)AB
‖ + ‖(λk − λ∗)IB

‖ ≤ 1
2κ−1

(
‖(yk − y∗)AB,c

‖
+ ‖(λk − λ∗)IB,c

‖
)
,

where AB,c (IB,c) denotes the complement of the indices AB (IB), then

‖yk+1 − y∗‖ + ‖λk+1 − λ∗‖ ≤ 1
2

(‖yk − y∗‖ + ‖λk − λ∗‖) ,

and convergence follows.
(iii) If y∗ < ψ and λ0 + c(y0 − ψ) ≤ 0 (e.g., y0 = ψ, λ0 = 0), then the algorithm

converges in one step. In fact, in this case AB = IB = ∅ and Ψ(x0) =
0.

Finally, we shall point out that Theorems 3.2–3.4 establish global convergence
of the primal-dual active set strategy or, equivalently, semismooth Newton method
without the necessity of a line search. The rate of convergence is locally superlinear.
Moreover, it can be observed from (2.4) that if Ik = Ik′ for k �= k′, then yk = yk

′
and

λk = λk′
. Hence, in case of convergence no cycling of the algorithm is possible, and

termination at the solution of (2.1) occurs after finitely many steps.

4. The infinite dimensional case. In this section we first analyze the notion
of slant differentiability of the max-operation between various function spaces. Then
we turn to the investigation of convergence of semismooth Newton methods applied
to (P). We close the section with a numerical example for superlinear convergence.

Let X denote a space of functions defined over a bounded domain or manifold
Ω ⊂ R

n with Lipschitzian boundary ∂Ω, and let max(0, y) stand for the pointwise
maximum operation between 0 and y ∈ X. Let δ ∈ R be fixed arbitrarily. We
introduce candidates for slanting functions Gm of the form

Gm(y)(x) =

⎧⎨
⎩

1 if y(x) > 0 ,
0 if y(x) < 0 ,
δ if y(x) = 0 ,

(4.1)

where y ∈ X.
Proposition 4.1.

(i) Gm can in general not serve as a slanting function for max(0, ·) : Lp(Ω) →
Lp(Ω) for 1 ≤ p ≤ ∞.

(ii) The mapping max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞ is slantly
differentiable on Lq(Ω) and Gm is a slanting function.
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The proof is deferred to Appendix A.
We refer to [U] for a related investigation of the two-norm problem involved in

Proposition 4.1 in the case of superposition operators. An example in [U] proves
the necessity of the norm gap for the case in which the complementarity condition is
expressed by means of the Fischer–Burmeister functional.

We now turn to (P) posed in L2(Ω). For convenience we repeat the problem
formulation ⎧⎨

⎩minJ(y) =
1

2
(y,Ay) − (f, y)

subject to y ≤ ψ,
(P)

where (·, ·) now denotes the inner product in L2(Ω), f , and ψ ∈ L2(Ω), A ∈ L(L2(Ω))
is self-adjoint, and

(Ay, y) ≥ γ‖y‖2(H1)

for some γ > 0 independent of y ∈ L2(Ω). There exists a unique solution y∗ to (P)
and a Lagrange multiplier λ∗ ∈ L2(Ω) such that (y∗, λ∗) is the unique solution to{

Ay∗ + λ∗ = f,
C(y∗, λ∗) = 0,

(4.2)

where C(y, λ) = λ − max(0, λ + c(y − ψ)), with the max-operation defined pointwise
a.e. and c > 0 fixed. The primal-dual active set strategy is analogous to the finite
dimensional case. We repeat it for convenient reference.

Primal-dual active set algorithm in L2(Ω).
(i) Choose y0, λ0 in L2(Ω). Set k = 0.
(ii) Set Ak = {x : λk(x) + c(yk(x) − ψ(x)) > 0} and Ik = Ω\Ak.
(iii) Solve

Ayk+1 + λk+1 = f,
yk+1 = ψ on Ak, λ

k+1 = 0 on Ik.

(iv) Stop, or set k = k + 1 and return to (ii).
Under our assumptions on A, f , and ψ it is simple to argue the solvability of the

system in step (iii) of the above algorithm.
For the semismooth Newton step as well we can refer back to section 2. At

iteration level k with (yk, λk) ∈ L2(Ω) × L2(Ω) given, it is of the form (2.4) where
now δyIk

denotes the restriction of δy (defined on Ω) to Ik and analogously for the
remaining terms. Moreover, AIkAk

= E∗
Ik
A EAk

, where EAk
denotes the extension-

by-zero operator for L2(Ak) to L2(Ω)-functions, and its adjoint E∗
Ak

is the restriction
of L2(Ω)-functions to L2(Ak), and similarly for EIk

and E∗
Ik

. Moreover, AAkIk
=

E∗
Ak

A EIk
, AIk

= E∗
Ik
A EIk

, and AAk
= E∗

Ak
A EAk

. It can be argued precisely
as in section 2 that the primal-dual active set strategy and the semismooth Newton
updates coincide, provided that the slanting function of the max-function is taken
according to

Gm(u)(x) =

{
1 if u(x) > 0,
0 if u(x) ≤ 0,

(4.3)

which we henceforth assume.
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Proposition 4.1 together with Theorem 1.1 suggest that the semismooth Newton
algorithm applied to (4.2) may not converge in general. We therefore restrict our
attention to operators A of the form

A = C + βI, with C ∈ L(L2(Ω), Lq(Ω)), where β > 0, q > 2.(H2)

We show next that a large class of optimal control problems with control con-
straints can be expressed in the form (P) with (H2) satisfied.

Example 1. We consider the optimal control problem⎧⎪⎨
⎪⎩

minimize 1
2‖y − z‖2

L2 + β
2 ‖u‖2

L2

subject to −Δy = u in Ω, y = 0 on ∂Ω ,
u ≤ ψ, u ∈ L2(Ω) ,

(4.4)

where z ∈ L2(Ω), ψ ∈ Lq(Ω), and β > 0. Let B ∈ L(H1
o (Ω), H−1(Ω)) denote

the operator −Δ with homogeneous Dirichlet boundary conditions. Then (4.4) can
equivalently be expressed as{

minimize 1
2‖B−1u− z‖2

L2 + β
2 ‖u‖2

L2

subject to u ≤ ψ, u ∈ L2(Ω) .
(4.5)

In this case A ∈ L(L2(Ω)) turns out to be Au = B−1JB−1u + βu, where J is
the embedding of H1

o (Ω) into H−1(Ω), and f = B−1z. Condition (H2) is obviously
satisfied.

In (4.4) we considered the distributed control case. A related boundary control
problem is given by⎧⎪⎨

⎪⎩
minimize 1

2‖y − z‖2
L2(Ω) + β

2 ‖u‖2
L2(∂Ω)

subject to −Δy + y = 0 in Ω, ∂y
∂n = u on ∂Ω ,

u ≤ ψ, u ∈ L2(∂Ω) ,

(4.6)

where n denotes the unit outer normal to Ω along ∂Ω. This problem is again a
special case of (P) with A ∈ L(L2(∂Ω)) given by Au = B−∗JB−1u + βu, where
B−1 ∈ L(H−1/2(Ω), H1(Ω)) denotes the solution operator to

−Δy + y = 0 in Ω, ∂y
∂n = u on ∂Ω ,

and f = B−∗z. Moreover, C = B−∗JB−1
|L2(Ω) ∈ L(L2(∂Ω), H1/2(∂Ω)) with J the

embedding of H1/2(Ω) into H−1/2(∂Ω), and hence (H2) is satisfied as a consequence
of the Sobolev embedding theorem.

For the sake of illustration it is also worthwhile to specify (2.5)–(2.8), which were
found to be equivalent to the Newton update (2.4) for the case of optimal control
problems. We restrict ourselves to the case of the distributed control problem (4.4).
Then (2.5)–(2.8) can be expressed as⎧⎪⎪⎨

⎪⎪⎩
λk+1
Ik

= 0, uk+1
Ak

= ψAk
,

E∗
Ik

[
(B−2 + βI)EIk

uk+1
Ik

−B−1z + (B−2 + βI)EAk
ψAk

]
= 0 ,

E∗
Ak

[
λk+1 + B−2uk+1 + βuk+1 −B−1z

]
= 0 ,

(4.7)
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where we set B−2 = B−1JB−1. Setting pk+1 = B−1z −B−2uk+1, a short computa-
tion shows that (4.7) is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δyk+1 = uk+1 in Ω , yk+1 = 0 on ∂Ω ,

−Δpk+1 = z − yk+1 in Ω , pk+1 = 0 on ∂Ω ,

pk+1 = βuk+1 + λk+1 in Ω ,

uk+1 = ψ in Ak , λ
k+1 = 0 in Ik .

(4.8)

This is the system in the primal variables (y, u) and adjoint variables (p, λ), previously
implemented in [BHHK, BIK] for testing the algorithm.

At this point we remark that the primal-dual active set strategy has no straight-
forward infinite dimensional analogue for state constrained optimal control problems
and obstacle problems [H]. For state constrained optimal control problems the La-
grange multiplier is only a measure in general, and hence the core steps (ii) and (iii)
of our algorithm are no longer meaningful. For details on the regularity issue we
refer the reader to [Ca]. Theorem 3.2 proves global convergence of the primal-dual
active set strategy or, equivalently, semismooth Newton method for discretized obsta-
cle problems. However, no comparable result can be expected in infinite dimensions.
The main reason comes from the fact that the systems that would have to be solved
in step (iii) are the first order conditions related to the problems

min 1
2 (Ay, y)L2(Ω) − (f, y)L2(Ω) such that y = ψ a.e. on Ak .

Again the multiplier associated with the equality constraint is only a measure in
general.

Our main intention is to consider control constrained problems as in Example 1.
To prove convergence under assumptions (H1), (H2) we utilize a reduced algorithm
which we explain next.

The operators EI and EA denote the extension by zero, and their adjoints are
restrictions to I and A, respectively. The optimality system (4.2) does not depend on
the choice of c > 0. Moreover, from the discussion in section 2 the primal-dual active
set strategy is independent of c > 0 after the initialization phase. For the specific
choice c = β system (4.2) can equivalently be expressed as

βy∗ − βψ + max(0, Cy∗ − f + βψ) = 0 ,(4.9)

λ∗ = f − Cy∗ − βy∗ .(4.10)

We shall argue in the proof of Theorem 4.1 that the primal-dual active set method
in L2(Ω) for (y, λ) is equivalent to the following algorithm for the reduced system
(4.9)–(4.10), which will be shown to converge superlinearly.

Reduced algorithm.

(i) Choose y0 ∈ L2(Ω) and set k = 0.
(ii) Set Ak = {x : (f − Cyk − βψ)(x) > 0}, Ik = Ω \ Ak.
(iii) Solve

βyIk
+ (C(EIk

yIk
+ EAk

ψAk
))Ik

= fIk

and set yk+1 = EIk
yIk

+ EAk
ψAk

.
(iv) Stop, or set k = k + 1 and return to (ii).
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Theorem 4.1. Assume that (H1), (H2) hold and that ψ and f are in Lq(Ω).
Then the primal-dual active set strategy or, equivalently, the semismooth Newton
method converge superlinearly if ‖y0 − y∗‖ is sufficiently small and λ0 = β(y0 − ψ).

The proof is given in Appendix A. It consists essentially of two steps. In the first
equivalence between the reduced algorithm and the original one is established, and
in the second one slant differentiability of the mapping F̂ : L2(Ω) → L2(Ω) given by
F̂ (y) = max(0, Cy−f +βψ) is shown. With respect to the latter we can alternatively
utilize the theory of semismoothness of composite mappings as developed in [U]. For
this purpose we first recall the notion of semismoothness as introduced in [U]. Suppose
we are given the superposition operator

Ψ̃ : Y → Lr(Ω), Ψ̃(y)(x) = ψ̃(H(y)(x)),

where ψ̃ : R
m → R and H : Y → ∏m

i=1 L
ri(Ω), with 1 ≤ r ≤ ri < ∞, and Y is a

Banach space. Then Ψ̃ is called semismooth at y ∈ Y if

sup
G∈∂sΨ̃(y+h)

‖Ψ̃(y + h) − Ψ̃(y) −Gh‖Lr = O(‖h‖Y ) as h → 0 in Y.(4.11)

Here ∂sΨ̃ denotes the generalized differential

∂sΨ̃(y) =

{
G ∈ L(Y, Lr)

∣∣∣ G : v 
→∑
i di(y)(H

′
i(y)v), where d(y)

is a measurable selection of ∂ψ̃(H(y))

}
,(4.12)

where ∂ψ̃ is Clarke’s generalized Jacobian [C], and prime denotes the Fréchet deriva-
tive. In our context Y = Lr(Ω) = L2(Ω), m = 2, ri = 2, H(y) = (0, Cy−f+βψ), and
ψ̃(a, b) = max(a, b). Clearly, H is affine with respect to the second component. By
(H2), and since ψ ∈ Lq(Ω), f ∈ Lq(Ω), it follows that H is Lipschitz from L2(Ω) to
(Lq(Ω))2, with q > 2. Moreover, ψ̃ is semismooth in the sense of [QS]. Consequently,
Ψ̃ is semismooth in the sense of (4.11) by [U, Thm. 5.2].

In general, a slanting function G according to Definition 1 need not satisfy G(y) ∈
∂sΨ̃(y). However, the particular slanting function

Ĝ(y)v = Gm(Cy − f + βψ)Cv

with

Gm(u)(x) =

{
1 if u(x) ≥ 0,
0 if u(x) < 0

satisfies Ĝ(y) ∈ ∂sΨ̃(y). In fact, d(y) = (d1(y), d2(y)) = (0, Gm(Cy − f + βψ)) is a
measurable selection of ∂ max(0, Cy − f + βψ). Thus, (4.12) yields

∂sΨ̃(y)v 
 G(y)v =
∑
i

di(y)(H
′
i(y)v) = Gm(Cy − f + βψ)Cv = Ĝ(y)v.

Consequently, from the proof of Theorem 6.4 in [U] we infer that the reduced algorithm
converges locally superlinearly.

Let us point out that the semismooth Newton method in [U] requires a smoothing
step while our primal-dual active set strategy does not. To explain the difference of
the two approaches, we note that with respect to (P) the following NCP problem is
considered in [U]: Find y ∈ Y such that

y − ψ ≤ 0, Z(y) := Ay − f ≥ 0, (y − ψ)Z(y) = 0.(4.13)
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Then (4.13) is reformulated by utilizing an NCP function. In our context, this yields

max(y − ψ, f −Ay) = 0.(4.14)

Following [U] one chooses Y = Lp(Ω), p > 2, and considers y 
→ max(y − ψ, f −
Ay) from Lp(Ω) to L2(Ω) in order to introduce the norm gap which is required for
semismoothness according to (4.11). In Algorithm 6.3 of [U] the Newton step first
produces an update in L2(Ω), which requires smoothing to obtain the new iterate in
Lp(Ω) which is utilized in (4.14). In our formulation, (4.13) is reformulated as (4.9)
rather than (4.14). Here we can take advantage of the fact that (4.9) allows us to
directly exploit the smoothing property of the operator C. Consequently, we obtain a
superlinearly convergent Newton method without the necessity of a smoothing step.

If an appropriate growth condition is satisfied, then the superlinear convergence
result of Theorem 4.1 can be improved to superlinear convergence with a specific rate.
Let us suppose that there exists α > 0 such that

lim
h→0

1

‖h‖1+α
‖F (x∗ + h) − F (x∗) −G(x∗ + h)h‖ = 0 .(A’)

Then an inspection of the proof of Theorem 1.1 shows that the rate of convergence of
xk to x∗ is of q-order 1 + α; i.e., we have ‖xk+1 − x∗‖ = O(‖xk − x∗‖1+α) as k → ∞.
To investigate (A’) for the specific F appearing in the proof of Theorem 4.1 one can
apply the general theory in [U]. We prefer to give an independent proof adapted to
our problem formulation. Let the assumptions of Theorem 4.1 hold and recall that
F : L2(Ω) → L2(Ω) is given by F (y) = βy − βψ + max(0, Cy − f + βψ). First we
consider the case 2 < q < +∞. The relevant difference quotient for the nonlinear
term which must be analyzed for (A’) to hold is given by

1

‖h‖1+α
L2

‖max(0, C(y∗ + h) − f + βψ) − max(0, Cy∗ − f + βψ)

−Gm(Cy∗ + Ch− f + βψ)(Ch)‖L2

=
1

‖Ch‖1+α
Lq

‖max(0, w + Ch) − max(0, w) −Gm(w + Ch)(Ch)‖L2

‖Ch‖1+α
Lq

‖h‖1+α
L2

,

where we set w = Cy∗ − f + βψ. Utilizing the fact that C ∈ L(L2(Ω), Lq(Ω)) it
suffices to consider

1

‖h‖1+α
Lq

‖Dw,h‖L2 =
1

‖h‖1+α
Lq

‖max(0, w + h) − max(0, w) −Gm(w + h)h‖L2 .

Here and below we use the notation introduced in the proof of Proposition 4.1(ii).
Proceeding as in the proof of Proposition 4.1(ii) we find for 1

σ + 1
τ = 1, σ ∈ (1,∞),

1

‖h‖1+α
Lq

‖Dw,h‖L2 ≤ 1 + |δ|
‖h‖1+α

Lq

⎡
⎣|Ωε(h)|1/2τ

(∫
Ωε(h)

|w(x)|2σdx
)1/2σ

+|Ωε(w)|1/2τ
(∫

Ω0(h)\Ωε(h)

|w(x)|2σdx
)1/2σ

⎤
⎦(4.15)

=
1 + |δ|
‖h‖1+α

Lq

(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )
(∫

Ω0(h)

|w(x)|2σdx
)1/2σ

.
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Let us set r = q
1+α . We have

(∫
Ω0(h)

|w(x)|2σdx
)1/2σ

≤
(∫

Ω0(h)

|w(x)| 2σq
r |w(x)| 2σ(r−q)

r dx

)1/2σ

≤
(∫

Ω0(h)

|w(x)| 2σq
r

r
2σ

)1/r (∫
Ω0(h)

|w(x)| 2σ(r−q)
r

r
r−2σ

)(r−2σ)/2rσ

=

(∫
Ω0(h)

|w(x)|qdx
)1/r (∫

Ω0(h)

1

|w(x)| 2σ(q−r)
r−2σ

dx

)(r−2σ)/2rσ

,

where it is assumed that r = q
1+α > 2σ > 2. Since |w(x)| ≤ |h(x)| for x ∈ Ω0(h) we

find

1

‖h‖1+α
Lq

‖Dw,h‖L2

≤ (1 + |δ|)(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )
(∫

Ω0(h)

1

|w(x)| 2σ(q−r)
r−2σ

dx

)(r−2σ)/2rσ

.

Suppose that ∫
{x:|w(x)|�=0}

1

|w(x)| 2σ(q−r)
r−2σ

dx < +∞ .(4.16)

Then, following the argument in the proof of Proposition 4.1(ii), we have

lim
‖h‖Lq→0

1

‖h‖1+α
Lq

‖Dw,h‖L2 = 0 ,

and hence (A’) holds. Let us interpret the conditions on α and q. As already pointed
out we must have q > 2(1 + α) which for α = 0 is consistent with the requirement
that there must be a norm gap. The exponent in (4.16) can equivalently be expressed
as Q(α, q) = 2σαq

q−2σ(1+α) . Hence, for fixed q, the quotient Q(α, q) is increasing with α

and (4.16) is more likely to be satisfied for small rather than for large α. Similarly,
for fixed α, Q(α, q) is decreasing with respect to q (> 2σ(1 + α)), and hence (4.16)
has a higher chance to be satisfied for large rather than small q.

Convergence of q-order larger than 2 is possible if q > 2 and (4.16) holds for the
associated values of q and α. If w is Lipschitzian, then it must be of at most linear
growth across the boundary of the set {x : w(x) �= 0}. For this reason it is of interest
to consider the range of α-values satisfying 2αq

q−2(1+α) < 1. This necessitates α < 1
2 .

In the case q = +∞ we have for every σ > 1

(∫
Ω0(h)

|w(x)|2σdx
)1/2σ

=

(∫
Ω0(h)

|w(x)|2σ(1+α)|w(x)|−2σαdx

)1/2σ

≤ ‖h‖1+α
L∞

(∫
Ω0(h)

|w(x)|−2σαdx

)1/2σ

.
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This estimate and (4.15) for q = +∞ yield

1

‖h‖1+α
L∞

‖Dw,h‖L2 ≤(1 + |δ|)(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )

·
(∫

Ω0(h)

1

|w(x)|2σα dx
)1/2σ

.

Now suppose that for some σ > 1,∫
{x:|w(x)|�=0}

1

|w(x)|2σα dx < +∞ .(4.17)

Then, again following the arguments in the proof of Proposition 4.1, we obtain

lim
‖h‖L∞→0

1

‖h‖1+α
L∞

‖Dw,h‖L2 = 0 ,

which shows that (A’) is satisfied.
Example 1 (continued). As already observed Theorem 4.1 is directly applicable to

problems (4.4) and (4.6) and confirms local superlinear convergence of the semismooth
Newton algorithm.

Convergence for (4.4) was already analyzed in [BIK] where it was proved that a
modified augmented Lagrangian acts as a merit function, provided that

β + γ ≤ c ≤ β − β2

γ
+

β2

‖Δ−1‖2
(4.18)

for some γ > 0. Here ‖Δ−1‖ denotes the operator norm of Δ−1 in L(L2(Ω)). This
previous convergence result is unconditional with respect to the initial condition, but
it restricts the range of β. Theorem 4.1 is a local result with respect to initialization
but does not restrict the range of β > 0. Further, the discussion following Theorem 4.1
provides rate of convergence results.

Let us also comment on the discretized version of (4.4). To be specific we consider
a two dimensional domain Ω endowed with a uniform rectangular grid, with Δh denot-
ing the five-point-star discretization of Δ, and functions z, ψ, y, u discretized by means
of grid functions at the nodal points. Numerical results for this case were reported in
[BIK] and [BHHK], and convergence can be argued provided the discretized form of
(4.18) holds. Let us consider to which extent Theorems 3.2–3.4 provide new insight on
confirming convergence, which was observed numerically in practically all examples.
Theorem 3.2 is not applicable since Ah = βI +Δ−2

h is not an M-matrix. Theorem 3.4
is applicable with M = βI and K = Δ−2

h , and asserts convergence if β is sufficiently
large. We also tested numerically the applicability of Theorem 3.3 and found that
for Ω = (0, 1)2 the norm condition was satisfied in all cases we tested with grid-size
h ∈ [10−2, 10−1] and β ≥ 10−4, whereas the cone condition

∑
i∈I(A−1

I yI)i ≥ 0 for
yI ≥ 0 was satisfied only for β ≥ 10−2, for the same range of grid-sizes. Still the func-
tion yk → M(yk) utilized in the proof of Theorem 3.4 behaved as a merit function for
the wider range of β ≥ 10−3. Note that the norm and cone condition of Theorem 3.4
involve only the system matrix A, whereas M(yk) also depends on the specific choice
of f and ψ.

Remark 4.1. Throughout the paper we used the function C defined in (2.2) as
a complementarity function. Another popular choice of complementarity function is
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given by the Fischer–Burmeister function

CFB(y, λ) =
√

y2 + λ2 − (y + λ) .

Note that CFB(0, λ) =
√
λ2 − λ = 2 max(0,−λ), and hence by Proposition 4.1 the

natural choices for slanting functions do not satisfy property (A).

Remark 4.2. Condition (H2) can be considered as yet another incidence, where a
two-norm concept for the analysis of optimal control problems is essential. It utilizes
the fact that the control-to-solution mapping of the differential equation is a smooth-
ing operation. Two-norm concepts were used for second order sufficient optimality
conditions and the analysis of SQP-methods in [M, I, IK3], for example, and also for
semismooth Newton methods in [U].

In view of the fact that (P) consists of a quadratic cost functional with affine
constraints the question arises whether superlinear convergence coincides with one
step convergence after the active/inactive sets are identified by the algorithm. The
following example illustrates the fact that this is not the case.

Example 2. We consider Example 1 with the specific choices

z(x1, x2) = sin(5x1) + cos(4x2), ψ ≡ 0, β = 10−5, and Ω = (0, 1)2.

A finite difference based discretization of (4.4) with a uniform grid of mesh size h = 1
100

and the standard five-point-star discretization of the Laplace operator was used. The
primal-dual active set strategy with initialization given by solving the unconstrained
problem and setting λ0

h = 0, was used. The exact discretized solution (u∗
h, λ

∗
h, y

∗
h) was

attained in eight iterations. In Table 1 we present the values for

qku =
|uk

h − u∗
h|

|uk−1
h − u∗

h|
, qkλ =

|λk
h − λ∗

h|
|λk−1

h − λ∗
h|
,

where the norms are discrete L2-norms. Clearly these quantities indicate superlinear
convergence of uk

h and λk
h.

Table 1

k 1 2 3 4 5 6 7

qku 1.0288 0.8354 0.6837 0.4772 0.2451 0.0795 0.0043

qkλ 0.6130 0.5997 0.4611 0.3015 0.1363 0.0399 0.0026

We also tested whether the quantities appearing in the rate of convergence dis-
cussion are reflected in the numerical results. For this purpose note that for the
problem under consideration w appearing in (4.16) and (4.17) is given by w =
Δ−2u∗ + Δ−1z + βψ. Roughly, (4.16) and (4.17) have a higher chance to be sat-
isfied with larger value for α if w is not smooth across the boundary of the set
{x : w(x) = 0}. In a numerical test we kept all problem data identical to those
specified above except for changing ψ to ψ(x1, x2) = x1x2 − 1. Note that this new
ψ increases the chance that (4.16) and (4.17) are satisfied. Moreover, increasing β
(for the same ψ) results in an increase of the influence of ψ to w. Thus we expect
an improved convergence as β is increased. For the new ψ and small β the algorithm
finds the solution in one less iteration. Increasing β results in a further reduction of
three iterations; see Tables 1 and 2.
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Table 2

qku
k 1 2 3 4 5 6

β = 10−5 1.0443 0.8359 0.6780 0.4679 0.2342 0.0614
β = 10−3 0.1410 0.0455 0.0041 – – –

Appendix A.

Proof of Theorem 3.2. The assumption that A is an M-matrix implies that for
every index partition I and A we have A−1

I ≥ 0 and A−1
I AIA ≤ 0; see [BP, p. 134].

Let us first show the monotonicity property of the y-component. Observe that for
every k ≥ 1 the complementarity property

λk
i = 0 or yki = ψi , for all i and k ≥ 1 ,(A.1)

holds. For i ∈ Ak we have λk
i +c(yki −ψi) > 0, and hence by (A.1) either λk

i = 0, which
implies yki > ψi, or λk

i > 0, which implies yki = ψi. Consequently, yk ≥ ψ = yk+1 on
Ak and δyAk

= ψAk
− ykAk

≤ 0. For i ∈ Ik we have λk
i + c(yki −ψi) ≤ 0 which implies

δλIk
≥ 0 by (2.4) and (A.1). Since δyIk

= −A−1
Ik

AIkAk
δyAk

− A−1
Ik

δλIk
by (3.3) it

follows that δyIk
≤ 0. Therefore yk+1 ≤ yk for every k ≥ 1.

Next we show that yk is feasible for all k ≥ 2. Due to the monotonicity of yk it
suffices to show that y2 ≤ ψ. Let V = {i : y1

i > ψi}. For i ∈ V we have λ1
i = 0 by

(A.1), and hence λ1
i + c(y1

i − ψi) > 0 and i ∈ A1. Since y2 = ψ on A1 and y2 ≤ y1 it
follows that y2 ≤ ψ.

To verify that y∗ ≤ yk for all k ≥ 1 note that

fIk−1
= λ∗

Ik−1
+ AIk−1

y∗Ik−1
+ AIk−1Ak−1

y∗Ak−1

= AIk−1
ykIk−1

+ AIk−1Ak−1
ψAk−1

.

It follows that

AIk−1

(
ykIk−1

− y∗Ik−1

)
= λ∗

Ik−1
+ AIk−1Ak−1

(
y∗Ak−1

− ψAk−1

)
.

Since λ∗
Ik−1

≥ 0 and y∗Ak−1
≤ ψAk−1

the M-matrix properties of A imply that ykIk−1
≥

y∗Ik−1
for all k ≥ 1.

Turning to the feasibility of λk assume that for a pair of indices (k̄, i), k̄ ≥ 1,
we have λk̄

i < 0. Then necessarily i ∈ Ak̄−1, yk̄i = ψi, and λk̄
i + c(yk̄i − ψi) < 0.

It follows that i ∈ Ik̄, λk̄+1
i = 0, and λk̄+1

i + c(yk̄+1
i − ψi) ≤ 0, since yk+1

i ≤ ψi,
k ≥ 1. Consequently, i ∈ Ik̄+1 and by induction i ∈ Ik for all k ≥ k̄ + 1. Thus,
whenever a coordinate of λk becomes negative at iteration k̄, it is zero from iteration
k̄ + 1 onwards, and the corresponding primal coordinate is feasible. Due to finite
dimensionality of R

n it follows that there exists ko such that λk ≥ 0 for all k ≥ ko.

Monotonicity of yk and y∗ ≤ yk ≤ ψ for k ≥ 2 imply the existence of ȳ such that
lim yk = ȳ ≤ ψ. Since λk = Ayk + f ≥ 0 for all k ≥ ko, there exists λ̄ such that
limλk = λ̄ ≥ 0. Together with (A.1) it follows that (ȳ, λ̄) = (y∗, λ∗).

Remark A.1. From the proof it follows that if λk̄
i < 0 for some coordinate i at

iteration k̄, then λk
i = 0 and yki ≤ ψi for all k ≥ k̄ + 1.

Proof of Proposition 4.1. (i) It suffices to consider the one dimensional case
Ω = (−1, 1) ⊂ R. We show that property (A) does not hold at y(x) = −|x|. Let us
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define hn(x) = 1
n on (− 1

n ,
1
n ) and hn(x) = 0 otherwise. Then

∫ 1

−1

|max(0, y + hn)(x) − max(0, y)(x) − (Gm(y + hn)(hn)) (x)|p dx

=

∫
{x:y(x)+hn(x)>0}

|y(x)|pdx =

∫ 1
n

− 1
n

|y(x)|pdx =
2

p + 1

(
1

n

)p+1

,

and ‖hn‖Lp = p
√

2/np+1. Consequently,

lim
n→∞

1
‖hn‖Lp

‖max(0, y + hn) − max(0, y) −Gm(y + hn)hn‖Lp = p

√
1

p+1 �= 0 ,

and hence (A) is not satisfied at y for any p ∈ [1,∞).
To consider the case p = ∞ we choose Ω = (0, 1) and show that (A) is not satisfied

at y(x) = x. For this purpose define for n = 2, . . .

hn(x) =

⎧⎪⎨
⎪⎩

−(1 + 1
n )x on (0, 1

n ] ,

(1 + 1
n )x− 2

n (1 + 1
n ) on ( 1

n ,
2
n ] ,

0 on ( 2
n , 1] .

Observe that En = {x : y(x) + hn(x) < 0} ⊃ (0, 1
n ]. Therefore

lim
n→∞

1
‖hn‖L∞([0,1])

‖max(0, y + hn) − max(0, y) −Gm(y + hn)hn‖L∞([0,1])

= lim
n→∞

n2

n+1‖y‖L∞(En) ≥ lim
n→∞

n
n+1 = 1,

and hence (A) cannot be satisfied.
(ii) Let δ ∈ R be fixed arbitrarily and y, h ∈ Lq(Ω), and set

Dy,h(x) = max(0, y(x) + h(x)) − max(0, y(x)) −Gm(y + h)(x)h(x) .

A short computation shows that

|Dy,h(x)|
⎧⎨
⎩

≤ |y(x)| if (y(x) + h(x))y(x) < 0 ,
≤ (1 + |δ|) |y(x)| if y(x) + h(x) = 0 ,
= 0 otherwise.

(A.2)

For later use we note that from Hölder’s inequality we obtain for 1 ≤ p < q ≤ ∞

‖w‖Lp ≤ |Ω|r‖w‖Lq , with r =

{
q−p
pq if q < ∞ ,

1
p if q = ∞ .

From (A.2) it follows that only

Ω0(h) = {x ∈ Ω : y(x) �= 0, y(x)(y(x) + h(x)) ≤ 0}
requires further investigation. For ε > 0 we define subsets of Ω0(h) by

Ωε(h) = {x ∈ Ω : |y(x)| ≥ ε, y(x)(y(x) + h(x)) ≤ 0} .
Note that |y(x)| ≥ ε a.e. on Ωε(h) and therefore

‖h‖Lq(Ω) ≥ ε|Ωε(h)|1/q for q < ∞ .
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It follows that

lim
‖h‖Lq(Ω)→0

|Ωε(h)| = 0 for every fixed ε > 0 .(A.3)

For ε > 0 we further define sets

Ωε(y) = {x ∈ Ω : 0 < |y(x)| ≤ ε} ⊂ {x : y(x) �= 0} .

Note that Ωε(y) ⊂ Ωε′(y) whenever 0 < ε ≤ ε′ and
⋂

ε>0 Ωε(y) = ∅. As a consequence

lim
ε→0+

|Ωε(y)| = 0 .(A.4)

From (A.2) we find

1

‖h‖Lq

‖Dy,h‖Lp ≤ 1 + |δ|
‖h‖Lq

(∫
Ω0(h)

|y(x)|pdx
)1/p

≤ 1 + |δ|
‖h‖Lq

⎡
⎣(∫

Ωε(h)

|y(x)|pdx
)1/p

+

(∫
Ω0(h)\Ωε(h)

|y(x)|pdx
)1/p

⎤
⎦

≤ 1 + |δ|
‖h‖Lq

⎡
⎣|Ωε(h)|(q−p)/(qp)

(∫
Ωε(h)

|y(x)|qdx
)1/q

+ |Ωε(y)|(q−p)/(qp)

(∫
Ω0(h)\Ωε(h)

|y(x)|qdx
)1/q

⎤
⎦

≤ (1 + |δ|)
(
|Ωε(h)|(q−p)/(qp) + |Ωε(y)(q−p)/(qp)|

)
.

Choose η > 0 arbitrarily and note that by (A.4) there exists ε̄ > 0 such that (1 +
|δ|)|Ωε̄(y)|(q−p)/(qp) < η. Consequently,

1

‖h‖Lq

‖Dy,h‖Lp ≤ (1 + |δ|)|Ωε̄(h)|(q−p)/(qp) + η

and by (A.3)

lim
‖h‖Lq→0

1

‖h‖Lq

‖Dy,h‖Lp ≤ η .

Since η > 0 is arbitrary the claim holds for 1 ≤ p < q < ∞.
The case q = ∞ follows from the result for 1 ≤ p < q < ∞.
Proof of Theorem 4.1. Let yk, k ≥ 1, denote the iterates of the reduced algorithm

and define

λk+1 =

{
0 on Ik ,
(f − Cyk+1 − βψ)Ak

on Ak
for k = 0, 1, . . . .

We obtain λk + β(yk − ψ) = f − Cyk − βψ for k = 1, 2, . . . , and hence the active
sets Ak, the iterates yk+1 produced by the reduced algorithm and by the algorithm
in the two variables (yk+1, λk+1), coincide for k = 1, 2, . . . , provided the initialization
strategies coincide. This, however, is the case since due to our choice of λ0 and β = c

22



we have λ0 + β(y0 −ψ) = f −Cy0 − βψ, and hence the active sets coincide for k = 0
as well.

To prove convergence of the reduced algorithm we utilize Theorem 1.1 with
F : L2(Ω) → L2(Ω) given by F (y) = βy − βψ + max(0, Cy − f + βψ). From Propo-
sition 4.1(ii) it follows that F is slantly differentiable. In fact, the relevant difference
quotient for the nonlinear term in F is

1

‖Ch‖Lq

∥∥max(0, Cy − f + βψ + Ch) − max(0, Cy − f + βψ)

− Gm(Cy − f + βψ + Ch)(Ch)
∥∥
L2

‖Ch‖Lq

‖h‖L2

,

which converges to 0 for ‖h‖L2 → 0. Here

Gm(Cy − f + βψ + Ch)(x) =

{
1 if (C(y + h) − f + βψ)(x) ≥ 0 ,
0 if (C(y + h) − f + βψ)(x) < 0 ,

so that in particular δ of (4.1) was set equal to 1 which corresponds to the “≤” sign
in the definition of Ik. A slanting function GF of F at y in direction h is therefore
given by

GF (y + h) = βI + Gm(Cy − f + βψ + Ch)C .

It remains to argue that GF (z) ∈ L(L2(Ω)) has a bounded inverse. Since for arbitrary
z ∈ L2(Ω), h ∈ L2(Ω)

GF (z)h =

(
βII + CI CIA

0 βIA

) (
hI
hA

)
,

where I = {x : (Cz − f + βψ)(x) ≥ 0} and A = {x : (Cz − f + βψ)(x) < 0}, it
follows from (H1) that GF (z)−1 ∈ L(L2(Ω)). Above we denoted CI = E∗

ICEI and
CIA = E∗

ICEA.
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