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Abstract

We propose a model for assessing the unresolved wrinkling factor in LES of turbulent premixed
combustion. It relies essentially on a power-law dependence of the wrinkling factor to the filter size and
an original expression for the ’active’ corrugating strain rate. The latter is written as a product of an
efficiency function which accounts for viscous effects and the kinematic constraint of Peters, by a recent
expression for the turbulent strain intensity. Yields functional expressions for the fractal dimension and
the inner cut-off length scale, the latter being (i) filter-size independent and (ii) consistent with the
Damköhler asymptotic behaviours at both large and small Karlovitz numbers. A new expression for
the wrinkling factor which incorporates finite Reynolds numbers effects is further proposed. Finally, the
model is successfully assessed on an experimental filtered database.

1 Introduction

Numerical simulation has become an extremely valuable tool for predicting turbulent reacting and non-
reacting flows [1]. However, even though the progress in computing resources have been tremendous during
the last decade or so, fully resolved simulations (Direct Numerical Simulations, DNS) still remain limited
to some canonical configurations with relatively simple chemistry in simple geometries. One promising
alternative is then to use Large Eddy Simulation (LES) that requires much less computer ressources and
thus allow to tackle simulations of more complex geometries to face the challenges of the industry. The basic
idea of LES is to explicitely calculate the large scales down to a cut-off length-scale (generally identified with
the mesh size which is coarser than that of DNSs) while the contribution of the unresolved scales (in terms
of i.e. momentum, energy, species transport, etc) is embedded into a so-called sub-grid scale (SGS) model.
The computation quality and the results accuracy are inherently conditioned by the reliability of these SGS
models [1].

As far as LES of turbulent reacting flows are concerned, several methods have been developped in the last
decade, among these, the algebraic closure strategy is one of the most popular. The thickened flame approach
[2, 3] is based on artificially thickenning the flame so that the flame thickness fits the mesh requirements of
a LES. Such a procedure yields irremediably an attenuation in the flame wrinkling because the broadened
flame acts as a filter on the turbulent eddies of similar size. This artifical decrease in flame wrinkling has thus
to be modeled. The opposite approach is the G-equation [4, 5] procedure for which the flame is considered
infinitely small compared to the mesh-size. The flame front is then described as a propagating surface tracked
using a field variable called G (generally represented by a signed distance from the transported iso-surface).
The SGS wrinkling of the G-field resulting from its interaction with SGS turbulent eddies is then accounted
for through a SGS turbulent flame speed [4, 5]. Another strategy is the Filtered Tabulated Chemistry for
LES (F-TACLES) [6] that takes advantage of the tabulated chemistry ability to handle complex chemistry.
However, as for the two approaches mentioned above, the F-TACLES strategy also requires a model for the
SGS wrinkling factor. This clearly demonstrates that independently of the strategy which is followed for
tackling LES of turbulent combustion, there is systematically a need for efficient sub-grid scale wrinkling
factor models.

Following the lines of Ref. [7], Colin et al. [2] and Charlette et al. [3] have developped a rather rigourous
procedure for inferring the sub-grid scale wrinkling factor. The flame stretch (the rate of creation of surface
aera) is then written as a turbulent strain (namely the unresolved turbulent velocity divided by the filter
size) weighted by an efficiency function characterizing the transfer function between the turbulent strain
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and the flame stretch. This efficiency function is then evaluated by fitting the results of DNSs of a flame
interacting with a pair of counter-rotating vortices. Although limited to 2D cases and simple chemistry,
these computations incorporate explicitly finite rate chemistry, variable density and viscosity, curvature,
straining, all these phenomena playing a significant role in the interaction between a vortex and a flame.
More recently, a correction of previous efficiency functions [3] that accounts for the effect of Lewis number
was further proposed in Ref. [8] using a similar approach.

As mentionned in Refs. [9, 10], although fundamentally relevant for understanding the basic mechanisms
of flame folding due to the interaction with a vortex, it is worth stressing that flame-vortex interactions
may not be representative of the processes at play in a turbulent flow. The reasons for this are twofold.
Firstly, turbulence does differ from a toröıdal vortex in that sense that the latter does not experience
vortex stretching, which is the essence of the energy cascade process from large to small scales [11]. Since
vortex stretching is associated with the presence of larger scales with different orientations [11], flame-
vortex interactions basically do not account for the collective effect between different vortex of different
sizes. Consequently, the lifetime of a vortex pair is thus much more longer than that of similar size in a 3D
turbulent flow. Secondly, a vortex pair has an inherent self induced convection velocity whereas a turbulent
eddy of similar size experiences sweeping effects by much larger scales [12] and therefore convects at a much
larger velocity. In other words, the convection velocity of a vortex-pair which is known for being responsible
of flame surface creation [13], may differ significantly from that observed in a turbulent flow. Note however
that these effects might possibly counterbalance each other since vortex stretching tends to decrease the
vortex lifetime while sweeping effects leads to a larger convection velocity. Moreover, even though a single
vortex may differ significantly from fully developped turbulence, their different dynamical aspects could also
be hidden by some statistical operations (average) and finally lead to similar statistical behavior [14, 15].

The goal of the present paper is to propose a phenomenological scenario that allows to characterize flame
stretching in a turbulent flow with the aim of developping a LES model for the SGS wrinkling factor. For
this purpose, a similar formalism asa in Refs. [2, 3] is followed, i.e. the stretch of the flame is written as the
product of the turbulent strain at a given scale by an efficiency function. However, instead of using DNS data
of flame-vortex interaction, some physical statistical arguments are invoked for assessing the latter efficiency
function and the local turbulent strain. These arguments rely essentially on some recent progress in the
analytical description of turbulence that have been achieved mainly in the last decade. Then, we further
proceed by proposing a LES model for the SGS wrinkling factor on the basis of a power-law distribution of
wrinkling with filter-size [3, 16]. For this purpose, special care is given to the prediction of the inner cut-off,
i.e. the smallest scale below which the flame front ceases being corrugated.

The paper is organized as follows. §2.1 aims at presenting the phenomenological analysis which leads to
plausible analytical expressions for the turbulent strain, the efficiency function and hence the flame stretch.
Then in §2.2, the LES model is presented and assessed in §3 from a priori tests using experiments in a
turbulent Bunsen Burner. Conclusions are finally drawn in §4.

2 Presentation of the model

2.1 Active stretch rate

The key ingredient for modeling the SGS wrinkling factor is the rate of strain which is known to be partly
responsible for the corrugation of the flame front [7, 17, 2, 3, 18, 16]. Since turbulence gives rise to a wide and
continuous range of scales, it is essential to tackle a ’local’ description, i.e. by assessing the contribution of
each scale r to the fluctuating quantity under consideration. Such a scale-by-scale description can be carried
out in either spectral space using Fourier transforms or in physical space by means of either correlation or
structure functions. Similar treatments apply for any turbulent quantity, especially the one of interest here,
i.e. the rate of strain. In a recent paper [19], an expression for the contribution of a given scale r to the
strain intensity S was derived (hereafter r denotes either a typical turbulent scale or the LES filter size). In
a locally isotropic context, in Kolmogorov units (indicated by an asterisk), the local strain rate reads [19]

S(r∗) =

[
1

r∗
∂

∂r∗
(∆q∗)2 +

1

2

∂2

∂r∗2
(∆q∗)2

]1/2
. (1)

r∗ ≡ r/η and (∆q∗)2 ≡ (∆q)2/u2K where the Kolmogorov scales are η = (ν3/ε)1/4 and uK = (νε)1/4, ε

being the mean kinetic energy dissipation rate and ν the kinematic viscosity. (∆q)2 = ∆ui∆ui (summation
convention applies to double Roman indices) is generally interpreted as the total kinetic energy at a given
scale. ∆• = •(x + r) − •(x) is the spatial increment of the quantity • between two points separated by a
distance r. The overbar stands for a suitable average. The full derivation of Eq. (1) is not recalled here but
the reader can refer to Ref. [19] where the derivation of the general (anisotropic) expression together with
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the simplified (isotropic) relation for S(r) is described in detail. The rate of strain thus appears related to the
Laplacian (here expressed in spherical coordinates thanks to local isotropy) of the total kinetic energy at a
given scale (∆q)2. As the scale r decreases, the rate of strain monotically increases towards the Kolmogorov
strain uK/η, whilst it is zero at large scales. The transport equation for (∆q)2 which follows from an
extension of the pioneering work in Refs. [20, 21] to slightly inhomogeneous locally isotropic flows writes
[22]

I∗ − 3

4r∗
∆u∗(∆q∗2) +

3

2r∗
∂(∆q∗)2

∂r∗
= 1. (2)

Eq. (2) describes the statistical equilibrium between the different ranges of turbulent scales. The first term
on LHS of Eq. (2) corresponds to the injection of kinetic energy at large scales through the combined effect
of advection, production, turbulent or pressure diffusion. The energy then cascades towards smaller scales
in an intermediate range of scales (the inertial range), this process being characterized by the second term
on LHS of Eq. (2). Finally, the last term (hereafter formally written as V) stands for the loss of energy by
viscous effects and predominates at the smallest eddies. Remarkable is the fact that the expression for the
viscous term appears in the expression for S. Furthermore, at the smallest scales, it is readily shown that

lim
r∗→0

S2(r∗) = lim
r∗→0

V(r∗) = 1. (3)

This indicates that at the smallest scales, all the strain contributes to viscous dissipation and will thus not
be efficient enough to corrugate the flame front. In addition to viscous effects, Ref. [23] suggested that there
might be also a kinematic constraint that precludes scales r with characteristic velocity Ur (to be defined
later) smaller than the laminar flame speed SL from wrinkling the flame front. These two key ingredients
(viscous + kinematic constraint) naturally lead us to a new definition for the active corrugating stretch rate
K (the rate of creation of flame surface), viz.

K(r∗) = C(r∗)S(r∗) = C1(r∗)C2(r∗)S(r∗) (4a)

C1(r∗) = 1− V(r∗) (4b)

C2(r∗) =
1

2

{
1 + erf

[
3 log

(
Ur
SL

)]}
(4c)

Few comments have to be drawn at this stage.

(i) As in Refs. [7, 2, 3], the ’active’ stretch rate of the flame is written as the product between the
turbulent strain rate and an efficiency function (or transfer function) which characterizes the efficiency
of a given turbulent eddy r with strain S(r) to stretch the flame front. The effect of curvature which
also contributes to the flame stretch is taken into account in an implicit manner through the latter
efficiency function.

(ii) The efficiency function C1(r∗) (Eq. (4b)) accounts for the rate of strain whose intensity is large enough
compared to viscous effects for effectively corrugating the flame front. At large scales, C1(r∗) → 1
whereas as r∗ → 0, C1(r∗)→ 0, as expected.

(iii) On the other hand, the second efficiency function C2(r∗) (Eq. (4c)) whose formulation is similar to
Ref. [3], is the kinematic constraint which follows from the suggestion of Ref. [23].

(iv) It is worth recalling that unlike previous studies [7, 17, 2, 3] for which C was assessed by means
of canonical DNSs of flame vortex interactions, a plausible phenomenological interpretation of this
efficiency function is provided in the present case.

At this stage, a rather realistic functional for (∆q∗)2 and Ur needs to be further employed for an analytical
expression for K(r∗) to be derived. In previous efforts [23, 9, 7, 17, 2, 3, 16], inertial range relations were
used for describing (∆q∗)2 and Ur, i.e. (∆q∗)2 ∝ U2

r ∝ r2/3. Clearly, such an hypothesis might not be
applicable since the Reynolds numbers generally encountered in practical situations is not sufficiently large
for the inertial range to be discernible. Furthermore, the latter inertial range relation is in essence viscosity-
independent whereas the viscous cut-off of energy spectra or structure functions at small scales might play
a significant role as far as interactions with the flame front are concerned.

In order to provide a more appropriate expression for both (∆q∗)2 and Ur which accounts for finite
Reynolds number effects and viscous cut-off, we first recall that in the dissipative range, under the constraint
of local isotropy, we have (∆q∗)2 = r∗2/3. In the inertial range, the Kolmorogov’s relation reads (∆q∗)2 =

Cqr
∗2/3 (Cq is related to the Kolmogorov constant Cu by Cq = 11Cu/3 and will hereafter be set to 22/3
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provided Cu = 2 [24]). Finally, at large scales (∆q∗)2 = 2q∗2, where q∗2 is related to the turbulent Reynolds
number Ret = u′Lt/ν (Lt is the integral length-scale and u′ a typical velocity fluctuation) through the

relation q∗2 = 3Re
1/2
t . Hereafter, a value of 300 for q∗2 is prescribed as an illustration. Following an

elegant interpolation first proposed by Batchelor [25], these asymptotic scalings can be matched together in
a parametric equation of the form [26, 27, 24]

(∆q∗)2 =
r∗2

3

[
1 +

(
r∗

r∗1

)2
]−2/3 [

1 +

(
r∗

r∗2

)2
]−1/3

(5)

where r∗1 = (3Cq)
3/4 is the cross over between the viscous and inertial range, whilst the cross-over between

large and inertial scales is given by r∗2 = (2q∗2/Cq)
3/2. Eq. (5) is the analogous in physical space of some

existing parametric expression for kinetic energy distribution in spectral space (the Pope’s [28] or Pao’s [29]
energy spectra for instance). Even though this parametric expression is built using asymptotic relations, it
appears to be well suited for describing (∆q∗)2 even at low Reynolds numbers [24]. Then, since under the
assumption of homogenity and isotropy,

lim
r→∞

(∆q∗)2 = 2q∗2 = 6u2/u2K (6)

one can define Ur as

Ur
SL

=

[
(∆q∗)2

6

]1/2
Ka1/2. (7)

so that Ur/SL → u′/SL as r → ∞. The Karlovitz number Ka is defined as Ka = (uK/SL)2 = (δL/η)2

where δL = D/SL is the laminar flame thickness, with D the fresh gas thermal diffusivity. It is worth noting
that this expression for Ur might be preferably used to construct spectral diagram following the lines of Ref.
[9] because it accounts for finite Reynolds number effects and viscous cut-off. By further using Eq. (5) yields
analytical expression for V, S, and hence K

V(r∗) =
3(∆q∗)2

r∗2
[1−B] , (8a)

S2(r∗) =
2(∆q∗)2

r∗2

[
3
(
2B2

1 +B2
2

)
+ (1−B)

(
5

2
−B

)
− 1

]
, (8b)

B1 =
1

3

(
r∗

r∗1

)2
[

1 +

(
r∗

r∗1

)2
]−1

, (8c)

B2 =
1

3

(
r∗

r∗2

)2
[

1 +

(
r∗

r∗2

)2
]−1

, (8d)

and B = 2B1 +B2.
The proposed efficiency function C(r) = C1(r)C2(r) is compared to that of Ref. [3] which writes

Cch =
1

4

{
1 + erf

[
0.6 log

(
r

δchL

)
−
(
Ur
SL

)−1/2]}{
1 + erf

[
3 log

(
Ur
SL

)]}
. (9)

The latter expression is an extension of the DNS based expression provided in Ref. [2] to account for the
kinematic constraint discussed previously. To plot Cch, use was made of Eq. (7) for Ur. For comparing C and
Cch, special care has been paid in using a similar definition for the laminar flame thickness. More precisely,
Ref. [2] used a value for δchL for the flame thickness that was 3.7 times larger than δL. Results are presented
in Fig. 1a. As the Karlovitz number increases, both expressions progressively drift towards smaller r/δL,
as expected from the decreasing ratio between δL and the Kolmogorov length-scale η. Note that at low
Karlovitz number, the efficiency function tends to zero at scales larger than η (denoted by vertical arrows)
revealing that the kinematic constraint C2 predominates by comparison with C1. At high Karlovitz numbers,
the opposite is observed indicating that viscous effects are mostly perceptible. Departures between C and
Cch are globally rather small. Hence, this provides strong support in favour of the present phenomenological
approach for estimating the efficiency function.

The active stretch rate for Karlovitz number of 0.1, 1.0 and 10 is displayed in Fig. 1b. At low Karlovitz
number (η < δL), the stretch is active at rather large-scales whilst it drifts towards smaller scales as Ka
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Figure 1: (a) Comparison of the proposed efficiency function (—) C(r/δL) as a function of filter size r/δL
with that of Ref. [3] (- - -). Vertical arrows stand for η/δL. (b) Effective rate of stretch C(r/δL)S(r/δL) for
three different Karlovitz numbers, - - - Ka = 0.1; — Ka = 1.0; – · – Ka = 10.

increases. The maximum value of K is significantly reduced at low Karlovitz number as a consequence of
the kinematic constraint which does not allow scales with characteristic velocity smaller than SL to exist.
Remarkable is the maximum magnitude of the Kolmogorov normalized rate of stretch at high Karlovitz
numbers which is about 0.29, this value being extremely close to the one acting on a material surface found
by both Ref. [30] and Ref. [31] from DNSs. Interestingly, this suggests that, ignoring heat release, the flame
behaves as a passive interface for high Karlovitz numbers Ka > 1.

To summarize, it turns out that the phenomenological analysis provided here allows to quantify the
transfer function C between flame stretch and turbulent strain with a reasonnable degree of agreement with
DNSs of flame-vortex interactions. This was unexpected a priori given the substancial difference in the
approaches but provides support for the conceptual bridge that can be built between canonical flame-vortex
interactions and fully developped turbulent reacting flows. In the following, these results will be used with
the aim of proposing a model for the SGS wrinkling factor.

2.2 Inner-cut off and wrinkling factor

There is wealth of experimental [32, 33], numerical [16, 34, 18] and analytical [35, 36, 37] support in favour of
fractal concepts for describing the multi-scale distribution of flame folding in turbulent premixed combustion.
Namely, following a (mono-) fractal approach, the SGS wrinkling factor Ξ (the ratio of the total to the
resolved flame surface density), or equivalently the normalized SGS reactants consumption speed ST /SL is
assumed to follow a power-law (sometimes referred to as fractal) dependence with r of the form

Ξ =
ST
SL

=

[
1 +

(
r

ηi

)]β
, (10)

where β = Df − 2 with Df the fractal dimension and ηi the inner cut-off, i.e. the smallest characteristic
length scale of the flame front wrinkling. Eq. (10) suggests that Ξ → 1 for r � ηi (i.e. the flame surface
density is fully resolved for filter sizes smaller than ηi), and that Ξ = (r/ηi)

β for scales much larger than ηi
(i.e. the wrinkling factor follows a power-law variation with filter size). However, it can be readily shown
that Ξ→∞ as r →∞. This appears to be rather non physical as it is well known that there exists an outer
cut-off ηo beyond which the wrinkling factor reaches a constant value. To account for this, we extend Eq.
(10) through an additional term, viz.

Ξ =
ST
SL

=

[
1 +

(
r

ηi

)α]β/α [
1 +

(
r

ηo

)α]−β/α
(11)

so that Ξ reaches a plateau as r → ∞. The exponent α is introduced here for the sake of generality.
Pragmatically speaking, α describes the sharpness of the transition between the 3 following different scalings
(i) for r � ηi, Ξ = 1, (ii) for ηi � r � ηo, Ξ ∝ rβ and (iii) for r � ηo, Ξ = (ηo/ηi)

β . Whilst previous
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Figure 2: (a) Inner cut-off length-scale ηi in the LES regime diagram [4]. — corresponds to the present
formulation, viz. N = 1, a = 1 and b = r∗1 and - - - N = 4, a = 0.2 and b = 12.5 (Ref. [16]). (b) ST /SL
as a function of filter size r/δL. ut DNS data of Ref. [16] which are compared to that modeled by Eq. (11)
with ηi and β predicted using N = 1, a = 1 and b = r∗1 . — α = 1, ηo = ∞, - - - α = 2, ηo = ∞, – · –
α = 2, ηo/δL = 8. For all curves, the Karlovitz number was set to Ka = 11.

fractal models for the wrinkling factor [2, 3, 18, 16] generally use a value of 1 for α and supposes ηo ∝ r (so
that the rightmost term of Eq. (11) vanishes consistently with Eq. (10)), no particular prediction can be
drawn at this stage. This point will be examined later when results are compared to some DNS data. Eq.
(11) for the wrinkling factor is conjectured here but further work is needed for demonstrating its existence
on some analytical basis.

To further proceed, we now have to relate the inner cut-off length-scale ηi to the rate of stretch at a given
scale. Generally [17, 2, 3, 18, 16], ηi is inferred from a dynamical equilibrium hypothesis between production
and destruction of SGS flame surface density. Here, we propose an alternative approach, conjecturing that
ηi can be identified with the scale r at which the effective turbulent stretch rate K(r) is maximum, i.e. ηi ≡ r
such as K(r) = max [K(r)]. We may justify this choice by arguing that the scale ηi at which K is maximum
corresponds to the scale at which the stretch characteristic time scale is the smallest by comparison with the
viscous (i.e. the Kolmogorov time scale) characteristic time scale. We can further justify the latter choice
by arguing that the distribution of K(r) can be interpreted as a dispersion relation, i.e. the flame aera A
increases as A(t) = exp(K(r)t) with time [38, 30, 31, 7]. Therefore, the most amplified (or probable) scale
will be that corresponding to the maximum of stretch. The maximum value of K at high Karlovitz number
which is consistent with the estimation of both Ref. [30] and Ref. [31] also encourages us in adopting this
definition for ηi. Finally, a practical advantage of using this definition is that the inner-cut off length-scale
then remains filter size independent (in agreement with the DNS result of Ref. [16], see Fig. 11) and it is
characteristic of a physical rather than a numerical quantity, following the suggestion of Ref. [16].

Results are presented in Fig. 2a, where ηi/δL is plotted as a function of the Karlovitz number. Noticeable
is the transition between two different regimes at low and high Karlovitz number which appears at Ka ≈
{0.1− 1}. At low Karlovitz numbers, ηi/δL ∝ Ka−2, meaning that ηi is proportional to the Gibson length-
scale [23] LG . On the other hand, it appears that at high Karlovitz, ηi/δL = r∗1Ka

−1/2, i.e. is equal to the
cross-over length-scale between the viscous and inertial range introduced previously (Eq. (5)). It is worth
recalling that the latter expression for ηi has already been proposed in Ref. [39]. There is thus a transition
between two regimes, the first one at low Karlovitz numbers where the kinematic constraint C2 dominates
(as noted in Fig. 1a) and the inner cut-off scales with the Gibson length-scale. For this range of Karlovitz
numbers, the flame front is a highly active scalar, whose propagation speed acts as a filter precluding fresh
gas pockets with characteristic scales smaller than LG to exist. The second regime, at large Karlovitz
number, indicates that the cut-off scale is proportional to η (or similarly the Obukhov-Corrsin length-scale
notwithstanding the constancy of the Schmidt number). In this regime, the flame front thus behaves rather
like a passive scalar [16]. These two different regimes corresponds respectively to the Damkhöler large-scale
and small-scale asymptotic limits as discussed in Ref. [4] and further recovered analytically in Ref. [16] on
the basis of both dimensional and dynamical arguments. Ref. [16] further proposed the following functional
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Case Pressure φ SL δL u′/SL Lt/δL Ka Ret
- [MPa] - [m.s−1] [mm] - - - -

Ka+ 0.3 0.6 0.058 0.127 14-6 33-50 6.3-1.4 660-430
Ka− 0.1 0.8 0.227 0.083 3.6-2 51-65 0.95-0.36 230-160

Table 1: Flame and flow parameters for case Ka+ and Ka−.

to ”smoothly” interpolate these two regimes in a single expression, viz.

ηi
δL

=

[(
aKa−2

)N
+
(
bKa−1/2

)N]1/N
. (12)

The magnitude of N characterizes the sharpness of the transition (a value of 4 was chosen in Ref. [16]), and
a = 0.2, b = 5.5Sc−3/4 ≈ 12.5 (providing a Schmidt number Sc = ν/D of 0.335 for the hydrogen-air mixture
at an equivalence ratio of 0.7 and a temperature of 700K as per Ref. [16]) were set ad hoc in Ref. [16]. Our
analytical approach allows to derive the constants a, b,N of Eq. (12) which appear to be a = 1, b = r∗1 and
N = 1. Unlike Ref. [18] for which an empirical expression for β was employed, Ref. [16] demonstrated that
the fractal dimension Df should transit from a value of 7/3 at low Karlovitz number corresponding to the
fractal dimension of a turbulent/non turbulent interface, to a value of 8/3 at high Karlovitz numbers, the
latter value being generally observed for passive scalar fields in fully turbulent flows. To characterize this
transition, Ref. [16] proposed the following parametric relation

β = Df − 2 =
1

3
+

1

3

(
bKa−1/2

)N
(aKa−2)

N
+
(
bKa−1/2

)N . (13)

Plugging the prediction for ηi and β as given by Eqs. (12) and (13) into Eq. (11) yields an estimation of the
sub-grid scale wrinkling factor Ξ or identically ST /SL as a function of filter size r and Karlovitz number.
Results are presented in Fig. 2b. When compared to the DNS results of Ref. [16] (see Fig. 2b), it is observed
that, keeping ηi and β unchanged, a value of 2 for α and ηo/δL = 8 (i.e. about three times larger than the
integral length-scale) are much more suitable. Speculatively, the fact that a value of 2 for α appears more
appropriate suggests that the fractal facet of turbulent flames is most likely related to its surface (i.e. r2)
rather than to its scale (r1). At this stage, we have to emphasize that the parameters β = Df − 2 and ηi
are kept constant to obtain the curves in Fig. 2b, whereas the apparent slope in the ’inertial’ range of filter
size appears less steeper in the DNS. This indicates that in most of practical situations, the scale separation
between ηo and ηi (or equivalently the turbulent Reynolds number) is not sufficiently large for a proper
fractal dimension to be unambiguously inferred and its estimation is clearly biased by some so-called finite
Reynolds number effects [40]. Consequently, finite Reynolds number effects are likely to shed doubts on most
of the experimental or numerical estimations of β and ηi and the quest for an universal value or universal
evolution is worth being revisited.

3 A priori tests using experiments

To further validate the reliability of the present model, a priori tests are provided by comparing to experi-
ments in a high pressure Bunsen Burner. The experimental set-up has been fully detailed in Refs. [41, 42]
and references therein and is briefly recalled here.

3.1 Experimental setup

The Bunsen burner (see Fig. 3) has a diameter of 25mm and is placed in a chamber of inner diameter
300mm and height 1350mm that allows to reach pressure magnitudes up to 0.5 MPa. Intense turbulence is
generated by a multi-scale grid system (see Fig. 3) which has been fully characterized by means of Laser
Doppler and hot-wire Velocimetry in Ref. [41].

Two different methane-air mixtures at two different pressure are investigated for these tests. These two
cases were chosen such as to correspond roughly to the high and low Karlovitz regimes discussed previously.
Flame and flow parameters are summarized in Table 1. For the first case, hereafter denoted as case Ka+,
the pressure in the chamber is 0.3MPa and the mixture equivalence ratio φ is 0.6. The second case, hereafter
denoted as case Ka−, is at 0.1MPa and equivalence ratio of 0.8. For the two cases the mixture inlet velocity
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Figure 3: High-pressure Bunsen burner with the multi-grid injection system used in the present study. Also
displayed a typical tomography image obtained for the case Ka+

is set to 3.6m.s−1. The laminar flame speed and thickness have been calculated using the PREMIX code
[43] and the CHEMKIN-II [44] database together with the GRI-Mech [45] ver.3.0 mechanism. We found
SL = 0.058m.s−1 and δL = D/SL = 0.127mm for case Ka+ and SL = 0.227m.s−1 and δL = 0.083mm for
case Ka−. For case Ka+, the ratio between turbulence intensity (on the centerline of the jet) and laminar
flame speed is decreasing between 14 at the burner inlet to 6 at downstream location where the mean progress
variable was 5% (hereafter this position will be denoted Hf ). For case Ka−, this ratio varies between 3.6
and 2. Because of the inhomogeneity in the streamwize direction (transverse inhomogeneity was found to be
much smaller), local downstream values for the Karlovitz number Ka(x) were used for calculating Ξ. The
Karlovitz number has been calculated by Ka(x) = (δL/η(x))2. Use was made of the isotropic (1D) surrogate
for ε(x) and hence η(x). It was found that the Karlovitz number was decreasing between 6.3 at the burner
exit to 1.4 at a downstream location x = Hf for case Ka+. For case Ka−, 0.95 < Ka < 0.36. The integral
length-scale Lt calculated through the correlation function increases between 4.2 to 6.4mm as one travels
downstream in the burner.

Measurements are carried out by means of High-speed Mie-scattering tomography using a Phantom V1210
camera working at an acquisition rate of 10kHz, and a continuous Coherent Verdi G20 Laser. The spatial
resolution is dx = 0.105mm. Seeding of the flow is made with organic oil droplets with typical size of about
1µm which vaporize around 300◦C. The instantaneous flame front corresponding to the iso-temperature
at which the olive oil droplets totally vaporize, is tracked by standard contour edge detection. Yields the
progress variable c field, which is by definition equal to 0 and 1 in the unburned and burned gas respectively.

3.2 Comparison with experiments

We followed the same method as Ref. [46] for measuring the flame surface density. The Reynolds averaged
Flame Surface Density (FSD) is thus calculated through |∇c|, whilst the resolved surface density is |∇〈c〉|,
where c is the progress variable and the brackets stand for filtered quantities using a (Reynolds) gaussian
filter. Then, the total FSD is reconstructed by multiplying |∇〈c〉| by the wrinkling factor Ξ(x) as given by
Eq. (11) with Ka(x) as an input. Since measurements are made by tomography, only 2D flame surface
density can be inferred. There have been many studies [46, 47, 48, 49] dedicated to the correction factors
that have to be applied for assessing 3D flame surface density from 2D measurements. Here, for testing the
present model, we assume that the later correction factor is the same for both |∇c| and |∇〈c〉| or equivalently
that Ξ2D = Ξ3D. Given this assumption, only 2D flame surface density profiles will be displayed. Further
work is though needed to confirm this statement.

2D plots of the measured, resolved and modeled FSD are presented in Fig. 4. A carefull analysis of Figs.
4a and 4d highlights that the flame height is much larger for case Ka+ as compared to case Ka−. This is
attributed to a much smaller laminar flame speed SL for case Ka+ associated with both a higher pressure
magnitude and a leaner equivalence ratio. The ratio of turbulent to laminar flame speed as inferred from
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Figure 4: Maps of FSD normalized by δL. The streamwise x and transverse y coordinates are normalized by
the burner diameter Db. White curves represent three different iso-contours of progress variable 〈c〉 = 0.1,
0.5, 0.9. The horizontal green dashed lines represent x = 0.4Hf and x = 0.7Hf . Left : Total FSD |∇c|,
Center : Resolved FSD |∇〈c〉| using a filter size of 16dx, Right : Modeled FSD |∇〈c〉|Ξ using a filter size of
16dx. Top panel Ka+, bottom panel Ka−.
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the cone aera method (using the iso progress variable c = 5%) results in ST /SL = 3.76 for case Ka+ and
1.65 for Ka− indicating a much larger wrinkling of the flame for case Ka+. Consistently, this difference in
ST /SL is also observed on the magnitude of the flame surface density which is more than two times larger
for case Ka+ as compared to Ka−. Also presented is the resolved (Figs 4b and 4e) and modeled (Figs 4c
and 4f) FSD. For these figures, use was made of a filter size of 16dx, which corresponds to 20 and 13 laminar
flame thickness δL for case Ka+ and Ka− respectively. One notes that the FSD is more resolved for case
Ka− as compared to case Ka+, highlighting again a much higher SGS wrinkling for case Ka+. In both case,
the modeled FSD agree well with that measured, suggesting that the present model is reliable.
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Figure 5: FSD as a function of the mean filtered progress variable 〈c〉, for two distinct streamwise locations
in the flow, (a,c) x/Hf = 0.4 and (b,d) x/Hf = 0.7 (the flame height Hf is defined as the location x where
c = 5%). Top panel (a,b) is for the case Ka+ and bottom panel (c,d) is for Ka−. ut measured FSD, - - -
resolved FSD, — present model N = 1, a = 1, b = r∗1 , η0 = 3Lt and α = 2, – · – Hawkes et al. [16] model
N = 4, a = 0.2, b = 12.5, η0 =∞ and α = 2. The black curves corresponds to a filter size of 8dx, whilst red
curves to a filter size of 16dx.

More quantitative results are further presented in Fig. 5 where the measured FSD is plotted as a
function of the progress variable and compared to that resolved using a filter size of 8 and 16dx for two
distinct streamwize locations, i.e x/Hf = 0.4 and x/Hf = 0.7 (denoted by the green dashed line in Fig.
4). The ratio of the filter size to laminar flame thickness is then 10 and 20 for case Ka−, 6.5 and 13 for
case Ka+. Noticeable is the magnitude of the resolved FSD which is attenuated by about 25% and 50%
for case Ka+, when the filter size increases from 8dx to 16dx. For case Ka−, the resolved FSD represents
about 82% and 70% of the total FSD when the filter size increases from 8dx to 16dx. The present model
yields very encouraging results since the reconstructed FSD agrees almost perfectly with that inferred from
experiments, irrespectively of the filter size, streamwise distance, and Karlovitz number (Figs. 5a, 5b, 5c and
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5d). Although results are not presented here, the models have been tested for other Karlovitz and Reynolds
numbers, leading to similar deductions.

In Ref. [16], using a priori tests, the constants N = 4, a = 0.3, b = 12.5 and α = 1 were found
to be appropriate for modelling the SGS FSD of an hydrogen flame evolving in a highly turbulent plane
jet. However, when compared to our experiments for the methane/air Bunsen flames, one notes slightly
overestimated values by about 10-15% depending on the location in the flow and Karlovitz number. This
difference is most likely attributed to the difference in fuel composition (hydrogen vs methane), and especially
to a non unity Lewis number effect that leads to a more wrinkled flame in the case of hydrogen flames. In
addition, the flow configuration of Hawkes et al. [16] was a plane jet dominated by a very strong shear,
which could also accentuate the wrinkling of the flame. In the Bunsen burner, these two effects are much
less important thus explaining the observed overestimation of the SGS FSD when use is made of N = 4,
a = 0.3, b = 12.5 and α = 1.

4 Conclusion

In summary, six distinct outcomes emerge from the present study.
(i) An analytical expression for the efficiency function is proposed on the basis of some physical reasoning

arguments. It accounts for viscous effects which dominates for Karlovitz numbers Ka > 1 as well as a
kinematic constraint à la Peters [23] whose effect is dominant at low Karlovitz numbers. These two distinct
regimes correspond respectively to the Damkhöler small and large-scale asymptotic limits. In the small-scale
asymptotic limit, the flame front behaves as a passive scalar and the maximum effective stretch predicted
by the present model is in close agreement with the value of 0.28 inferred by both Ref. [30] and Ref. [31].

(ii) The inner cut-off length-scale follows from the conjecture that ηi is the scale at which the active
stretch rate is maximum. As a consequence of the definition of C, ηi also reveals two different scalings
with Karlovitz number corresponding to the two aforementioned regimes. It is then observed that at low
Karlovitz number, the cut-off corresponds to the Gibson length-scale, as suggested by Peters[23], whilst at
high Karlovitz numbers, the cut-off is the cross-over length-scale between viscous and inertial ranges (i.e.
r∗1 = (3Cq)

3/4) in agreement with Ref. [39].
(iii) The present approach allows to estimate the constants a, b,N in the model of Ref. [16] on the basis

of some physical arguments. It is thus proven that a = 1, b = r∗1 and N = 1 are more suitable.
(iv) A new expression for the wrinkling factor (Eq. (11)) is introduced although not demonstrated,

revealing the additional parameter η0, related to the integral length scale to account for finite Reynolds
number effects. This expression compares favourably well with the DNS results of Ref. [16] when a value of
2 is chosen for α in agreement with Ref. [25]. Future analytical work will address this specific relevance of
this expression for Ξ.

(v) A careful analysis of Fig. 2b shows that in most of practical situations, the Reynolds number is not
sufficiently large for a reliable value of the fractal dimension to be inferred. At finite Reynolds numbers,
the estimation is biased, and the apparent fractal dimension systematically appears less steeper than the
asymptotic value.

(vi) A priori tests are provided by comparing modeled FSDs to that measured in a lean methane-air
Bunsen flame. Although further work is needed for testing the ability of this model using a posteriori tests,
present results already give strong support in favour of the model.
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