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Abstract 
Avionics is one kind of domain where prevention prevails. 
Nonetheless fails occur. Sometimes due to pilot misreacting, flooded 
in information. Sometimes information itself would be better verified 
than trusted. To avoid some kind of failure, it has been thought to add 
an new kind of embedded monitoring that enable adaptation.  

1 Introduction 
It is well known that avionics is a very restricting domain for obvious 
safety reasons.  Along with miniaturization comes the idea of 
integration. More functionality on one spot requires a good 
management of privacy and congestion on shared platforms. This is 
why determinism is one of the keywords of avionics works. This led 
to protocols like ARINC653[1] assuring that, multitask embedded 
programs respect a predictable policy applied by the operating system 
(OS). Another key protocol is ARINC664, which guarantees that 
multiple communicating systems efficiently share the network. These 
two protocols are pillars of the Integrated Modular Architecture 
(IMA) concept [2]. IMA concept consists of multitask module 
hosting ARINC653 OS, interconnected with ARINC664 data 
network. Compared to federated avionics architecture, it considerably 
reduces the overall weight and power consumption for aircraft, 
reduces development expenses and design cycle times as well as 
maintenance costs. With the intention to step forward with this 
concept, the CORAC (The Council for Civil Aeronautics Research) 
develops a technological demonstration platform (PDT) called 
Extended Modular Avionic (AME) [3]. Therefore, as partner of the 
project, we work on a project dedicated to monitor the system. 

In this paper, we use our embedded real time monitor to take real 
time in-flight decision to adapt the behavior of the digital processing. 
We first present our embedded SystemC simulator that can be 
embedded in a plane as a processing module to monitor data traffic 
generated by key avionic applications in order to detect suspicious 
behavior such as missing data, unexpected communication of simply 
incoherent data. Second we explain how, by exploring several 
architecture configurations, the simulator can help the IMA system to 
decide how it should be configured, how the processing resources 
should be assigned in order to efficiently manage specific or critical 
situations. In the next sections, we first introduce our method and its 
related tools, most notably the SystemC language and the 
modifications required to make this language compliant with avionic 
constraints. Next, we show how the simulator can be implemented in 
a QorIQ T2080-based board. We then introduce the use cases 
(monitoring and architecture exploration) to illustrate the benefits of 
our approach. Finally, we will conclude. 

2 Embedded simulator 

2.1 Method presentation 

 
Figure 1: Embedded simulation methodology 

In Figure 1, we present the principle of our method. We consider an 
avionic architecture featuring core processing modules (CPM) 
implementing several applications and generating data traffic and 
avionics switch modules (ASM) which route data packets to their 
destination CPM. 

As an example, CPM1 in Erreur ! Source du renvoi introuvable. 
features three partitions, each one hosting an application dedicated 
respectively to GPS, Speed, and Angle estimation. Through an 
ARINC664 communication End System, data generated by these 
applications are sent through several Virtual Links (VL) of the data 
network. While performing data traffic management, the ASM also 
implements a simulator that runs a timed model of the expected 
communication traffic, considering the OS and network parameters. 
The ASM is the privileged place to implement a simulator, since its 
CPU only manages message traffic and has available time. 

The simulator performs two types of verification: temporal 
consistency which checks whether communication occurs at the 
expected time, according to the system scheduling, and data 
consistency which analyses N consecutive data values to determine if 
their evolution is coherent or if we can assume an error has occurred.  

The simulator can also be used as an architecture exploration tool. It 
can model different application mappings on the system and test 
which one is the most efficient to handle specific scenarios. This 
could help the system to perform dynamic reconfiguration when it 
comes upon critical situations. 

To achieve such a goal, we have chosen the SystemC [4] language as 
an appropriate candidate to model as well software (application) and 
hardware system (processors and communication modules) under 
time constraints (defined by ARINC653 and ARINC664). The next 
subsections briefly presents the SystemC language specifications, as 
well as SystemCASS, a SystemC simulation kernel we modified so 
that it can meet avionics requirements. We finally show the 
implementation of our SystemCASS simulator on a QorIQ T2080 
design board.  
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2.2 SystemC 
SystemC is a C++ class library based on object-oriented design 
concept (OOD) providing common Hardware Description Language 
(HDL) features. As such, it allows hardware description along with 
software development. Hardware behavior concurrency is simulated 
by the way simulation time is being managed by the simulator.  
Hardware components are modeled using the sc_module class and are 
interconnected to each other with sc_port class objects. Module 
internal registers are represented by sc_signals, and module behavior 
by processes, which can be described as functions triggered by the 
update of ports or signals that are registered in a sensitivity list. A 
SystemC program usually consists in an elaboration phase where all 
the elements of the described system are declared and assembled, and 
where all processes are listed. Then comes the simulation phase, 
which is initiated by the sc_start method, which is a function of the 
simulator. Finally, the cleanup phase ends simulation, by cleaning 
objects and structures. 

 
Figure 2: SystemC flow 

The role of a SystemC simulator is to manipulate the timestamp to 
simulate the concurrency of hardware behavior. It determines in 
which order processes must be executed, and when values of ports 
and signals must be updated. The Accelera Systems Initiative (ASI) 
provides an event driven simulator with the language library. The 
simulator operates according to Erreur ! Source du renvoi 
introuvable.. 

The simulation phase features three steps: Evaluation, in which the 
simulator checks which processes must be executed, according to 
their sensitivity list. The simulator then executes these processes. 
When this is done, the second step, Update, updates the values of 
ports/signals according to the previous processes executions. If signal 
or ports updates trigger a process sensitivity list again, then we go 
back to the evaluation step. When no process is triggered anymore, 
the simulation timestamp is updated in the Time Elapse step.  

The ASI simulator, as it is implemented, features memory 
dynamicity, which avionic constraints don’t allow. Furthermore, 
process scheduling at each timestamp is dynamic and non-
deterministic [5]. This doesn't affect the result of the simulation, but 
can be an issue in an avionic context, considering execution time. 

2.3 SystemCASS 
SystemCASS (SystemC Accurate System Simulator) [6] is a 
SystemC simulator that establishes a static scheduling of processes, 
which is made at the start of simulation, To do so, SystemCASS 
requires describing all component models as CFSM (Communicating 
Finite State Machine) using a CABA (Cycle Accurate Bit Accurate) 
abstraction level. Furthermore, a single clock must drive all modules.  

SystemCASS modules can include three types of processes: 

Transition: triggered by the clock rising edge, it sets the new values 
of registers, depending on their actual values as well as input port 
values. 

Moore/Mealy Generation: triggered by the clock falling edge, these 
processes set the new values of output ports, depending on register 
values only (Moore) or register and input port values (Mealy). 

When calling the sc_start method, SystemCASS creates depending 
graphs that generate the static scheduling of processes, which will be 
used throughout the simulation phase. This implementation ensures a 
deterministic behavior of the simulation.  

As a result, SystemCASS is more suitable to avionic constraints than 
a dynamic event driven simulator. As we use gcc compiler, 
SystemCASS original implementation featured dynamic memory 
allocation during the creation of the depending graph after the 
elaboration phase, and right before the simulation phase. So we 
worked to remove these dynamic allocations. To do so, we first used 
a static version of gcc compiler and second we identified in run-time 
all the encountered dynamic memory allocations and replaced it with 
static memory allocations. 

To identify dynamic allocation we used gdb debug tool and a script 
that put breakpoints on malloc call,  this script is: 

 
set logging file trace.txt 

set logging on 
break malloc 
Command 
Bt 
Continue 
End 
Break main 
Command 
Continue  
End 

Run 
Set logging off 
Quit 

2.4 Implementation 
To validate our system, we designed a demonstrator based on two 
QorIQ T2080 design boards each featuring a PowerPC E6500 
processor (Erreur ! Source du renvoi introuvable.). The first board 
assumes the role of a CPM module, running test applications which 
are supposed to transmit data to other CPM modules. The second 
board assumes the role of an ASM module. It performs data reception 
and runs the embedded SystemCASS simulator.  

 
Figure 3: T2080 demonstrator 

Each QorIQ T2080 board hosts the PolyORB Kernel (POK) 
operating system. POK is a partitioned operating system compliant 
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with ARINC653 avionic standard [7]. POK ensures enforcement of 
safety and security requirements at run-time. It also provides some 
example of avionics applications. One of these applications is the 
Flight Management (see Figure 4)  

 
Figure 4: POK Flight Management Application 

We used this application to run on the CPM QorIQ board. POK OS 
handles the flight management application (GPS, Speed and Angle) 
and at the same time handles the ARINC 664 End System module. 
On the ASM QorIQ board, POK handles the SystemCASS simulator 
to perform data monitoring or architecture exploration. 

 

3 Use cases 

3.1 Data monitoring 
Considering the predictability and determinism of applications 
software ruled by the protocol ARINC653 and their windows of 
communication in ARINC664, one can predict part of the aircraft 
data traffic. Some verification within the communication protocol 
already exist concerning the integrity of the data transport but none 
can analyze the content itself to determine whether one or another 
application is really supposed to send a value, or if a communication 
disappeared or if a value is simply incoherent. Obviously simulating 
the whole communication flow to determine if it is coherent would be 
too much time expensive in simulation. The idea is to target specific 
applications, or specific suspect behaviors (missing material, 
erroneous values) we could watch over during the flight. Knowing 
what we're looking for, we can then create a simplified functional 
timed model of applications as communication providers. On the 
basis of ARINC664 and ARINC653 configurations values (major 
frame, bandwidth allocation gap ..), we can predict communication 
by simulation and compare it with the real traffic to verify temporal 
as well as data consistency.  
The application is implemented as follows: on the CPM QorIQ board, 
POK runs the Flight Management application, which features three 
partitions (speed, angle and GPS) and generates the application data 
(Figure 5). POK’s ARINC653 properties guarantee space partitioning 
(meaning that memory of partition is protected) and also guarantees 
time partitioning (meaning that only one partition at a time is 
executed).  

 
Figure 5: Data Generation and Space Partitionning 

The execution of each partition is handled by a static scheduler (as 
we can see in Figure 6) and is defined by the system integrator. Each 
partition (P1, P2 and P3) has a set of execution windows (T1, T2, T3) 
and this set of windows is repeated in time (T4, T5, T6 and so on…) 
and at the same order, which guarantees that each partition has access 
to the system resources once in a MAF (Major Frame).  

 
Figure 6: Partitionning Scheduling 

Once that data is generated by POK, they are put in the Queuing Port 
or Sampling Port and are then sent to the End System with the order 
defined by the scheduler. Queuing Port can be seen as a buffer and 
the Sampling Port as a FIFO. The End System then encapsulates the 
data in an ARINC664 frame with the specification of the Virtual Link 
(BAG, Frame Size, Jitters) that has been defined by the system 
integrator (see Figure 7). A Virtual Link defines an unidirectional 
logical connection from one source End-system to one or several 
destination End-System(s). Each partition has a dedicated Virtual 
Link (VLi is dedicated to the data of the Partition i). 

 
Figure 7: ARINC 664 Frame at the Output of the End System 

On the ASM QorIQ board, POK runs the embedded simulator. 
SystemCASS runs a SystemC module that analyzes the ARINC664 
frames coming from the CPM board. It performs data and temporal 
consistency. 

The data consistency consists in analyzing the payload of the 
ARINC664 frame that contains data of each application (GPS, speed, 
angle). In order to do so, a verification of the physical variation law 
between two data values T and T+1 for each application is 
performed. For example, the verification of the value of the partition 
P1-SEQ1 and P1-SEQ2 is performed as shown in Figure 8. 

 
Figure 8: Data Consistency 

On the other hand, temporal consistency consists in verifying that the 
execution order of each partition is consistent with the scheduling 
defined by the transmitter part Figure 9 shows an example of the 
temporal consistency verification. 
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Figure 9: Temporal Consistency Verification 

3.2 Architecture exploration 
Embedded simulation can also be used to help decide in real time 
how the system should be configured (i.e. what is the most efficient 
application mapping configuration) when critical situations occur and 
processing resources should only focus on the most essential 
applications.  
To do so, a predefined set of application mapping configurations 
should be stored in a library. When the system detects some 
incoherent execution or some major misbehavior (based on the data 
monitoring simulation, or other verification mechanisms), a 
reconfiguration procedure can be started (see Figure 10). The 
embedded simulator then runs the stored configurations to get 
performance profiles. A decision motor then selects the most 
appropriate configuration (whether it’s the one who reaches the best 
performance, or simply the first configuration who meets a 
predefined performance requirement) 

 
Figure 10: Architecture exploration use case 

The system can then be dynamically reconfigured to remap the 
application according to the simulated scheme.  

4 Conclusion 
In this article we have presented a new method featuring embedded 
simulation. We have implemented a SystemC-based simulator 
compliant with avionic requirements. The simulator allows the real 
time monitoring of ARINC664 communications. The goal of this 
monitoring is to check whether communication occurs at the 
expected time, according to the system scheduling, and to validate 
data consistency. The simulator also allows architecture exploration 
to determine the most efficient mapping of applications in order to 
handle specific situations We show how this simulator could be used 
to adapt the in-flight processing in real-time to react to critical events. 
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