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Statistics of the turbulent kinetic energy dissipation rate and its surrogates in a

square cylinder wake flow

N. Lefeuvre,1 F. Thiesset,1 L. Djenidi,1 and R.A. Antonia1

School of Engineering, University of Newcastle, Australia

(Dated: 5 April 2019)

A numerical simulation based on the lattice Boltzmann method is carried out in

the wake of a square cylinder with the view to investigating possible surrogates for

the instantaneous turbulent kinetic energy dissipation rate, ε, as well as its mean

values, ε. Various surrogate approximations of ε, based on local isotropy (εiso), local

axisymmetry along x (εa,x) and y (εa,y ), local homogeneity (εhom), and homogeneity

in the transverse plane, (ε4x), are assessed.

All the approximations are in agreement with ε when the distance downstream of

the obstacle is larger than about 40 diameters. Closer to the obstacle, the agreement

remains reasonable only for εa,x, εhom and ε4x.

The probability density functions (PDF) and joint PDFs of ε and its surrogates

shows that ε4x correlates best with ε while εiso shows the smallest correlation.

The results indicate that ε4x is a very good surrogate for ε and can be used for

correctly determining the behaviour of ε .

PACS numbers: 47.27.-i, 47.27.W-, 47.27.E-
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I. INTRODUCTION

The mean turbulent kinetic energy dissipation rate ε is a fundamental quantity in turbu-

lent flow studies. ε is given by

ε = 2νsijsij, (1)

where sij = 1/2 (ui,j + uj,i) is the fluctuating strain rate, ν is the kinematic viscosity, ui

is the fluctuation part of the velocity in the direction x (i = 1), y (i = 2), z (i = 3) and

ui,j ≡ ∂ui/∂xj is the derivative of the velocity component ui along the direction j. Since the

groundbreaking work of Kolmogorov19,20, it is widely recognized that ε plays a crucial role in

the theoretical study of small-scale turbulence29, such as in spectral analysis and two-point

spatial analysis. An accurate estimation of ε is further essential for example in the context

of closure models for the turbulent kinetic energy equation.

The estimation of ε requires the knowledge of 12 terms. While all of these terms can be

easily obtained from direct numerical simulation data, only a few of them can be measured

from single-point time signals and using the Taylor hypothesis. Generally, it is the isotropic

expression εiso which is measured to approximate ε. It is a considerable simplification to Eq.

(1) and is given by

εiso = 15ν(u1,1)
2. (2)

However, while Eq. (2) may be appropriate in many circumstances where local isotropy is

approximately satisfied (e.g. homogeneous and isotropic turbulence or HIT, centreline of

wakes and jet, at a sufficiently large distance from the wall in pipe, channel and turbulent

flows), this is not the case in general when the anisotropy of the flow is not negligible.

For example, Browne et al.6, who measured nine components of Eq. (1) and inferred the

remaining three, showed that εiso is not satisfied in the far-field of a circular cylinder wake

(CC); εiso was about 45% smaller than ε. Their results are consistent with those of Fabris14

and Aronson and Lofdahl5.

Another simplification can be made for estimating Eq. (1) if local homogeneity is satisfied.

Under this condition and using the relation (22) given by Taylor32, the locally homogeneous

expression for the dissipation rate is

εhom = νω2. (3)
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where ω2 is the enstrophy (≡ ω2
1 + ω2

2 + ω2
3). In deriving Eq. (3) the hypothesis ∇2p = 0 is

used since Eq. (1) can be written as follows:

ε = 2ν

(
ω2

2
−∇2p

)
(4)

At this stage, it seems clear that the difference between ε and εhom is related to the influence

of pressure fluctuations in the flow under consideration. In the near25 and far6 fields of the

CC wake, the experimental data show that εhom is an accurate surrogate for ε. From an

experimental viewpoint, this is of great interest because only nine velocity gradients need

to be measured to obtain ω2 and thus εhom.

Local axisymmetry, which is next to isotropic in order of simplicity but which occurs

more commonly in practice, can also be invoked for estimating the energy dissipation rate.

George and Hussein16 were first to write the expressions for εa,x. If local axisymmetry along

the axis x1 is assumed then17,

εa,x = ν
[
−(u1,1)

2 + 2(u1,2)
2 + 2(u2,1)

2 + 8(u2,2)
2
]

(5)

Local axisymmetry with respect to the direction y can also be assumed, which leads to33,

εa,y = ν
[
8(u1,1)

2 + 2(u1,2)
2 + 2(u2,1)

2 − (u2,2)
2
]
. (6)

Finally, a fourth surrogate for the turbulent kinetic energy dissipation rate has been

proposed by Zhu and Antonia3,36. These authors used a vorticity probe comprising 4 X-

probes to measure all the velocity derivatives simultaneously, except (u2,2)
2 and (u3,3)

2. The

incompressibility condition u1,1 + u2,2 + u3,3 = 0 led to the following relation

(u2,2)
2 + (u3,3)

2 = (u1,1)
2 − 2(u2,2) (u3,3). (7)

Assuming homogeneity in the transverse plane (y − z),

u2,2u3,3 = u2,3u3,2. (8)

Using Eqs. (7) and (8) leads to the following expression

ε4x = ν

[
4(u1,1)

2 + (u1,2)
2 + (u1,3)

2 + (u2,1)
2 + (u2,3)

2 + (u3,1)
2 + (u3,2)

2

+ 2(u1,2u2,1) + 2(u1,3u3,1)− 2(u2,3u3,2)

]
. (9)
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The above ε-surrogate should strictly be valid if local homogeneity holds. However, both

experimental31,36 and numerical10 data reveal its range of validity may be more general.

For example, in the intermediate field, Thiesset33 showed that εiso, εa,y and εhom are good

candidates for estimating ε. In the far field of a CC wake, Hao et al.35 showed that, near

the wake centerline, εiso was only about 10% smaller than ε, as measured by Browne et

al.6. This contrasts with the measurements of Browne et al.6 who, as previously mentioned,

found that εiso is about 45% smaller that ε. These inconsistent results highlight the difficulty

of measuring ε reliably. Even though εiso can be suited in many situations, this does not

necessarily imply that local isotropy holds. Indeed, in grid turbulence, Antonia et al.4 showed

that the velocity derivatives ratios differ from isotropy. However they remarked that there

are some compensation effects among the 12 components of ε which altogether allow the use

of εiso. Similar observations were in a wake of different obstacles34.

Moreover, the intermittent character of the velocity derivatives may play a role in the

instantaneous distributions of surrogates for ε. Indeed, in the original K41 framework19,20,

the universality of the inertial range was proposed by supposing the latter being uniquely

determined by ε. However, Landau22 was first to comment that the energy dissipation rate

has to be considered as a fluctuating quantity, in the same manner as any other fluctuating

quantity. Since the fluctuations of ε are likely to be affected by the non-homogeneous large

scales, the concept of universality may break down even for small scales. This behaviour,

usually designated as internal intermittency has led to an explosion in publications over the

last fifty years. Attention has been paid mostly to the deviation of scaling exponents to the

original K41 predictions. However, the effect of fluctuations in the energy dissipation rate

due to the large scales has been given much less attention, even though it is the essence of

Landau’s original comment. Therefore, not only the mean values but also the instantaneous

behaviour of the dissipation rate is a major importance for giving some insight into the

intermittent nature of turbulence.

Whilst numerical simulation is the most unambiguous tool for assessing the dissipation

rate, the universality of turbulence can be only confirmed or invalidate at very high Reynolds

numbers. Such high values of Reynolds numbers remain beyond the actual computing capa-

bilities and can only be approached using experiments with the shortcoming that only few

velocity derivatives components are generally captured and that the probe spatial resolution

might not be suited. One may thus need to explore the adequacy of the different surrogate
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of ε in a range of Reynolds number for which experiments and simulation crossover. The

most suited surrogate as inferred from DNS might then be used in experiments at a much

higher value of Reynolds number.

The present work aims at assessing the performance of the ε-surrogates (Eqs. 2, 3, 5, 6,

and 9) in the wake of a square cylinder (SqC) through direct numerical simulations. The

emphasize is on the mean as well as instantaneous values of ε. The particular choice of

the square cylinder is motivated by the fact that this geometry is easier to implement on

numerical simulations. In addition, as shown by Thiesset et al.34, a SqC generates a more

isotropic wake that a CC, a screen, a plate and a screen strip. Accordingly, the SqC wake

can be considered as an appropriate test case for above expressions of the ε-surrogates. One

can, for example, expect a better agreement between ε and εiso for the SqC than for the

other obstacles.

The lattice Boltzmann method for simulating the wake flow is first described in §II and

calculations are validated in §III. In §IV and §V, a particular attention is paid on the mean

and root mean square values of ε and compared to its surrogates for three downstream

positions (x = 20, 60 and 100D). Surrogates of ε are studied in either the centerline and off

centerline to appraise the effect of the mean shear. Then, the analysis is extended to the

instantaneous values of ε in §VI, by means of comparative study of the probability density

functions (PDF). To further assess the adequacy of using approximates for ε, joint probability

density functions (JPDF) between ε and its surrogates are employed (§VII) yielding to a

more stringent test. Finally, conclusion are drawn in §VIII.

II. LATTICE BOLTZMANN METHOD

The direct numerical simulation of the SqC wake is carried out using the lattice Boltzmann

method (LBM). Rather than solving the governing fluid equations (Navier-Stokes equations),

the LBM solves the Boltzmann equation for the probability distribution function fi(
−→x , t)

on a lattice. The basic idea of the LBM is to construct a simplified kinetic model that

incorporates the essential physics of microscopic average properties, which obey the desired

(macroscopic) Navier-Stokes equations15. With a sufficient amount of symmetry of the

lattice, the LBM implicitly resolves these latter equations with second-order accuracy. The
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FIG. 1. Unscaled sketch of the computational domain
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FIG. 2. (a) Variation of ∆x/η with x along the axis of the SqC wake. (b) Probability density

function of the turbulent kinetic energy dissipation inferred from Eq. (9) at x/D = 100 on the

centerline. Solid line: present data (SC) ; dashed dotted line: DNS from Antonia et al.3 using Eq.

(9).

Boltzmann equation for fi(
−→x , t) is given by

f

t
+−→e ∇xf = Ω (10)

where −→x is the displacement vector, −→e is the particle velocity and Ω is a collision operator

approximated by the Bhatnagar-Gross-Krook (LBGK) model

Ω =
1

τ
(f eq − f), (11)

where f eq is an equilibrium particle distribution function and τ is the relaxation time. The
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lattice Boltzmann equation, is then expressed as

fi(
−→x + ei∆t, t+ ∆t)− fi(−→x , t) = Ωi (12)

= −1

τ
(fi(
−→x , t)− f eqi (−→x , t))

∆t is the time step, ei(= ∆x/∆t) is the velocity of the particle i in the i-direction; f eqi given

by

f eqi (−→x , t) = ρωi

(
1 + 3ei

−→u +
9

2
(ei
−→u )2 − 3

2
−→u 2

)
, (13)

where ωi is the corresponding weights for each i-direction and the macroscopic quantities ρ

and u are the local fluid density and the local fluid velocity vector defined respectively by

ρ =
∑
i

fi ; ρ−→u =
∑
i

fiei. (14)

Using Eq. (14), Eq. (12) returns the Navier-Stokes equation with a second-order accuracy.

In the collision term Ωi (Eq. (11)), τ is related to the kinematic viscosity ν by

ν =
2τ − 1

6
. (15)

The LBE is discretized on a Cartesian lattice, ∆x = ∆y = ∆z = 1, and ∆t = 1. A detailed

description of the LBM can be found in Chen and Doolen (1998)8 and Succi (2000)30. The

motivation for the choice of the LBM over the resolution of the Navier-Stokes equations

can be briefly summarised as follows: (i) extreme ease of solid surfaces implementation, (ii)

no need for solving the Poisson equation for the pressure and (iii), which follows in parts

from (ii), the collision is local in nature, making the implementation of parallel computation

extremely easy. The method was successfully used for simulating turbulent flows7,9–11,13.

III. VALIDATION OF COMPUTING

The three-dimensional computational Cartesian domain (Fig. 1) has 110D× 20D× 10D

mesh points in the streamwise (x), across the wake (y), transversal (z) directions and D = 12

(D is the size of one side of the square section of the obstacle). The mesh increments in the

three directions are equal, regular with ∆x = ∆y = ∆z = 1. The center of the obstacle is

located at 8D from the inlet and 10D from both top and bottom boundaries of the domain.

The downstream distance extends to x/D = 100 when the origin of x is taken at the center

of the cylinder.
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FIG. 3. (a) Spectra of ε at x/D = 20 and y/D = 4. (b) Variation of the Strouhal number with the

Reynolds number. Experimental results12,23,26,28 ; Numerinal results24,28
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FIG. 4. Streamwise distributions of U/U0 , u′/U0 and v′/U0, on the centerline of a CC wake. Solid

line: LBM; dashed line: LES ; dotted line: PIV-2C33; symbols: ADL3C33 measurements.

Periodic conditions are applied in the y and z directions. At the inlet, a uniform velocity

(Uint = 0.0833 and Vint = Wint = 0) is imposed whilst a convective boundary condition

is applied at the outlet of the domain. A no-slip condition at the wall is simulated with a

bounce-back scheme, which means that, at the wall, the particles bounce back along the same

direction. The Reynolds number RD = U0D/ν is equal to 2000. This value is sufficiently

small to allow a relatively good spatial resolution and sufficiently large to be comparable

with previous experiments.

In order to avoid the occurrence of instabilities where the magnitude of the local strain
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FIG. 5. Profiles of U (a), V (b), u′ (c) and v′ (d) at x/D = 0.54. Solid line: LBM; doted line:

PIV-2C33; dashed-dotted line: DNS27; dashed line: LES21; symbols: ADL3C measurements33.

rate could be large, mainly around the cylinder, a Large Eddy Simulation scheme (LES)

based on the Smargorinsky model is used

νtotal = ν + ντ , (16)

where ντ is the turbulent viscosity

ντ = (C∆)2|S|, (17)

where C is the Smagorinsky constant (=0.1), the cut-off separation ∆ = ∆x and S =√
2SijSij is the magnitude of the strain rate tensor (further details can be found in Djenidi,

20069 and Djenidi et al., 201311).

An a posteriori check of the spatial resolution has been made and reveals that the com-

putational mesh resolution which varies from about 3.5η at x/D ' 1 to 1η at x/D ' 100
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(Fig. 2a) is comparable to many existing DNS9,18,27. Fig. 2b compares the present PDF of

(ε4x− ε4x) with that obtained in a 3D periodic turbulence box simulation3 at Rλ = 45 using

the same approximation for ε. The relatively good collapse of the two distributions provide

confidence in the LBM simulations for capturing the small-scales. Note that this collapse

supports the quasi-universality of the small-scale motion.

The flow visualisations (not presented here) showed the classical shedding of the Bénard

- von Kármán vortices, with a Strouhal number St = fD/U0 = 0.129 (f is the shedding

frequency) as shown in Fig. 3a. This value of St is remarkably close to the experimental

data of Okajima26 who found St = 0.13 in a wake of SqC at Re = 2000.

To further assess the validity of the LBM simulation, we compare some of our results

with existing experimental and numerical results obtained in the wake of a circular cylinder.

There are fewer data for a SqC than a CC. Consequently, we carried out a LBM simulation

of a CC to perform such comparison. Fig. 4 shows the normalized streamwise distributions

of the mean velocity U , the velocity fluctuations, u′ and v′ (the prime denotes the rms

value) on the wake centerline; the normalisation is based on the length of the recirculation

zone behind the cylinder, lf , and the incoming velocity U0. The LBM results are consistent

with experimental33 and LES27 results at similar Reynolds numbers. For example, both

the location and magnitude of the minimum value of U are well reproduced by the LBM.

Also, the present LBM values of u′ are in relatively good agreement with the measurement

and LES data. However, there are some discrepancies between the LBM values of v′ and

the experiments. While the LBM predicts correctly the location of the maximum of v′, the

magnitude is overpredicted. This is yet to be explained, but the differences may be in part

attributed to some differences in the initial conditions of both experiments and simulations.

Fig. 5 shows the profiles of U , V , u′ and v′ at x/D = 0.54. The LBM data are in good

agreement with published data21,27,33 and capture well all features.

Altogether, the results indicate that the LBM simulation is adequate and reliable for

investigating notably the dissipation rate behaviour in the wake of a cylinder.

IV. RESULTS FOR THE MEAN KINETIC ENERGY DISSIPATION RATE

The adequacy of the surrogates for estimating the kinetic energy dissipation rate is first

investigated at the level of mean quantities. To this end, the distribution of ε and its
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FIG. 6. Comparison of the mean dissipation rate of the turbulent kinetic energy dissipation across

the wake.

surrogates at x/D = 20, 60 and 100 as a function of the transverse distance are displayed

in figure 6. The normalization is based on the velocity defect Ud and the half-width y0.5.

Note first that by comparing these distribution at x = 60D and 100D, one observes that

self-similarity is verified satisfactorily.

All distributions collapse well for x/D = 60 and 100 indicating that all the surrogates

are adequate at these locations. However, this is no longer the case at x/D = 20 where the

collapse excludes εiso and εa,y. In particular, εiso and εa,y deviate significantly from the other

distributions in the region y/D ≤ 1. It is likely that the constraints imposed by these two

expressions on the components of ε are not satisfied in this region of the wake, not even on

the wake centerline.
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FIG. 7. Distributions across the wake of ratios K1 to K12 at x/D = 20 ,(a) Kl to K4, ; (b) K5 to

K9 ; (c) K9 to K12. Red dashed , Isotropic value of 1.

The departure of εiso from ε at 20D is most probably caused by the anisotropy of the

flow. To assess this issue, the velocity derivative ratios, K = 2ui,j/uk,l, are examined. Fig.

7, 8 and 9 show all the 12 ratios of the velocity derivatives involved in the expression of ε

for x/D = 20, 60 and 100, respectively; these ratios should be equal to one if isotropy is

satisfied. On the wake centerline, the ratios K1, K2, K5, K10 and K12 are larger than unity

while the others are close to one for x/D = 20. At x/D = 60 and 100, except for K1 all

the ratios roughly agree with local isotropy on the centerline. Off the centerline, the ratios

are closer to one for x/D = 60 and 100 than for x/D = 20. These results clearly indicate

that anisotropy is stronger at x/D = 20 than at the other two locations and explain why

εiso differs markedly from ε at x/D = 20.
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FIG. 8. Distributions across the wake of ratios K1 to K12 at x/D = 60 ,(a) Kl to K4, ; (b) K5 to

K9 ; (c) K9 to K12. Red dashed line, Isotropic value of 1.

It is still remarkable that εiso approximates ε at x/D = 60, 100 considering that the flow

is not isotropic, as illustrated by the departure of K1 from one at all locations and across the

wake width. Using three-component vorticity measurements, Antonia et al.4 showed that

there is a compensation effect in grid turbulence which explains the equality ε = εiso. These

compensations appear to be at play also in the SqC wake flow in agreement with Ref. 34

In Ref. 4, they also noted satisfactory agreement between ε and ε4x, which they attributed

to the fact that relation Eq. (8) was satisfied. A recent LBM simulation of grid turbulence

(Djenidi and Antonia, 2013) confirms their argument. Unpublished DNS data in a turbulent

channel flow1,2 by Abe (Private communication) indicate that Eq. (8) is closely satisfied for

y/h ≥ 0.1 (y is the distance to the wall and h is the half-width of the channel). Figure 10
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FIG. 9. Distributions across the wake of ratios K1 to K12 at x/D = 100, (a) Kl to K4; (b) K5 to

K9; (c) K9 to K12. Red dashed line, Isotropic value of one.

shows that Eq. (8) is also valid in the present flow, in particular for x/D = 60 and 100.

Clearly, the good collapse observed between ε and its surrogates in the present flow shows

that compensations are likely to be at play here, in particular away from the centerline

where the departure from isotropy becomes important.

Although we cannot comment on the behaviour of ε and its surrogates in the far wake,

it is worth briefly recalling previously published results. As stated in the introduction,

Browne et al.6 found that the measured εiso departed significantly (about 45% on the wake

centerline and about 80% near the wake edge) from ε obtained by measuring nine of its

terms and assuming isotropy to infer the remaining three terms. They argued that this

latter assumption is unlikely to be critical as they expected the magnitude of those terms
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FIG. 10. Distributions across the wake of u2,2u3,3/u2,3u3,2 involved in Eq. (8) at x = 20D (solid

line), 60D (dashed line) and 100D (dot-dashed line). Red dashed line: Isotropic value of 1.

to be small by comparison with the other nine. The reasonable closure of their turbulent

kinetic energy budget suggests that they measured ε with adequate accuracy. However,

Hao et al.35 measured εap = ν(6u2,x + 3u2,y + 2v2,x + 2u,yv,x) (they assumed local isotropy

and homogeneity, and the continuity equation) and observed that εiso was only about 6%

smaller than εap across the wake at x/D = 420). Unfortunately, these authors did not

verify whether or not the measured εap closed the turbulent kinetic energy budget. Clearly,

the discrepancy between the Browne et al.6 and the Hao et al.35 results requires further

investigation, preferably via DNS. It should be noted however that whereas Browne et al.

estimated the mean squared values of ui,j from 2-points correlations as r → 0, Hao et al.35

applied spectral corrections based on local isotropy, which may have introduced a systematic

bias in their results and led to the close agreement between εiso and ε.

V. STANDARD DEVIATION OF THE ENERGY DISSIPATION RATE

As far as fluctuating quantities are concerned, one can for example investigate the dis-

tribution of the standard deviation of ε across the wake. These are reported in Fig. 11 for

x = 20, 60 and 100D. Here again, use was made of appropriate combinations of the velocity

defect Ud and the half-width y0.5 to normalize these quantities.

Noticeable is the fact that, independently of x and the surrogate under consideration,

the standard deviation of ε is of same magnitude as its mean value. This indicates that
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FIG. 11. Comparison of the root mean square dissipation rate of the turbulent kinetic energy

dissipation across the wake.

the dissipation rate is a highly fluctuating quantity, in the same way - if not more - as

any other fluctuating quantity, in agreement with Landau’s comment. This remarks is of

major importance in the context of refining the theoretical description of turbulence that

may therefore account for the fluctuating nature of the dissipation rate.

Another remark concerns self-similarity of ε′ when normalized by an appropriate set of

variables. Indeed, it appears that self-similarity of ε is attained at the level of the standard

deviation at x = 60D, i.e. at the same distance as for the mean value.

A careful analysis of Fig. 11 further reveals that, irrespectively of the downstream po-

sition, ε′ is relatively well approximated by ε′4x. Then, the best candidates appear to be

the two axisymmetric expressions Eqs. (5) and (6) followed by the homogeneous surrogate

Eq. (3) which altogether reveal a maximum departure from the real values of about 40-50%.
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Finally, the use of the isotropic expression Eq. (2) systematically overestimates the standard

deviation of ε by almost a factor 2.

In summary, whilst the ε4x appears to be the best candidate for capturing the fluctuations

of ε, the use of the isotropic surrogate leads to some drastic errors. This is particularly

important when internal intermittency corrections which account for the fluctuating nature

of the dissipation rate have to be applied. This is a remarkably challenging task since ε4x

requires measurements using a probe consisting of at least 4 X-wires.

It is worth mentioning that the fact that the standard deviation of ε4x is in close agreement

with that of ε does not necessarily imply that their respective probability density functions

shape similarly. In the next section, we turn our attention to this issue.

VI. PROBABILITY DENSITY FUNCTION

The results of the preceding section showed that the kinetic energy dissipation rate can

be relatively closely approximated by some of its surrogates at the level of mean quantities.

However some departures from the real values of the dissipation rate were observed as

regards to the standard deviation of this quantity. This is of significant importance from

an experimental point of view, as one can be confident in estimating ε from a limited set of

measurements of velocity derivatives, whilst ε′ requires more complex measurements.

However, the results do not give any indigent information on how the instantaneous values

of the surrogates compare with ε. Some of this information can be obtained through the

probability density function (PDF), shown in figure 12. The normalization of the PDF is such

that
∫∞
−∞ Pαdα = 1, where Pα is the PDF of α, and α represents ε and its surrogates. The

figure also reports the PDF of ε obtained from the DNS data of decaying three-dimensional

box turbulence3.

All the PDFs present a similar positive tail with a nearly exponential form,

Pα ∼ exp(−βα), (18)

where the constant β is estimated to be about 1.25. However, significant differences in the

PDFs are visible for α ≤ 0 at all x/D positions. For example, all the surrogate distributions

depart from the PDF of ε at x/D = 20 and 60. Similar results were observed in grid

turbulence4 and a turbulent plane wake36 (Zhu and Antonia, 1997). This means that the
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FIG. 12. Comparison of the probability density function of the turbulent kinetic energy dissipation

at two different transverse positions y = 0 and y = 0.5(P (εα) ∗ 100). Black: ε; red: εiso; blue: εa,x;

light blue: εa,y; green: εhom ; purple: ε4x; The dashed line is the PDF of ε from the DNS3 of a

decaying box turbulence and is shown for reference.

error that one makes using surrogates of ε will be observed for the most probable values of

ε and are therefore of critical importance.

Of all the surrogate PDFs for Pε, only Pε4x closely follows Pε; the agreement between the

two is satisfactory at x/D = 100. This indicates that ε4x captures well all instantaneous

events ranging from weak to high intensity, and explains the good agreement observed earlier

results not only, associated with their mean values (figure 6) but also their rms distributions

(figure 11). This remark holds irespectively of the transverse distance y suggesting that there

is no particular effect of the mean shear on the PDFs.
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VII. JOINT PDFS

A more stringent test of the adequacy of the surrogates to estimate instantaneous values of

ε can be further assessed using Joint PDF. Indeed, a joint PDF highlights the probability to

observe a particular value of ε inferred from one particular surrogate knowing the real value

of ε. They are thus likely to be more severe in assessing the adequacy of such surrogates.

The agreement between Pε and Pε4x is well reflected in the JPDFs of ε and ε4x shown in

Figure 13, which also shows the JPDFs between ε and the other surrogates. These JPDFs

are obtained on the centerline of the cylinder wake at x/D = 100. A perfect correlation

between two variables α1 and α2 would be represented by a straight line α1 = α2 inclined at

450. Note that although none of JPDFs display a perfect correlation, the JPDF isocontours

of ε and ε4x reveal the best alignment along a 450 direction highlighting the reasonable

agreement between Pε and Pε4x .

Moreover, there is some degree of correlation between ε and its other surrogates. This

can be further assessed from the data of table I, which reports the correlation coefficients

between ε and its surrogates (ρε,α, α represents any of the surrogates) at x/D = 100 on

the centerline and at half-width location. As expected, ρε,ε4x is the largest. Antonia et al.4

measured a coefficient ρε,εhom of about 0.8 in grid turbulence. They argued that a larger value

would have been expected, had they been able to correct the instantaneous fluctuations for

spatial resolution. However, with a value of about 0.61, the present ρε,εhom is not as large as

that in grid turbulence. This indicates that the correlation between the energy dissipation

rate and the enstrophy fields is weaker in the wake flow than in grid turbulence. In other

words, this highlights a stronger effect of pressure fluctuations in the inhomogeneous wake

flow by comparison to homogeneous grid turbulence.

Nevertheless, the fact that all the coefficients exceed 0.60 may indicate a non-negligible

level of correlation between ε and its surrogates in general, regardless of the lateral position

in the wake.

VIII. CONCLUSIONS

The instantaneous turbulent kinetic energy dissipation rate, ε, and its mean distributions,

ε, in a wake of a square cylinder were investigated using numerical simulations based on
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FIG. 13. Joint probability density function of the turbulent kinetic energy dissipation (Eq. (1)

and Eq. (2), (5), (6), (3), (9) at position y = 0 and x/D = 100.

the lattice Boltzmann method. Various expressions for approximating ε, based on local
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y = 0 y0.5

ρεεiso 0.68 0.68

ρεεa,x 0.75 0.674

ρεεa,y 0.76 0.78

ρεεhom 0.62 0.61

ρεε4x 0.87 0.85

TABLE I. Correlation coefficient ρεεiso , ρεεa,x , ρεεa,y , ρεεhom and ρεε4x at x/D = 100

isotropy (εiso), local axisymmetry along x (εa,x) and y (εa,y), local homogeneity (εhom), and

homogeneity in the transverse plane, (ε4x ), were assessed as surrogates for ε.

All the approximations show a good collapse with ε when the distance downstream of

the cylinder is larger than about 40 diameters. Even thought εiso is suited for such distance,

it was shown that compensation between the components of ε are at play and explains the

latter agreement between εiso and ε Closer to the cylinder, the collapse is reasonable across

the wake, except for εiso and εa,y, which depart from ε in the region 0 ≤ y/D ≤ 1.

The analysis is then extended to the instantaneous values of ε using PDFs and JPDFs.

It is emphasized that ε4x correlates best with ε whereas εiso shows the smallest correlation

with ε.

In summary, results indicate that ε4x (Eq. (9) is an adequate surrogate for ε and can be

used for correctly determining the probabilistic behaviors of ε. This have a major importance

for experimentalists since a reliable estimate of the instantaneous properties of the kinetic

energy dissipation rate.

REFERENCES

1Abe, H., Antonia, R., and Kawamura, H., “Correlation between small-scale velocity and

scalar fluctuations in a turbulent channel flow,” J. Fluid Mech 627, 1 – 32 (2009).

2Antonia, R., Abe, H., and Kawamura, H., “Analogy between velocity and scalar fields in

a turbulent channel flow,” J. Fluid Mech. 628, 241 – 268 (2009).

3Antonia, R., Orlandi, P., and Zhou, T., “Assessment of a three-component vorticity probe

in decaying turbulence,” Expts Fluids 33, 384 – 390 (2002).

21



4Antonia, R. A., Zhou, T., and Zhu, Y., “Three-component vorticity measurements in a

turbulent grid flow,” J. Fluid Mech. 374, 29 – 57 (1998).

5Aronson, D. and Lofdahl, L., “The plane wake of a cylinder: Measurements and inferences

on turbulence modeling,” Phys. Fluids 5, 1433 (1993).

6Browne, L. W. B., Antonia, R. A., and Shah, D. A., “Turbulent energy dissipation in a

wake,” J . Fluid Mech. 1 79, 307 – 326 (1987).

7Burattini, P., Lavoie, P., Agrawal, A., Djenidi, L., and Antonia, R. A., “Power law

of decaying homogeneous isotropic turbulence at low reynolds number,” Phys Rev E 73

(2006).

8Chen, S. and Doolen, G. D., “Lattice boltzmann method for fluid flows,” Ann. Rev. Fluid

Mech. 30, 329 – 364 (1998).

9Djenidi, L., “Lattice-boltzmann simulation of grid-generated turbulence,” J. Fluid Mech.

552, 13 – 35 (2006).

10Djenidi, L., “Structure of a turbulent crossbar near-wake studied by means of lattice

boltzmann simulation,” Phys Rev E 77 (2008).

11Djenidi, L., Tardu, S. F., and Antonia, R. A., “Relationship between temporal and spatial

averages in grid turbulence,” J. Fluid Mech. 730, 593 – 606 (2013).

12Durao, D. F. G., Heitor, M. V., and Pereira, J. C. F., “Measurements of turbulent and

periodic flows around a square cross-section cylinder,” Expts Fluids 6, 298 – 304 (1988).

13Ertunc, O., Zyilmaz, N. O., Lienhart, H., Durst, F., and Beronov, K., “Homogeneity of

turbulence generated by static-grid structures,” J. Fluid Mech. 654, 473 – 500 (2010).

14Fabris, G., Conditionally sampled turbulent thermal and velocity fields in the wake of a

warm cylinder and its interaction with an equal cool wake, Ph.D. thesis, Illinois Institute

of Technology (1974).

15Frisch, U., Hasslacher, B., and Pomeau, Y., “Lattice-gas automata for the navier-stokes

equation,” Phys Rev E Letters 56,14 (1986).

16George, W. and Hussein, H., “Locally axisymmetric turbulence,” J Fluid Mech 233, 1 –

23 (1991).

17Hussein, H. J., “Evidence of local axisymmetry in the small scales of a turbulent planar

jet,” Phys. Fluids 6, 20 – 58 (1994).

18Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., and Uno, A., “Energy dissipation

rate and energy spectrum in high resolution direct numerical simulations of turbulence in

22



a periodic box,” Phys. Fluids 15 (2003).

19Kolmogorov, A. N., “Dissipation of energy in the locally isotropic turbulence,” Doklady

Akademii Nauk SSSR 32, 16 (1941).

20Kolmogorov, A. N., “The local structure of turbulence in incompressible viscous fluid for

very large reynolds number,” Doklady Akademii Nauk SSSR 30, 301 (1941).

21Kravchenkoa, A. G. and Moin, P., “Numerical studies of flow over a circular cylinder at

re=3900,” Phys. Fluids 12 (2000).

22Landau, L. D. and Lifshitz, E. M., Fluid Mechanics (Pergamon Press, London., 1959).

23Lee, B. E., “The effect of turbulence on the surface pressure field of a square prism,” J.

Fluid Mech. 69, 263 – 282 (1975).

24Liu, T., Liu, G., Ge, Y., Wu, H., and Wu, W., “Extended lattice boltzmann equation

for simlation of flows around bluff bodies inhight reynolds number,” in BBAA VI Inter-

national Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July,

20-24 (2008).

25Mi, J. and Antonia, R. A., “Approach to local axisymmetry in a turbulent cylinder wake,”

Expts Fluids 48, 933 – 947 (2010).

26Okajima, A., “Strouhal numbers of rectangular cylinders,” J Fluid Mech 123, 379 – 398

(1982).

27Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E., “Experimental and numerical

studies of the flow over a circular cylinder at reynolds number 3900,” Phys. Fluids 20

(2008).

28Sohankar, A., Norberg, C., and Davidson, L., “Simulation of three-dimensional flow

around a square cylinder at moderate reynolds numbers,” Phys. Fluids 11, 288 (1999).

29Sreenivasan, K. R. and Antonia, R. A., “The phenomenology of small-scale turbulence,”

Ann. Rev. Fluid Mech 29, 435 – 472 (1997).

30Succi, S., The lattice Boltzmann equation: for fluid dynamics and beyond, edited by O. uni-

versity press (2001).

31T. Zhou, Z. Hao, L. P. C. and Zhou, Y., “Comparisons between different approximations

to energy dissipation rate in a self-preserving far wake,” Phys Rev E 74 (2006).

32Taylor, G. I., “Statistical theory of turbulence,” Proc. R. Soc. Lond. A 151, 422 (1935).

33Thiesset, F., Exploration analytique et exprimentale des interactions cohrence-turbulence

au sein dun coulement de sillage, Ph.D. thesis, Faculte des Sciences & Techniques de

23



lUniversite de Rouen (2011).

34Thiesset, F., Danaila, L., and Antonia, R. A., “Dynamical effect of the total strain induced

by the coherent motion on local isotropy in a wake,” J. Fluid Mech. 720, 393 – 423 (2013).

35Z. Hao, T. Z., Chua, L., and Yu, S., “Approximations to energy and temperature dissi-

pation rates in the far field of a cylinder wake,” Experimental Thermal and Fluid Science

32, 791 – 799 (2008).

36Zhu, Y. and Antonia, R., “On the correlation between enstrophy and energy dissipation

rate in a turbulent wake,” Applied Scientific Research 57, 337 – 347 (1997).

24


	Statistics of the turbulent kinetic energy dissipation rate and its surrogates in a square cylinder wake flow
	Abstract
	Introduction
	Lattice Boltzmann method
	Validation of computing
	Results for the mean kinetic energy dissipation rate
	Standard deviation of the energy dissipation rate
	Probability density function
	Joint PDFs
	Conclusions


