Une analyse économique de la disposition à payer des consommateurs pour les véhicules électriques

Yannick Perez

Chaire Armand Peugeot (CentraleSupélec and ESSEC Business School) yannick.perez@centralesupelec.fr

What is the Armand Peugeot Chair?

- One Donor (Peugeot-Citroën-DS)
- Two institutions :
 - CentraleSupélec & ESSEC Business School
- A team :
 - Professors in Management (J Lepoutre, C. Donada & D. Attias)
 - Professor in Engineering (M. Petit)
 - One Economist !
 - 3 PhDs Students (P Codani ; Y. Chen ; O. Borne)
 - 1 Postdoc (H. Idjis)
- International Partners
 - Delaware University and DTU (W. Kempton) => Vehicle to Grid
 - Wharton School (J-P Mc Duffie) => Management studies
 - La Laguna university (F. Ramos-Real) => EV and Islands
- 2011-2016 toward 2021...

Electric Cars sold in 2015

http://ev-sales.blogspot.de

PI	WORLD	Dec.	YTD	%
1	Tesla Model S	8.082	50.366	9
2	Nissan Leaf	3.637	43.870	8
3	Mitsubishi Outlander PHEV	7.058	43.259	8
4	BYD Qin	1.512	31.898	6
5	BMW i3	3.409	24.083	4
6	Kandi K11 Panda EV	4.701	20.390	4
7	Renault Zoe	3.158	18.846	3
8	BYD Tang	5.503	18.375	3
9	Chevrolet Volt (1)	2.398	17.508	3
10	Volkswagen Golf GTE	3.191	17.282	3
11	BAIC E-Series EV	1.696	16.488	3
12	Zotye Z100 / Cloud EV	2.582	15.467	3
13	Volkswagen e-Golf	1.286	15.356	3
14	Audi A3 e-Tron	1.578	11.962	2
15	Roewe 550 PHEV	1.611	10.711	2
16	JAC i EV	1.581	10.420	2
17	Ford Fusion Energi	1.067	9.894	2
18	Ford C-Max Energi	1.127	9.643	2
19	Kandi K10 EV e)	1.000	7.665	1
20	Kia Soul EV	1.225	7.510	1
	TOTAL	86.434	548.210	

Blue for BEV

TOP 20 EV manufacturer

PI	WORLD	Dec.	YTD	%
1	BYD	10.925	61.726	11
2	Tesla	8.275	50.574	9
3	Mitsubishi	7.498	48.204	9
4	Nissan	3.960	47.671	9
5	Volkswagen	7.024	40.148	8
6	BMW	6.029	33.412	6
7	Kandi e)	6.201	28.055	5
8	Renault	4.234	27.282	5
9	Zotye	4.297	24.516	4
10	Ford	2.294	21.326	4
11	Chevrolet	2.551	20.233	4
12	BAIC	1.747	17.040	3
13	Chery	2.792	14.162	3
14	Audi	1.596	12.123	2
15	SAIC Roewe	1.730	11.123	2
16	Mercedes	2.133	10.870	2
17	JAC	1.581	10.420	2
18	Volvo	3.902	10.161	2
19	Kia	1.341	7.626	1
20	Porsche	687	6.532	1

Actual EU leaders for BEV

PI	Europe	Dec.	2015	%
1	Mitsubishi Outlander PHEV	6.475	31.340	16
2	Renault Zoe	3.114	18.670	10
3	Volkswagen Golf GTE	3.191	17.282	9
4	Tesla Model S	3.124	16.455	9
5	Nissan Leaf	839	15.515	8
6	BMW i3	1.718	11.820	6
7	Audi A3 e-Tron	1.514	11.711	6
8	Volkswagen e-Golf	677	11.124	6
9	Volvo V60 Plug-In	1.906	6.952	4
10	Kia Soul EV	975	5.800	3
11	Mercedes C350e	1.624	5.069	3
12	Volkswagen Passat GTE	2.357	4.686	2
13	Renault Kangoo ZE	742	4.328	2
14	Porsche Cayenne Plug-In	381	3.350	2
15	Nissan e-NV200 / Evalia	270	3.049	2
16	Volkswagen e-Up!	182	2.769	1
17	Mercedes B-Class ED	182	2.760	1
18	Volvo XC90 T8 PHEV	1.633	2.653	1
19	Renault Twizy	118	1.917	1
20	BMW i8	115	2.027	1
21	Smart Fortwo ED	56	2.013	1
22	BMW X5 40e PHEV	838	1.649	1
23	Peugeot iOn	189	1.566	1
24	Ford C-Max Energi	538	1.230	1
25	Bolloré Blue Car	83	1.166	1
26	Citröen C-Zero	41	1.118	1
27	Mercedes S500e	108	807	0
28	Mitsubishi I-Miev	23	708	0
29	Toyota Prius Plug-In	39	704	0
30	Porsche Panamera Plug-In	46	606	0
	TOTAL	33.717	193.439	100

Blue for BEV

Per country

The main problem with EVs sales

The chiken and egg issue for BEVs

What is the BEV « Chiken and Egg » problem ?

- Average BEV can not run for more than 150-200 km (real ones...)
- So little sales
- So no need to build a charging network for Evs
- So EVs can not be largely sold...

3 models for BEV developpement in Europe

NISSAN – RENAULT VS TESLA VS BOLLORE

The NISSAN RENAULT strategy

How NISSAN deal with C&E?

- Small batteries to sell or to rent.
- R&D for increasing the size of the batterie
- Looking for cooperation with Energy providers to build efficient charging stations (ENDESA)
- Looking for joint investments to develop a fast charging station safety network around big cities (Paris Exemple) => intense public lobbying

BP-NISSAN and city of Paris: 1st fast charging station 10 dec 2013

boulevard Victor 5€ per charge

The TESLA strategy

How TESLA deal with C&E?

- Large batteries for more autonomy
- Massive investments in the development of very fast charging stations
- No cooperation with local electricity actors but Vertical Integration between Grids and EVS

Superchargers today (120kW) for 30 m charging for 170 miles for free (+ wifi)

The EV Carsharing strategy

How EV Carsharing deal with C&E?

- A public private partnership with municipalities : Risk is shared
- Renting solution for EVs => intensive use on small distances... with IT management
- Using an EV not possessing it.
- The Autolib example

Smart app overview

New business model

- New cities are buying Bolloré like solutions
 - In EU
 - Paris
 - Bordeaux
 - Lyon
 - London (UK)
 - Hanzu (China)
 - Mineapolis (USA)
 - 2 cities per year (Rio de Janero, Los Angeles...)
 Licencing strategy to industrialize the process

Partial conclusion

No empirical nor theoritical solution to solve the C&E issue from business models

Yurong Chen

Renewables energies challenge

Grids Issues with renewables

More PV => more Duck issues

More wind => more flexibility required

The Spanish example

« Electric Vehicle to grid » can provide « storage – flexibility » solutions and brings revenues

To???

Car owner? Storage providers? Mobility provider? Car manufacturer?

How to manage an EV fleet?

- Not perfectly done yet in practice...
 - VtoG experiment around the world (US / Denmark...)
 - Majors success with frequency control on the Transmission grids.
 - PSA and the chair are involved in the Nikola =>
 Parker projects with 2 EV cars

THE NIKOLA PROJECT

Paul Codani

Conclusion

More studies are needed !

- Public policy, PPP or business models for charging infrastructure deployment?
- Coupling renewables and EV fleets at :
 - Transmission grid?
 - Distribution grid?
 - District / communities?
 - Household?
- Autonomous cars and allocation of responsabilities in case of an accident ?

2 conferences organized by AP Chair in October in Paris Dauphine

CONFERENCE ON THE IMPACT OF ELECTRIC VEHICLES ON THE ELECTRICITY SYSTEM

A Conference of the Chaire European Electricity Markets (CEEM) at the Université Paris-Dauphine co-organised with the Chaire Armand Peugeot at CentraleSupélec.

> Monday, 17 October 2016, 9h00 to 13h30 Université Paris-Dauphine

> > Salle Raymond Aron, 2nd Floor

ATTENDANCE IS FREE BUT PRIOR REGISTRATON IS REQUIRED:

2 conferences organized by AP Chair in October in Paris Dauphine

Expert Workshop: V2X User perception, Business Models and Regulatory Framework

6-28 October | Paris, France

ocal Organisers:

haire Armand Peugeot Chair

Operating Agent:

Predicting the future of EV is hard

If you were asked in the 1980s about having a camera in your phone...

what would you have imagined?

Une analyse économique de la disposition à payer des consommateurs pour les véhicules électriques

Yannick Perez

Chaire Armand Peugeot (CentraleSupélec and ESSEC Business School) yannick.perez@centralesupelec.fr