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Modeling of the subgrid scale wrinkling factor for large-eddy simulation of turbulent premixed combustion

We propose a model for assessing the unresolved wrinkling factor in LES of turbulent premixed combustion. It relies essentially on a power-law dependence of the wrinkling factor to the filter size and an original expression for the 'active' corrugating strain rate. The latter is written as a product of an efficiency function which accounts for viscous effects and the kinematic constraint of Peters, by a recent expression for the turbulent strain intensity. Yields functional expressions for the fractal dimension and the inner cut-off length scale, the latter being (i) filter-size independent and (ii) consistent with the Damköhler asymptotic behaviours at both large and small Karlovitz numbers. A new expression for the wrinkling factor which incorporates finite Reynolds numbers effects is further proposed. Finally, the model is successfully assessed on an experimental filtered database.

Introduction

Numerical simulation has become an extremely valuable tool for predicting turbulent reacting and nonreacting flows [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]. However, even though the progress in computing resources have been tremendous during the last decade or so, fully resolved simulations (Direct Numerical Simulations, DNS) still remain limited to some canonical configurations with relatively simple chemistry in simple geometries. One promising alternative is then to use Large Eddy Simulation (LES) that requires much less computer ressources and thus allow to tackle simulations of more complex geometries to face the challenges of the industry. The basic idea of LES is to explicitely calculate the large scales down to a cut-off length-scale (generally identified with the mesh size which is coarser than that of DNSs) while the contribution of the unresolved scales (in terms of i.e. momentum, energy, species transport, etc) is embedded into a so-called sub-grid scale (SGS) model. The computation quality and the results accuracy are inherently conditioned by the reliability of these SGS models [START_REF] Poinsot | Theoretical and numerical combustion[END_REF].

As far as LES of turbulent reacting flows are concerned, several methods have been developped in the last decade, among these, the algebraic closure strategy is one of the most popular. The thickened flame approach [START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF] is based on artificially thickenning the flame so that the flame thickness fits the mesh requirements of a LES. Such a procedure yields irremediably an attenuation in the flame wrinkling because the broadened flame acts as a filter on the turbulent eddies of similar size. This artifical decrease in flame wrinkling has thus to be modeled. The opposite approach is the G-equation [START_REF] Pitsch | Large-eddy simulation of premixed turbulent combustion using a level-set approach[END_REF][START_REF] Pitsch | A consistent level set formulation for large-eddy simulation of premixed turbulent combustion[END_REF] procedure for which the flame is considered infinitely small compared to the mesh-size. The flame front is then described as a propagating surface tracked using a field variable called G (generally represented by a signed distance from the transported iso-surface). The SGS wrinkling of the G-field resulting from its interaction with SGS turbulent eddies is then accounted for through a SGS turbulent flame speed [START_REF] Pitsch | Large-eddy simulation of premixed turbulent combustion using a level-set approach[END_REF][START_REF] Pitsch | A consistent level set formulation for large-eddy simulation of premixed turbulent combustion[END_REF]. Another strategy is the Filtered Tabulated Chemistry for LES (F-TACLES) [START_REF] Fiorina | A filtered tabulated chemistry model for LES of premixed combustion[END_REF] that takes advantage of the tabulated chemistry ability to handle complex chemistry. However, as for the two approaches mentioned above, the F-TACLES strategy also requires a model for the SGS wrinkling factor. This clearly demonstrates that independently of the strategy which is followed for tackling LES of turbulent combustion, there is systematically a need for efficient sub-grid scale wrinkling factor models.

Following the lines of Ref. [START_REF] Meneveau | Stretching and quenching of flamelets in premixed turbulent combustion[END_REF], Colin et al. [START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF] and Charlette et al. [START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF] have developped a rather rigourous procedure for inferring the sub-grid scale wrinkling factor. The flame stretch (the rate of creation of surface aera) is then written as a turbulent strain (namely the unresolved turbulent velocity divided by the filter size) weighted by an efficiency function characterizing the transfer function between the turbulent strain and the flame stretch. This efficiency function is then evaluated by fitting the results of DNSs of a flame interacting with a pair of counter-rotating vortices. Although limited to 2D cases and simple chemistry, these computations incorporate explicitly finite rate chemistry, variable density and viscosity, curvature, straining, all these phenomena playing a significant role in the interaction between a vortex and a flame. More recently, a correction of previous efficiency functions [START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF] that accounts for the effect of Lewis number was further proposed in Ref. [START_REF] Bougrine | Fuel composition effects on flame stretch in turbulent premixed combustion: Numerical analysis of flame-vortex interaction and formulation of a new efficiency function[END_REF] using a similar approach.

As mentionned in Refs. [START_REF] Poinsot | Quenching processes and premixed turbulent combustion diagrams[END_REF][START_REF] Poinsot | Diagrams of premixed turbulent combustion based on direct simulation[END_REF], although fundamentally relevant for understanding the basic mechanisms of flame folding due to the interaction with a vortex, it is worth stressing that flame-vortex interactions may not be representative of the processes at play in a turbulent flow. The reasons for this are twofold. Firstly, turbulence does differ from a toroïdal vortex in that sense that the latter does not experience vortex stretching, which is the essence of the energy cascade process from large to small scales [START_REF] Tennekes | A first course in turbulence[END_REF]. Since vortex stretching is associated with the presence of larger scales with different orientations [START_REF] Tennekes | A first course in turbulence[END_REF], flamevortex interactions basically do not account for the collective effect between different vortex of different sizes. Consequently, the lifetime of a vortex pair is thus much more longer than that of similar size in a 3D turbulent flow. Secondly, a vortex pair has an inherent self induced convection velocity whereas a turbulent eddy of similar size experiences sweeping effects by much larger scales [START_REF] Tennekes | Eulerian and lagrangian time microscales in isotropic turbulence[END_REF] and therefore convects at a much larger velocity. In other words, the convection velocity of a vortex-pair which is known for being responsible of flame surface creation [START_REF] Roberts | A laminar vortex interacting with a premixed flame: measured formation of pockets of reactants[END_REF], may differ significantly from that observed in a turbulent flow. Note however that these effects might possibly counterbalance each other since vortex stretching tends to decrease the vortex lifetime while sweeping effects leads to a larger convection velocity. Moreover, even though a single vortex may differ significantly from fully developped turbulence, their different dynamical aspects could also be hidden by some statistical operations (average) and finally lead to similar statistical behavior [START_REF] Malik | Eulerian and lagrangian scaling properties of randomly advected vortex tubes[END_REF][START_REF] Poulain | Dynamics of spatial fourier modes in turbulence[END_REF].

The goal of the present paper is to propose a phenomenological scenario that allows to characterize flame stretching in a turbulent flow with the aim of developping a LES model for the SGS wrinkling factor. For this purpose, a similar formalism asa in Refs. [START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF] is followed, i.e. the stretch of the flame is written as the product of the turbulent strain at a given scale by an efficiency function. However, instead of using DNS data of flame-vortex interaction, some physical statistical arguments are invoked for assessing the latter efficiency function and the local turbulent strain. These arguments rely essentially on some recent progress in the analytical description of turbulence that have been achieved mainly in the last decade. Then, we further proceed by proposing a LES model for the SGS wrinkling factor on the basis of a power-law distribution of wrinkling with filter-size [START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF][START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]. For this purpose, special care is given to the prediction of the inner cut-off, i.e. the smallest scale below which the flame front ceases being corrugated.

The paper is organized as follows. §2.1 aims at presenting the phenomenological analysis which leads to plausible analytical expressions for the turbulent strain, the efficiency function and hence the flame stretch. Then in §2.2, the LES model is presented and assessed in §3 from a priori tests using experiments in a turbulent Bunsen Burner. Conclusions are finally drawn in §4.

2 Presentation of the model

Active stretch rate

The key ingredient for modeling the SGS wrinkling factor is the rate of strain which is known to be partly responsible for the corrugation of the flame front [START_REF] Meneveau | Stretching and quenching of flamelets in premixed turbulent combustion[END_REF][START_REF] Angelberger | Large eddy simulations of combustion instabilities in premixed flames[END_REF][START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF][START_REF] Fureby | A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[END_REF][START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]. Since turbulence gives rise to a wide and continuous range of scales, it is essential to tackle a 'local' description, i.e. by assessing the contribution of each scale r to the fluctuating quantity under consideration. Such a scale-by-scale description can be carried out in either spectral space using Fourier transforms or in physical space by means of either correlation or structure functions. Similar treatments apply for any turbulent quantity, especially the one of interest here, i.e. the rate of strain. In a recent paper [START_REF] Thiesset | Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake[END_REF], an expression for the contribution of a given scale r to the strain intensity S was derived (hereafter r denotes either a typical turbulent scale or the LES filter size). In a locally isotropic context, in Kolmogorov units (indicated by an asterisk), the local strain rate reads [START_REF] Thiesset | Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake[END_REF] 

S(r * ) = 1 r * ∂ ∂r * (∆q * ) 2 + 1 2 ∂ 2 ∂r * 2 (∆q * ) 2 1/2 . ( 1 
)
r * ≡ r/η and (∆q * ) 2 ≡ (∆q) 2 /u 2 K where the Kolmogorov scales are η = (ν 3 / ) 1/4 and u K = (ν ) 1/4 , being the mean kinetic energy dissipation rate and ν the kinematic viscosity. (∆q) 2 = ∆u i ∆u i (summation convention applies to double Roman indices) is generally interpreted as the total kinetic energy at a given scale. ∆• = •(x + r) -•(x) is the spatial increment of the quantity • between two points separated by a distance r. The overbar stands for a suitable average. The full derivation of Eq. ( 1) is not recalled here but the reader can refer to Ref. [START_REF] Thiesset | Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake[END_REF] where the derivation of the general (anisotropic) expression together with the simplified (isotropic) relation for S(r) is described in detail. The rate of strain thus appears related to the Laplacian (here expressed in spherical coordinates thanks to local isotropy) of the total kinetic energy at a given scale (∆q) 2 . As the scale r decreases, the rate of strain monotically increases towards the Kolmogorov strain u K /η, whilst it is zero at large scales. The transport equation for (∆q) 2 which follows from an extension of the pioneering work in Refs. [START_REF] Kármán | On the statistical theory of isotropic turbulence[END_REF][START_REF] Kolmogorov | Dissipation of energy in the locally isotropic turbulence[END_REF] to slightly inhomogeneous locally isotropic flows writes [START_REF] Danaila | Progress in studying small-scale turbulence using 'exact' two-point equations[END_REF] 

I * - 3 4r * ∆u * (∆q * 2 ) + 3 2r * ∂(∆q * ) 2 ∂r * = 1. (2) 
Eq. ( 2) describes the statistical equilibrium between the different ranges of turbulent scales. The first term on LHS of Eq. ( 2) corresponds to the injection of kinetic energy at large scales through the combined effect of advection, production, turbulent or pressure diffusion. The energy then cascades towards smaller scales in an intermediate range of scales (the inertial range), this process being characterized by the second term on LHS of Eq. ( 2). Finally, the last term (hereafter formally written as V) stands for the loss of energy by viscous effects and predominates at the smallest eddies. Remarkable is the fact that the expression for the viscous term appears in the expression for S. Furthermore, at the smallest scales, it is readily shown that lim

r * →0 S 2 (r * ) = lim r * →0 V(r * ) = 1. (3) 
This indicates that at the smallest scales, all the strain contributes to viscous dissipation and will thus not be efficient enough to corrugate the flame front. In addition to viscous effects, Ref. [START_REF] Peters | Laminar flamelet concepts in turbulent combustion[END_REF] suggested that there might be also a kinematic constraint that precludes scales r with characteristic velocity U r (to be defined later) smaller than the laminar flame speed S L from wrinkling the flame front. These two key ingredients (viscous + kinematic constraint) naturally lead us to a new definition for the active corrugating stretch rate K (the rate of creation of flame surface), viz.

K(r * ) = C(r * )S(r * ) = C 1 (r * )C 2 (r * )S(r * ) (4a) C 1 (r * ) = 1 -V(r * ) (4b) C 2 (r * ) = 1 2 1 + erf 3 log U r S L (4c) 
Few comments have to be drawn at this stage.

(i) As in Refs. [START_REF] Meneveau | Stretching and quenching of flamelets in premixed turbulent combustion[END_REF][START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF], the 'active' stretch rate of the flame is written as the product between the turbulent strain rate and an efficiency function (or transfer function) which characterizes the efficiency of a given turbulent eddy r with strain S(r) to stretch the flame front. The effect of curvature which also contributes to the flame stretch is taken into account in an implicit manner through the latter efficiency function.

(ii) The efficiency function C 1 (r * ) (Eq. ( 4b)) accounts for the rate of strain whose intensity is large enough compared to viscous effects for effectively corrugating the flame front. At large scales, C 1 (r * ) → 1 whereas as r * → 0, C 1 (r * ) → 0, as expected.

(iii) On the other hand, the second efficiency function C 2 (r * ) (Eq. ( 4c)) whose formulation is similar to Ref. [START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF], is the kinematic constraint which follows from the suggestion of Ref. [START_REF] Peters | Laminar flamelet concepts in turbulent combustion[END_REF].

(iv) It is worth recalling that unlike previous studies [START_REF] Meneveau | Stretching and quenching of flamelets in premixed turbulent combustion[END_REF][START_REF] Angelberger | Large eddy simulations of combustion instabilities in premixed flames[END_REF][START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF] for which C was assessed by means of canonical DNSs of flame vortex interactions, a plausible phenomenological interpretation of this efficiency function is provided in the present case.

At this stage, a rather realistic functional for (∆q * ) 2 and U r needs to be further employed for an analytical expression for K(r * ) to be derived. In previous efforts [START_REF] Peters | Laminar flamelet concepts in turbulent combustion[END_REF][START_REF] Poinsot | Quenching processes and premixed turbulent combustion diagrams[END_REF][START_REF] Meneveau | Stretching and quenching of flamelets in premixed turbulent combustion[END_REF][START_REF] Angelberger | Large eddy simulations of combustion instabilities in premixed flames[END_REF][START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF][START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF], inertial range relations were used for describing (∆q * ) 2 and U r , i.e. (∆q * ) 2 ∝ U 2 r ∝ r 2/3 . Clearly, such an hypothesis might not be applicable since the Reynolds numbers generally encountered in practical situations is not sufficiently large for the inertial range to be discernible. Furthermore, the latter inertial range relation is in essence viscosityindependent whereas the viscous cut-off of energy spectra or structure functions at small scales might play a significant role as far as interactions with the flame front are concerned.

In order to provide a more appropriate expression for both (∆q * ) 2 and U r which accounts for finite Reynolds number effects and viscous cut-off, we first recall that in the dissipative range, under the constraint of local isotropy, we have (∆q * ) 2 = r * 2 /3. In the inertial range, the Kolmorogov's relation reads (∆q * ) 2 = C q r * 2/3 (C q is related to the Kolmogorov constant C u by C q = 11C u /3 and will hereafter be set to 22/3 provided C u = 2 [START_REF] Antonia | Similarity of energy structure functions in decaying homogeneous isotropic turbulence[END_REF]). Finally, at large scales (∆q * ) 2 = 2q * 2 , where q * 2 is related to the turbulent Reynolds number Re t = u L t /ν (L t is the integral length-scale and u a typical velocity fluctuation) through the relation q * 2 = 3Re 1/2 t . Hereafter, a value of 300 for q * 2 is prescribed as an illustration. Following an elegant interpolation first proposed by Batchelor [START_REF] Batchelor | Pressure fluctuations in isotropic turbulence[END_REF], these asymptotic scalings can be matched together in a parametric equation of the form [START_REF] Kurien | Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence[END_REF][START_REF] Aivalis | Temperature structure functions for air flow over moderately heated ground[END_REF][START_REF] Antonia | Similarity of energy structure functions in decaying homogeneous isotropic turbulence[END_REF] 

(∆q * ) 2 = r * 2 3 1 + r * r * 1 2 -2/3 1 + r * r * 2 2 -1/3 (5) 
where r * 1 = (3C q ) 3/4 is the cross over between the viscous and inertial range, whilst the cross-over between large and inertial scales is given by r * 2 = (2q * 2 /C q ) 3/2 . Eq. ( 5) is the analogous in physical space of some existing parametric expression for kinetic energy distribution in spectral space (the Pope's [START_REF] Pope | Turbulent flows[END_REF] or Pao's [START_REF] Pao | Structure of turbulent velocity and scalar fields at large wavenumbers[END_REF] energy spectra for instance). Even though this parametric expression is built using asymptotic relations, it appears to be well suited for describing (∆q * ) 2 even at low Reynolds numbers [START_REF] Antonia | Similarity of energy structure functions in decaying homogeneous isotropic turbulence[END_REF]. Then, since under the assumption of homogenity and isotropy, lim r→∞

(∆q * ) 2 = 2q * 2 = 6u 2 /u 2 K (6) one can define U r as U r S L = (∆q * ) 2 6 1/2 Ka 1/2 . ( 7 
)
so that U r /S L → u /S L as r → ∞. The Karlovitz number Ka is defined as

Ka = (u K /S L ) 2 = (δ L /η) 2
where δ L = D/S L is the laminar flame thickness, with D the fresh gas thermal diffusivity. It is worth noting that this expression for U r might be preferably used to construct spectral diagram following the lines of Ref.

[9] because it accounts for finite Reynolds number effects and viscous cut-off. By further using Eq. ( 5) yields analytical expression for V, S, and hence K

V(r * ) = 3(∆q * ) 2 r * 2 [1 -B] , (8a) 
S 2 (r * ) = 2(∆q * ) 2 r * 2 3 2B 2 1 + B 2 2 + (1 -B) 5 2 -B -1 , (8b) 
B 1 = 1 3 r * r * 1 2 1 + r * r * 1 2 -1 , (8c) 
B 2 = 1 3 r * r * 2 2 1 + r * r * 2 2 -1 , (8d) 
and

B = 2B 1 + B 2 .
The proposed efficiency function C(r) = C 1 (r)C 2 (r) is compared to that of Ref. [START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF] which writes

C ch = 1 4 1 + erf 0.6 log r δ ch L - U r S L -1/2 1 + erf 3 log U r S L . (9) 
The latter expression is an extension of the DNS based expression provided in Ref. [START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF] to account for the kinematic constraint discussed previously. To plot C ch , use was made of Eq. ( 7) for U r . For comparing C and C ch , special care has been paid in using a similar definition for the laminar flame thickness. More precisely, Ref. [START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF] used a value for δ ch L for the flame thickness that was 3.7 times larger than δ L . Results are presented in Fig. 1a. As the Karlovitz number increases, both expressions progressively drift towards smaller r/δ L , as expected from the decreasing ratio between δ L and the Kolmogorov length-scale η. Note that at low Karlovitz number, the efficiency function tends to zero at scales larger than η (denoted by vertical arrows) revealing that the kinematic constraint C 2 predominates by comparison with C 1 . At high Karlovitz numbers, the opposite is observed indicating that viscous effects are mostly perceptible. Departures between C and C ch are globally rather small. Hence, this provides strong support in favour of the present phenomenological approach for estimating the efficiency function.

The active stretch rate for Karlovitz number of 0.1, 1.0 and 10 is displayed in Fig. 1b. At low Karlovitz number (η < δ L ), the stretch is active at rather large-scales whilst it drifts towards smaller scales as Ka increases. The maximum value of K is significantly reduced at low Karlovitz number as a consequence of the kinematic constraint which does not allow scales with characteristic velocity smaller than S L to exist. Remarkable is the maximum magnitude of the Kolmogorov normalized rate of stretch at high Karlovitz numbers which is about 0.29, this value being extremely close to the one acting on a material surface found by both Ref. [START_REF] Yeung | Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets[END_REF] and Ref. [START_REF] Goto | Reynolds-number dependence of line and surface stretching in turbulence: folding effects[END_REF] from DNSs. Interestingly, this suggests that, ignoring heat release, the flame behaves as a passive interface for high Karlovitz numbers Ka > 1.

To summarize, it turns out that the phenomenological analysis provided here allows to quantify the transfer function C between flame stretch and turbulent strain with a reasonnable degree of agreement with DNSs of flame-vortex interactions. This was unexpected a priori given the substancial difference in the approaches but provides support for the conceptual bridge that can be built between canonical flame-vortex interactions and fully developped turbulent reacting flows. In the following, these results will be used with the aim of proposing a model for the SGS wrinkling factor.

Inner-cut off and wrinkling factor

There is wealth of experimental [START_REF] Gouldin | Experimental evaluation of the fractal geometry of flamelets[END_REF][START_REF] North | The fractal nature of premixed turbulent flames[END_REF], numerical [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF][START_REF] Chatakonda | On the fractal characteristics of low Damköhler number flames[END_REF][START_REF] Fureby | A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[END_REF] and analytical [START_REF] Gouldin | An application of fractals to modeling premixed turbulent flames[END_REF][START_REF] Kerstein | Fractal dimension of turbulent premixed flames[END_REF][START_REF] Peters | The fractal concept of turbulent flames[END_REF] support in favour of fractal concepts for describing the multi-scale distribution of flame folding in turbulent premixed combustion. Namely, following a (mono-) fractal approach, the SGS wrinkling factor Ξ (the ratio of the total to the resolved flame surface density), or equivalently the normalized SGS reactants consumption speed S T /S L is assumed to follow a power-law (sometimes referred to as fractal) dependence with r of the form

Ξ = S T S L = 1 + r η i β , (10) 
where β = D f -2 with D f the fractal dimension and η i the inner cut-off, i.e. the smallest characteristic length scale of the flame front wrinkling. Eq. ( 10) suggests that Ξ → 1 for r η i (i.e. the flame surface density is fully resolved for filter sizes smaller than η i ), and that Ξ = (r/η i ) β for scales much larger than η i (i.e. the wrinkling factor follows a power-law variation with filter size). However, it can be readily shown that Ξ → ∞ as r → ∞. This appears to be rather non physical as it is well known that there exists an outer cut-off η o beyond which the wrinkling factor reaches a constant value. To account for this, we extend Eq. ( 10) through an additional term, viz.

Ξ = S T S L = 1 + r η i α β/α 1 + r η o α -β/α (11) 
so that Ξ reaches a plateau as r → ∞. The exponent α is introduced here for the sake of generality. Pragmatically speaking, α describes the sharpness of the transition between the 3 following different scalings (i) for r η i , Ξ = 1, (ii) for η i r η o , Ξ ∝ r β and (iii) for r η o , Ξ = (η o /η i ) β . Whilst previous [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]). (b) S T /S L as a function of filter size r/δ L . DNS data of Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] which are compared to that modeled by Eq. ( 11) with η i and β predicted using N = 1, a = 1 and b

= r * 1 . -α = 1, η o = ∞, ---α = 2, η o = ∞, -• - α = 2, η o /δ L = 8
. For all curves, the Karlovitz number was set to Ka = 11. fractal models for the wrinkling factor [START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF][START_REF] Fureby | A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[END_REF][START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] generally use a value of 1 for α and supposes η o ∝ r (so that the rightmost term of Eq. ( 11) vanishes consistently with Eq. ( 10)), no particular prediction can be drawn at this stage. This point will be examined later when results are compared to some DNS data. Eq. ( 11) for the wrinkling factor is conjectured here but further work is needed for demonstrating its existence on some analytical basis.

To further proceed, we now have to relate the inner cut-off length-scale η i to the rate of stretch at a given scale. Generally [START_REF] Angelberger | Large eddy simulations of combustion instabilities in premixed flames[END_REF][START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests[END_REF][START_REF] Fureby | A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[END_REF][START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF], η i is inferred from a dynamical equilibrium hypothesis between production and destruction of SGS flame surface density. Here, we propose an alternative approach, conjecturing that η i can be identified with the scale r at which the effective turbulent stretch rate K(r) is maximum, i.e. η i ≡ r such as K(r) = max [K(r)]. We may justify this choice by arguing that the scale η i at which K is maximum corresponds to the scale at which the stretch characteristic time scale is the smallest by comparison with the viscous (i.e. the Kolmogorov time scale) characteristic time scale. We can further justify the latter choice by arguing that the distribution of K(r) can be interpreted as a dispersion relation, i.e. the flame aera A increases as A(t) = exp(K(r)t) with time [START_REF] Batchelor | The effect of homogeneous turbulence on material lines and surfaces[END_REF][START_REF] Yeung | Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets[END_REF][START_REF] Goto | Reynolds-number dependence of line and surface stretching in turbulence: folding effects[END_REF][START_REF] Meneveau | Stretching and quenching of flamelets in premixed turbulent combustion[END_REF]. Therefore, the most amplified (or probable) scale will be that corresponding to the maximum of stretch. The maximum value of K at high Karlovitz number which is consistent with the estimation of both Ref. [START_REF] Yeung | Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets[END_REF] and Ref. [START_REF] Goto | Reynolds-number dependence of line and surface stretching in turbulence: folding effects[END_REF] also encourages us in adopting this definition for η i . Finally, a practical advantage of using this definition is that the inner-cut off length-scale then remains filter size independent (in agreement with the DNS result of Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF], see Fig. 11) and it is characteristic of a physical rather than a numerical quantity, following the suggestion of Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF].

Results are presented in Fig. 2a, where η i /δ L is plotted as a function of the Karlovitz number. Noticeable is the transition between two different regimes at low and high Karlovitz number which appears at Ka ≈ {0.1 -1}. At low Karlovitz numbers, η i /δ L ∝ Ka -2 , meaning that η i is proportional to the Gibson lengthscale [START_REF] Peters | Laminar flamelet concepts in turbulent combustion[END_REF] L G . On the other hand, it appears that at high Karlovitz, η i /δ L = r * 1 Ka -1/2 , i.e. is equal to the cross-over length-scale between the viscous and inertial range introduced previously (Eq. ( 5)). It is worth recalling that the latter expression for η i has already been proposed in Ref. [START_REF] Kobayashi | Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames[END_REF]. There is thus a transition between two regimes, the first one at low Karlovitz numbers where the kinematic constraint C 2 dominates (as noted in Fig. 1a) and the inner cut-off scales with the Gibson length-scale. For this range of Karlovitz numbers, the flame front is a highly active scalar, whose propagation speed acts as a filter precluding fresh gas pockets with characteristic scales smaller than L G to exist. The second regime, at large Karlovitz number, indicates that the cut-off scale is proportional to η (or similarly the Obukhov-Corrsin length-scale notwithstanding the constancy of the Schmidt number). In this regime, the flame front thus behaves rather like a passive scalar [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]. These two different regimes corresponds respectively to the Damkhöler large-scale and small-scale asymptotic limits as discussed in Ref. [START_REF] Pitsch | Large-eddy simulation of premixed turbulent combustion using a level-set approach[END_REF] and further recovered analytically in Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] on the basis of both dimensional and dynamical arguments. Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] to "smoothly" interpolate these two regimes in a single expression, viz.

η i δ L = aKa -2 N + bKa -1/2 N 1/N . ( 12 
)
The magnitude of N characterizes the sharpness of the transition (a value of 4 was chosen in Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]), and a = 0.2, b = 5.5Sc -3/4 ≈ 12.5 (providing a Schmidt number Sc = ν/D of 0.335 for the hydrogen-air mixture at an equivalence ratio of 0.7 and a temperature of 700K as per Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]) were set ad hoc in Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]. Our analytical approach allows to derive the constants a, b, N of Eq. ( 12) which appear to be a = 1, b = r * 1 and N = 1. Unlike Ref. [START_REF] Fureby | A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[END_REF] for which an empirical expression for β was employed, Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] demonstrated that the fractal dimension D f should transit from a value of 7/3 at low Karlovitz number corresponding to the fractal dimension of a turbulent/non turbulent interface, to a value of 8/3 at high Karlovitz numbers, the latter value being generally observed for passive scalar fields in fully turbulent flows. To characterize this transition, Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] proposed the following parametric relation

β = D f -2 = 1 3 + 1 3 bKa -1/2 N (aKa -2 ) N + bKa -1/2 N . ( 13 
)
Plugging the prediction for η i and β as given by Eqs. ( 12) and ( 13) into Eq. ( 11) yields an estimation of the sub-grid scale wrinkling factor Ξ or identically S T /S L as a function of filter size r and Karlovitz number. Results are presented in Fig. 2b. When compared to the DNS results of Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] (see Fig. 2b), it is observed that, keeping η i and β unchanged, a value of 2 for α and η o /δ L = 8 (i.e. about three times larger than the integral length-scale) are much more suitable. Speculatively, the fact that a value of 2 for α appears more appropriate suggests that the fractal facet of turbulent flames is most likely related to its surface (i.e. r 2 ) rather than to its scale (r 1 ). At this stage, we have to emphasize that the parameters β = D f -2 and η i are kept constant to obtain the curves in Fig. 2b, whereas the apparent slope in the 'inertial' range of filter size appears less steeper in the DNS. This indicates that in most of practical situations, the scale separation between η o and η i (or equivalently the turbulent Reynolds number) is not sufficiently large for a proper fractal dimension to be unambiguously inferred and its estimation is clearly biased by some so-called finite Reynolds number effects [START_REF] Menon | Stochastic simulation of the structure and propagation rate of turbulent premixed flames[END_REF]. Consequently, finite Reynolds number effects are likely to shed doubts on most of the experimental or numerical estimations of β and η i and the quest for an universal value or universal evolution is worth being revisited.

A priori tests using experiments

To further validate the reliability of the present model, a priori tests are provided by comparing to experiments in a high pressure Bunsen Burner. The experimental set-up has been fully detailed in Refs. [START_REF] Fragner | Multi scale high intensity turbulence generator applied to a high pressure turbulent burner[END_REF][START_REF] Fragner | Investigation of pressure effects on the small scale wrinkling of turbulent premixed bunsen flames[END_REF] and references therein and is briefly recalled here.

Experimental setup

The Bunsen burner (see Fig. 3) has a diameter of 25mm and is placed in a chamber of inner diameter 300mm and height 1350mm that allows to reach pressure magnitudes up to 0.5 MPa. Intense turbulence is generated by a multi-scale grid system (see Fig. 3) which has been fully characterized by means of Laser Doppler and hot-wire Velocimetry in Ref. [START_REF] Fragner | Multi scale high intensity turbulence generator applied to a high pressure turbulent burner[END_REF]. Two different methane-air mixtures at two different pressure are investigated for these tests. These two cases were chosen such as to correspond roughly to the high and low Karlovitz regimes discussed previously. Flame and flow parameters are summarized in Table 1. For the first case, hereafter denoted as case Ka + the pressure in the chamber is 0.3MPa and the mixture equivalence ratio φ is 0.6. The second case, hereafter denoted as case Ka -, is at 0.1MPa and equivalence ratio of 0.8. For the two cases the mixture inlet velocity Figure 3: High-pressure Bunsen burner with the multi-grid injection system used in the present study. Also displayed a typical tomography image obtained for the case Ka + is set to 3.6m.s -1 . The laminar flame speed and thickness have been calculated using the PREMIX code [START_REF] Kee | PREMIX: a fortran program for modeling steady laminar one-dimensional premixed flames[END_REF] and the CHEMKIN-II [START_REF] Kee | The chemkin thermodynamic data base[END_REF] database together with the GRI-Mech [START_REF] Smith | Gri-mechan optimized detailed chemical reaction mechanism for methane combustion[END_REF] ver.3.0 mechanism. We found S L = 0.058m.s -1 and δ L = D/S L = 0.127mm for case Ka + and S L = 0.227m.s -1 and δ L = 0.083mm for case Ka -. For case Ka + , the ratio between turbulence intensity (on the centerline of the jet) and laminar flame speed is decreasing between 14 at the burner inlet to 6 at downstream location where the mean progress variable was 5% (hereafter this position will be denoted H f ). For case Ka -, this ratio varies between 3.6 and 2. Because of the inhomogeneity in the streamwize direction (transverse inhomogeneity was found to be much smaller), local downstream values for the Karlovitz number Ka(x) were used for calculating Ξ. The Karlovitz number has been calculated by Ka(x) = (δ L /η(x)) 2 . Use was made of the isotropic (1D) surrogate for (x) and hence η(x). It was found that the Karlovitz number was decreasing between 6.3 at the burner exit to 1.4 at a downstream location x = H f for case Ka + . For case Ka -, 0.95 < Ka < 0.36. The integral length-scale L t calculated through the correlation function increases between 4.2 to 6.4mm as one travels downstream in the burner.

Measurements are carried out by means of High-speed Mie-scattering tomography using a Phantom V1210 camera working at an acquisition rate of 10kHz, and a continuous Coherent Verdi G20 Laser. The spatial resolution is dx = 0.105mm. Seeding of the flow is made with organic oil droplets with typical size of about 1µm which vaporize around 300 • C. The instantaneous flame front corresponding to the iso-temperature at which the olive oil droplets totally vaporize, is tracked by standard contour edge detection. Yields the progress variable c field, which is by definition equal to 0 and 1 in the unburned and burned gas respectively.

Comparison with experiments

We followed the same method as Ref. [START_REF] Halter | Analysis of flame surface density measurements in turbulent premixed combustion[END_REF] for measuring the flame surface density. The Reynolds averaged Flame Surface Density (FSD) is thus calculated through |∇c|, whilst the resolved surface density is |∇ c |, where c is the progress variable and the brackets stand for filtered quantities using a (Reynolds) gaussian filter. Then, the total FSD is reconstructed by multiplying |∇ c | by the wrinkling factor Ξ(x) as given by Eq. [START_REF] Tennekes | A first course in turbulence[END_REF] with Ka(x) as an input. Since measurements are made by tomography, only 2D flame surface density can be inferred. There have been many studies [START_REF] Halter | Analysis of flame surface density measurements in turbulent premixed combustion[END_REF][START_REF] Veynante | Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion[END_REF][START_REF] Hawkes | Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements[END_REF][START_REF] Chakraborty | Determination of 3D flame surface density variables from 2D measurements: Validation using direct numerical simulation[END_REF] dedicated to the correction factors that have to be applied for assessing 3D flame surface density from 2D measurements. Here, for testing the present model, we assume that the later correction factor is the same for both |∇c| and |∇ c | or equivalently that Ξ 2D = Ξ 3D . Given this assumption, only 2D flame surface density profiles will be displayed. Further work is though needed to confirm this statement.

2D plots of the measured, resolved and modeled FSD are presented in Fig. 4. A carefull analysis of Figs. 4a and 4d highlights that the flame height is much larger for case Ka + as compared to case Ka -. This is attributed to a much smaller laminar flame speed S L for case Ka + associated with both a higher pressure magnitude and a leaner equivalence ratio. The ratio of turbulent to laminar flame speed as inferred from the cone aera method (using the iso progress variable c = 5%) results in S T /S L = 3.76 for case Ka + and 1.65 for Ka -indicating a much larger wrinkling of the flame for case Ka + . Consistently, this difference in S T /S L is also observed on the magnitude of the flame surface density which is more than two times larger for case Ka + as compared to Ka -. Also presented is the resolved (Figs 4b and4e) and modeled (Figs 4c and 4f) FSD. For these figures, use was made of a filter size of 16dx, which corresponds to 20 and 13 laminar flame thickness δ L for case Ka + and Ka -respectively. One notes that the FSD is more resolved for case Ka -as compared to case Ka + , highlighting again a much higher SGS wrinkling for case Ka + . In both case, the modeled FSD agree well with that measured, suggesting that the present model is reliable. More quantitative results are further presented in Fig. 5 where the measured FSD is plotted as a function of the progress variable and compared to that resolved using a filter size of 8 and 16dx for two distinct streamwize locations, i.e x/H f = 0.4 and x/H f = 0.7 (denoted by the green dashed line in Fig. 4). The ratio of the filter size to laminar flame thickness is then 10 and 20 for case Ka -, 6.5 and 13 for case Ka + . Noticeable is the magnitude of the resolved FSD which is attenuated by about 25% and 50% for case Ka + , when the filter size increases from 8dx to 16dx. For case Ka -, the resolved FSD represents about 82% and 70% of the total FSD when the filter size increases from 8dx to 16dx. The present model yields very encouraging results since the reconstructed FSD agrees almost perfectly with that inferred from experiments, irrespectively of the filter size, streamwise distance, and Karlovitz number (Figs. 5a, 5b, 5c and5d). Although results are not presented here, the models have been tested for other Karlovitz and Reynolds numbers, leading to similar deductions.

In Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF], using a priori tests, the constants N = 4, a = 0.3, b = 12.5 and α = 1 were found to be appropriate for modelling the SGS FSD of an hydrogen flame evolving in a highly turbulent plane jet. However, when compared to our experiments for the methane/air Bunsen flames, one notes slightly overestimated values by about 10-15% depending on the location in the flow and Karlovitz number. This difference is most likely attributed to the difference in fuel composition (hydrogen vs methane), and especially to a non unity Lewis number effect that leads to a more wrinkled flame in the case of hydrogen flames. In addition, the flow configuration of Hawkes et al. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] was a plane jet dominated by a very strong shear, which could also accentuate the wrinkling of the flame. In the Bunsen burner, these two effects are much less important thus explaining the observed overestimation of the SGS FSD when use is made of N = 4, a = 0.3, b = 12.5 and α = 1.

Conclusion

In summary, six distinct outcomes emerge from the present study.

(i) An analytical expression for the efficiency function is proposed on the basis of some physical reasoning arguments. It accounts for viscous effects which dominates for Karlovitz numbers Ka > 1 as well as a kinematic constraint à la Peters [START_REF] Peters | Laminar flamelet concepts in turbulent combustion[END_REF] whose effect is dominant at low Karlovitz numbers. These two distinct regimes correspond respectively to the Damkhöler small and large-scale asymptotic limits. In the small-scale asymptotic limit, the flame front behaves as a passive scalar and the maximum effective stretch predicted by the present model is in close agreement with the value of 0.28 inferred by both Ref. [START_REF] Yeung | Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets[END_REF] and Ref. [START_REF] Goto | Reynolds-number dependence of line and surface stretching in turbulence: folding effects[END_REF].

(ii) The inner cut-off length-scale follows from the conjecture that η i is the scale at which the active stretch rate is maximum. As a consequence of the definition of C, η i also reveals two different scalings with Karlovitz number corresponding to the two aforementioned regimes. It is then observed that at low Karlovitz number, the cut-off corresponds to the Gibson length-scale, as suggested by Peters [START_REF] Peters | Laminar flamelet concepts in turbulent combustion[END_REF], whilst at high Karlovitz numbers, the cut-off is the cross-over length-scale between viscous and inertial ranges (i.e. r * 1 = (3C q ) 3/4 ) in agreement with Ref. [START_REF] Kobayashi | Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames[END_REF].

(iii) The present approach allows to estimate the constants a, b, N in the model of Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] on the basis of some physical arguments. It is thus proven that a = 1, b = r * 1 and N = 1 are more suitable. (iv) A new expression for the wrinkling factor (Eq. ( 11)) is introduced although not demonstrated, revealing the additional parameter η 0 , related to the integral length scale to account for finite Reynolds number effects. This expression compares favourably well with the DNS results of Ref. [START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] when a value of 2 is chosen for α in agreement with Ref. [START_REF] Batchelor | Pressure fluctuations in isotropic turbulence[END_REF]. Future analytical work will address this specific relevance of this expression for Ξ.

(v) A careful analysis of Fig. 2b shows that in most of practical situations, the Reynolds number is not sufficiently large for a reliable value of the fractal dimension to be inferred. At finite Reynolds numbers, the estimation is biased, and the apparent fractal dimension systematically appears less steeper than the asymptotic value.

(vi) A priori tests are provided by comparing modeled FSDs to that measured in a lean methane-air Bunsen flame. Although further work is needed for testing the ability of this model using a posteriori tests, present results already give strong support in favour of the model.
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 1 Figure 1: (a) Comparison of the proposed efficiency function (-) C(r/δ L ) as a function of filter size r/δ L with that of Ref. [3] (---). Vertical arrows stand for η/δ L . (b) Effective rate of stretch C(r/δ L )S(r/δ L ) for three different Karlovitz numbers, ---Ka = 0.1; -Ka = 1.0; -• -Ka = 10.

Figure 2 :

 2 Figure 2: (a) Inner cut-off length-scale η i in the LES regime diagram [4]. -corresponds to the present formulation, viz. N = 1, a = 1 and b = r * 1 and ---N = 4, a = 0.2 and b = 12.5 (Ref.[START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF]). (b) S T /S L as a function of filter size r/δ L . DNS data of Ref.[START_REF] Hawkes | A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence[END_REF] which are compared to that modeled by Eq. (11) with η i and β predicted usingN = 1, a = 1 and b = r * 1 . -α = 1, η o = ∞, ---α = 2, η o = ∞, -•α = 2, η o /δ L = 8. For all curves, the Karlovitz number was set to Ka = 11.

Figure 4 :

 4 Figure 4: Maps of FSD normalized by δ L . The streamwise x and transverse y coordinates are normalized by the burner diameter D b . White curves represent three different iso-contours of progress variable c = 0.1, 0.5, 0.9. The horizontal green dashed lines represent x = 0.4H f and x = 0.7H f . Left : Total FSD |∇c|, Center : Resolved FSD |∇ c | using a filter size of 16dx, Right : Modeled FSD |∇ c |Ξ using a filter size of 16dx. Top panel Ka + , bottom panel Ka -.

Figure 5 :

 5 Figure 5: FSD as a function of the mean filtered progress variable c , for two distinct streamwise locations in the flow, (a,c) x/H f = 0.4 and (b,d) x/H f = 0.7 (the flame height H f is defined as the location x where c = 5%). Top panel (a,b) is for the case Ka + and bottom panel (c,d) is for Ka -. measured FSD, --resolved FSD, -present model N = 1, a = 1, b = r * 1 , η 0 = 3L t and α = 2, -• -Hawkes et al. [16] model N = 4, a = 0.2, b = 12.5, η 0 = ∞ and α = 2. The black curves corresponds to a filter size of 8dx, whilst red curves to a filter size of 16dx.

Table 1 :

 1 further proposed the following functional Flame and flow parameters for case Ka + and Ka -.

	Case Pressure	φ	S L	δ L	u /S L L t /δ L	Ka	Re t
	-	[MPa]	-	[m.s -1 ] [mm]	-	-	-	-
	Ka +	0.3	0.6	0.058	0.127	14-6	33-50	6.3-1.4	660-430
	Ka -	0.1	0.8	0.227	0.083 3.6-2	51-65 0.95-0.36 230-160
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