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Abstruct- Circularity is an assumption that was originally 
introduced for the definition of the probability distribution func- 
tion of complex normal vectors. However, this concept can be 
extended in various ways for nonnormal vectors. The first pur- 
pose of this paper is to introduce and compare some possible 
definitions of circularity. From these definitions, it is also possible 
to introduce the concept of circular signals and to study whether 
or not the spectral representation of stationary signals introduces 
circular components. Therefore, the relationships between circu- 
larity and stationarity are analyzed in detail. Finally, the theory 
of linear mean square estimation for complex signals exhibits 
some connections with circularity, and it is shown that without 
this assumption, the estimation theory must be reformulated. 

I. INTRODUCTION 
OMPLEX random variables, vectors, or signals are C widely used in many areas of signal processing. In the 

time domain, the best example of complex random signal is 
the analytic signal appearing in the definition of instantaneous 
amplitude and phase (see p. 229 of [l]). In the frequency 
domain, it is obvious that the Fourier components of a random 
signal are usually complex random variables. 

The second-order theory of complex random variables or 
vectors does not introduce any specific difficulty and is exten- 
sively presented in many textbooks [ I]-[3]. In this context, the 
variance of a complex random variable 2 is E [ Z Z * ]  instead 
of E[Z2] ,  and the covariance matrix of a zero-mean valued 
complex random vector Z is E [ Z Z H ]  instead of E[ZZT], 
which is valid in the real case. Furthermore, all the concepts 
of quadratic mean convergence, and then of Hilbert spaces of 
second-order random variables, can easily be extended from 
the real to the complex case. Finally, the theory of linear 
mean square estimation, which is the basis of the methods 
of statististical linear filtering, can be presented exactly as in 
the real case. 

Some problems, however, appear when leaving the second- 
order properties. This is especially true when dealing with 
the concepts of distribution function, of probability density 
function, or of characteristic function. In fact, the distribution 
function F ( z )  of a real random variable X is the probability 
P ( X  5 x), and the concept of inequality is meaningless for 
complex numbers. In this case, the standard procedure is to 
use the real and imaginary parts that are the components 
of a 2-D real random vector. However, doing so results in 
considering that complex numbers are nothing else but pairs 
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of real numbers, and the complex theory loses most of its 
interest. 

This problem especially appears in the study of the prob- 
ability distribution of normal (or Gaussian) complex random 
vectors. It is always possible to consider that such vectors 
can be described as a pair of two real normal random vectors 
without any specific property. On the other hand, if we want to 
find again the standard structure of probability density, we are 
lead to introduce the concept of circular normal (or Gaussian) 
random vectors (see p. 118 of [ 11 and [4]). This concept can 
easily be extended to stochastic processes, and, for example, 
it is well known that the analytic signal of a real Gaussian 
signal is a complex circular normal signal (see p. 276 of 

Complex circular normal random vectors have several in- 
teresting properties that are easily deduced from the normal 
distribution. However, the question remains open as to whether 
these properties can be extended to the non-Gaussian case and 
for higher order moments. This is the purpose of this paper 
devoted to the study of circularity without introducing the 
normal assumption. However, as many properties are exten- 
sions of some valid in the Gaussian case, Section I1 presents 
a systematic review of the principal properties of complex 
normal circular vectors. Starting from these properties, various 
definitions of complex circular vectors are presented in Section 
111, and the relationships between them are analyzed. From 
vectors, it is possible to pass on to random signals, and this is 
presented in Sections IV, V, and VI. In particular, relationships 
between circularity and stationarity are presented. Finally, 
the last section is devoted to the applications of all these 
ideas to problems of linear mean square estimation. The main 
conclusion is that the classical presentation of linear mean 
square estimation naturally introduces circular vectors. On the 
other hand, this theory must be transformed to achieve the 
best performances in the case where the random vectors are 
not circular. 

[11). 

11. REVIEW OF PROPERTIES OF 
COMPLEX NORMAL CIRCULAR VECTORS 

Let Z(w) be a random vector of C". This vector can be 
decomposed as Z ( w )  = X(w) + j Y ( w ) ,  introducing its real 
and imaginary parts. In.order to simplify the presentation, we 
shall no longer use the letter w to describe randomness and 
assume that the mean value of 2 is zero. 

The random vector Z is said to be normal (or Gaussian) 
if X and Y are a pair of jointly normal random vectors. Let 
us simply remind that the distribution of this pair is entirely 
defined by the covariance matrices of X and Y and by the 
cross-covariance matrix between X and Y. 

1053-587X/94$04.00 G 1994 IEEE 
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The random vector Z is said to be normal circular if it is 
normal, and furthermore, if 

Let us now present the most significant consequences of this 
definition. 

A. Rotation Invariance 
If Z is normal circular, then eJaZ and Z have the same 

probability distribution. 
Proof: Let Z, be the vector e J a Z .  It is clear that if Z is 

normal, Z, is normal as well. It is obvious that Z and Z, have 
the same covariance matrix, and if (2.1) is valid, the matrix C, 
corresponding to Z, is also zero, which completes the proof. 

Conversely, if Z is normal and if there exists at least one 
a not equal to a k n l k  integer such that Z and Z, have the 
same distribution, then Z is circular. 

Proof: It is obvious that Z and Z, are normal and have 
the same covariance matrix. It results from the assumption that 
the matrices C defined by (2.1) corresponding to Z and Z, 
are equal. This yields 

and as CY # kn, then C = 4 which shows that Z is circular. 

B. Probability Distribution 

The probability density and the characteristic functions of a 
complex normal circular vector are given by (see p. 1 19 of [ 11) 

where z = x + jy, and w = U + ;jv, andF, is the covariance 
matrix Z. The characteristic function q5(u,v) is defined, as 
usual, by 

and p(z )  is a notation for a real function of the complex 
variable z but is meaningless as a PDF of a complex random 
vector. The main feature to be noted conceming these ex- 
pressions is that the functions p(x; y) or 4(u, v )  only depend 
on quadratic forms constructed either with z or with w. It 
is worth pointing out that a normal circular random vector is 
entirely defined by its covariance matrixr, = E ( Z Z H ) ,  as 
seen in (2.3) or (2.4). However, no constraint is imposed on 
this matrix, except that it should be nonnegative definite. For 
example, it can be real. In this case, the two vectors X and 
Y, which are the real and imaginary parts of Z, are normal, 
independent, and identically distributed. This is especially the 
case when m = 1 because r, becomes a variance that is a 
non-negative number. 

C. Higher Order Moments 

generalized moment of order k can be written as 
Let us use the notation introduced in p. 122 of [ 11. The most 

In this expression, the i p s  are arbitrary integers satisfying 
1 5 i, 5 m, where rri is the number of components of the 
vector Z. Furthermore, the E ~ S  are equal to fl, and Z,-' is 
by convention equal to Z:, whereas 2;' = 2,. 

If Z is a complex normal circular vector, then the odd 
moments 7n21,+1 [ ] are zero, and the even moments ~ n 2 k  

[ ] are nonzero only if 
2k  CEP = 0. 

p = l  

(2.7) 

Proof: This property is a direct consequence of Property 
A of rotation invariance. It suffices, in fact, to reason by 
contradiction. If an odd moment is nonzero, it cannot be 
invariant when replacing Z by eJaZ. In fact, the factor e J a  
cannot be eliminated from (2.6). The same situation arises 
when k is even and when (2.7) is not satisfied. 

Conversely, if Z is normal and if the moments satisfy these 
relations, Z is circular. In fact (2.7) implies (2.1), which 
ensures circularity. 

111. DEFINITIONS OF CIRCULAR RANDOM VECTORS 

Relaxing the normal assumption, we shall see that the 
properties analyzed in the previous section can lead to various 
possible and not equivalent definitions of circularity. Let us 
first consider the case of a scalar complex random variable 
(RV)Z. It is said that 2 is circular if for any a, the RV's 2 
and exp(ja)  2 have the same probability distributions. Let A 
and @ be the amplitude (or modulus) and the phase (modulo 
2n) of 2. The circularity of 2 is then characterized by 

where p ( a ;  4) and p ( a )  are the probability density functions 
(PDF's) of A. This implies that A and 4, are independent and 
that @ is uniformly distributed in [O: 2 ~ 1 .  The PDF of A is of 
course arbitrary. 

A. Marginal Circularity 

The components 21, of a complex random vector Z are com- 
plex RV's. In the marginal distribution, we consider separately 
each component independently of each other. This leads to the 
following definition: A complex random vector Z is said to be 
marginally circular if its components 21, are complex, scalar, 
and circular RV's. The marginal PDF of the component z k  is 
then given by (3.1), where p ( a )  can now depend on k .  

B. Weak Circularity 

The random vector Z is weakly circular if Z and e x p ( j a ) Z  
have the same probability distribution for any a.  Note that it 
is this circularity that is introduced in Section 11-A for normal 
random vectors. Let p(a: 4 2 , .  . . ~ &) be the PDF of the 
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amplitudes Ak and phases @ k  of Zk,  1 5 k 5 m. The weak 
circularity is characterized by 

d a : 4 )  = ~ ( a ; 4 5 1 1 4 2 1 . . . 1 4 m )  

p(a; 451 + a. 4 2  + a , .  . . , 4m + C Y ) ,  \Ja. (3.2) 

As a consequence, p(a ;4 )  is only a function of (m - 1) 

(3.3) 

Using the fact that phases are defined modulo 2a, it is easy 
to verify from (3.1) and (3.3) that weak circularity implies 
marginal circularity. 

variables qhk or 

d a ;  4) = d a :  4 2  - $1.43 - $1.. . . ,  4rn  - 41). 

C. Strong Circularity 

The random vector Z is strongly circular if 

da:  4 )  = p(a: 41 + Q1: 4 2  + c l . 2 , .  . . . dm + a,) (3.4) 

for arbitrary values of a k ,  1 5 k <_ m. This implies that 

(3.5) 

which means that the phases @ k  are IID RV’s with uniform 
distribution and are independent of the vector A of the 
amplitudes &, 1 5 k 5 m as well. 

It is obvious that (3.5) implies (3.2), which means that strong 
circularity implies weak circularity. 

D. Total Circularity 

This circularity appears when the RV’s z k  are independent 
and circular. This is characterized by the fact that p ~ ( a )  
in (3.5) can be factorized as a product of functions yk(f&). 
Note that total circularity implies strong circularity and that 
marginal circularity and independence give total circularity. 
This circularity appears especially in the normal case when 
the matrix IT, in (2.3) or (2.4) is diagonal, In this case, 
the amplitudes - 4 k  are distributed according to a Rayleigh 
PDF. In reality, it is easy to show (see p. 138 of [l])  that 
if a complex normal random vector is strongly circular, its 
covariance matrix is diagonal, and it is then totally circular. 

E. Moment Circularity 

Statistical properties of a random vector Z can also be 
described by using the moments of any order. Consider again 
the moments defined by (2.6). If Z is marginally circular, it is 
only possible to deduce properties of marginal moments such 
as E[Z;Z,*‘]. It is obvious that these moments are nonzero 
only if p = q .  On the other hand, if Z is weakly circular, it 
is obvious that the only nonzero moments (2.6) are those for 
which k is even, and (2.7) holds. Finally, the only nonzero 
moments of a strongly circular vector Z are in the form 
E[(Z,,  I2Pl . . . IZtn I2Pn], where the i,’s are rb distinct integers 
taken between 1 and m. The assumption of total circularity 
implies that the previous moments can be factorized as a 
product of n terms 1 5 n 5 m because of the independence 
of the 2 % ’ ~ .  

Note that moment circularity can be valid only for the 
moments up to a given order. An example of such a situation 
will be discussed later. 

I v .  CIRCULARITY AND RANDOM SIGNALS 

A random signal can be described as a collection of random 
vectors (see p. 163 of [l]). Therefore, there is no difficulty 
passing from the definition of circular random vectors to that 
of circular random signals. More precisely, a random signal 
X ( t )  is said to be circular if its family of finite-dimensional 
distribution introduces only circular random vectors. 

This definition is especially simple in the case of nor- 
mal signals, and it results from (2.1) that a normal signal 
X ( t )  is circular if and only if the second-order moment 
E [ X ( t ) X ( t ’ ) ]  = 0 for any t and t’. However, normal circular 
signals are not the only circular signals that can be introduced, 
and, for instance, a sequence of IID circular RV’s is an 
example of circular white noise. Such a signal is obviously 
totally circular by extension of the terminology used for 
random vectors. 

However, for the following discussion, the most interesting 
point conceming circularity appears in the frequency domain, 
and this justifies other definitions conceming frequency cir- 
cularity. In all that follows, we only consider harmonizable 
random signals Z ( t )  (see p. 200 of [l]), which means signals 
with a spectral representation such as 

Z ( t )  = dZ(v) exp(j27rvt). (4.1) J’ 
This signal is said to be marginally circular in the frequency 

domain if the increments d z ( v )  and exp(jcr)dz(v) have the 
same statistical distributions for any Q. This is valid for any 
frequency v, but the distribution of dz (v )  can obviously 
depend on the frequency v. 

The signal Z ( t )  is said to be weakly circular if Z ( t )  and 
exp( ja)Z( t )  have the same probability distribution for any 
U .  In the frequency domain, this implies that the vector with 
components d z ( v l ) ,  dZ(v2): . . . , dz(v,) is weakly circular 
for any rri and vj. This of course implies that Z ( t )  is 
marginally circular in the frequency domain. Note at this stage 
that a real signal cannot be weakly circular. In fact, if Y ( t )  = 
e x p ( j a ) X ( t ) ,  where X ( t )  is real, then X ( t )  and Y ( t )  have 
the same correlation function. However, E [ Y ( t ) Y ( t  + T ) ]  = 
e x ~ ( j 2 c ~ ) E [ X ( t ) x ( t + ~ ) ] ,  and these moments are not equal. 

In order to introduce the strong circularity, we must extend 
to the frequency domain, the definition introduced for vectors. 
The appropriate tool for this extension is the phase filter. Let 
us remind that such a filter is characterized by a frequency 
response H ( v )  = exp[j4(v)], where $ ( U )  is an arbitrary 
function modulo 2a. A signal Z ( t )  is then said to be srrongly 
circular if its statistical properties are invariant after being 
filtered in any phase filter. As stated previously, it is obvious 
that a real signal cannot be strongly circular. Furthermore, 
as multiplication of the signal by exp(jtr) is a very simple 
example of phase filtering, strong circularity implies weak 
circularity. Finally, results of Section 11 show that any normal 
circular signal is strongly circular. 



3476 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. I?. DECEMBER 1994 

Now Z ( t )  is totally circular if it is marginally circular and if 
Z ( v )  is a random processes with independent increments. As 
for random vectors, total circularity implies strong circularity. 
Total circularity appears especially in the normal case, and 
a stationary and circular normal signal is totally circular. In 
fact, it results from the nomiality that the function z(v) 
appearing in (4.1) is also normal. The stationarity implies 
that the increments dz (v )  are uncorrelated. The circularity 
implies that E[dZ(vl)dZ(v2)] = 0 for any frequencies v1 
and v2. Consequently, the complex normal increments are 
independent, which is the total circularity. In this case, the 
function z(v) is a complex Brownian motion. However, as 
will be seen later, there are totally circular signals that are not 
normal. 

With all these definitions, we can enter in the core of the 
discussion concerning relationships between circularity and 
stationarity of signals. 

- 

v. CIRCULARITY AND STATIONARITY 
OF CONTINUOUS-TIME SIGNALS 

Consider the pure tone signal Z ( t )  = Z exp(jwt), where Z 
is a random complex amplitude, and w a deterministic angular 
frequency. The signal Z ( t )  is stationary if for any delay T ,  

Z ( t )  and Z ( t  + T )  are RV’s with the same distribution. This 
obviously implies that the complex scalar RV 2 is circular. 
The converse is also true. Therefore, in this very specific 
case of a monofrequency signal, circularity and stationarity 
are equivalent. It is then interesting to study if this result can 
be extended to more complex situations. 

A. Signals with Discrete Spectral Components 

as 
I )  Marginal Circularity: Consider the signal Z ( t )  written 

N 

Z ( t )  = Zk exp(jwkt). (5.1) 
k=l 

In this expression, which is a particular case of (4.1), the 
spectral components Zk are N random variables, and the N 
frequencies W k ( W k  = 2 1 r v k )  are given. The number N of 
components is arbitrary. The statistical properties of the signal 
Z ( t )  are entirely defined by the probability distributions of 
the Zk’s, and we assume, for simplicity, that these random 
variables are continuous. Writing 21, as Akexp(j@k), it is 
then possible to introduce, as in (3.2), a PDF 

p(a: $) = p ( a l !  a2.. . . , U N :  41, $ 2 , .  . . , 4 ~ )  (5.2) 

defining the probability distribution of the vector Z with 
components Zi , 1 < i 5 N and then of the signal Z ( t )  defined 
by (5.1). It is clear that Z and Z ( t )  have the same properties 
of circularity. This follows directly from the definitions of 
Sections 111 and IV. 

Suppose that Z ( t )  is stationary in the strict sense. This 
implies that any signal deduced from Z ( t )  by linear filtering 
is also stationary. This is especially the case of the signal 
Z,( t )  = Z k C X I ) ( j w k t ) .  As a result, it appears that 2, is a 
circular scalar RV. Because this is valid for any I C ,  the result is 

that for signals with discrete spectral components, stationarity 
implies marginal circularity in the frequency domain. The 
converse property is not true, as will be illustrated later by 
an example. Furthermore, marginal circularity implies that the 
spectral components of a stationary signal cannot be real since 
a real RV cannot be circular. In reality, this can be deduced 
directly from (5.1). In fact, if the Zk’s  are real, the signal Z ( t )  
satisfies Z ( t )  = Z*(- t ) ,  and this symmetry with respect to 
the origin of time is in contradiction with stationarity, which 
implies invariance of the statistics in any change of this origin. 

2)  Weak Circularity: Weak circularity is characterized by 
(3.2); it is interesting to investigate whether it has some 
relationship with stationarity. If Z ( t )  is stationary, Z ( t )  and 
Z ( ~ + T )  have the same statistical properties. The same is valid 
for their spectral components. Those of Z ( t  + 7 )  are deduced 
from (5.1) and are then 21, exp(jwk7). As a consequence, if 
all the frequencies wk are nonzero, the stationarity of Z ( t )  is 
characterized by 

p(a, 4) = p(a; 41+wlr, 4 2 f w 2 7 . .  . . , ~ , v + ~ N T ) , V  t .  (5.3) 

This relation is similar, but not equivalent, to (3.2). In partic- 
ular, it implies the same kind of consequence and especially 
that p(a: 4) is a function of only ( N  - 1) independent variables 

( w ~ / w ~ ) & .  As the phase is defined modulo 27~, this obviously 
implies marginal circularity. 

However, if a signal like (5.1) is simultaneously stationary 
and weakly circular, or if (3.2) and (5.3) hold, then p(a,d) 
necessarily takes the form (3.3,  which means that the signal is 
strongly circular. In other words, it is impossible for a signal 
to be stationary and weakly circular without being strongly 
circular. This leads us to study this kind of circularity. 

3) Strong Circularity and Signals with Incommensurable 
Frequencies: Suppose that N = 2 in (5.1), and let us call 
2 1 ( t )  and Z,(t) the two signals of which their sum is equal 
to Z( t ) .  As these signals are deduced from Z ( t )  by two linear 
filters, they are jointly stationary, and then, the moments 

as, for example, ‘$2 - (w2/w1)’$1, $3 - (w3/w1)41 . .  . ., dN - 

ULpp7.s ( t )  E[Zf) (t)z;q (t)Z,T ( t )  2;. ( t ) ]  (5.4) 

(5.5) 

are time independent. These moments can be written as 

f r L p q r s ( t )  = “ p q r s  exp(j[(p - q)wl + (7- - ~ ) w 2 ] f }  

with 

mpqrs 4 E [ z ~ z ; ~ z ~ z ~ ~ ] .  (5.6) 

It results from the stationarity of Z ( t )  that mpqrs is nonzero 
only if 

(5.7) 

Suppose now that the ratio p = w2/w1 is not rational. In this 
case, (5.7) implies p = y and 7- = s. This means that Z ( t )  is 
strongly circular. In fact, the only nonzero moments of Z1 and 
22 are now in the form E[IZ112P1Z212r]. Using a phase filter, 
21, is transformed into Zk exp[j$(w~,)], and consequently, all 
the nonzero moments of the pair of RV’s Z1 and 2 2  are 
invariant. This is the definition of strong circularity. By using 
algebraic arguments, it is possible to obtain the same result 

( p  - q)w1 + (7- - s)w2 = 0. 
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directly from (5.3) with N = 2. Finally, it is easy to verify 
that the assumption that p is irrational is essential, and without 
this condition, it is only possible to conclude to marginal 
circularity. Then, the conclusion is that a stationary signal Z ( t )  
with two spectral components at incommensurable frequencies 
is strongly circular. The converse is obviously true. In reality, 
a strongly circular signal is necessarily stationary. In fact, 
the assumption of strong circularity is characterized by (3.9, 
which implies (5.3) and yields stationarity. For this converse 
property, the assumption of incommensurable frequencies is 
then not necessary. 

The result can be extended to N frequencies. Suppose that 
the frequencies appearing in (5.1) are such that the equation 

n1w1 + npwp + . . . + 71.hrw.hr = 0 (5.8) 

implies ri; = 0 , 1  I: .i 5 N ,  where the 7 ~ ’ s  are integer. In this 
case, by considering the N signals Z k e x p ( j w k t ) ,  it can be 
shown that as for N = 2, stationarity implies strong circularity. 
In other words, the only nonzero moments of the spectral 
components are in the form EIIZ1 I2P1 . . . IZ1v 1 2 P , v ] .  However, 
note that this does not mean that the spectral components are 
independent RV’s. 

4)  Total Circularity: This appears if the components 21, 
in (5.1) are independent. In this case, stationarity and to- 
tal circularity are equivalent. In fact, stationarity implies 
marginal circularity, and independence implies that marginal 
distribution completely defines the PDF (5.2). Conversely, 
independence and marginal circularity obviously implies (5.3) 
or stationarity. 

B. Signals with Continuous Spectrum 

1)  Marginal Circulurity: Suppose that Z ( t )  can be written 
as in (4.1) and that the function z(v) has no step-wise 
variations at nonrandom frequencies. This means that there 
is no term such as (5.1) in Z ( t ) .  As the differential signal 
dz(v) exp(j27rvt) can be deduced from Z ( t )  by linear filter- 
ing, it is stationary. As a consequence, the increment d z ( v )  
is a circular RV, which means that the only nonzero moments 
are in the form E[ldZ(v)12k]. Consequently, the signal Z ( t )  is 
marginally circular in the frequency domain, as defined after 
(4.1). Without further assumption concerning z( U), it is the 
only circularity that is implied by the stationarity of Z ( t ) .  

2) Strong Circularity and Normal Manifolds: At any time 
instant t ,  the most general moment of Z ( t )  can be written as 

7 n ( t ; p ,  q )  42 E[ZP( t )z*q( t ) ] .  (5.9) 

This moment must be time independent because of the sta- 
tionarity of Z ( t ) .  From (4.1), we deduce that it can be written 
as 

exp[2.irjt(v1 + up + . . . + vp - vpil 

- ’ .  ‘ - vp+q)]dv (5.10) 

with 

M ( v ; p ,  q ) d v  = E [ d Z ( U l ) .  ’ .  d Z ( V , ) )  
dZ*  ( y P + l )  . . . dZ* (5.1 1) 

As (5.10) must be time independent, it appears that the spectral 
components M ( v ; p .  q )  must be zero outside the manifold of 
W“+q defined by 

UP+2 - . . . - v1 + vp + ’ ‘ ’ + vp - vp+l - = 0. (5.12) 

This manifold is called the stationury manifold of order 
p , q  (see p. 238 of [l]). This geometrical consequence of 
stationarity allows us to find the marginal circularity again. 
In fact, if all the frequencies are equal to v, (5.12) implies that 
p = q ,  and then, the only nonzero moments of the RVdZ(v) 
are those written as E[\ d Z ( v )  1 2 k ] ,  which specifies marginal 
circularity . 

However, it is well known (see p. 279 of [I])  that the 
spectral moments such as (5.1 1) of stationary normal circular 
signals are nonzero only on submanifolds of the stationary 
manifolds; these are known as normal manifolds. More pre- 
cisely, in the normal case, (5.11) is nonzero only if p = q and if 
each frequency U, is associated with a frequency vp+J in such 
a way that v, = up+]. There are, of course, p such equations, 
and a normal manifold is a p-dimensional subspace of R2P. For 
example, for p = 2 ,  there are two normal manifolds defined by 

(5.13) 

For arbitrary p ,  there are p !  normal manifolds. It is also known 
(see p. 280 of [l]) that a signal is normal if the moments 
M ( v ;  p ,  q )  are not only distributed in the normal manifolds 
but if the density on these manifolds is normal as well. 

This leads to study signals that are not normal but with spec- 
tral moments (5.11) distributed only on the normal manifolds. 
We shall see that such signals are strongly circular. 

In fact, after filtering of Z ( t )  in a filter with frequency 
response H ( v ) ,  the spectral moments h f ( v ; p .  q )  defined by 
(5.1 1) are transformed into 

v1 = v3;vz = u4 and v1 = v4;v2 = v3. 

M / ( v : p ,  y) = H ( v 1 ) .  . . H ( v p )  

H*(vp+l)  . . . H* ( vP+y)M(v; p ,  4 ) .  (5.14) 

Suppose that H ( v )  is a phase filter. If p = q and if to each U ,  

there is a vp+] equal to v,, we obtain the term \H(vZ) l2 ,  which 
is equal to 1 by definition. Because this is valid for each v,, 
we deduce that M’(v: p ,  p )  = M ( v ;  p ,  p ) .  As a consequence, 
all the nonzero spectral moments of Z ( t )  are invariant through 
transformation by a phase filter. This is precisely the definition 
of strong circularity. It is easy to verify that the converse is 
also true. As a consequence, stationarity and strong circularity 
are equivalent if and only if the spectral moments M ( v ; p .  q )  
are zero outside the normal manifolds. 

3)  Total Circularity: Total circularity is defined at the end 
of Section IV, and it is obvious that if the increments d z ( v )  
are independent, stationarity and circularity are equivalent. The 
reasoning is the same as in Section V-A-4. 

C. Nurrow-Band Signals 
We have seen previously that if Z ( t )  contains only one 

spectral component, the assumption of stationarity implies 
circularity and conversely. It seems obvious that the property 
of circularity that is valid for a purely monochromatic signal 
will still partially appear if Z ( t )  has a spectral representation 
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limited to a narrowband in the neighborhood of W O .  This 
problem is analyzed in p. 241 of [l] ,  and the results can be 
summarized as follows. 

Suppose that the increments of d z ( v )  appearing in (4.1) are 
zero outside the frequency domain vo - AV, vo + Av and that 
Z ( t )  is stationary. By using the same notations as in (2.6), we 
can introduce the moments defined by 

It is then shown in the Appendix that if IC 5 N = 
Ent[r/o/Av]. where Ent [XI means the entire part of X, we 
have m k [ { t L } ;  {E,}] = 0 either if k is odd or if k is even, 
but CE, # 0. This means the signal Z ( t )  has a moment 
circularity to the order N similar to that indicated in Section 
111-D. 

D. Discussion and Examples 

At the end of this section, let us first discuss the case of 
real stationary signals. The condition ensuring that Z ( t )  of 
(4.1) is real is the Hermitian symmetry dZ(v )  = d Z * ( - U ) .  
If Z ( t )  is real and stationary, the increments dZ(v )  cannot 
be real. In fact, this reality would imply that Z ( t )  = Z( - t ) ,  
which is impossible for a stationary signal. This property is 
also a consequence of the marginal circularity appearing as a 
consequence of stationarity both for real and complex signals. 

It is also of interest to discuss the case of normal real and 
stationary signals. It is especially interesting to explain why 
they cannot be strongly circular, as in the complex case. In fact, 
when filtering such a signal in any phase filter, the correlation 
function and the normality are preserved. However, the output 
of such a filter has no reason to remain real, and in order 
to preserve reality, the phase function 4(v) must satisfy the 
constraint @ ( U )  = $ ( - U ) .  Without this constraint, the output 
is complex, and the second-order moment E[Z(t)Z(t - 7)] 

has no reason to remain invariant. Therefore, the statistical 
properties of a real normal stationary signal are not invariant 
in any phase filtering, which is in contradiction with the strong 
circularity. The same reasoning can be applied to real signals 
with nonzero moments only on the normal manifolds. 

Let us now, as indicated above, give an example showing 
that marginal circularity only does not imply stationarity. 
Suppose that in (5.1) z k  = Z,1 5 k: 5 N ,  where z is 
a circular RV. It is obvious that marginal circularity holds. 
However, an elementary calculation shows that E[I Z ( t )  1 2 ]  is 
not time invariant, which shows that Z ( t )  is not stationary. 

Let us now give examples of nonnormal signals that are 
strongly circular. It is especially the case of complex spher- 
ically invariant stochastic processes (see p. 299 of [ l ]  and 
[SI, [6]). Let u(t)  be a complex normal circular signal and 
w an RV independent of ~ ( t ) .  The signal ~ ( t )  = w u ( t )  is 
no longer normal and is obviously stationary. Furthermore, as 
u( t )  is strongly circular, this property also holds for ~ ( t ) .  It is 
easy to show that the spectral higher order moments of z ( t )  
are nonzero only in the normal manifolds, as for any strongly 
circular signal. 

Finally, let us briefly indicate an example of a signal that is 
nonnormal and totally circular. Suppose that in (4.1), Z ( v )  is 

constructed from a Poisson process (see p. 318 of [l]). This 
means that Z(t) can be written as 

Z ( t )  = zc exp(2xJvkt) (5.16) 

where the frequencies vk are random and constitute a Poisson 
process of density X(v), and the random complex amplitudes 
z k  are independent of each other and of the Poisson process. 
This expression is clearly a generalization of (5.1). It is 
obvious that this signal is not normal. However, because of 
all the independence assumptions, stationarity of Z ( t )  implies 
that it is totally circular. This can easily be verified in the 
frequency domain. In order to calculate the moment (5.1 l ) ,  
it suffices to transpose a procedure well known in the time 
domain (see p. 367 of [l]). For example, the spectral moment 
(5.11) calculated for p = p = 2 takes the form 

k 

AL+; 2,2) = r(v1)r(v3)[s(v1 - v3)6(v2 - v4) 

+ W E [ I Z ( ~ ) l 4 1  
+ s(v1 - v4)6(v2 - v3)] 

x S ( V ~  - 1 / 2 ) 6 ( ~ ; ?  - v ~ ) ~ ( v s  - ~ 4 )  (5.17) 

where r ( v )  is the power spectrum and Z(v) is the RV z k  

when it appears at the frequency V k  = v. It is obvious that 
(5.17) is zero outside the normal manifold. However, its last 
term is zero in the normal case, which shows that the signal 
Z ( t )  is not normal. This can also be expressed in terms of 
cumulant trispectrum. In fact, it is well known that fourth- 
order cumulants are obtained from moments by subtracting 
the normal contribution. This implies that the trispectrum of 
Z ( t )  is given by the last term of (5.17). This term cannot 
be zero, and then, contrary to the case of normal signals, the 
trispectrum is also nonzero even if the increments appearing 
in (4.1) are independent. 

At the end of this section, it is worth considering the 
case of the analytic signal (AS) of a stationary real signal 
~ ( t ) .  In fact, the AS is one of the most important examples 
of a complex signal that is used in many areas of signal 
processing and communications and appears, in particular, in 
all the problems using narrow-band signals. Without any more 
specific assumption, the AS is only marginally circular. If the 
higher order spectra of ~ ( t )  are only dealing with normal 
manifolds, the AS is strongly circular. If the increments of 
the spectral representation of ~ ( t )  are independent, the AS is 
totally circular, and this is the case when r ( t )  is normal but 
can appear with other kinds of signals. 

Let us now summarize the main results of this discussion. 
For any kind of harmonizable signal, stationarity implies 
marginal circularity of the frequency components. This does 
not mean circularity of the signal itself. If, furthermore, the 
spectral moments only deal with normal manifolds, which 
appears in the case of signals with incommensurable discrete 
frequencies, stationarity implies strong circularity of the signal. 
Now, if the components appearing in the spectral representa- 
tion of the signal are independent, which particularly appears 
in the normal case but not in this case alone, stationarity 
implies total circularity of the signal. Conversely, total and 
strong circularity of the signal implies stationarity. On the 
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other hand, marginal circularity in the frequency domain does 
not imply stationarity, and weak circularity of the signal 
alone has no specific relationship with stationarity. Finally, 
stationary narrow-band signals have circular moments up to 
a certain order. 

then a moment circularity up to a given order for frequencies 
smaller than a limit depending on this order. 

Let us now consider the case of a two-component signal 
in order to find under which conditions strong circularity can 
appear. With the same reasoning as in Section V-A-3, we can 
start from (5.4), where t is replaced by an integer k .  The result 
is then that vipqrs is nonzero only if ( p  - q)vl + ( T  - s)vZ = a,  
where a is an integer. Therefore, the condition that the ratio 

VI. CIRCULARITY AND STATIONARITY 
OF DISCRETE-TIME SIGNALS 

The problem immediately appears to be more complicated 
than for the continuous-time case. In fact, consider the pure 
monochromatic signal Z [ k ]  = Zexp(2r j vk ) ,  1vI < 1/2 and k 
integer. It is stationary if for any integer p ,  Z [ k ]  and Z [ k  + p ]  
are complex RV’s with the same distribution. This does not 
imply that the complex amplitude Z is a circular RV. For 
example if v = 1/4, the condition on 2 is that U and 
kj2 have the same distribution, which is insufficient to 
imply circularity. However, if the frequency v is an irrational 
number, the fact that the set of irrational numbers is dense 
in [0, 11 implies that the stationarity of Z [ k ]  is equivalent 
to the circularity of 2. Therefore, the property that is valid 
for any frequency with continuous-time signals is only valid 
for irrational frequencies with discrete-time signals. The same 
kind of difficulty will appear when repeating all the discussion 
of the previous section, and we shall only outline the principal 
results. 

Let us first consider a signal like (5.1 ) that is equal to a sum 
of monochromatic components such as 

Z,[k] = Z,exp(27rj,sk) (6.11 

where s is integer (1 5 s 5 AT). Because these components 
are stationary, we can conclude that if v, is irrational, the 
RV 2, is circular. Therefore, if all the frequencies v, are not 
rational numbers, the stationarity of Z ( t )  implies its marginal 
circularity, as for the continuous-time case. 

However, by using moment circularity, a less general re- 
sult can be obtained even for rational frequencies. For this, 
consider the component (6.1) and, as in (5.9), its moment 

7 n ( k ; p ,  q> 2 E { z ~ [ ~ ] z , * * [ J ~ ; ] ) .  (6.2) 

From (6.1), we deduce that 

r r i (k ;p :  y) = m 3 ( p :  y) e x p [ 2 ~ j v , ~ k ( p  - q ) ]  (6.3) 

where v~,(p,q) is the moment of order p ,y  of the RV Z,. 
Because (6.3) must be independent of I ; ,  we deduce that we 
must have rrL,(p, q )  = 0 if v,(p - q )  # 1 with 1 integer or 
zero. If v, is irrational, this implies that p = q, and then, the 
only nonzero moments of Z,  are E[1ZS1*p]. This gives, as seen 
above, the marginal circularity. 

On the other hand, if v, is a rational number, the relation on 
U, does not imply that p = q and, then, the marginal circularity. 
However, this can be valid at least for some values of p and 
q. Suppose that we are only interested in moments of an order 
limited by N .  This means that p + q 5 il;. In many studies 
concerning higher order statistics, AT = 4, which, for instance, 
introduces the bi and trispectrum. It is then obvious that for 
frequencies satisfying Jv,J < (l /N),  we have Ivs(p - q)J  < 1 
and then for those frequencies r r~ , (p ,  q )  = 0 if p # q. There is 

i/a/v1 is irrational is not sufficient to deduce that p = q, and 
T = s .  However, if v1 is a rational number and vz an irrational 
number, the previous equation implies p = q and T = s, or 
the strong circularity. 

Similarly, if Z [ k ]  has a continuous spectrum with a spectral 
representation like (4. l), where the integration is on the range 
of frequencies IvI < 1/2, then stationarity implies marginal 
circularity for any frequency v that is an irrational number. 

All this discussion shows that the discrete-time case is much 
more difficult to analyze than the continuous-time case. The 
main reason for this is that by discrete increments on the unit 
circle, it is not always possible to reach any point of this 
circle because of the possible periodic behavior. Except for 
this specific problem, the main general conclusions are the 
same as for continuous time signals and are indicated at the 
end of the previous section. 

Another question dealing with spectral representation is 
whether or not the coefficients appearing in the expansion of 
a stationary signal in Fourier series are circular. 

Two distinct situations must be considered. The first one 
appears when the signal Z ( t )  is stationary and periodic. In 
this case, it can be expanded as in (5.1), where k is going 
from -cc to +no, where Lu’k = 2r/T,T is the period of the 
signal. Therefore, the conclusion of the previous discussion 
remains the same: If Z ( t )  is stationary, the Zk’s are marginally 
circular. If, furthermore, the Zk’s are independent, Z ( t )  is 
totally circular. 

The most common situation appears when the signal is not 
periodic. In this case, (5.1) is only valid in a specific interval, 
say [OT], and the Fourier coefficients are given by (see p. 209 
of [11) 

z k  = dZ(v)sinc{T[v - ( k / ~ ) ] } .  .I (6.4) 

It is clear that when Z ( t )  is stationary, this random variable 
has generally no reason to be circular. However, it has this 
property when z( v )  is a process with independent increments, 
as can easily be verified. The situation is exactly the same with 
the coefficients appearing in the discrete Fourier transform of 
a nonperiodic stationary signal. 

Let us finally discuss the relationships between circu- 
larity and sampling. This operation applied to a stationary 
continuous-time signal Z ( t  j providing a stationary discrete- 
time signal. It is then of interest to study how marginal 
circularity is preserved in the aliasing phenomenon due to 
the sampling procedure. To explain the situation, suppose 
that Z ( t )  is given by (5.1) with only two components at 
frequencies v1 and v2 with v1 < vq. Let Z,[I;] = Z ( k T )  be 
the sampled signal. If 24 < 1/2T. there is no aliasing effect. 
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Suppose then that VI < 1/27' < v2. In this case, we have 

Z S [ ~ ]  = 21 C X P ( 2 r J V 1 k )  + zz exP(2KJP2k) 

Writing the real and imaginary parts ofE,. Rys,c and M, as in 
(7.11, orBc =F1+$'2, Wyz,c  = W l + j R z ,  and Mc = Ml+jMz,  
one can express (7.2) in the form 

M$1- M282 = W 1  (7.4) 
M$2 + m T 1 =  R2 

(6.5) 

with p2 = v2 - k/T,where k is such that Ip2l < 1/2. In 
this case, Z1 and Z2 remain circular, and Z,[k] is marginally 
circular in the frequency domain. The only problem appears 
if PZ = V I .  In this case, Z,[k] = (2, + 2 2 )  exp(27rjvlk), and 
it is left to be explained why Z1 + Z2 is circular when w1 is 
irrational. For this, let us use (5 .3) ,  which becomes 

and the estimate Yc takes the form 

Y,  = MIX1 - M,X, +j(M,XI+ M1X2). (7.5) 

p(a: 41, $ 2 )  = p(a: 41 + ~ T V I T ,  4 2  + 27rv27),V7. (6.6) B. Real Presentation of Complex LMSE 

As minimizing E[lUlz] ,  where U is complex, is equivalent 
to minimizing E[U,2] and E[U;], the same problem can be 
stated in the real field by using vectors of R2" and R2n. In 
this perspective, the LMSE of Y can be written as 

Suppose that v:! = V I  + (m/T)  with ni integer, and let us 
apply this at the time instants 7 = kT. As the phase is defined 
moduio 'LT ,  this yields 

As VI is irrational, this equation can be transformed into 

p(a: 451.421 = p(a; 41 + 0 , 4 2  + QV0. (6.8) 

As a result, the RV's 21 and 22 are the components of a 
weakly circular vector. Their sum is then circular, and as 
in (6.1), we again find the marginal circularity of Z,[k]. 
This reasoning can be generalized for an arbitrary number of 
components and more generally for the increment 

dZs(v) = (1,'T) dZ(v - n / T )  (6.9) 
n 

appearing in the spectral representation of the signal Z,[k] 
obtained by sampling at the period T of Z ( t ) ,  provided that 
the frequency I/ is irrational. 

VII. CIRCULARITY AND LINEAR MEAN SQUARE ESTIMATION 

Consider two coniplex random vectors X and Y belonging 
to C" and C", respectively. Their decomposition in real, and 
imaginary parts are 

x = x1 +jX2:Y = Y1 +jYz (7.1) 

and we assume that all these vectors have a zero mean value. 
We want to study the problem of linear mean square estimation 
(LMSE) of Y in terms of X .  

A. Classical Presentation of Complex LMSE 

The problem of complex LMSE is usually presented as an 
obvious extension of the real situation. In this perspective, 
the complex estimate Yc,  which, for each component K ,  
minimizes the mean square error E[IY, - RI2], 1 5 i 5 u, 
can be written as Y, = McX, where the estimation matrix is 
the solution of the equation 

ME< = R,yc,c (7.2) 

with 

Y = LMSE[Yl 1 XI. X,] + jLMSE[Yz 1 XI,  X,] (7.6) 

where LMSE[A 1 BC] means the LMSE of A in terms of B 
and C, where A ,  B: and C are real. Introducing the real and 
imaginary parts of Y, one can write (7.6) in matrix form: 

It is clear that all the MLJ 's  are n x 713 matrices. 

can also be written as Ycl + jYcp, where 
Looking at ( 7 3 ,  we *observe-that the complex estimation 

M l  - M2 [k] = [ M/02M1 ] [::I (7.8) 

and this shows that the classical complex LMSE of Y can 
be written in the form (7.7) with a specific structure of the 
matrices MzJ. 

Our purpose is to show that for circular vectors, the general 
structure (7.7) takes the form (7.8). On the other hand, if 
circularity is not introduced, the complex LMSE has no reason 
to give the best performance that can be obtained with (7.7). 

In order to arrive at our main result, the first step consists 
of calculating the matrices AdLJ appearing in (7.7). For this, 
let us introduce the vectors X, and Y, of R2" and W2", 
respectively, which are defined by 

x: = [X?,XT] : YT = [YT,YT]. (7.9) 

The real LMSE of Y, in terms of X, can be written as 

Y ,  = M,X, (7.10) 

where M, is the solution of the equation deduced from the 
orthogonality principle 

M 8 . c r  Wyx r .  (7.11) 

This equation is very similar to (7.2). However, the matrices 
appearing here are quite different. The matrix M,, is a 2n x 
2rn matrix, and its block decomposition appears in (7.7). 
Furthermore 

F,, f E[X,XF]; RYs,, E[Y,XF] (7.12) 
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and the block decomposition of these matrices makes use of 
matricesli',, and R,, in such a way that (7.11) becomes 

(7.13) 

This gives us four equations that allow the calculation of the 
matrices MtJ.  

Let us now introduce the assumption of circularity. In the 
present context, second-order circularity is sufficient, and this 
can be characterized, as in (2.1), by 

E[XXT] = 0 : E[YXT] = 0 (7.14) 

where X and Y appear in (7.1). Note that in the normal case, 
this implies that the pair of vectors X , Y  is jointly normal 
circular, as discussed in Section 11. Writing 

F, A E[XXH] = I r ' 1 + p 2 ; W c  2 E[YXH] = BBl+jW2 (7.15) 

it is easy to show (see p. 119 of [l])  that (7.14) yields 

MllMl2 li'l812 W l l W 1 2  

[M21MZZI L 2 5 2 2 3  = [R21R221.  

F11 =IT22 = (1/2F1; Fl2 4 ' 2 1  = -(1/2)i'2 (7.16) 

and 

Rll  = (1/2)R1; W12 = -W21 = -(1/2)R2 (7.17) 

Introducing these equations in (7.13), we easily obtain 

AA11 1 M 2 2  = Mi;  Mi2 = -AA21 = -Ad2 (7.18) 

where the matrices M1 and M y  are solutions of (7.4). 
This means that when the circularity assumption is intro- 

duced, the classical complex LMSE gives the same solution 
as the real estimation, where the real and imaginary parts of 
Y are separately estimated in terms of X1 and X2. 

The previous result dealing with LMSE can be extended 
to problems of matched filtering or of minimum variance 
estimation. This is mainly due to the fact that LMSE is also 
a problem of variance minimization. These problems appear 
especially in spectral estimation or spatial filtering [7] and 
will not be analyzed here. 

C. Examples of Applications 
In order to illustrate the previous results, we shall discuss 

some examples corresponding to the case where Y is now 
a scalar random variable. This especially appears in signal 
interpolation or prediction. 

The classical theory of complex LMSE (see p. 50-0f [7]) 
leads to the following result. The complex estimate Y, of Y 
can be written as 

Yc = hHX (7.19) 

where h is the solution of 

F h  = r 2 E(Y*X) .  (7.20) 

Introducing the real and imaginary parts of E. h and r, this 
equation becomes 

(7.21) 

and Yc takes the form 

Yc = hYX1 + hifX2 + j ( -hTX1 + h r X p ) .  (7.22) 

Furthermore, the estimation error is 

E," = ni - rHh = 0; - (hrr l  + h;r2) (7.23) 

where cry2 = E[lY12]. 

and these estimates are written as 
The "real" solution of the same problem is Y,. = Yl + jY2 ,  

where W is a matrix with matrix elements hij. As in (7.8), 
the real and imaginary parts of Y, defined by (7.19) can be 
written as in (7.24) but with a matrix W, in the form 

(7.25) 

Introducing the matrix elements 

r%j 4 E[X,Y,I (7.26) 

and Y z  yield an the orthogonality equations defining 
equation similar to (7.13), or 

::: 21 [:;: 23 = [::: :;$ (7.27) 

We again find (7.21) when the circularity assumptions (7.16) 
and (7.17) are introduced. The estimation error E ; ~ S  equal to 
~f + E; ,  which is sum of the errors in Y 1  and Yz, and the 
result is 

(7.28) 

We deduce from (7.25) and (7.17) that this expression again 
gives (7.23) when the circularity assumptions are introduced. 

Let us now consider some specific examples. Suppose that 
X and Y are real. This implies that X2 = 0 and Yp = 0, and 
consequently, the only nonzero matrix elements are D'll = li' 
and rll = r. Therefore, (7.27) becomes the classical real 
relationHh11 = r, and h21 = h 1 p  = h 2 2  = 0. The same 
result is deduced from (7.2 l),  and the complex theory applied 
in the real case leads to the real theory. 

Suppose now that X is complex, where Y is still real. 
This corresponds to the estimation of a real quantity from 
complex observations. There are several examples of such 
situations, and a possible one is the estimation of the likelihood 
ratio, which is real, in terms of spectral components of an 
observation, which are complex. 

In this case, the only consequence of this assumption is 

r12 = r22 = 0. (7.29) 

This means that the last column of the matrix of the riJ's 
appearing in (7.27) is zero. Because the matrixE is positive- 
definite, we deduce that 

hi2 = h 2 2  = 0 (7.30) 

and the estimate Yr defined by (7.24) is real, which is quite 
satisfactory for the estimation of a real quantity Y.  
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On the contrary, there is no reason for h 2 ,  which is 
defined by (7.21), to be zero, and then, the application of the 
classical complex theory yields an unsatisfactory result since 
the estimate of a real quantity is complex. Furthermore, the 
estimation error is certainly greater than with the real estimate 
because by construction, it provides the best performance. 

Finally, suppose that Y is still real, but X is now circular. 
Replacing the values given by (7.16)  in (7.27), this equation 
becomes similar to (7.21), where the ris are divided by 2. 
Consequently, one obtains 

and then. the real estimate is 

whereas the complex estimate is still given by (7.22). In these 
two equations, hl and h p  are deduced from (7.21). 

The same conclusion appears as in the previous case: The 
complex estimate of the real quantity is complex, whereas Y, 
is real. 

Furthermore, it is possible in this case to compare the 
performances of the two procedures. By using (7.23) and 
(7.28). we obtain 

with 

n = hyrl + hT1-2. (7.34) 

As a, > 0, because it  is, in reality, a quadratic form with 
a positive definite matrix, it appears clearly that the “real” 
procedure provides better performances than the “complex” 
procedure. 

The conclusion of this discussion is that these two proce- 
dures are equivalent in the case where the observation and 
the estimation are complex circular, at least up to the second 
order, which justifies the interest and the importance of the 
assumption, that is often implicit, of circularity. 

APPENDIX 

Let LW~[{uz}; { ~ j } ]  be the Fourier transform of (5.15). As 
Z ( t )  is stationary in the strict sense, Mk is zero outside the 
stationary manifold (see p. 238 of 111) defined by 

&Ui = 0 
7. 

Thus, r n k  is nonzero only if (A.l) holds with frequencies U ,  

satisfying 

U(]  - AU < vo < vo + Au. (‘4.2) 

It is obvious that if A u  = 0, this gives CE, = 0, which is 
impossible for k odd and gives (2.7) for k even. It is also 
obvious that if all the E,S are equal, it is impossible to have 
( A .  1)  and (A.2 )  simultaneously. 

Therefore, let q be the number of coefficients ~i equal to 1. 
One can write (A.l)  in the form 

Si A u 1 + V 2 + . . . + V q  = U , + ~ + U ~ + ~ + . . . + U ~  4 S 2 .  (A.3) 

If k = 29, this is not in contradiction with (A.2), even when 
A V  = 0. 

Suppose now that 29 < I C .  This implies that the mean 
frequency of S1 is smaller than the one of S2. In this case, 
(A.3) is possible only if the upper bound of 5’1 is greater than 
the lower bound of S2,  or 

q(fo + AV) > ( k  - q ) ( f o  - AV). (‘4.4) 

This yields 

k - 2q 
n u  > -+I. (‘4.5) 

Therefore, a sufficient condition to obtain circularity of type 
C is that 

(A .6 )  au < L 

where L is the lower bound of the last term of (A.5). 
Taking into account all the values of q such that IC - 2q > 0, 

we obtain that L = f o / l c .  The same reasoning can be made if 
2q > k by changing the roles of SI and Sp. 

In conclusion, if uo and A u  are given, we obtain the C 
circularity if k < f o /Au ,  and a sufficient condition of C 
circularity is then 

k 5 Ent[fo/Au]. (‘4.7) 
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