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On the geometrical properties of turbulent premixed flames and other
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This study focuses on the geometrical properties of turbulent flame fronts and other interfaces.
In this purpose, we use an original tool based on Proper Orthogonal Decomposition (POD) which
is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of
the flame front which is quantified through the scale dependence of its coverage arclength. POD
is first validated by comparing with the caliper technique. Fractal characteristics are extracted in
an unambiguous fashion using a parametric expression which appears to be impressively well suited
for representing Richardson plots. Then, it is shown that, for the range of Reynolds numbers inves-
tigated here, the scale-by-scale contribution to the arclength do not comply with scale-similarity,
irrespectively of the type of similarity which is invoked. The finite ratii between large and small
scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this
context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible
and for scale-similarity to be likely to apply, is calculated. Fractal characteristics of flame folding
are compared to available predictions. It is confirmed that the inner cutoff satisfactorily corre-
lates with the Kolmogorov scale whilst the outer cutoff appears to be proportional to the integral
length-scale. However, the scaling for the fractal dimension is much less obvious. It is argued that
much higher Reynolds numbers have to be reached for drawing firm statements about the evolution
(or constancy) of the fractal dimension with respect to flame/flow parameters. Finally, a heuristic
phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phe-
nomenology is confirmed by comparing the folding of different interfaces including a turbulent/non
turbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an iso-
scalar evolving in a turbulent medium. The latter outcome is likely to have strong implications for
modelling the corrugation of turbulent interfaces occuring in many physical situations.

PACS numbers: 47.70.Pq, 47.27.-i, 47.53.+n, 47.55.Ca

I. INTRODUCTION

The laminar flamelet concept [1] is without doubt
the most utilized hypothesis for describring turbulent
premixed flames, primarily because of the resulting
analytical and modelling simplifications. Under this
assumption, turbulent wrinkled flames are treated as
a collection of thin layers, whose inner structure is
identical to a (possibly stretched) one-dimensional
laminar flame, propagating normal to themselves in
the direction of the unburned turbulent mixture. As
a consequence, the notion of laminar flamelet implies
that only the geometrical properties of the flame (its
surface) are needed for accurately predicting macro-
scopic features such as the global consumption speed
or heat release. This explains the incontestable suc-
cess of the so-called geometrical approaches for clos-
ing the transport equations of e.g. temperature or
progress variable in either RANS (Reynolds Averaged
Navier-Stokes) or LES (Large-Eddy Simulation) con-
text. According to Veynante and Vervisch [2], these
geometrical methods include the G-field equation [3–
5], the flame surface density approach [6–8], and the
flame wrinkling description (see [9–11] among others).
It is also worth stressing that because of the analyt-
ical bridges that were highlighted in [2] between the
latter approaches and other methods such as the PDF
or the scalar dissipation rate closures, the reliability
of all models finally depend more or less directly on

our ability to describe the geometrical properties of
the turbulent flame front.

However, predicting the evolution of the flame sur-
face in a turbulent flow is far from being an easy task.
To a great extent, the progress in our understand-
ing of the geometrical aspects of turbulent flames has
been hindered by our inability to finely describe and
predict their multi-scale nature. In effect, flame wrin-
kling exhibits a wide and continuous range of scales,
and suggests it is rather difficult to characterize and
quantify the surface without any appropriate ana-
lytical means. The multi-scale facet of corrugated
flamelets arises from the interaction that the flame
experiences with turbulence, which itself features a
wide range of turbulent eddies. These extend from
the integral length-scale, which retains through its
dynamic and topology significant informations about
initial/boundary conditions [12], to the inertial and
dissipative range down until the Kolmogorov length-
scale for which a universal statistical description is
assumed [13].

Whilst in the context of RANS the total flame sur-
face is needed for closing the transport equations, in
LES, only the unresolved flame surface, i.e. the flame
surface embedded in a volume of size smaller than
the mesh grid, is required. As a consequence, one has
to tackle a local (sometimes referred to as a scale-by-
scale) description of flame folding by focusing on the
contribution of each scale of size r to the interface
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folding. This appears quite natural notwithstand-
ing the aforementioned multi-scale facet of turbulent
flames. In addition, by analogy with the turbulent
velocity field for which the smallest scales have the
best prospect of being universal [13, 14], the small-
est scales of flame wrinkling might also exhibit similar
attributes. This notion of scale similarity or scale uni-
versality states that the scale-by-scale distribution of
a fluctuating quantity (i.e. as a function of the scale
r) can be universal when scaled by an appropriate set
of similarity variables. This feature is worth being
validated for turbulent flames since it suggests that a
universal subgrid-scale model for the flame wrinkling
might be derived. This encompasses investigating in
detail the degree with which the flame folding at a
given scale complies with scale-similarity and empha-
sizing the associated relevant normalizing scales. To
our knowledge, this has never been done.

Among the methods that allows to quantify the
scale-by-scale contribution to the flame wrinkling or
more generally rough interfaces, fractal analysis is one
of the most common. Fractals first originate from
Richardson and later from Mandelbrot who built up
the mathematical framework for describing the scale-
dependence of the surface roughness. Since then, it
has been applied to an extremely wide variety of phys-
ical situations. Pragmatically speaking, a fractal be-
haviour is identified when coarse graining the rough
interface at a scale r results in a power-law depen-
dence of its surface of the form r−β . The power-law
exponent, β is referred to as the fractal dimension,
which provides a measure of the degree of roughness
of such an interface. For instance, the fractal dimen-
sion of a smooth surface evolving in a volume tends
to 2 whereas it approaches 3 when the surface fills the
entire domain.

Gouldin [15, 16] was first to apply fractal concepts
to turbulent flames, and since yet, there has been
wealth of experimental [17–20], numerical [9, 11, 21]
and analytical [22, 23] support in favour of a fractal
power-law variation for the distribution of flame fold-
ing as a function of the scale r. Whilst fractal models
appear to be well suited for modelling the flame sur-
face density, it still requires some efficient sub-models
for predicting the fractal characteristics as a function
of the local flame/flow parameters. For instance, in
LES, the fractal dimension is often estimated using a
dynamic approach [10, 11, 24] following the lines of
Germano et al. [25]. The systematic improvement
of the simulation results when such a procedure is
invoked suggests that the current predictions for the
fractal characteristics fail. In other words, it indicates
that we still misunderstand the physical processes at
play and that more work is needed in order to give
further insight into the phenomenology of flame wrin-
kling with the aim of providing reliable predictions for
the fractal characteristics.

Beyond turbulent combustion, there are several
phenomena than can be described in terms of wrin-

kled surfaces evolving in a turbulent flow [6]. These
phenomena include for instance turbulent mixing and
two-phase flows, which are widely encountered in a
very large variety of combustion applications. Their
understanding is thus of primordial importance. Fol-
lowing Pope [6], all these types of interface can be
classified into (i) material surfaces, which pertain
to e.g. two phase-flows where the interface is often
tracked using a level-set equation [26], (ii) constant-
property surfaces for tackling e.g. passive scalar mix-
ing, diffusion flames [6], and (iii) propagating sur-
faces which have been widely applied to e.g. pre-
mixed flames [3, 4, 27]. Also mentioned in [6], these
three types of surfaces can be regarded as constant-
property surfaces or as propagating surfaces. This
has led Peters [4] to unify the analytical description
of premixed flames for both the corrugated flamelet
regime and the thin reaction zone regime. The afore-
mentioned analogy between different types of inter-
faces probably explains why fractal concepts success-
fully apply to all of these. It is in effect well known
that turbulence and turbulent mixing (see e.g. [28–
32] among others), two-phase flows [33–35], material
lines evolving in turbulent flows [36] reveal some de-
gree of fractality. In addition, the surface density
concept which, as mentioned before, is widely used in
the field of turbulent combustion, applies also in the
context of turbulent mixing [37] and two-phase flows
[38]. In other words, all these different phenomena
can be described via their geometrical properties. It
is also worth stressing that, speculatively, all these
interfaces might further reveal some degree of simi-
larity or universality notwithstanding their common
transport equation [6]. One particular aspect of the
present study is to give further insight into the anal-
ogy of the geometrical aspects of different turbulent
interfaces.

In previous studies, the fractal characteristics of
turbulent interfaces were generally obtained by use
of the box-counting method or the caliper technique.
In the present study, Proper Orthogonal Decomposi-
tion (POD) is used as an alternative method. The
POD, also known as a Karhunen-Loève decomposi-
tion or principal component analysis, is a data-driven
modal decomposition that has become very popular
for investigating the non-linear processes in physics,
in particular [39–41]. It has been generally applied
to the velocity field, with the aim of extracting typ-
ical spatial and/or temporal patterns of the coher-
ent large scales in turbulent flows [41, 42]. POD is
usually based on the two-points correlation which is
computed from either long-time series or large real-
izations ensemble. Statistical stationnarity ensures
the two-points correlation and accordingly the em-
pirical function basis to be weakly sensitive to the
database.. In the field of combustion, very few stud-
ies have focused on modal decompositions. POD has
been used by Danby et al. [43] to investigate the
auto-ignition process of inhomogeneous hydrogen air
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mixture. These authors carried several preprocessing
techniques on the data-set in order to optimize the
number of modes needed to minimize the reconstruc-
tion error. Later, using Particle Image Velocimetry
data sets and OH-Planar Laser Induced Fluorescence
together with the extended POD method introduced
in [42], Duwig & Fureby [44] and Duwig & Fuchs
[45] used POD to study (i) thermo acoustics insta-
bilities, (ii) the interaction of precessing vortex core
with a swirling flame and (iii) unsteady flames driven
by acoustic perturbation. Finally, to characterize the
flame shedding process behind a bluff-body, Kostka et
al. [46] used POD and flame chemiluminescence im-
ages to educe coherent behaviours and separate the
energy at given mode into symmetric, asymmetric,
and uncorrelated components. Here, we propose to
apply the POD algorithm to the spatial coordinates
of the flame contours with the aim of extracting quan-
titative informations on the fractal characteristics of
flame folding [47]. To the best of our knowledge, this
has never been undertaken before. Note also that
other data-decomposition than POD exists. One of
these is the Dynamic Mode Decomposition (DMD)
which was derived independently by Rowley et al.
[48] and Schmid [49]. However, the latter method in-
vokes a linear mapping between two time consecutive
fluctuating events. Consequently, this type of decom-
position which is limited only to time-resolved numer-
ical or experimental data is not tractable in our case,
where part of the measurements were made using low
frame rate Mie scattering tomography. Bidimensional
Empirical mode decomposition (EMD) [50, 51] could
also have been used. Nevertheless, the number of
modes that arises from this decomposition is generally
rather limited. This means that the spectral precision
of the latter decomposition is not reliable enough for
accurately quantifying the scale dependence of the
flame wrinkles.

On the basis of an extensive experimental study
using Mie scattering tomography measurements in
a turbulent Bunsen Burner, the present paper ad-
dresses to the following issues. (i) Is the POD reli-
able for extracting quantitative informations on the
geometrical properties of turbulent interfaces? How
does it compare to other methods such as the caliper
technique? (ii) Does the distribution of wrinkling
as a function of r comply with scale-similarity? If
yes, what are the relevant normalizing scales? (iii)
What is the ability of some existing empirical or
phenomenological relations for predicting the fractal
characteristics of corrugated flames? (iv) Are there
similar patterns in the folding distribution of differ-
ent interfaces? Could they be represented by a unique
heuristic phenomenology?

The paper is organized as follows. In section §II A,
the experimental apparatus and measurement tech-
nique are presented. A comprehensive list of param-
eters pertaining to the present database consisting
of 24 operating conditions is also reported. Spe-

cial emphasis is further given to the application of
the POD algorithm to the flame front spatial co-
ordinates (§II B). Then, the geometrical properties
of the turbulent flames are investigated in detail in
§III. Comparison with the caliper technique is pre-
sented in §III A together with the results pertaining
to the scale-similarity analysis (§III B). The evolu-
tion of the fractal properties of the turbulent flames
are discussed and compared to available theoretical
or empirical predictions in §IV. Finally, the scale-by-
scale distributions of wrinkling of different turbulent
interfaces including turbulent flames, passive scalar
iso-values, a turbulent/non turbulent interface and a
two-phase and a cavitating flow are presented in §V.
Conclusions are drawn in §VI

II. EXPERIMENTAL SETUP AND DATA
ANALYSIS

Before focusing on the scale-by-scale properties of
the turbulent flame fronts, we first turn our attention
to the description of the experiments and data anal-
ysis that have been undertaken in the present study.

A. Experimental setup and description of the
database

Experiments were carried out in a high pressure
Bunsen burner (Fig. 1). An earlier version of this
burner originated from Ref. [52] was recently up-
graded by Refs. [53, 54] by replacing the mono-grid
turbulence generator by a multi-scale grids genera-
tor [55] with the aim of achieving a higher turbulent
intensity. The Bunsen burner (see Fig. 1) has a diam-
eter of 25mm surrounded by annular co-flow of inner
and outer diameter of 30mm and 50mm respectively.
Flames are stabilized with the help of a stoichiometric
methane/air pilot annular flames located between the
inner burner and the co-flow. The annulus is 2.5mm
wide. The burner is placed in a pressure chamber of
inner diameter 300mm and height 1350mm that al-
lows to reach pressure magnitudes up to 0.5MPa. The
multi-grid turbulence generator consists of 3 consec-
utive grids with different mesh size (2, 5, 12.5 mm
from up- to downstream) and different solidity (46,
57 and 67 %) placed in a way that maximizes the
turbulence energy production [55]. The gap between
the first (upstream) and second grid is 7mm while
the second and third grid are separated by a distance
of 17mm. The last grid is located 60.5mm upstream
the burner exit to ensure the flow to be statistically
homogeneous in the transverse direction. One- and
two-points statistics of the velocity field have been
inferred from extensive measurements using both hot-
wire and Laser Doppler Velocimetry [53]. These mea-
surements indicate that although the decay of turbu-
lent kinetic energy is faster for the multi-grid case,
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FIG. 1. (Color online). High-pressure Bunsen burner with
the multi-grid injection system used in the present study

the turbulence intensity is roughly doubled by com-
parison with the mono-grid case. In addition, the
turbulent small scales are smaller and contain more
energy [53].

Measurements are carried out by means of both low
(10Hz) and high (10kHz) frame rate Mie-scattering
tomography. (i) For the low frame rate tomography,
a Nd-Yag laser 532nm and a CCD camera (PIV TSI
4M, 2048×2048 pixels2) equipped with a 105mm F2.8
lens were used. In this case, Nim = 1000 images were
recorded. The resolution was in the range 0.035 -
0.075 mm/px depending on the case. (ii) For the
high frame rate tomography, use was made of a con-
tinuous Coherent Verdi G20 Laser which delivers up
to 20W at 532nm. The light scattered by the parti-
cles is then captured by a Phantom V1210 camera,
equipped with a 105mm F2.8 lens, working at an ac-
quisition rate of 10kHz with a field of view of 800×384
pixels2. Nim = 104 images were recorded and the res-
olution was 0.108 mm/px. In both case, seeding of the
flow is made with silicon oil droplets supplied by an
atomizer. Typical size of droplets is about 1µm. The
effect on the chemical reactions of adding oil droplets
is still an open question. Here, we consider that the
amount of oil which is added is sufficiently small for
not modifying the global flame properties such as the
laminar flame speed and thickness.

The flame contour is then extracted as follows.
Firstly, a contrast-limited adaptive histogram equal-
ization (CLAHE) is applied to the original images in
order to optimize the contrast in the images. Then,
to limit the pixelixation associated with the CLAHE,
images are filtered using a Gaussian filter of size equal
to 4 times the spatial resolution. For the binarizing
procedure, we use a standard threshold-based tech-
nique. More precisely, the histogram of the gray
scale is calculated. The latter reveals two distinct
peaks corresponding to the fresh and burned gas re-
spectively. The threshold value for discriminating the
flame contour is set as the average value between the
gray scale of these two peaks. Yields estimations for
the progress variable, noted c, which is by definition
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FIG. 2. (Color online). Typical image showing the relia-
bility of the contour extraction and filtering for Flame 18
(Table I). The black line is the contour coordinates while
the colormap shows the light intensity recorded by the
camera

0 and 1 in the unburned and burned gas respectively.
This binarization procedure leads irremediably to a
digitization noise (pixelization) which, in the present
case, is smoothed using a low-pass Gaussian filter,
with filter size equal to 3 times the spatial resolu-
tion. It was checked that doubling filter size did not
yield observable changes on the properties of interest
(namely the flame wrinkling distribution §III). This
indicates that the present measurements are well re-
solved and that the filter size that is used here is
much smaller than that of the smallest flame wrin-
kling characteristic length-scale. An example of flame
contour detection, superimposed on the original im-
age is presented as an illustration in Fig. 2. For the
present case, we made the choice of focusing only on
the longest contour representing the largest topolog-
ically connected object, whereas holes and pockets
are not taken into account. The contribution of these
missing flame holes and pockets to e.g. the flame
surface density was rather limited notwithstanding
the relatively low turbulence intensity of our experi-
ments. Future work is however needed to incorporate
these disconnected objects into a more self-consistent
description. The axis coordinate system is the fol-
lowing, the streamwise distance x coincides with the
direction of the bulk flow whereas the transverse dis-
tance is noted y (Fig. 2).

A total of 24 different operating conditions have
been selected (see Table I). For all cases, the mix-
ture inlet velocity Ud is equal to 3.6m.s−1 and the
mixture of fuel and oxidizer is created well before
the burner inlet so that the composition is perfectly
premixed. Four pressure magnitudes are investigated
from 0.1 to 0.4 MPa. Three different fuels are con-
cerned: methane, propane, methane+hydrogen. The
laminar flame speed Sl and thickness δl = α/Sl (α is
the fresh gas thermal diffusivity) have been calculated
using the Python Cantera library with the GRI-Mech
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Case Frame rate Fuel P(bar) φ Sl (m.s−1) δl (mm) Hf (mm) u′/Sl Lt/δl Ka Ret
1 10Hz CH4 1 0.7 0.192 0.117 66.9 2.18 49.16 0.47 159
2 10Hz CH4 1 0.85 0.310 0.073 34.0 1.79 68.49 0.29 182
3 10Hz CH4 1 1.0 0.376 0.060 33.9 1.47 83.18 0.20 182
4 10Hz CH4 3 0.7 0.111 0.067 40.5 4.66 76.15 0.83 526
5 10Hz CH4 4 0.9 0.190 0.030 28.8 3.06 164.43 0.30 750
6 10Hz C3H8 1 0.8 0.363 0.062 53.2 1.28 87.67 0.16 166
7 10Hz 70%CH4+30%H2 1 0.6 0.114 0.198 52.6 4.66 27.32 1.65 167
8 10Hz 80%CH4+20%H2 1 0.7 0.210 0.107 44.8 2.39 48.76 0.54 172
9 10Hz CH4 1 0.8 0.269 0.084 46.5 1.83 63.00 0.31 171
10 10Hz 70%CH4+30%H2 2 0.6 0.093 0.120 46.3 5.31 43.71 1.64 342
11 10Hz 80%CH4+20%H2 2 0.7 0.151 0.074 40.7 3.44 69.21 0.67 351
12 10Hz CH4 2 0.8 0.191 0.059 39.4 2.76 86.92 0.43 354
13 10Hz 70%CH4+30%H2 3 0.6 0.059 0.127 43.1 8.63 40.80 2.87 521
14 10Hz 80%CH4+20%H2 3 0.7 0.121 0.062 34.3 4.58 80.39 0.79 547
15 10Hz CH4 3 0.8 0.165 0.045 32.3 3.45 108.44 0.44 555
16 10Hz CH4 2 0.77 0.190 0.059 42.2 2.67 87.95 0.41 347

17 10kHz CH4 1 0.6 0.114 0.197 78.8 3.41 30.74 1.15 155
18 10kHz CH4 1 0.7 0.192 0.117 66.3 2.19 49.02 0.47 159
19 10kHz CH4 1 0.8 0.269 0.084 48.4 1.77 63.95 0.30 168
20 10kHz CH4 2 0.6 0.076 0.147 76.0 5.21 40.77 1.65 313
21 10kHz CH4 3 0.6 0.059 0.127 74.9 6.80 46.81 1.87 471
22 10kHz CH4 3 0.8 0.165 0.045 34.6 3.27 110.72 0.40 539
23 10kHz 70%CH4+30%H2 1 0.6 0.114 0.198 56.6 3.93 28.01 1.50 163
24 10kHz 80%CH4+20%H2 1 0.7 0.210 0.107 48.4 2.27 49.91 0.49 168

TABLE I. Table of operating conditions. The frame rate of the camera is given. The fuel composition, equivalence ratio
φ together with the laminar flame speed Sl and thickness δl = α/Sl are also provided. Hf is the flame height, defined as
the streamwize distance x at which the mean progress variable c = 50%. The indicated values for the turbulent velocity
u′ and integral length scale Lt are the average values over the domain 0 < x < Hf . The same applies for the Reynolds
number Ret and Karlovitz number Ka. As a reminder, case {1-18}, {7-23}, {8-24}, {9-19} and {15-22} are the same
operating conditions investigated using either high or low frame rate tomography.

[56] ver.3.0 mechanism.
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FIG. 3. Experimental conditions overlaid on the premixed
combustion regime diagram. The color of the symbols
refers to the value of the Karlovitz number

Because of the statistical inhomogeneity of the ve-
locity field in the streamwise direction (transverse in-
homogeneity was found to be much smaller), it is
rather mistaken to assign a unique value for the tur-
bulence parameters. Therefore, as an illustration, all
turbulent quantities detailed in Table I are the aver-
age values over a domain extending from the burner
inlet to the position Hf ≡ x at which the mean
progress variable c is equal to 50%.
We found that the ratio of the turbulent velocity u′

to the laminar flame speed Sl ranges from about 1.2 to
9. The ratio of the integral length-scale Lt to the lam-
inar flame thickness δL extends from about 25 to 160.
The Karlovitz number was calculated as Ka = τη/τc
where τη = (ν/ǫ)0.5 is the Kolmogorov time scale (ν

is the fresh gas viscosity and ǫ = 15ν(∂u/∂x)
2
is the

surrogate of the mean turbulent kinetic energy dissi-
pation rate) and τc = δl/Sl is the chemical time scale.
We found that the Karlovitz number is in the range
0.16 < Ka < 2.86. The Reynolds number Ret based
on the integral length-scale Lt and the turbulent ve-
locity u′ extends from 150 to 750. Note that some
operating conditions (Flames {1-18}, {7-23}, {8-24},
{9-19}, {15-22}) have been assessed using both low
and high frame rate measurements so that compari-
son between these two techniques can be handled.
The different operating conditions are reported

onto the Borghi-Peters diagram [1, 57] in Fig. 3. All
the operating conditions lie between the corrugated
and the thin reaction zone regimes.

B. The POD algorithm

In the present study, the spatio-temporal features
of the flame fronts are assessed by use of POD. For
detailed mathematical description of POD and many
applications the reader can refer to the review by
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Berkooz et al. [41]. In this subsection, details about
the pre- and post-processing steps are depicted.
The spatial coordinates (xi,j and yi,j) of the flame

contour (the black curve in Fig. 2) are independently
re-sampled using a fixed number of points Np (here-
after Np = 2000). xi,j and yi,j are then rearranged in
column vectors and concatenated in a matrix called
the snapshot matrix Xi,j , viz.

Xi,j =









































x1,1 · · · x1,j · · · x1,Nim

...
...

...
...

...
xi,1 · · · xi,j · · · xi,Nim

...
...

...
...

...
xNp,1 · · · xNp,j · · · xNp,Nim

y1,1 · · · y1,j · · · y1,Nim

...
...

...
...

...
yi,1 · · · yi,j · · · yi,Nim

...
...

...
...

...
yNp,1 · · · yN,j · · · yNp,Nim









































. (1)

The subscript i ∈ [1 : Np] stand for the contour point
number and j ∈ [1 : Nim] is the image number. Con-
sequently, the matrix Xi,j is 2Np × Nim. From this
snapshot matrix, one can compute some basic statis-
tics such as the mean flame position X i, the standard
deviation X ′

i or the probability of finding the flame
at a given position in the flow. We now define the
normalized flame position matrix as

χi,j =
Xi,j −Xi

X ′

i

. (2)

POD algorithm describes the data using a global
approach based on an energetic representation. This
means that local features can be either overestimated
or underestimated depending on whether or not their
associated energy is high or low in the control do-
main. Even though the turbulent flow corrugating
the flame is nearly homogeneous, in this study, the
flame front is inhomogeneous since the standard de-
viation X ′

i (the flame brush) increases monotonically
with the streamwise distance [58, 59]. Therefore, the
POD decomposition based on Xi,j would have been
biased since the first modes (the most energetic) are
localized only on the flame tip where X ′

i is maximum
but are not present at the base of the flame where
X ′

i is smaller. To circumvent this bias, we decided to
apply the POD on the reduced flame coordinates χi,j

since χ′

i,j is in essence homogeneous.
The POD algorithm consists in determining a de-

composition of the snapshot matrix in a sum of k de-
terministic functions Φk(~x) or Φi,k called modes that
depend only on space, multiplied by temporal coef-
ficients Ψk(t) or Ψk,j weighted by a factor Wk, viz.

χi,j =

Nm
∑

k=1

Φi,k × Ψk,j ×Wk. (3)
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FIG. 4. (Color online). Example of the POD de-
composition applied to the flame contours coordinates
of Flame 18 (Table I). The mean flame coordinates
are represented by the black full line, while the blue
dash-dot and red dashed lines correspond respectively to
XR

i,k = Xi + (Φi,kWk min{Ψk,j})X
′

i and XR
i,k = Xi +

(Φi,kWk max{Ψk,j})X
′

i , with k = 1 (left), k = 10 (cen-
ter) and k = 50 (right).

In Eq. (3), Nm is the number of modes used for the
reconstruction and is discussed in Appendix A. Eq.
(3) can also be rewritten in a matrix formulation as

χ = ΦWΨ. (4)

In the context of POD, the mathematical constraint
on the deterministic functions and temporal coef-
ficients is that they are both orthogonal regarding
the inner product on the integrable squared function
space L2, viz.

∑

j

Ψk,jΨl,j = δk,l, (5a)

∑

j

Φj,kΦj,l = δk,l, (5b)

where δk,l is the Kronecker symbol. Eqs. (5a) and
(5b) can be recast in matrix formulation as

ΨΨ
T = I, (6a)

ΦΦ
T = I, (6b)

where I is the identity matrix and the superscript T
designates the transposed matrix.
By convention the modes and the temporal coef-

ficients are sorted from the largest to the smallest
eigenvalue. For this reason, the POD is often referred
to as an energy-driven decomposition.
One of the main advantage of using POD is that the

flame contours can be reconstructed mode-by-mode.
The reconstructed flame coordinatesXR

i,j,k (where the

superscript R stands for ’reconstructed’) which thus
depend on space i ∈ [1 : Np], on time (or image num-
ber) j ∈ [1 : Nim] and mode number k ∈ [1 : Nm] are
given by

XR
i,j,k =

(

xR
i,j,k

yRi,j,k

)

= Xi + (Φi,kΨk,jWk)×X ′

i. (7)
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wavenumbers r−1 for Flame 18 (Table I). A clear linear
slope, i.e. r−1 ∝ k is observed as also confirmed by the
compensated wavenumber (kr)−1

An example is given in Fig. 4 in which the flame
front coordinates are reconstructed using three dis-
tinct modes k = 1, 10, 50. Specifically, the mean flame
coordinates Xi (the black curves), the reconstructed
flame contour of minimum amplitude XR

i,k = Xi +

(Φi,kWk min{Ψk,j})X ′

i (green curves) and of maxi-

mum amplitude XR
i,k = X i + (Φi,kWk max{Ψk,j})X ′

i

(red curves) are represented in this figure. As ex-
pected, the first mode k = 1 is associated with larger
amplitudes by comparison with the mode number 10
and 50. Noticeable is the fact that fluctuations asso-
ciated with k = 1 are mostly perceptible at the tip of
the flame.
Even though not clearly discernible for k = 1, one

also perceives a hint of periodicity for k = 10, this pe-
riodicity being much more easily distinguishable for
k = 50. This suggests that a given mode number
k can be related to a physical spatial scale (wave-
length). However, unlike DMD or Fourier transform
there is no straightforward relation between POD
modes and scales. Here, the following procedure is
proposed. (i) the curvilinear coordinate s of the mean
flame of coordinates (x, y) is calculated, viz.

s =

∫ Npδτ

δτ

√

(

∂x

∂τ

)2

+

(

∂y

∂τ

)2

dτ, (8)

where τ = [1 : Np]δτ is the curvilinear parameter.
Then, (ii), the complex number zRj,k(s) = xR

j,k(s) +

iyRj,k(s) where here i =
√
−1 is calculated and (iii)

the Fourier transform of the modulus |zRj,k|(s) is cal-
culated. |zRj,k|(s) corresponds to the absolute distance
between the reconstructed coordinates of mode k and
mean flame positions. (iv) Finally the physical spatial
scale r(k) associated with the mode k is identified as
the inverse of the wavenumber at which the spectrum
of |zRj,k|(s) is maximum.
Results of this procedure are presented in Fig.

5. Except for mode numbers k < 10, a clear lin-
ear dependence between the mode number and the
wavenumber at which the contour spectrum is max-

imum is evidenced, i.e r−1 = Akrk with Akr the co-
efficient of proportionality. This is confirmed by the
plateau that extends over more than two decades for
the compensated wavenumber (Akrkr)

−1. Therefore,
this procedure allowsAkr to be estimated for each op-
erating condition, in order to assign a physical spatial
scale to a mode number.

III. SCALE-BY-SCALE ANALYSIS OF THE
FLAME WRINKLING

A. Definition, Parametrization and comparison
with the caliper technique

We now turn our attention to the contribution of
each scale to the flame wrinkling. Since only 2D im-
ages of the flame contours are accessible in the present
study, our focus will be on the contribution of each
scale to the arclength of the interface separating the
fresh to the burned gas. This provides a measure of
the degree of wrinkling (or roughness) at a given scale
(see for instance [32, 60] and references therein). In
this goal, the POD algorithm is first employed to re-
construct the flame coordinates (xR

i,j,1:k, y
R
i,j,1:k) from

the first mode up to a given mode k, viz.

(

xR
i,j,1:k

yRi,j,1:k

)

= Xi +X ′

i

k
∑

m=1

(Φi,mΨm,jWm) . (9)

This is equivalent of low-pass filtering the flame front
coordinates. Then, the scale-by-scale contribution to
the arclength of the flame front is defined as

L(k) =
1

Nim

j=Nim
∑

j=1

∫ Npδτ

δτ

s(τ)dτ, (10)

where

s(τ) =





(

∂xR
τ,j,1:k

∂τ

)2

+

(

∂yRτ,j,1:k
∂τ

)2




1/2

(11)

is the curvilinear coordinates along the flame contours
reconstructed using k modes. Recalling that the scale
r is related to the mode number k via the relation
r = (Akrk)

−1, the arclength L(k) can be plotted also
as a function of the physical scale r. Notwithstanding
the analogy between POD reconstructions and clas-
sical filtering, this approach turns out to be rather
similar to that employed by [32] where the coarse-
graining of the interface was done using a box filter
of varying filter size. An example is given in Fig.
6 where the flame arclength L(r) is normalized by
the arclength of the (mean) non wrinkled interface,
hereafter noted L0. The shape of L(r) is quite sim-
ilar to that observed in many previous studies (see
for instance [32, 60]). At large scales, L(r)/L0 tends
to unity, then increases rapidly as we travel through
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−β vs r/ηi

scales of smaller size before reaching a plateau at very
small scales. This curve, known as the Richardson
plot in fractal analysis, allows the main character-
istics of the flame wrinkling to be identified as de-
scribed below.
It is well known [29, 30] that the fractal facet of

folded interfaces is observed over a range of scales
spanning from an outer cut-off (a large scale) ηo to an
inner cut-off (a small scale) ηi. Within this range, it
is observed that the arclength of a wrinkled interface
follow a power-law evolution of the form L(r) ∝ r−β

where β is related to the so-called fractal dimension
(Fig. 6). For scales much larger than ηo, L(r) is
constant and is equal to L0 (Fig. 6). When the scale
ηi ≫ r, we have L(r)/L0 = (ηo/ηi)

β [29, 30]. These
three distinct scaling can be matched together in a
single parametric expression of the form

L(r)

L0

=

(

ηo
ηi

)β







1 +
(

r
ηo

)2

1 +
(

r
ηi

)2







β/2

. (12)

This matched-scaling function is very similar to that

first initiated by Batchelor [61] and further exten-
sively used in e.g. [62–67] for describing velocity or
scalar structure functions [68, 69] in turbulent flows,
where three distinct scaling at respectively large,
small and intermediate scales are also observed.

In the context of fractal analysis, after extensively
scrutinizing the literature, it was found that a similar
equation to Eq. (12) was first suggested by Man-
delbrot for describing the ’rank-frequency’ relation of
words in literature [70]. This relation is sometimes
referred to as the Zipf-Mandelbrot law [71, 72]. It
was further employed by Rigaut [71, 72] for describ-
ing the coverage length of pulmonary alveolus. In
[71, 72], this expression was used to justify the sys-
tematic deviations from a pure fractal behaviour at
very small value of r. He called this type of behaviour
”semi-fractal’ since the fractal dimension appeared to
be scale-dependent. Our claim is here very different
since the bending of fractal plots at small and large
scales is in our case related to the inner and outer
cut-off but not to a change in fractal dimension which
remains constant independent of r.

The appropriateness of Eq. (12) to describe the
scale-by-scale contribution to the flame wrinkling is
illustrated in Fig. 6. The parameters ηo, ηi and β
have been here inferred from a non linear least mean
square fit using the function nlinfit of MATLAB. The
normalized standard deviation between experiments
and the fitting function is always of the order 10−4

which demonstrates a posteriori the perfect adequacy
of Eq. (12) for characterizing L(r). The main advan-
tage of using this parametric expression is that the
assessment of the three parameters ηo, ηi and β is
totally unambiguous and do not imply any degree of
arbitrariness notably in the estimation of the ’best’
range of scaling in the inertial range which spans be-
tween ηi < r < ηo. This is even more relevant for low
to moderate Reynolds numbers.

In the goal of validating the present assessment of
the scale-by-scale properties of the turbulent flame
fronts, we carried out a comparison with the caliper
technique. In the caliper technique [73], the length
of a curve is estimated by counting the number of
ruler lengths of size r to cover the whole length of
the curve. This process is repeated for a set of ruler
lengths. In the present case, use was made of the
algorithm proposed in [60, 74].

Results are presented in Fig. 7 where the scale-by-
scale contribution to the arclength as obtained using
either the POD or the caliper technique is shown.
Two couples of operating conditions, i.e. Flames (9-
19) and Flames (15-22) are considered to compare
the assessments made using either the high or the
low frame rate tomography technique.

POD analysis is based on a statistical approach
[41]. Furthermore, since the decomposition is data-
driven, it may be sensitive to convergence and sta-
tistical independence of flow realizations. These two
constraints may lead to severe issues as far as high-
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POD caliper

Case ηo [mm] ηi [mm] β
(

ηo
ηi

)β

ηo [mm] ηi [mm] β
(

ηo
ηi

)β

1 16.5 1.87 0.26 1.76 12.1 2.24 0.31 1.70
2 11.8 1.11 0.29 1.98 13.8 1.61 0.29 1.86
3 15.3 1.41 0.24 1.78 13.4 1.69 0.26 1.71
4 11.1 0.68 0.32 2.45 13.1 1.33 0.36 2.29
5 19.6 0.72 0.30 2.71 19.4 1.06 0.30 2.38
6 15.2 1.31 0.25 1.84 12.6 1.59 0.27 1.76
7 13.7 1.17 0.29 2.05 16.9 1.64 0.30 2.03
8 14.8 1.04 0.27 2.00 16.4 1.48 0.28 1.96
9 11.6 1.22 0.25 1.86 17.5 1.47 0.25 1.86
10 12.4 0.69 0.34 2.61 16.5 1.22 0.36 2.59
11 13.7 0.77 0.33 2.51 15.7 1.21 0.35 2.48
12 12.0 0.82 0.31 2.37 15.8 1.21 0.33 2.33
13 12.0 0.61 0.34 2.88 14.7 1.09 0.40 2.85
14 12.9 0.56 0.33 2.75 15.1 0.97 0.36 2.71
15 12.2 0.62 0.32 2.62 15.1 0.94 0.33 2.54
16 12.2 0.92 0.29 2.13 12.1 1.55 0.35 2.06

17 21.1 1.73 0.20 1.66 16.2 1.61 0.23 1.71
18 22.0 1.72 0.25 1.87 15.6 1.97 0.29 1.83
19 23.9 1.87 0.25 1.87 14.6 1.78 0.28 1.81
20 17.6 1.06 0.27 2.15 15.0 1.69 0.35 2.16
21 15.4 0.79 0.29 2.40 15.6 1.52 0.38 2.42
22 20.8 1.03 0.30 2.45 13.2 1.26 0.36 2.34
23 20.9 1.55 0.27 2.04 15.2 1.89 0.33 1.99
24 23.2 1.61 0.25 1.95 15.5 1.69 0.28 1.87

Error (%) 23.6 27.6 10.6 3.1

TABLE II. (Color online). Parameters ηo, ηi and β as given by a least square fit using Eq. (12) for all experimental
conditions investigated here. The error is computed as the average of 100× |QPOD/QCaliper − 1| over the 24 conditions,
where Q denote the quantity under consideration. Again, case {1-18}, {7-23}, {8-24}, {9-19} and {15-22} are the same
operating conditions investigated using either high or low frame rate tomography.

speed measurements are concerned. Indeed, while us-
ing high-speed tomography enables the flame front
dynamics to be tracked, two main issues arise: (i)
successive snapshots are, by definition, statistically
dependent and (ii) the time of measurement is short
(camera memory limitation). The conjunction of
these two shortcomings may lead in unconverged
statistics. By comparing low and high frame rates, we
have addressed these issues. According to the POD
analysis of our results, we do not see significant dif-
ferences between both frame rates meaning that sta-
tistical convergence has been achieved. Indeed, the
agreement between the high and low frame rate to-
mography is particularly satisfactory, with differences
that do not exceed 10%.

Fig. 7 also emphasizes that the POD technique
agrees nicely with the caliper method, although some
slight discrepancies are observed. This differences is
mainly attributed to a well known bias in the caliper
technique associated to the fact that the analysed
curve do not contain an integer number of rulers
[74, 75]. This effect is mostly visible at large-scales as
highlighted in Fig. 7 where it is observed that L(r)
issued from either the POD or the caliper technique
closely match until a physical scale r < 20ηi ≈ ηo.

A comparison between the POD and caliper meth-
ods is further provided in Table II for the 24 differ-

ent operating conditions. Some differences are again
noticeable. Discrepancies are observed mainly at the
level ηo and ηi with differences of about 25%, whereas
the fractal dimension assessed by the two techniques
is within 10%. These differences are again attributed
to the bias in the estimation of L(r) at large scales us-
ing the caliper technique. This bias affects the fitting
procedure for estimating ηo and so forth ηi. Differ-
ences can be also due to the method used to relate a
mode number to a physical scale. However, the quan-
tity (ηo/ηi)

β , representing the ratio of the wrinkled
to unwrinkled arclength agrees very nicely, indepen-
dently of the method employed (∼ 3%).

In summary, the fractal characteristics of the flame
are computed by an unambiguous least-square fit
method using the parametric expression Eq. (12).
The caliper technique compares favourably well with
POD except at large scales for which the caliper tech-
nique is known to provide some biased results. The
quantity (ηo/ηi)

β assessed by the two methods is in
excellent agreement. Consequently, we conclude that
the POD algorithm is reliable for assessing the scale-
by-scale contribution to the arclength.
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B. Scale similarity of the flame wrinkling

In the context of turbulent non-reacting flows,
there has been a long-standing quest for assessing the
relevant characteristic scales that ought to be invoked
for normalizing velocity or scalar energy spectra or
structure functions (see e.g. [14, 76] and references
therein). For instance, if one observes a collapse of
energy spectra over a given range of scales, once nor-
malized by the relevant velocity and length scales, it is
stated that these spectra comply with scale similarity
over this particular range of scales. If so, scale simi-
larity suggests that energy spectra can be represented
by an universal parametric expression [14]. Seeking
for such scaling is thus of tremendous importance in
the analytical description of turbulence.
In the present study, the same question is addressed

for the scale-by-scale contribution to the arclength
L(r). Specifically, we investigate the degree with
which L(r) complies with scale similarity using differ-
ent characteristic quantities. In the present case, one
can invoke two characteristic length-scales for nor-
malizing r, i.e. ηo and ηi, and two characteristics
length-scales for normalizing L(r), namely L0 and
L0(ηo/ηi)

β . Therefore, one can construct different
types of scale similarity, viz.

(i) Large scale similarity, viz.

L

L0

vs
r

ηo
, (13)

which is equivalent to normalizing velocity en-
ergy spectra by the integral length scale and the
velocity variance. In this case, scale similarity
is expected to hold at large scales.

(ii) Small scale similarity, viz.

L/L0

(ηo/ηi)
β

vs
r

ηi
, (14)

which is equivalent to normalizing velocity en-
ergy spectra by the Kolmogorov velocity and
length scales. In this case, scale similarity is
expected to hold at small scales. Note that
the small-scale similarity variables do not de-
pend only on some small scales characteristics
but depend also on the large-scales through the
appearance of L0 and ηo.

(iii) Log-similarity. This type of similarity solution
originates from non-reacting turbulent flows. It
has been first observed and justified for the tem-
perature field in a Rayleigh-Bénard convection
flow [77] and further investigated in detail for
the velocity field in fully developed homoge-
neous isotropic turbulence [76, 78–80]. In the
context of fluid turbulence, log-similarity is pre-
dicted by both the multifractal model and the

variational approach of the small scale intermit-
tency [79, 80]. The first attempt in investigating
the appropriateness of log-similarity for fractal
plots originates from Meakin [81–83]. When ap-
plied to L(r), log-similarity consists in calculat-
ing

L =
log
(

L
L0

)

β log
(

ηo

ηi

) vs R =
log
(

r
ηo

)

log
(

ηo

ηi

) . (15)

L might be interpreted here as a normalized
scale entropy as in [34, 35, 84]. One can further
define the scale entropy flux F [34, 35, 84]

F = − ∂L
∂R . (16)

β×F is a measure of the local fractal dimension.
Indeed, if L(r)/L0 = (r/ηo)

−β in the range ηi <
r < η0, then it can be readily shown that βF =
−β∂L/∂R = β over −1 < R < 0. By injecting
Eq. (12) into Eq. (15), it is readily shown that

L = 1 +
1

2a
log







1 +
(

r
ηo

)2

1 +
(

r
ηi

)2






, (17)

where a = log (ηo/ηi), i.e. corresponds to the
logarithmic separation between ηo and ηi. At
this stage it is easy to notice that L does not
depend on β. By further using the trigonomet-
ric relation cosh(x) =

(

e2x + 1
)/

2ex, it can be
shown that the scale entropy writes

L(R) =
1

2a

{

a+ log

[

cosh (aR)

cosh(aR+ a)

]}

. (18)

By differentiating with respect to R, the scale
entropy flux reads

F(R) = −1

2
{tanh (aR)− tanh (aR+ a)} . (19)

Results for the 24 different operating conditions us-
ing the three aforementioned sets of similarity vari-
ables are presented in Figs. 8 to 11. As one could have
expected, none of the scalings based on either outer
(large) scales or inner (small) scales lead to a complete
collapse over the entire range of scales. Specifically,
a strong scatter is observed within the inertial range
(if it may be defined as the scale separation between
ηo and ηi is moderate) where the scaling exponent β
and (ηo/ηi)

β are interdependent. This was already
noticed by [21] who found that the fractal dimension
followed a similar evolution than the flame surface
density.
We now turn our attention to the degree with which

log-similarity holds for L(r). Figs. 10 and 11 present
respectively the scale entropy L and the scale entropy
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flux F as a function of the normalized logarithmic
separation R. All the curves collapse reasonably well
except for a separation R close to either -1 or 0 cor-
responding to r = ηi and ηo respectively. Note also
that the scale entropy distribution differs significantly
from that corresponding to an infinite value of a, i.e.
for an infinite separation between ηo and ηi.

This departure is more easily discernible when the
scale entropy flux is plotted (Fig. 11). Let us re-
call that F is a measure of the local (as a function
of R) fractal dimension. As mentioned above, for
a proper inertial range to be defined, the scale en-
tropy flux should reach a value of 1 for scales in the
range −1 < R < 0. Clearly, F does not reveal any
plateau and its maximum value is always below 1.
This might be wrongly interpreted as an evidence of
a ’scale-dependent’ fractal behaviour as in [31, 71, 72]
(sometimes referred to as semi-fractal or multi-fractal
behaviour). Although this scenario is physically ten-
able, the fractal dimension β appearing in Eq. (12)
is in essence scale-independent. Therefore, this lack
of scaling is rather due to the overlapping effect as-
sociated with the bending of L(r) near the outer and
inner cut-off. By comparing experimental curves to
that corresponding to an infinite value of a (black
dash-dotted line), it appears that a plateau can in-
deed be observed but for much higher value of ηo/ηi.
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FIG. 10. (Color online). (a) Scale entropy L(R) as defined
by Eq. (15). The black dash-dot lines represents the
asymptotic distribution, i.e. a → ∞.
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FIG. 11. (Color online). Scale entropy flux F(R) as given
by Eq. (16). The black dash-dotted lines represents the
asymptotic distribution, i.e. a → ∞.

On the basis of Eq. (19), it is possible to assess
the conditions needed for Fmax ≡ max(F) to reveal
a plateau. In effect, it is readily shown that

Fmax = tanh
(a

2

)

= 1− 2
ηo

ηi
+ 1

≈ 1− 2

(

ηo
ηi

)

−1

, (20)

when ηo

ηi
is sufficiently large.

Fig. 12 depicts the evolution of Fmax as given by
Eq. (20) together with the experimental assessments
inferred from the present database. This figure re-
veals that Fmax → 1 is only approached asymptoti-
cally. A value of ηo/ηi of the order of 103 is needed
for Fmax to be equal to one with a reasonable degree
of precision. It is worth noticing that the present ex-
perimental database for which 10 . ηo/ηi . 30 is
far from fulfilling this condition. This lack of scaling
range is further confirmed when the compensated ar-
clength L(r)/L0(r/ηo)

β (given by Eq. (12)) is plotted
as a function of r/ηo for different ratios ηo/ηi (Fig.
13). When ηo/ηi = 2.101 which is at the midspan
of our experiments, the scaling range is very limited
and resembles an inflection point rather than a clear
plateau. Beyond 1.103, one can unambiguously dis-
cern a scaling range over about two decades.
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This clearly demonstrates that the finite ratio be-
tween ηo and ηi has a drastic impact on the distribu-
tion of L(r). A finite separation between ηo and ηi im-
plies a crossover between the statistical behaviour of
large (≡ ηo) and small scales (≡ ηi) which affects the
maximum value of the scale entropy flux, i.e. the ap-
parent slope of L(r) in the inertial range. In the field
of non reacting turbulent flows, this effect is generally
referred to as a finite Reynolds number effect (see for
instance [65, 66, 85, 86] and references therein). In
this context, the inertial range might be preferably
called the restricted scaling range as in e.g. [86].
Therefore, because of the aforementioned finite ra-

tio effect, it is not surprising to observe that scale
similarity does not hold in the present case (Figs. 8
and 9). Indeed, one may need to reach much higher
values of ηo/ηi for large and small scales to behave
independently and for an asymptotic value for β to
be possibly attained. Consequently, finite Reynolds
number effects are likely to shed doubts on most of
the experimental or numerical estimations of β and
the quest for an universal value or universal evolution
for this parameter is worth being revisited.
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FIG. 14. (Color online). Correlation between the aver-
aged flame surface density and (ηo/ηi)

β.

IV. IMPLICATION FOR MODELLING

Many studies [9, 11, 20] have emphasized the abil-
ity of fractal models for predicting the flame surface
density in either RANS (e.g. [15, 16]) or LES (e.g.
[10, 11]) context. Fig. 14 put emphasis on the excel-
lent correlation between (ηo/ηi)

β and the averaged
flame surface density over the domain. The latter is
defined as

〈∫

Σdy

〉

=
2

Hf

∫ Hf

x=0

∫

∞

y=0

Σ(x, y)dxdy, (21)

where the flame surface density Σ(x, y) has been esti-
mated using the same procedure as in [20, 87]. There-
fore, the challenge is focused on the predictions of
the parameters ηo, ηi and β. We thus now turn our
attention to the ability of some available empirical
or phenomenological relations for predicting the evo-
lution of the fractal parameters with respect to the
flow/flame characteristics.

A. Prediction of the inner and outer cutoffs

There is wealth of experimental [17, 88] data and
phenomenological arguments [11, 20, 89] which sug-
gest that, in analogy with non reacting flows, the in-
ner cut-off is proportional to the Kolmogorov length-
scale. In this case

ηi
δl

= CKa−1/2. (22)

Using the present definition for δl = α/Sl, Gülder and
Smallwood [17] advocated a value for C of 15.4 whilst
Roberts et al. [88] found a value of 4.9. Kobayashi
et al. [89] suggested that the inner cut-off could also
be identified with the cross-over length scale in the
kinetic energy spectrum between inertial and dissi-
pative scales. This was further recently confirmed
by some physical reasoning arguments [20]. In this
case, the value for C relates to the Kolmogorov con-
stant Cu = 2 through C = r∗1 = (11Cu)

3/4 ≈ 10.2.
However, this scaling might hold only for sufficiently
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large values of Karlovitz number so that the flame can
be treated as a passive interface. For low Karlovitz
numbers, it has been proposed that the inner cut-
off should rather scale with the Gibson length-scale
LG/Lt = (Sl/u

′)3 [1, 11, 20], which in terms of δl
writes

ηi
δl

= Ka−2. (23)

To be consistent with both the high and low Karlovitz
regimes, Refs. [11, 20] suggested the following expres-
sion for ηi

ηi
δl

= r∗1Ka−1/2 +Ka−2. (24)

Using similar arguments, Ref. [90] proposed the fol-
lowing parametrization for ηi/δl

ηi
δl

=0.345Ka−2 exp (−Ka)

+6.41Ka−1/2 [1− exp (Ka)] . (25)

Shim et al. [91] have also conjectured that, in anal-
ogy with non reacting flows, the inner cut-off should
approach the diameter of the most probable vortices
≈ 8η, viz. [91]

ηi
δl

= 8Ka−1/2 exp

(

3

4
Ka−1/2

)

. (26)

Eqs. (22), (24), (25) and (26) are compared to the
present assessments of ηi in Fig. 15. Although exper-
imental data are relatively scattered, our study con-
firms the decreasing tendency of ηi/δl with respect
to the Karlovitz number as given by Eq. (22) with
a constant C consistent with that predicted by [20],
i.e. C = r∗1 ≈ 10.2. In contrast, the predictions given
by Eq. (24) [11, 20], Eq. (25) [90] and Eq. (26) [91]
appear to differ significantly from experimental data.
Note that care should be paid in extrapolating these
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FIG. 16. (Color online). Fractal dimension β as a func-
tion of u′/Sl. The black full line and red dashed line
correspond to Eq. (28) and (27) respectively.
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FIG. 17. (Color online). Fractal dimension as a function
of Ka, the red dashed line represents β = 1/3, the black
curve designates Eq. (30) whilst the green dash-dot line
is given by Eq. (29).

conclusions to Karlovitz number beyond the range
studied here. Also plotted in Fig. 15 is the ratio
between the outer cut-off ηo and the integral length
scale Lt. Here again, notwithstanding the relatively
large scatter, experiments indicate that ηo is globally
proportional to Lt. In the present case, the coefficient
of proportionality is found to be about 3.

B. Prediction of the fractal dimension β

Sreenivasan et al. [29] suggested that at infinite
Reynolds numbers, the exponent β of a passive inter-
face should be equal to 1/3. For reacting flows, Peters
et al. [1] soon realized that the kinematic restoration
mechanism might act in smoothing the flame inter-
face and derived an expression highlighting the effect
of u′/Sl on β, viz. [23]

β =

(

3 +
1

u′/Sl − 1

)

−1

(27)

The same year, on the basis of an extensive experi-
mental study, North et al. [18] end up with an em-
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pirical relation of the form

β =
2.05

u′/Sl + 1
+

2.35

Sl/u′ + 1
− 2 (28)

Chakraborty and Klein [90] also proposed an expres-
sion for describing the evolution of β with respect to
the Karlovitz number

β =
1

3
erf (Ka) (29)

More recently, another Karlovitz-dependent expres-
sion for β was suggested [11, 20]

β =
1

3
+

1

3

r∗
1
Ka−1/2

r∗
1
Ka−1/2 +Ka−2

(30)

so that the ratio of the turbulent to laminar flame
speed given by (ηo/ηi)

β is consistent with Damköhler
predictions at both high and low Karlovitz numbers.
Eq. (30) suggests that β is 1/3 at low Karlovitz num-
ber and 2/3 in the high Karlovitz regime in agreement
with recent findings of DNS at very high Ka [21].
The fractal dimension β obtained from our

database is compared to that predicted by either Eq.
(27), Eq. (28), Eq. (29) and Eq. (30) in Figs. 16 and
17. Despite the scatter, experimental data globally
confirm the increasing tendency of β with respect to
u′/Sl (Fig. 16). Predictions arising from either Eq.
(27) or Eq. (28) are roughly consistent with this in-
crease even though the scatter in the data hampers
drawing any firm conclusions. In Fig. 17, experimen-
tal values of β are compared to Eqs. (29) and (30). It
clearly appears that Eq. (30) differs significantly with
experiments and that β is much closer to a value of
1/3 than 2/3. Here also, the scatter in the data is too
large to assess the ability of Eq. (29) for predicting
β.
Both the scatter in the data and the discrepancy

with theoretical or empirical predictions are likely to
be related to the aforementioned finite Reynolds num-
ber effects. Indeed, because of the limited ratio be-
tween ηo and ηi as emphasized in Fig. 12, the large
scales, which are known to be non universal in that
sense that they depend on the type of initial and
boundary conditions, strongly affects the statistical
behaviour of the inertial and small scales. Conse-
quently, much higher values for the logarithmic sep-
aration a are needed to draw firm statements about
the evolution of β with respect to the flow and flame
parameters. As shown in Fig. 15, ηi is proportional
to the Kolmogorov length-scale η, i.e. ηi ≈ 10η,
whilst ηo ≈ 3Lt. Since Ret ∼ (Lt/η)

3/4, it comes
Ret ≈ (10

3

ηo

ηi
)4/3. Therefore, a clear inertial range,

i.e. ηo/ηi ≈ 103 for Fmax ≈ 1, might be achieved
for Ret ≈ 5.104. Assuming that η ∼ δL ∼ 0.1mm
so that Ka ∼ 1 lo lie within the flamelet regime,
then Lt should be of the order of 30cm. This type
of turbulence is clearly beyond the reach of exist-
ing laboratory experiments. Hence, as it was done
in non reacting fluid turbulence, for which the quest

for large-scale and very high Reynolds number exper-
iments have motivated many recent studies, similar
needs now arise in the field of combustion. As a con-
sequence, before confirming available predictions for
β, a dynamical procedure for estimating this parame-
ter might be preferably invoked in Large Eddy Simu-
lation of turbulent premixed combustion at relatively
low Reynolds numbers (see e.g. [10, 11, 24]).

V. HEURISTIC PHENOMENOLOGY OF
WRINKLED INTERFACES

Heretofore, in this paper, experimental data of the
turbulent flames have been analysed with the goal
of demonstrating the ability of POD for quantify-
ing their scale-by-scale statistics and the suitability
of some theoretical/empirical relations for predicting
them. In the following, we now concentrate on the
particular phenomenological aspects of flame wrin-
kling and on the degree of generality that this phe-
nomenology can reveal for giving further insight into
the corrugation of some other interfaces.

A. Analytical aspects

It is well known that the hyperbolic tangent is so-
lution of the differential equation f ′+f2−1 = 0. The
appearance of the hyperbolic tangent in Eq. (19) thus
indicates that the scale entropy flux F(R) is governed
by the following differential equation

1

2a

∂F(R)

∂R − C(R)×F(R) = 0, (31)

or equivalently, the differential equation for L(R) is

1

2a

∂2L(R)

∂R2
− C(R)

∂L(R)

∂R = 0, (32)

where

C(R) =
1

2
[tanh (aR) + tanh (aR+ a)] . (33)

Even though the analysis is provided here in the con-
text of statistically stationary turbulent flames, the
time derivative of L can be added to Eq. (32) as
was done in [34, 35, 84]. In this case, the transport
equation for L writes

1

γ

∂

∂t
L(R, t)+C(R, t)

∂L(R, t)

∂R =
1

2a

∂2L(R, t)

∂R2
, (34)

where γ is referred to as a scale-entropy diffusion co-
efficient [34, 35, 84]. Eq. (34) can be interpreted
as a one-dimensional convection-diffusion equation,
where the scalar L depends on spaceR, the rightmost
term of Eq. (34) represents the diffusion mechanism
whereas the second term on left hand side corresponds
to the transport of L by a ’convection velocity’ C(R).
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On the other hand, one can also do some algebra and
end up with a pure diffusion equation with a source
term consistently with [84], or a diffusion/convection
equation with a source term. With these different
interpretations in mind, it is however worth stressing
that keeping this formulation for Eq. (34) allows us to
highlights interesting analogies between Eq. (34) and
other transport equations which are widely used in
the field of turbulence and/or turbulent combustion.
Indeed, one can note that Eq. (34) is analogous to

the Lin’s equation [92] which describes the transport
of velocity energy spectrum E(q, t) in homogeneous
isotropic turbulence, viz

∂

∂t
E(q, t) + T (q, t) = 2νq2E(q, t), (35)

where q is the wavenumber and T (q, t) is the energy
transfer spectrum. A similar equation holds for the
scalar energy spectrum [86, 93]. The convective term
in Eq. (34) thus relates to the transfer term T (q, t)
which itself arises from the non-linear convective term
in the Navier-Stokes equation. On the other hand,
the dissipative term 2νq2E(q, t) corresponds to the
right hand side of Eq. (34). By further proceeding
in the analogy, one notices that the viscosity ν in
Eq. (35) can be identified with γ/4a. There is thus
an analogy between a = log(ηo/ηi) and the Reynolds
number in fluid turbulence. For instance, for a given
γ, the weaker is the viscosity in the Lin’s equation, the
more the logarithmic separation between ηo and ηi
and vice versa. This is obviously also the case in fluid
turbulence where the logarithmic separation between
the integral length and the Kolmorogov length-scale
is proportional to the Reynolds number.
Note also that Peters [3] has derived a transport

equation for the energy spectrum of a propagating
interface whose formulation is also analogous to either
Eq. (34) or Eq. (35).
Furthermore, by removing the leftmost term in Eq.

(19) which is equivalent to focusing only on inertial
and small scales, one obtains that the scale entropy
L is solution of the following partial differential equa-
tion

1

γ

∂L
∂t

=
1

2a

∂2L
∂R2

+

(

∂L
∂R

)2

− 1

4
. (36)

This equation looks like the Kardar-Parisi-Zhang
(KPZ) equation [94]. The KPZ equation is widely
used notably for predicting the diffusion-limited
growth of rough interfaces [83]. It is therefore not
surprising that the latter may also govern the scale
entropy. In the field of combustion, the application of
the KPZ equation, though not widespread, is not new.
It has notably gave significant insight into the predic-
tion of turbulent flame propagation in weak turbu-
lence [95] and the comprehension of slow combustion
of solid material [96]. Eq. (36) is also quite analogous
to the Kuramoto-Sivashinsky (KS) equation [97, 98]

for which the dispersion term would have been omit-
ted. This suggests that Eq. (34) together with Eq.
(12) are likely to be demonstrated on some more fun-
damental basis using for instance the G-equation, the
KPZ or the KS equation. Analytical results for the
inner and outer cut-off might be also obtained by use
of these equations. This question is beyond the scope
of the present study but is worth being revisited in
further investigations.

B. Implications

This analogy between the scale entropy transport
equation and the Lin’s equation indicates that a
rather pragmatic phenomenology for describing the
scale-by-scale properties of wrinkled turbulent flames
can be invoked. It indeed appears that the wrin-
kling is driven by two distinct mechanisms, (i) a diffu-
sion process and (ii) transfer of interface between the
different scales. In the context of turbulent flames,
the destruction of flame surface is related to the so-
called kinematic restoration mechanism [3, 4], i.e. the
smoothing by the effect of the flame propagation ve-
locity. The latter diffusion processes might also be
attributed to the viscous effects that damp the turbu-
lence activity at small scales. On the other hand, the
transfer of flame interface through the different scales
R is likely to be more complex since it relates to the
cascade process inherent to all turbulent flows. In the
field of fluid mechanics, this equilibrium assumption
between diffusion and transfer was first initiated by
the pioneering work of Kolmogorov [68, 69] for de-
scribing turbulent flows. Since then, it has become
extremely common. It is therefore not surprising to
draw similar conclusions for turbulent reacting flows.

The phenomenology described above suggests that
the scale entropy formalism together with Eq. (15)
for describing L(r) might not be restricted to turbu-
lent flame fronts only. This also transpires notwith-
standing the aforementioned analogy between Eq.
(34) and the KPZ equation which is reputed to ap-
ply in many unrelated problems. Indeed, this phe-
nomenology could a priori hold for describing the
scale-by-scale (possibly fractal) properties of some
other wrinkled objects as far as they are driven
by diffusive and convective processes. These in-
cludes (though not limited to) material lines or sur-
faces evolving in turbulent flows [36, 99, 100], turbu-
lent/non turbulent interfaces [28, 32], two-phase flows
(see the rather recent use of the scale entropy formal-
ism made by [34, 35]), or more generally iso-scalars in
homogeneous and/or heterogeneous gaz and/or liquid
mixtures [101]. Even though further work is needed
to confirm this, the formalism employed here and re-
lated results (especially Eq. (34) which emanates di-
rectly from Eq. (12)) thus appear to be rather heuris-
tic in that sense they are likely to be generalized to
some other kind of interfaces. The aforementioned
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different physical situations for which Eq. (34) may
apply, are found in many combustion processes. For
instance, in rocket engines or direct injection spark
ignition engines, the chain of physical processes start-
ing from the atomization of liquid fuel → evaporation
→ turbulent mixing → diffusion and/or partially pre-
mixed turbulent flames could possibly be treated in
this context. Hence, our opinion is that the general-
ization of the scale-entropy formalism to other kind
interfaces is worth being mentioned and investigated
further in the present paper.

C. Experimental evidence

In this purpose, we consider in the following five
types of wrinkled interfaces. The POD algorithm was
applied to each interface spatial coordinates and the
arclength was calculated in a similar fashion as de-
scribed previously. These interfaces include

(i) A turbulent flame. The Flame 13 of the present
database is considered as an example.
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FIG. 20. (Color online). Scale entropy. Symbols and lines
are same as Fig. 18
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FIG. 21. (Color online). Scale entropy flux. Symbols and
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(ii) The interface separating the turbulent / non
turbulent region in a very high Reynolds num-
ber boundary layer. For this particular case,
results for L(r) are not obtained by applying
the POD algorithm but are taken directly from
Fig. 5(b) of [32].

(iii) To be as close as possible from some combus-
tion applications, we also considered a turbulent
iso-scalar field evolving in an optically accessi-
ble engine [103]. Measurement were done by
means of PLIF on acetone which is used as a
fuel tracer. The experimental setup is not re-
called but the reader can refer to [103] for de-
tails. The data reduction for the PLIF images
is also fully described in [103].

(iv) The interface separating the liquid to the vapor
phase in a cavitating backward facing step flow.
Here again, the reader can refer to [104, 105]
where a detailed description of the experimental
setup is provided. Specifically, the case ’cav2’
in [104, 105] is considered for the present study.
The direct visualization of the interface was car-
ried out using a high speed camera. The inter-
face detection was performed using the same
procedure as described in §II A.

(v) The interface separating the gas to the liquid
in a liquid jet destabilized by a surrounding air
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flow. Here also, results for L(r) are not ob-
tained by applying the POD algorithm but are
obtained by digitizing the top curve of Fig. 6.16
of [102].

Figs. 18 to 21 depicts the scale-by-scale contri-
bution to the arclength for the four interfaces inves-
tigated here. By focusing on Figs. 18 and 19, it
clearly appears that Eq. (12) is perfectly tailored for
representing L(r), irrespectively of the interface con-
sidered. For the iso-scalar data, the arclength has
been calculated using different iso-scalar values. Re-
sults were qualitatively similar, i.e. Eq. (12) was still
perfectly suited for fitting experimental results. The
scale entropy and the scale entropy flux are also pre-
sented (Figs. 20, and 21). These quantities suggest
that even for the boundary layer data for which the
Reynolds number was extremely high, or the liquid
jet of [102] which provides ηo/ηi ≈ 60, the scale sepa-
ration between ηo and ηi is still not sufficiently large
to reach the asymptotic scaling at very large value of
a. This means that these asymptotic scaling are still
beyond the reach of the existing laboratory experi-
ments and that further efforts are needed to attain
these extreme regimes.
As a consequence, the fact that the five different

interfaces match perfectly with Eq. (12) means that
the transport equation Eq. (34) applies as a direct
consequence. This is the experimental evidence that
the phenomenology described above, emphasizing the
primordial role played by diffusion and convection, al-
though not demonstrated by use of either the exact
transport equations or simplified stochastic or deter-
ministic equations, is indeed heuristic in that sense
that it generalizes to a large number of apparently
unrelated physical situations. To our opinion, this
might have several useful implications notably for de-
scribing and modelling the physical processes at play
at the level of these interfaces which are all widely
encountered in many practical situations.

VI. SUMMARY

An extensive experimental database, consisting of
24 turbulent premixed Bunsen flames with 19 inde-
pendent operating conditions, has been analysed in
detail. The flame front is tracked by means of ei-
ther low or high frame rate Mie scattering tomog-
raphy and standard binarization procedure. POD is
applied to the flame front spatial coordinates with
the goal of extracting the geometrical properties of
turbulent interfaces. The latter is measured by cal-
culating scale-by-scale contribution to the arclength,
i.e. the length of the interface reconstructed using k
modes. Special care has been also given to the corre-
spondence between a mode number k and a physical
scale r. In this context, we proposed a method that
revealed that the mode number is linearly related to

the wavenumber, i.e. the inverse of the physical scale.
Yields the following outcomes

(i) The POD compares favourably well with the
caliper technique except at large scales where
the latter method is reputed to be biased. For
comparing the fractal characteristics of flame
wrinkling inferred from these two methods, a
parametric expression for L(r) is proposed that
allows to compute ηo, ηi and β in a totally un-
ambiguous fashion. This expression, though not
demonstrated, appears to be perfectly tailored
for describing L(r) irrespectively of the flame or
the interface considered.

(ii) In analogy with non reacting turbulent flows,
the degree with which L(r) complies with scale-
similarity is appraised. Three type of similarity
are concerned, i.e. large-scale similarity, small-
scale similarity and log-similarity. It is observed
that none of these three types of similarity holds
for the range of Reynolds number investigated
here. It is argued that finite Reynolds number
effects may be at play and that much higher sep-
arations between ηo and ηi have to be reached
for drawing firm conclusions about the plausi-
bility of scale-similarity for turbulent flames. In
this context, the asymptotic approach of Fmax

towards unity, which provides an observable of
the extent of the inertial range, is discussed in
detail.

(iii) The ability of fractal models for predicting the
flame surface density is confirmed. The frac-
tal characteristics ηo, ηi and β are compared
to available empirical or phenomenological rela-
tions. Whilst the predictions for ηo and ηi ap-
pears relatively robust, experimental data (es-
pecially for β) remain particularly scattered.
Here again, it is pleaded that much higher
Reynolds numbers are needed before reassess-
ing the evolution of β, ηo and ηi as a function
of the flow and/or flame parameters. For in-
stance, Ret ≈ 5.104 may be the limiting value
that should be achieved for Fmax to be equal
to one within a percent, so that a clear scaling
range is likely to be discernible.

(iv) A rather pragmatic phenomenology for the
flame wrinkling, which emanates directly from
Eq. (12), is finally discussed. A balance equa-
tion for the scale entropy L(R, t) is obtained, re-
vealing the primordial role played by diffusion
and convection in the destruction and/or cre-
ation of interface. This equation appears anal-
ogous to some exact transport equations such
as the Lin’s equation (the transport equation
of the kinetic energy spectrum), the Corrsin’s
equation (the transport equation of a passive
scalar energy spectrum) or the Peters’ equation
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(the transport equation of the interface spec-
trum). It also reveals some interesting degree of
closeness with either the stochastic KPZ or de-
terministic KS equation. This suggests that Eq.
(12) is likely to be demonstrated on some more
physical basis. This will be the topic of a future
study. It thus transpires that the latter phe-
nomenology could apply to some other folded
interfaces as long as they are driven by convec-
tive and diffusive processes. It is indeed con-
firmed by experiments that Eq. (12) is nicely
tailored for representing L(r) for the four inter-
faces considered here. As a direct consequence,
Eq. (34) applies to these interfaces. Hence,
the scale entropy formalism opens a promis-
ing alternative for understanding and modelling
the statistical behaviour of corrugated inter-
faces. To our opinion, this result should lead to
important progress since such folded interfaces
are widely encountered in many different situ-
ations. Specifically, it turns out that in LES,
fractal models such as that developed by e.g.
[10, 11, 20] for assessing the unresolved flame
surface density can be applied to turbulence,
turbulent mixing or two-phase flows.
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Appendix A: Determination of the number of
modes

In order to minimize the computational cost of
the POD algorithm, one generally sets the number

of modes Nm as the smallest dimension of χ i.e.
Nm = min{2Np, Nim}. Hence, two cases can be con-
sidered depending on Nim and Np

(i) Nim > 2Np (high frame rate tomography), in
which case the direct method [39, 41] is invoked.
The correlation matrix R∗ is then defined as

R∗ = χχT . (A1)

Then, using Eqs. (4) and (6a), it is readily
shown that

R∗ = χχT = ΦW 2
Φ

T = ΦΛΦ
−1. (A2)

One identifies from Eq. (A2) an eigenvalue
problem, yields estimation of W 2 = Λ, the di-
agonal eigenvalue matrix andΦ, the eigenvector
matrix. Once Φ is known, the temporal coeffi-
cient matrix Ψ is obtained by projecting χ on
the eigenvectors Φ.

(ii) Nim < 2Np (low frame rate tomography), in
which case the snapshot method [40] is em-
ployed. The correlation matrix R is then de-
fined as

R = χTχ. (A3)

Plugging Eqs. (4) and (6b) into Eq. (A3), one
ends up with

R = χTχ = Ψ
TW 2

Ψ = Ψ
−1

ΛΨ. (A4)

Contrary to the previous case, from Eq. (A4)
yields the temporal coefficient matrix Ψ and Λ,
and the mode matrix Φ is obtained by project-
ing χ on the eigenvectors Ψ
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