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Abstract. Scale-by-scale energy budget equations for coherent motion and turbulent kinetic
energy have been written in flows with coherent motions. The general and the locally isotropic
formulations are both provided. In particular, the contribution to the production, diffusion and
energy transfer terms associated with the coherent motion are emphasized. Preliminary results
are shown in the intermediate wake of a cylinder, for the phase-scale second-and third-order
structure functions.

1. Introduction

Characterizing and understanding turbulent flows are necessary steps before modelling and
predicting their statistics, and the dynamical behaviour of these statistics. Many studies aimed
at characterizing turbulent flows revealed, since the pioneer studies of Townsend (1976) that
the organized, coherent motion (CM) persists in many turbulent shear flows. Since CM is an
important player of turbulence dynamics, a lot of effort has been devoted to the extraction
of coherent structures, with the aim to learn more about their dynamical nature and their
contribution to the total statistics. Extraction of CM signifies establishing clear criteria in
defining it, and therefore distinguishing CM from the mean flow and the random, turbulent
motion (TM). Since the big challenge is predicting turbulent flows statistics, a first (quite
important) step would be predicting interactions between CM and TM. The process of turbulence
birth starts with mean velocity gradients (stagnation points or regions), followed by instabilities
further leading to CM, further followed by TM birth. For decaying flows such as wakes, there
is now abundant experimental and numerical support of the persisting influence of the CM far
downstream of the turbulent energy injection (Cimbala et al. (1988), Bisset et al. (1990)).

Turbulent flows are generally represented by energy at a wide range of scales. A first feature
which distinguish CM from TM is the scale(s) at which these two entities live. CM is generally
characterized by a single scale, or a very restricted range of scales (a narrow peak on energy
spectra) whereas TM is represented by a wide range of scales. Kolmogorov Kolmogorov (1941)
stipulated that there is a scale beyond which the influence of the anisotropic/coherent large
scales is not perceptible anymore and, as a consequence, the velocity statistics become locally
isotropic. Presumably for this reason, the influence of CM on TM was not considered at the
level of an arbitrary scale, implicitly supposing that the effect of CM is confined at the level of



its characteristic scale. Or, both the nonlocality of the cascade and the finite Reynolds number
(FRN) effects lead to the fact that CM might play a role on TM at a given, arbitrary scale.

The aim of this study is twofold.

• First, we derive scale-by-scale energy budgets for both CM and TM which mathematically
emphasize their interaction at a vectorial scale ~r separating two spatial points. The general
(Section 2.1), as well as the locally isotropic formulations (Section 2.2), are provided. These
equations evidence additional terms corresponding to the transport, production, diffusion
and forcing of TM by CM.

• Second, we turn our attention on the particular case of the wake behind a cylinder (Section
3), in which the scale-phase second-and third-order structure functions are calculated from
hot-wire measurements with phase reference. We particularly focus on this flow because it
is characterized by a persisting Bénard-Von Kármán street, even in the so-called ’far field’
(Cimbala et al. (1988), Bisset et al. (1990)). Here, we mainly focus on TM and the effect
of CM on energy transfer process at a scale. We show that the scale-by-scale budget of the
random field is well supported by experimental data on the wake centreline.

2. Analytical development

2.1. General formulation
The starting point is the triple decomposition Ui = U i+ ũi+u

′
i, (Ui is the instantaneous velocity

in the ith direction, [.], [̃.] and [.]′ denote respectively the mean, the CM and TM). Since CM
is characterized by a time/scale periodicity, it is useful to introduce the operation of phase-
averaging (i.e. averaging over the CM period), hereafter noted as 〈·〉. The result is statistics
which depend on the phase (normalized such that they vary over a 2π period). The objective is
to emphasize the behaviour of such a quantity conditioned by a particular phase of the CM.

As an example, Reynolds & Hussain (1972) described analytically the interaction between
turbulence and an organized wave. These authors derived dynamical and one-point energy
budgets equations, for both the coherent and the random components of the velocity field.
They proposed using the phase averaging operator which allows assessing the dynamical process
associated with coherent motion, one step before the temporal averaging. These authors
Reynolds & Hussain (1972) obtained the dynamical equations for both the random and the
coherent motion, viz.
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In (1) and (2), ν is the kinematic viscosity, p is the pressure divided by density, and double
indices signify summation. Following the procedure established by Antonia et al. (1997) and
Danaila et al. (2004), (1) and (2) are each written at the two points ~x and ~x+ = ~x + ~r, where
~r is the separation vector between the two points, and the superscript ’+’ hereafter denotes
quantities considered at the point ~x+~r. Substraction of one from the other yields the transport
equations of the organized and random velocity increment, ∆ũi = ũ+i − ũi and ∆u′i = u

′+
i − u′i



respectively, viz.
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At this stage, the statistics at the two points ~x and ~x+ are considered as being independent.
Then, considering the gradient with respect to the mid-point ~X = 1

2 (~x+ ~x+) (Hill (2002),
Danaila et al. (2004))
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by multiplying (3) and (4) with 2∆ũi and 2∆u′i respectively, applying a phase followed by a
time averaging, and finally noting that 〈
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we obtain the energy budgets for the organized and random motions. These are
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and
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where ∆q̃2 = ∆ũi∆ũi and ∆q′2 = ∆u′i∆u
′
i are respectively the CM and TM kinetic energies

at a given scale. Quantities ε̃ = ν
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dissipation rates of the coherent and the random motions, respectively.
For the sake of simplicity, (8) and (9) can be formally written as
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cr + Pcm − Prc +Dcp + Tc + Fc + Vc + 2
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where I, A, D, P, T , F et V denote respectively the non stationarity, advection, diffusion,
production, transfer, forcing and viscous terms. The subscripts m, c, r correspond to the mean,
coherent and random motions, and Dp indicates the pressure diffusion.

Equations (8) and (9) are the general formulations of the scale-by-scale budgets which account
for the coherent motion in which each term depends on the separation vector ~r. For homogeneous
flows and in the limit of large separations, the scale-by-scale budgets (8) and (9) are fully
consistent with one-point energy budget provided by Reynolds & Hussain (1972) (Eqs. (3.2b)
and (3.2c) p. 266 in Reynolds & Hussain (1972)). Each term can be evaluated by DNS (Direct
Numerical Simulations), without any other assumption. Equations (8) and (9) constitute the
general fundamental basis to unravel the physics of the coherent and random fields interaction.

In comparison with Danaila et al. (2004), some additional terms are to be emphasized.
Particularly, the terms Prc, Tc and Fc, identified as the production of random fluctuations
by the coherent motion, the coherent kinetic energy transfer and the forcing associated by the
presence of a coherent motion are emphasized. Both these terms are present in equations (8)
and (9), but their sign differs from one to the other. This means that what represents a loss
of energy for CM (8), constitutes an energetic gain for TM (9). Furthermore, we put light on
the transport of random statistical quantities by the organized motion D1

rc and D2
rc (?? je ne

comprends pas ..).

2.2. The locally homogeneous and isotropic context
We now turn our attention to the derivation of (8) and (9) in a locally homogeneous and isotropic
context. This assumption yields to considerable simplifications of the analytical development



and experimental measurements (Danaila et al. (1999), Danaila et al. (2001)). Considering first
a locally homogeneous turbulent flow, the viscous term simplifies such as
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= 0, Hill (1997). The same simplification holds for the coherent

motion. Then, in the context of local isotropy, the divergence and the Laplacian operators are
expressed as:
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By further using (13), multiplication of (8) and (9) with r2 = rjrj , and integration with respect
to r and division by r2, yields
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∆ũi

∂

∂s
s2
〈

∆u′‖∆u
′
i

〉
ds− 2ν

∂

∂r
∆q′2 +

4

3
ε′r = 0. (15)

Equations (14) and (15) are the scale-by-scale energy budgets of the organized and random
motions respectively, in locally homogeneous and isotropic context. Here, s is a dummy variable
and the subscript ‖ denotes the direction parallel to the separation vector. When the spatial
separation is inferred by invoking Taylor hypothesis, this direction coincides with the direction
of the mean flow.

The first line of Eqs. (14) and (15) represents the energy contribution of the largest scales
(Danaila et al. (2004)). The main difference with respect to the extended form of Kolmogorov
equation Antonia et al. (1997) equation, consists in several extra terms due to the presence
of CM. The effective energy transfer of the random velocity component is explicit and is

thus constituted of the total energy transfer
〈
∆u‖∆q2

〉
(including the coherent and random

contributions), from which is subtracted the coherent energy transfer ∆ũ‖∆q̃2 and the forcing

term 2
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3. Results in the wake of a circular cylinder

3.1. Measurements
The analytical considerations previously developed are now used to assess the essential physics
and particularly the dynamical nature associated with the presence of the organized motion.
Hot-wire measurements previously made at the University of Newcastle Zhou et al. (2003) are
used to calculate two-point statistics of CM and TM. The measurements were conducted in an
open-circuit wind tunnel with a square working section of 0.35 × 0.35m and 2.4m long. The



cylinder of diameter d = 12.7mm was placed horizontally to generate the wake flow. The three
vorticity components were measured simultaneously by means of a four-X-wire probe, Zhou
et al. (2003). The downstream location investigated here is 40d, sufficiently far from the energy
injection to expect the local isotropy to be verified and close enough to accurately extract the
organized motion. The free stream velocity U0 is 3m.s−1 corresponding to a Reynolds number
based on the cylinder diameter and the upstream velocity of Red = 2525 and a turbulent
Reynolds number based on a typical fluctuation and the Taylor micro-scale of 70 on the wake
centerline. For the estimates of velocity derivatives, the separations ∆x ≈ ∆y ≈ ∆z are set equal
to 6η. This spatial resolution leads to an attenuation of velocity derivatives which were corrected
by using the spectral method proposed by Zhu & Antonia (1996). The mean dissipation rate

is estimated using the isotropic relation ε = 15ν
(
∂u
∂x

)2
in which

(
∂u
∂x

)2
was corrected following

the procedure of Zhu & Antonia (1996). The spatial separation ∆x is calculated by means of
the Taylor hypothesis, ∆x = −Uc∆t, where Uc is the average convection velocity of vortices.
This velocity is defined as the mean velocity at the vortices center location and is equal to
Uc = 0.92U0 at 40d downstream the cylinder (Zhou et al. (2003))).

To calculate phase averaged statistics, the transverse velocity signal v is bandpass filtered
at frequency centered on Strouhal frequency. The Hilbert transform h of the filtered signal vf

is calculated and the phase is inferred from φ(t) = Atan
(
h(t)
vf (t)

)
. Finally, the phase is divided

into 32 segments and phase averaged statistics are calculated for each class. Statistics were
calculated aver 750 integral time-scales, with a correct convergence.

3.2. Phase-scale second-and third-order structure functions, on the wake centerline
The essential difference between our approach and the classical energy budget equations, is the
phase averaging operation which allows us to assess the temporal dynamics associated with the
CM, one step before time averaging. Second-and third-order structure functions are as usually
functions of r, but specific to our methodology, they are also functions of the phase φ of the
CM, before being time-integrated.

Fig1(a) and 1(b) represent the phase-scale distributions of the kinetic energy of the organized
and random motions respectively. In Fig1(a), one can note a strong temporal periodicity of
period φ = π of the coherent motion kinetic energy. This periodicity might also be observable
on the r axis, at scales characteristic of the organized motion (not shown). This emphasizes the
spatio-temporal periodicity of the Von Kármán street. Concerning the energy distribution of
random fluctuations (Fig1(b)), the influence of the CM is less perceptible. Its shape in scale r
is very similar to that of the ’classical’ time-integrated second-order structure function.

The non linear transfer term −
〈
∆u‖∆q

2
〉

divided by εr is displayed on Fig1(c). The temporal
periodicity is strongly discernible, and reveals two maxima at a phase location φ = ±π/2 and a
scale r ≈ Lv/10 ≈ λ, where λ is the Taylor micro-scale. Furthermore, at φ = 0 this term reveals
some negative values, which might a priori be associated with a local, inverse cascade. Noticeable
are also maximum values larger than 4/3, presumably signifying very accelerate cascade.

In Fig1(d), it is represented the phase-averaged vorticity spanwise component. The
Von Kármán street is thus magnified (???), and reveals a negative sign vortex centred at
φ = −π/2, y = 0.75d. Its partner of positive sign, not visible on the figure, is located at
φ = π/2, y = −0.75d. Therefore, the two maxima of the non-linear transfer term coincide with
the vortex centers. There is evidence that the organized motion induces a strong temporal
dynamics on the kinetic energy transfer at a scale r.

3.3. Scale-by-scale budget
We now turn our attention on time averaged structure functions. In Fig. 2, it is displayed the

total non linear transfer −
〈
∆u‖∆q2

〉
, the additional coherent transfer and forcing due to the
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Figure 1. (a) log10
(
∆q̃2

)
function of r and φ on the wake center line at x = 40d, r is normalized

by Lv = 4.2d, the streamwise distance between two consecutive vortices. (b) log10
(〈

∆q′2
〉)

function of r and φ on the wake center line at x = 40d. (c) Transfer term −
〈
∆u‖∆q

2
〉
/ε′r

function of r and φ on the wake center line at x = 40d. (d) Phase averaging of the spanwise
vorticity component ω̃z normalized by d/U0 in the plan (φ, y).

coherent motion ∆ũ‖∆q̃2 + 2
r2
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0 ∆ũi

∂
∂ss

2
〈

∆u′‖∆u
′
i

〉
ds and the effective transfer inferred from

their difference, in function of the separation r/Lv.
For weakly turbulent flows the non linear transfer term is smaller than 4

3εr, because of the
cross-over between viscous and large-scale effects (Danaila et al. (1999), Danaila et al. (2004)).

Here, −
〈
∆u‖∆q2

〉
/εr ≈ 0.93. The additional energy transfer associated with the coherent

motion is negative, its value is quite small, but nonnegligible. Its contribution is non zero for
all separation with a maximum contribution located at about 2λ. Finally, the effective transfer
of the random motion is quite smaller than the total transfer of about 12% at the maximum
location.
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r2

∫ r
0 ∆ũi
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On the wake centerline, the isotropic scale-by-scale budget of the random motion is:

− 1

r2

∫ r

0
s2Armds−

〈
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〉
+∆ũ‖∆q̃2 +

2

r2

∫ r

0
∆ũi

∂

∂s
s2
〈

∆u′‖∆u
′
i

〉
ds+ 2ν

∂

∂r
∆q′2 =

4

3
ε′r, (16)

which means that in the limit of large scales, the advection term is almost entirely
compensated by the energy dissipation only. All terms of the scale-by-scale budget (16) are
shown on Fig. 3.

The balance between the right-and left-hand sides of (16) is relatively well equilibrated at all
scales. The degree of accuracy of the experimental validation of (16) is as precise as the local
isotropy is achieved. Local isotropy tests are checked against experimental data in the far-field
of a wake and presented elsewhere. Therefore, the experimental investigation in the cylinder
intermediate wake supports the analytical considerations provided in Section 1.

4. Concluding remarks

The scale-by-scale budgets of the kinetic energy of the organized and random field are derived
in a general and isotropic formulation. It emphasized some additional diffusion, production,
transport terms as well as some extra energy transfer and forcing associated with the presence
of the coherent motion. These considerations explicitly evidence that the effective energy transfer
of the random motion is constituted by the total energy transfer from which it is subtracted the
coherent energy transfer and the forcing by the organized structures. The hot wire measurements
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Figure 3. Term in equation (16) divided by ε′. —— : 4
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i

〉
ds, 4 : 2ν ∂

∂r∆q′2, B Left hand side of (16).

in the cylinder wake are then employed to emphasize the temporal dynamics associated with the
presence of the organized motion. It is shown that the energy transfer is clearly influenced by
the coherent motion, revealing two maxima located in the vortices centers. The time-integrated
scale-by-scale budget (16) is also well supported by experimental data.
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