
HAL Id: hal-01660470
https://hal.science/hal-01660470

Submitted on 10 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In flight real-time adaptation
Bertrand Granado, Marc Gatti, Julien Denoulet, Martin Rayrole

To cite this version:
Bertrand Granado, Marc Gatti, Julien Denoulet, Martin Rayrole. In flight real-time adaptation. SAE
2017 AeroTech, Sep 2017, Fort Worth, Texas, United States. �hal-01660470�

https://hal.science/hal-01660470
https://hal.archives-ouvertes.fr

Page 1 of 4

2017-01-2169

In flight real-time adaptation

B.Granado1, M. Gatti2, J. Denoulet1, M. Rayrole2
1 – Sorbonne Universités, UPMC Univ Paris 06, UMR7606, LIP6, F70005 Paris, France, 2 – Thales Avionics, 75-77 Avenue Marcel Dassault, 33700 Mérignac

Abstract
Avionics is one kind of domain where prevention prevails.
Nonetheless fails occur. Sometimes due to pilot misreacting, flooded
in information. Sometimes information itself would be better verified
than trusted. To avoid some kind of failure, it has been thought to add
an new kind of embedded monitoring that enable adaptation.

1 Introduction
It is well known that avionics is a very restricting domain for obvious
safety reasons. Along with miniaturization comes the idea of
integration. More functionality on one spot requires a good
management of privacy and congestion on shared platforms. This is
why determinism is one of the keywords of avionics works. This led
to protocols like ARINC653[1] assuring that, multitask embedded
programs respect a predictable policy applied by the operating system
(OS). Another key protocol is ARINC664, which guarantees that
multiple communicating systems efficiently share the network. These
two protocols are pillars of the Integrated Modular Architecture
(IMA) concept [2]. IMA concept consists of multitask module
hosting ARINC653 OS, interconnected with ARINC664 data
network. Compared to federated avionics architecture, it considerably
reduces the overall weight and power consumption for aircraft,
reduces development expenses and design cycle times as well as
maintenance costs. With the intention to step forward with this
concept, the CORAC (The Council for Civil Aeronautics Research)
develops a technological demonstration platform (PDT) called
Extended Modular Avionic (AME) [3]. Therefore, as partner of the
project, we work on a project dedicated to monitor the system.

In this paper, we use our embedded real time monitor to take real
time in-flight decision to adapt the behavior of the digital processing.
We first present our embedded SystemC simulator that can be
embedded in a plane as a processing module to monitor data traffic
generated by key avionic applications in order to detect suspicious
behavior such as missing data, unexpected communication of simply
incoherent data. Second we explain how, by exploring several
architecture configurations, the simulator can help the IMA system to
decide how it should be configured, how the processing resources
should be assigned in order to efficiently manage specific or critical
situations. In the next sections, we first introduce our method and its
related tools, most notably the SystemC language and the
modifications required to make this language compliant with avionic
constraints. Next, we show how the simulator can be implemented in
a QorIQ T2080-based board. We then introduce the use cases
(monitoring and architecture exploration) to illustrate the benefits of
our approach. Finally, we will conclude.

2 Embedded simulator

2.1 Method presentation

Figure 1: Embedded simulation methodology

In Figure 1, we present the principle of our method. We consider an
avionic architecture featuring core processing modules (CPM)
implementing several applications and generating data traffic and
avionics switch modules (ASM) which route data packets to their
destination CPM.

As an example, CPM1 in Erreur ! Source du renvoi introuvable.
features three partitions, each one hosting an application dedicated
respectively to GPS, Speed, and Angle estimation. Through an
ARINC664 communication End System, data generated by these
applications are sent through several Virtual Links (VL) of the data
network. While performing data traffic management, the ASM also
implements a simulator that runs a timed model of the expected
communication traffic, considering the OS and network parameters.
The ASM is the privileged place to implement a simulator, since its
CPU only manages message traffic and has available time.

The simulator performs two types of verification: temporal
consistency which checks whether communication occurs at the
expected time, according to the system scheduling, and data
consistency which analyses N consecutive data values to determine if
their evolution is coherent or if we can assume an error has occurred.

The simulator can also be used as an architecture exploration tool. It
can model different application mappings on the system and test
which one is the most efficient to handle specific scenarios. This
could help the system to perform dynamic reconfiguration when it
comes upon critical situations.

To achieve such a goal, we have chosen the SystemC [4] language as
an appropriate candidate to model as well software (application) and
hardware system (processors and communication modules) under
time constraints (defined by ARINC653 and ARINC664). The next
subsections briefly presents the SystemC language specifications, as
well as SystemCASS, a SystemC simulation kernel we modified so
that it can meet avionics requirements. We finally show the
implementation of our SystemCASS simulator on a QorIQ T2080
design board.

Page 2 of 4

2.2 SystemC
SystemC is a C++ class library based on object-oriented design
concept (OOD) providing common Hardware Description Language
(HDL) features. As such, it allows hardware description along with
software development. Hardware behavior concurrency is simulated
by the way simulation time is being managed by the simulator.
Hardware components are modeled using the sc_module class and are
interconnected to each other with sc_port class objects. Module
internal registers are represented by sc_signals, and module behavior
by processes, which can be described as functions triggered by the
update of ports or signals that are registered in a sensitivity list. A
SystemC program usually consists in an elaboration phase where all
the elements of the described system are declared and assembled, and
where all processes are listed. Then comes the simulation phase,
which is initiated by the sc_start method, which is a function of the
simulator. Finally, the cleanup phase ends simulation, by cleaning
objects and structures.

Figure 2: SystemC flow

The role of a SystemC simulator is to manipulate the timestamp to
simulate the concurrency of hardware behavior. It determines in
which order processes must be executed, and when values of ports
and signals must be updated. The Accelera Systems Initiative (ASI)
provides an event driven simulator with the language library. The
simulator operates according to Erreur ! Source du renvoi
introuvable..

The simulation phase features three steps: Evaluation, in which the
simulator checks which processes must be executed, according to
their sensitivity list. The simulator then executes these processes.
When this is done, the second step, Update, updates the values of
ports/signals according to the previous processes executions. If signal
or ports updates trigger a process sensitivity list again, then we go
back to the evaluation step. When no process is triggered anymore,
the simulation timestamp is updated in the Time Elapse step.

The ASI simulator, as it is implemented, features memory
dynamicity, which avionic constraints don’t allow. Furthermore,
process scheduling at each timestamp is dynamic and non-
deterministic [5]. This doesn't affect the result of the simulation, but
can be an issue in an avionic context, considering execution time.

2.3 SystemCASS
SystemCASS (SystemC Accurate System Simulator) [6] is a
SystemC simulator that establishes a static scheduling of processes,
which is made at the start of simulation, To do so, SystemCASS
requires describing all component models as CFSM (Communicating
Finite State Machine) using a CABA (Cycle Accurate Bit Accurate)
abstraction level. Furthermore, a single clock must drive all modules.

SystemCASS modules can include three types of processes:

Transition: triggered by the clock rising edge, it sets the new values
of registers, depending on their actual values as well as input port
values.

Moore/Mealy Generation: triggered by the clock falling edge, these
processes set the new values of output ports, depending on register
values only (Moore) or register and input port values (Mealy).

When calling the sc_start method, SystemCASS creates depending
graphs that generate the static scheduling of processes, which will be
used throughout the simulation phase. This implementation ensures a
deterministic behavior of the simulation.

As a result, SystemCASS is more suitable to avionic constraints than
a dynamic event driven simulator. As we use gcc compiler,
SystemCASS original implementation featured dynamic memory
allocation during the creation of the depending graph after the
elaboration phase, and right before the simulation phase. So we
worked to remove these dynamic allocations. To do so, we first used
a static version of gcc compiler and second we identified in run-time
all the encountered dynamic memory allocations and replaced it with
static memory allocations.

To identify dynamic allocation we used gdb debug tool and a script
that put breakpoints on malloc call, this script is:

set logging file trace.txt

set logging on
break malloc
Command
Bt
Continue
End
Break main
Command
Continue
End

Run
Set logging off
Quit

2.4 Implementation
To validate our system, we designed a demonstrator based on two
QorIQ T2080 design boards each featuring a PowerPC E6500
processor (Erreur ! Source du renvoi introuvable.). The first board
assumes the role of a CPM module, running test applications which
are supposed to transmit data to other CPM modules. The second
board assumes the role of an ASM module. It performs data reception
and runs the embedded SystemCASS simulator.

Figure 3: T2080 demonstrator

Each QorIQ T2080 board hosts the PolyORB Kernel (POK)
operating system. POK is a partitioned operating system compliant

Page 3 of 4

with ARINC653 avionic standard [7]. POK ensures enforcement of
safety and security requirements at run-time. It also provides some
example of avionics applications. One of these applications is the
Flight Management (see Figure 4)

Figure 4: POK Flight Management Application

We used this application to run on the CPM QorIQ board. POK OS
handles the flight management application (GPS, Speed and Angle)
and at the same time handles the ARINC 664 End System module.
On the ASM QorIQ board, POK handles the SystemCASS simulator
to perform data monitoring or architecture exploration.

3 Use cases

3.1 Data monitoring
Considering the predictability and determinism of applications
software ruled by the protocol ARINC653 and their windows of
communication in ARINC664, one can predict part of the aircraft
data traffic. Some verification within the communication protocol
already exist concerning the integrity of the data transport but none
can analyze the content itself to determine whether one or another
application is really supposed to send a value, or if a communication
disappeared or if a value is simply incoherent. Obviously simulating
the whole communication flow to determine if it is coherent would be
too much time expensive in simulation. The idea is to target specific
applications, or specific suspect behaviors (missing material,
erroneous values) we could watch over during the flight. Knowing
what we're looking for, we can then create a simplified functional
timed model of applications as communication providers. On the
basis of ARINC664 and ARINC653 configurations values (major
frame, bandwidth allocation gap ..), we can predict communication
by simulation and compare it with the real traffic to verify temporal
as well as data consistency.
The application is implemented as follows: on the CPM QorIQ board,
POK runs the Flight Management application, which features three
partitions (speed, angle and GPS) and generates the application data
(Figure 5). POK’s ARINC653 properties guarantee space partitioning
(meaning that memory of partition is protected) and also guarantees
time partitioning (meaning that only one partition at a time is
executed).

Figure 5: Data Generation and Space Partitionning

The execution of each partition is handled by a static scheduler (as
we can see in Figure 6) and is defined by the system integrator. Each
partition (P1, P2 and P3) has a set of execution windows (T1, T2, T3)
and this set of windows is repeated in time (T4, T5, T6 and so on…)
and at the same order, which guarantees that each partition has access
to the system resources once in a MAF (Major Frame).

Figure 6: Partitionning Scheduling

Once that data is generated by POK, they are put in the Queuing Port
or Sampling Port and are then sent to the End System with the order
defined by the scheduler. Queuing Port can be seen as a buffer and
the Sampling Port as a FIFO. The End System then encapsulates the
data in an ARINC664 frame with the specification of the Virtual Link
(BAG, Frame Size, Jitters) that has been defined by the system
integrator (see Figure 7). A Virtual Link defines an unidirectional
logical connection from one source End-system to one or several
destination End-System(s). Each partition has a dedicated Virtual
Link (VLi is dedicated to the data of the Partition i).

Figure 7: ARINC 664 Frame at the Output of the End System

On the ASM QorIQ board, POK runs the embedded simulator.
SystemCASS runs a SystemC module that analyzes the ARINC664
frames coming from the CPM board. It performs data and temporal
consistency.

The data consistency consists in analyzing the payload of the
ARINC664 frame that contains data of each application (GPS, speed,
angle). In order to do so, a verification of the physical variation law
between two data values T and T+1 for each application is
performed. For example, the verification of the value of the partition
P1-SEQ1 and P1-SEQ2 is performed as shown in Figure 8.

Figure 8: Data Consistency

On the other hand, temporal consistency consists in verifying that the
execution order of each partition is consistent with the scheduling
defined by the transmitter part Figure 9 shows an example of the
temporal consistency verification.

Page 4 of 4

Figure 9: Temporal Consistency Verification

3.2 Architecture exploration
Embedded simulation can also be used to help decide in real time
how the system should be configured (i.e. what is the most efficient
application mapping configuration) when critical situations occur and
processing resources should only focus on the most essential
applications.
To do so, a predefined set of application mapping configurations
should be stored in a library. When the system detects some
incoherent execution or some major misbehavior (based on the data
monitoring simulation, or other verification mechanisms), a
reconfiguration procedure can be started (see Figure 10). The
embedded simulator then runs the stored configurations to get
performance profiles. A decision motor then selects the most
appropriate configuration (whether it’s the one who reaches the best
performance, or simply the first configuration who meets a
predefined performance requirement)

Figure 10: Architecture exploration use case

The system can then be dynamically reconfigured to remap the
application according to the simulated scheme.

4 Conclusion
In this article we have presented a new method featuring embedded
simulation. We have implemented a SystemC-based simulator
compliant with avionic requirements. The simulator allows the real
time monitoring of ARINC664 communications. The goal of this
monitoring is to check whether communication occurs at the
expected time, according to the system scheduling, and to validate
data consistency. The simulator also allows architecture exploration
to determine the most efficient mapping of applications in order to
handle specific situations We show how this simulator could be used
to adapt the in-flight processing in real-time to react to critical events.

References
[1] C. R. Spitzer, U. Ferrell, T. Ferrell, and P. J. Prisaznuk,

“ARINC Specification 653, Avionics Application Software
Standard Interface,” in Digital Avionics Handbook, Third
Edition, CRC Press, 2014, pp. 625–632.

[2] J. P. Paul, “ARINC 653 role in integrated modular avionics
(IMA),” in 27th Digital Avionics System Conference
Proceedings, 2008, vol. 1.

[3] “CORAC,” COnseil pour la Recherche Aéronautique Civile. .
[4] O. S. Initiative, “IEEE standard SystemC language reference

manual,” IEEE Comput. Soc., pp. 1666–2005, 2006.
[5] C. Schumacher, J. H. Weinstock, R. Leupers, and G. Ascheid,

“SCandal: SystemC analysis for nondeterminism anomalies,” in
Specification and Design Languages (FDL), 2012 Forum on,
2012, pp. 112–119.

[6] R. Buchmann, F. Petrot, and A. Greiner, “Fast cycle accurate
simulator to simulate event-driven behavior,” in Electrical,
Electronic and Computer Engineering, 2004. ICEEC’04. 2004
International Conference on, 2004, pp. 35–38.

[7] J. Delange and L. Lec, “POK, an ARINC653-compliant
operating system released under the BSD license,” in 13th Real-
Time Linux Workshop, 2011, vol. 10.

Contact Information
Bertrand Granado
Laboratoire LIP6 UMR7606
Université Pierre et Marie Curie
BC 167, Tour 24/25 - 5ieme Etage
4 place jussieu
75252 Paris Cedex 05

Tél : 33 (0)1 44 27 96 33
Email: bertrand.granado@lip6.fr
Website: http://www.lip6.fr

Selected
Configuration

Config.
Performances

Mapping
Config.
Library

SystemC
SIMULATOR

Decision
Motor

