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On self-preservation and log-similarity in a slightly heated axisymmetric mixing layer1

F. Thiesset,1 V. Schaeffer,1 L. Djenidi,1, a) and R. A. Antonia12

School of Engineering, University of Newcastle, NSW 2308 Callaghan,3

Australia4

This paper reports an experimental investigation of self-preservation for one- and

two-point statistics in a slightly heated axisymmetric mixing layer. Results indicate

that the longitudinal velocity fluctuation u seems to approach self-preservation more

rapidly than either the transverse velocity fluctuation v or the scalar fluctuation

θ. The Reynolds number Reδ = U0δ/ν (U0 being the jet inlet velocity and δ the

momentum thickness) that ought to be achieved for the one-point statistics to behave

in a self-similar fashion is assessed. Second, the relevance of different sets of similarity

variables for normalizing the energy spectra and structure functions is explored. In

particular, a new set of shear similarity variables, emphasizing the range of scales

influenced by the mean velocity and temperature gradient, is derived and tested.

Since the Reynolds number based on the Taylor microscale increases with respect

to the streamwise distance, complete self-preservation cannot be satisfied; instead,

the range of scales over which spectra and structure functions comply with self-

preservation depends on the particular choice of similarity variables. A similarity

analysis of the two-point transport equation, which features the large scale production

term, is performed and confirms this. Log-similarity, which implicitly accounts for

the variation of the Reynolds number, is also proposed and appears to provide a

reasonable approximation to self-preservation, at least for u and θ.

PACS numbers: 47.27.-i, 47.27.wj, 01.50.Pa5
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I. INTRODUCTION6

The hypothesis of self-preservation which assumes that the flow is governed by a single set7

of length, velocity and scalar scales has been extensively applied for describing the spatio-8

temporal evolution of some canonical turbulent flows. Among the literature, this hypothesis9

has led to significant contributions to the study of homogeneous isotropic turbulence (Refs.10

1–4 among others) and to scalar fluctuations evolving in isotropic turbulence (e.g. Refs.11

5–9). Self-preservation has also been applied to homogeneous shear turbulence10,11, wake12

flows12–17, turbulent jets13,18–22 and turbulent shear-layers23–27. It is important to stress that13

the quest for self-preserving solutions has motivated many aspects of research in turbulence14

since it has the tremendous advantage of reducing partial differential equations to ordinary15

differential equations.16

Generally speaking, one-point statistics (mean values, Reynolds stress, etc) as well as17

as two-point statistics (e.g. spectra or structure functions) can be studied under the con-18

straints imposed by self-preservation. When applied to two-point statistics, complete self-19

preservation implicitly suggests that all scales behave similarly. It is now well known that20

this requires the Reynolds number Rλ based on the Taylor microscale λ (to be defined later)21

and a typical fluctuation u′ to be constant (see e.g. Refs. 2–4, and 21). Indeed, the con-22

stancy of Rλ ensures that the ratios between the different length-scales (the integral scale,23

the Taylor microscale, the Kolmogorov scale) and velocity scales (for instance the rms, the24

Kolmogorov velocity, ...) are also constant8,21,22. In such cases, inner scales (e.g. the Taylor25

microscale or the Kolmogorov length-scale) can be used interchangeably with outer scales26

(the integral length-scale for example) because they all behave similarly. This circumvents27

the question of which are the most relevant similarity variables to be used for normaliza-28

tion. The only flows for which this constraint is respected is the far field of the round jet29

(at least along the axis), the far field of a cylinder wake (preliminary results gathered by30

our group suggest that x/D, where D is the diameter of the cylinder, needs to exceed a31

value of about 200 before Rλ is constant), and the initial period of decay of grid turbu-32

lence at an infinitely large Reynolds number. Therefore, the range of flows complying with33

self-preservation appears to be very limited especially since the third flow is unlikely to be34

realizable.35

For turbulent flows for which Rλ varies significantly, complete self-preservation, i.e. self-36
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similarity of spectra or correlation functions at all scales, cannot be satisfied. Consequently,37

the range of scales satisfying self-preservation depends on the particular choice of similarity38

variables (see e.g. Refs. 4, 8, and 9), and it appears that outer variables are relevant for39

normalizing the large-scales whilst inner variables are likely to be appropriate at small-scales.40

Therefore, performing a self-similarity analysis in flows where Rλ varies significantly remains41

a challenging task.42

On the other hand, log-similarity has been subsequently proposed as an alternative to the43

classical picture of self-similarity. Log-similarity was first applied to temperature spectra in44

Rayleigh-Bénard convection28 and was shown to hold over an impressive range of Rayleigh45

numbers. Nelkin29 soon suggested the applicability of such a similarity for fully developed46

homogeneous isotropic turbulence. The main theoretical arguments in favour of the plau-47

sibility of log-similarity rely on a multifractal analysis28,30,31 and variational approaches of48

small-scale intermittency31. Clearly, the relevance of such approaches when the Reynolds49

number is only moderate remains somewhat debatable.50

The main objective of the present study is to investigate in detail the accuracy with which51

self-similarity is satisfied in a heated axisymmetric shear layer. In particular, the focus is on52

the approach towards self-preservation for one-point statistics, velocity-temperature correla-53

tions as well as two-point statistics such as spectra and structure functions. Both dynamical54

and scalar fields are examined. Whilst the validity of self-preservation in the axisymmetric55

shear layer does not need to be further demonstrated, it is of interest to extend the analysis56

to higher-order statistics (up to the third-order), previous studies being usually limited to57

first- and second-order statistics23–27. Note that the axisymmetric shear layer has been less58

studied than the plane mixing layer for which extensive measurements of high-order statis-59

tics and small-scale quantities have been performed for example by Refs. 32 and 33. In60

addition, to the best of our knowledge, extending the study of self-preservation to two-point61

statistics in the shear layer has not been attempted previously. This seems quite surprising,62

given that the shear layer is an archetypal flow, which feels the presence of a strong shear63

as well as a persisting organized motion24. Consequently, this particular flow appears to be64

nicely tailored for studying the interactions between different ranges of scales and how they65

could reach a possible equilibrium. For example, it is of interest to assess the range of scales66

directly influenced by the mean shear and the mean temperature gradient, how they differ67

in behaviour with the small-scales and which quantities are relevant for normalizing them.68
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Moreover, the Reynolds number Rλ is known to increase with respect to the streamwise dis-69

tance. The shear layer is thus perfectly suited for investigating the departure from complete70

self-preservation associated with the spatial variation of Rλ. Further, the relevance of the71

log-similarity, whose major advantage is to implicitly account for this variation, can also be72

assessed.73

This paper is organized as follows. The experimental apparatus is first outlined in §II.74

Second, the approach towards self-similarity for one-point statistics is investigated in §III.75

The analysis is further extended to two-point statistics in §IV. For this purpose, four different76

sets of similarity variables are tested both analytically (§IVB) and experimentally (§IVC),77

notably the shear similarity variables which are defined in §IVA. Log-similarity is then78

applied to the experimental data in §IVD. Conclusions are finally drawn in §V79

II. EXPERIMENTS80

Experiments were performed in a mixing layer associated with a slightly heated round81

jet. The jet facility has been described in detail for example in Refs. 21 and 34. The jet82

nozzle has a diameter of D = 55mm, and the jet exit velocity U0 was set to 12.3m.s−1.83

The corresponding Reynolds number ReD = U0D/ν is 46, 700 (ν is the kinematic viscosity).84

Some measurements were carried out in the boundary layer at the jet exit and it was found85

that the mean velocity was consistent with a Blasius profile (see Fig. 1(c)). The maximum86

turbulence level in the boundary layer was found to be of about 3.5%, i.e. in the range of87

typical experiments26,34,35(see Fig. 1(c)). The air at the inlet of the centrifugal blower was88

heated using an electrical fan heater. The jet facility was also completely lagged with a glass89

wool layer covered with a metallic foil overlay to obtain a more uniform mean temperature90

profile at the exit. The homogeneity of the temperature profile at the jet exit was checked91

using a thermocouple and found to be within 10%. The temperature excess θ0 ≈ 15◦C92

on the jet centerline. The ratio Gr/Re2D (Gr = gD3(θ0 + Ta)/ν
2Ta is the Grashof number93

with Ta is the ambient absolute temperature and g the gravity acceleration) was about94

3.5×10−3 indicating that temperature can be considered as a passive scalar, since buoyancy95

is negligible. Simultaneous velocity and temperature measurements were performed at six96

different downstream distances from the jet nozzle 1.5 ≤ x/D ≤ 4 and for several transverse97

positions traversing the shear layer.98
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The longitudinal U and transverse V velocity components in the x in y direction re-99

spectively (Fig. 1(a)) were measured using a X-wire probe, consisting a two Wollaston100

(Pt-10%Rh) wires of diameter 2.5µm and typical length of 0.5mm. The angle between the101

two wires was chosen to be about 60◦ in order to capture high velocity angles that may102

occur in this particular region of the flow (see Fig. 1(b)). The lateral separation between103

the two wires were about 0.5mm. The hot-wires were operated by in-house constant tem-104

perature anemometer at an overheat ratio of 1.5. The hot-wire voltages were corrected from105

temperature variations using36106

Ec(t) = Em(t)

(

Tw − Tcal

Tw − T (t)

)1/2

(1)

where Ec and Em are the corrected and measured voltages respectively. Tw , Tcal and T (t)107

are respectively the wire temperature, the air temperature during calibration and the air108

temperature during measurements. Calibration was made in situ in the potential core of109

the jet. The look-up table method37–39 was employed for calibrating the X-wire probe with110

velocity magnitudes in the range 0-30m.s−1 with velocity increments of 1m.s−1 and angles111

in the range ±60◦ with increments of 10◦.112

A Wollaston (Pt) wire of nominal diameter dw = 0.6µm, operated by in-house constant113

current circuits, was used for temperature measurements. The current supplied to the wire114

was 0.1mA, so that the wire was essentially insensitive to the flow velocity. The wire was115

etched for a length lw ≈ 0.6mm, yielding a ratio lw/dw of about 1000. A square-wave injection116

technique34,40 was adopted for the determination of the frequency response of the cold wire.117

As emphasized in Fig. 1(d), the Pt-0.6µm wire was chosen since the cut-off frequency fc was118

found to be larger than for a Pt-10%Rh-0.63µm wire. The instantaneous temperature signal119

is then corrected following the method of Ref. 43. The cut-off frequency was first fitted using120

the functional fc = 1/2πτw = A1+A2

√
U0+A3U0, which allows to compute the instantaneous121

time constant τw(t) knowing the instantaneous velocity magnitude
√

U2(t) + V 2(t). The122

corrected temperature θ is then calculated from measured temperature θm following θ =123

θm + τw(t)∂θm/∂t. The correction method of Ref. 40 was also tested and led to some very124

similar corrections for the temperature signal and related statistics. The cold-wire probe has125

an angle of 30◦ with the X-wire probe, the latter being aligned with the jet axis (Fig. 1(b)).126

The cold-wire is displaced by about 0.7mm from the hot-wires in order to avoid interferences127

(Fig. 1(b)).128
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The output signals from anemometer channels, operating the cold and hot wires, were129

passed through buck-and-gain circuits and low-pass filtered at a frequency fc slightly larger130

than the Kolmogorov frequency fK = U/2πηK (U is the mean velocity and ηK the Kol-131

mogorov length-scale to be defined later). The signals were acquired using a National in-132

strument 16 bits A/D converter at a sampling frequency fs = 2fc. Convergence of velocity133

and scalar statistics was checked and found to be satisfactory. The high turbulence level134

in the shear layer can significantly alter the reliability of the classical Taylor hypothesis135

x ≡ Ut. Therefore, for calculating two-point statistics, a local convection velocity is used in136

the Taylor hypothesis; for this purpose we followed the same procedure as outlined in Ref.137

21.138

III. SELF-PRESERVATION OF ONE-POINT STATISTICS139

We first pay particular attention to the approach towards self-preservation for one-point140

statistics. At this stage, the relevant scales are the inlet velocity U0 for the velocity field,141

the temperature excess θ0 = T (y = 0)− Ta for the temperature field, whilst the normalized142

transverse coordinate ξ is given by143

ξ = −y − y0.5
δ

. (2)

y0.5 is the position y where the longitudinal mean velocity U is equal to U0/2 (hereafter, the144

overbar denotes time averaged values) and the momentum thickness δ is defined by145

δ =

∫ ∞

0

U(y)

U0

(

1− U(y)

U0

)

dy. (3)

δ can be used interchangeably with the shear-layer thickness δ0.1 = y0.9 − y0.1 (y0.9 and146

y0.1 are the transverse locations where U/U0 is 0.1 and 0.9 respectively) and the vorticity147

thickness δω148

δω =
U0

max
(

∂U
∂y

) (4)

since δ, δ0.1 and δω all behave similarly with the downstream distance x. More precisely, all149

these length-scales are known to be proportional to x (e.g. Refs. 24, 26, and 35).150

Figs. 2(a), 2(b), 2(c) present the first-, second- and third-order statistics of the velocity151

field normalized by the relevant quantities. A compilation of some published experimental152
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data are also given to assess the accuracy of the present measurements. Whilst the agreement153

between the present measurements and the published data of Refs. 35 and 44 is satisfactory154

for the mean velocity U/U0, there are some slight differences as far as second-order statistics155

are concerned. These discrepancies may be first attributed to some differences in the initial156

conditions26,27,44, especially the turbulence level which is slightly larger than that of Ref. 35.157

Second, and perhaps to a larger extent, these departures may be due to the particular probe158

used for measuring u and v (a 60◦ X-wire probe being likely to be more adequate than a159

45◦ in this region of the flow) and to the calibration method (the look-up table being more160

reliable than the yaw-angle method especially in highly turbulent flows39).161

It is observed that the longitudinal velocity component reaches a self-similar state rather162

quickly and there is a perfect collapse of both U/U0 and u′/U0 (the prime stands for the163

rms value) for all the range of measurements 1.5D ≤ x ≤ 4D (only the range of ξ ≤ 3 is164

considered for analysing self-similarity since for higher transverse distances, fluctuations in165

the potential core of the jet progressively increase). However, the collapse for the transverse166

velocity component v is attained less rapidly, and a distance of x = 3.5D (≡ Reδ = U0δ/ν =167

6.4× 103) has to be reached for v′/U0 to behave in a self-similar fashion. This remark holds168

also for the Reynolds stress uv/U2
0 and higher-order statistics such as the kinetic energy flux169

(vu2+ v3)/U3
0 . Note that some measurements at a larger distance from the jet nozzle would170

have been necessary to confirm this since the assessment of self-similarity relies only on the171

two profiles at x = 3.5D and 4D. However, the present measurements seem to indicate that172

a Reynolds number Reδ = 6.4 × 103 has to be attained for self-preservation to be satisfied173

for all velocity components. In Ref. 35, it was observed that v′/U0 was self-similar beyond174

x = 0.71D (no measurements were made at smaller distances) corresponding to Reδ ≈ 104175

which is consistent with our observation. Noticeable is the fact that the maximum value176

for both v′/U0 and uv/U2
0 progressively decreases before reaching its self-similar value of177

about 0.14 and -0.01 respectively. This may be associated with the presence of coherent178

structures, known as the Kelvin-Helmholtz vortices24, whose energetic contribution to v′179

and uv decreases as x increases. This point will be further confirmed when analysing two-180

point statistics.181

The downstream evolution of the shear layer characteristic length-scales δ, δ0.1 and δω is182

plotted in Fig. 2(d), together with their respective linear fit. The proportionality between δ,183

δ0.1 and δω and the streamwise distance x is well verified for the present measurements. The184
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slope for ∂δ/∂x is equal to 0.0394 which is slightly larger than the commonly encountered185

values generally in the range [0.029-0.037]26,27. ∂δ0.1/∂x = 0.185 which is comparable with186

some published values [0.17-0.23] (Ref. 26 and references therein). ∂δω/∂x = 0.153 in187

agreement with the data of Brown and Roshko24 [0.145 - 0.22]. The linearity of δ, δ0.1 and188

δω with x confirms that they can be used interchangeably for normalizing the transverse189

distance y.190

We now turn our attention to the scalar field. For convenience, the temperature excess θ191

relative to the ambient temperature Ta is considered here, viz. θ = T−Ta. Experimental data192

for the mean scalar value θ, and the rms of scalar fluctuations θ′, the velocity-temperature193

correlations uθ, vθ and the temperature flux vθ2, normalized by the appropriate set of simi-194

larity variables (the temperature excess ∆θ0 = T (y = 0)− Ta and the momentum thickness195

δ), are given in Fig. 3(a), 3(b), 3(c) and 3(d) respectively. Even though comparing the196

plane and axisymmetric shear layer may be rather misleading, the mean temperature profile197

we obtain is roughly consistent with that inferred from Ref. 45. The mean and fluctu-198

ating temperature fields (Fig. 3(a) and 3(b)) appear to reach a self-similar state around199

x = 3.5D, i.e. at the same position as the transverse velocity component. The velocity-200

temperature correlations uθ and vθ (Fig. 3(c)) appear to be of opposite sign and also attain201

self-preservation at a streamwise distance of x = 3.5D. The transverse temperature flux,202

i.e. the transport of temperature fluctuations θ2 by the transverse velocity component v is203

represented in Fig. 3(d). Here again, the profiles are roughly consistent with self-similarity204

for downstream distance x ≥ 3.5D.205

In summary, one-point statistics of the velocity components u, v and the scalar field θ206

reach a self-preserving state following different approaches. It is observed that statistics207

of u attain self-similarity more rapidly than that of v and θ. Arguably, this difference in208

behaviour is likely to be attributed to the contribution of the coherent motion which is209

mostly visible on v and diminishes with the streamwise distance. This statement can be210

further confirmed using energy spectra and structure functions on which we now turn our211

attention.212
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IV. SELF-PRESERVATION OF TWO-POINT STATISTICS213

Extending the analysis of self-preservation to two-point statistics provides a deeper insight214

into the flow details since the evolution of the turbulence structure at a given scale can be215

assessed. In the present study, the relevance of four different sets of similarity variables for216

normalizing energy spectra and structure functions is tested217

• The Kolmogorov variables46 uK = (νǫ)1/4 and ηK = (ν3/ǫ)1/4 (ǫ = 15ν(∂u/∂x)2 is the218

mean kinetic energy dissipation rate) for normalizing the velocity spectra and structure219

functions. For the temperature field, the Batchelor variables are used θB =
√

ǫθηK/uK220

and ηB = ηK/Pr (the Prandtl number Pr = ν/κ with κ the temperature diffusion221

coefficient and ǫθ = 3κ(∂θ/∂x)2 is the scalar dissipation rate).222

• The George similarity variables2, i.e. the velocity variance u2
α (uα stands for either u or223

v) and the Taylor microscale λ =
√

15νu2/ǫ for the velocity field and the temperature224

variance θ2 and the Corrsin microscale λθ =
√

3κθ2/ǫθ for the scalar field.225

• The outer variables. The term ”outer variables” should be understood as macroscopic226

scales, for instance δ is the characteristic length-scale and U0 and θ0 are used for227

normalizing the dynamical and scalar field respectively.228

• The shear variables which are defined below.229

A. Definition and assessment of the shear characteristic scales230

In order to derive the shear characteristic scales, we will consider the simplified case of231

homogeneous shear turbulence. It is important to stress that this hypothesis might not be232

strictly applicable to the axisymmetric shear layer since e.g. the turbulent diffusion term233

is likely to contribute32 to the energy budget. However, it is obvious that the production234

mechanism associated with the mean shear is a predominant feature of the shear layer,235

especially at a transverse position ξ = 0 (see Ref. 32).236

Let us first recall the arguments of Ref. 47 that allow to derive the shear length-scale for237

the dynamical field. In a turbulent flow dominated by the mean shear, the scale-by-scale238
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budget is given by11239

6ν
∂(∆u)2

∂r
− (∆u)3 − 6

r4

∫ r

0

s4∆u∆vSuds =
4

5
ǫr. (5)

∆β = β(x+r)−β(x) is the velocity increment of the quantity β ≡ u, v, θ between two points240

separated by a distance r. The first term on LHS of Eq. (5) corresponds to the viscous241

term and dominates at rather small scales. The second term is identified as the non-linear242

transfer term whose contribution is mostly perceptible at intermediate scales. The third243

term corresponds to a production term through the mean velocity gradient Su = ∂U/∂y244

and dominates at rather large scales11,47. Casciola et al.47 suggested that the shear length-245

scale Lu
S first defined on dimensional arguments by Corrsin48 can be identified as the scale246

for which the production term in Eq. (5) balances the non-linear transfer term, i.e.247

Lu
S ≡ r such as (∆u)3(r) =

6

r4

∫ r

0

s4∆u∆vSuds (6)

Assuming (∆u)3 ∝ ǫr and ∆u∆v ∝ (ǫr)2/3 (which strictly hold only at very high Reynolds248

numbers), one obtains249

Lu
S =

√

ǫ

S3
u

(7)

Then, from the one-point energy budget which features only the production and dissipation250

terms, one can write251

U2
SSu ∼ ǫ (8)

which leads to a shear characteristic velocity US =
√

ǫ/Su. A similar analysis can be carried252

out for the scalar field by first recalling the scale-by-scale budget of (∆θ)2 in presence a253

mean temperature gradient49254

2κ
∂(∆θ)2

∂r
−∆u(∆θ)2 − 2

r2

∫ r

0

s2∆v∆θSθds =
4

3
ǫθr. (9)

where Sθ = ∂θ/∂y is the mean temperature gradient. Assuming ∆u(∆θ)2 ∝ ǫθr and δuδθ ∝255

(ǫr)1/3(ǫθr)
1/3(ǫθ/ǫ)

1/6, and identifying the scale Lθ
S for which the transfer term is equal to256

the production term, a shear length-scale for the scalar field can be similarly derived, viz.257

Lθ
S =

√

ǫ
3/2
θ

ǫ1/2S3
θ

(10)
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One can further write the one-point budget of the temperature variance in the following258

form259

USθSSθ ∼ ǫθ (11)

yields a shear characteristic temperature θS = ǫθ/Sθ

√

Su/ǫ. Lu
S and Lθ

S allow to assess the260

range of scales which are in essence influenced by the presence of the mean shear and tem-261

perature gradient47. For r ≥ Lu
S, L

θ
S, statistics of the velocity and scalar fields are dominated262

by production effects. On the other hand, the non-linearity of the cascade mechanism is263

supposed to be sufficiently strong for scales smaller than Lβ
S to behave in a universal manner,264

independently of the large scales.265

The shear characteristics scales are plotted in Fig. 4(a) and 4(b). We plot the ratios266

δ/Lu
S and δ/Lθ

S since Lu
S and Lθ

S tend to infinity when the mean velocity and temperature267

gradient goes to zero. For −4 ≤ ξ ≤ 2, both Lu
S and Lθ

S are proportional to δ (see Fig. 4(a)),268

indicating that the shear length-scales are characteristic of rather large scale phenomena and269

fall into our definition of outer length-scales. The proportionality of Lu
S and Lθ

S to δ is simply270

related to the fact that ǫU3
0 /δ and ǫθU0θ

2
0/δ behave in a self-similar fashion. The ratios δ/Lu

S271

and δ/Lθ
S are about 3 at ξ = 0. It thus appears that Lu

S and Lθ
S are slightly smaller than272

the shear layer momentum thickness δ. The characteristic velocity US and temperature273

θS are also presented in Fig. 4(b). Here again, all curves collapse reasonably well when274

normalized by U0 and θ0, confirming that the shear characteristic scales can be identified as275

outer macro-scales.276

B. A priori analysis of self-similarity for two-point statistics277

The aim of this section is to analyse a priori the adequacy of the different similarity278

variables for normalizing two-point statistics. For this purpose, let us write second- and279

third-order structure functions in dimensionless form280

(∆u)2 = U2(x)f(r/L) (12a)

(∆u)3 = U3(x)g(r/L) (12b)

(∆u∆v) = U2(x)h(r/L) (12c)

Injecting Eqs. (12) into Eq. (5), yields281

[2]
f ′

r̃
+ [F1]

g

r̃
+ [F2]

1

r̃5
Γ = [F3] (13)
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where r̃ = r/L, the prime denotes differentiation with respect to r̃ and Γ =
∫ r̃

0
s̃4hds̃. The282

three functions appearing in Eq. (13) can be expressed as283

F1 = ReL =
UL
ν

(14a)

F2 = ReL
SuL
U (14b)

F3 =
4

5

ǫL2

νU2
(14c)

Complete self-similarity implies that all terms within brackets must behave similarly with284

x. Since one of them appears to be constant, then F1, F2 and F3 should be also constant.285

Performing a similarity analysis without presupposing any particular form for U and L286

inescapably leads to several possible solutions depending on the constants F1 to F3 used for287

deriving them. For example, using Eqs. (14a) and (14c) leads to the Kolmogorov scales as288

the relevant length-scales whilst the shear variables emerge from the use of Eqs. (14a) and289

(14b). However, none of them are suitable in terms of simultaneously satisfying all three290

constraints. This indicates that complete self-similarity cannot be satisfied in the shear layer.291

To further describe this, let us assess the range of scales satisfying self-similarity depending292

on the particular set of similarity variables that is chosen.293

• The Kolmogorov scales ηK and uK. Recalling that in the shear layer ǫ ∝ x−1, we294

obtain295

F1 =
uKηK
ν

∝ x0 (15a)

F2 =
SuηK
uK

∝ x−1/2 (15b)

F3 =
4

5

ǫη2K
νu2

K

∝ x0 (15c)

Therefore, Kolmogorov similarity will be satisfied only at small scales for which the296

production term can be neglected. Arguably, this could be respected for scales in the297

range 0 ≤ r . Lu
S.298

• George similarity variables λ ∝ x1/2 and u′ ∝ x0
299

F1 =
u′λ

ν
= Rλ ∝ x1/2 (16a)

F2 = Rλ
Suλ

u′
∝ x0 (16b)

F3 =
4

5

ǫλ2

νu′2
∝ x0 (16c)
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which indicates that George similarity is expected to be relevant for both very small300

and very large scales. However, some substantial departures from self-similarity are301

expected in the intermediate range where g is predominant.302

• Outer similarity variables δ ∝ x and U0303

F1 =
U0δ

ν
∝ x1 (17a)

F2 =
U0δ

ν

Suλ

u′
∝ x1 (17b)

F3 =
4

5

ǫδ2

νU2
0

∝ x1 (17c)

The use of outer similarity variable will be relevant for the range of scales over which304

the viscous term 2f ′/r̃ is negligible. This is expected to be respected for scales in the305

range rc . r ≤ ∞, where rc is the cross-over length-scale between the viscous and306

inertial range, viz. rc/ηK ≈ 303/4 (see e.g. Ref. 4).307

• Shear variables. Since Lθ
s ∝ δ and US ∝ U0, similar deductions can be drawn for the308

shear similarity variables.309

An analogous analysis for Eq. (9), which is not reported here for the sake of clarity,310

leads to exactly the same conclusions. In summary, depending on the particular choice of311

similarity variables, the range of scales which satisfies self-preservation differs. The Kol-312

mogorov variables are expected to be relevant for small and intermediate scales, departure313

from self-similarity when using George variables are likely to be observed at intermediate314

scales whilst outer and shear characteristic scales are adequate for large and intermediate315

scales.316

C. Similarity of energy spectra and structure functions317

We first consider the degree with which energy spectra comply with self similarity when318

normalized by the four different sets of similarity variables presented in the previous section.319

In Figs. 5(a), 5(b), 5(c) and 5(d) are plotted energy spectra at ξ ≈ 0 in the range 1.5D ≤320

x ≤ 4D. In Fig. 5(a), a comparison of present spectra with those of Ref. 33 at Rλ = 330321

is given. The agreement at intermediate and small scales is almost perfect over two decades322

thus validating the present assessment of the energy spectra.323
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When velocity and temperature spectra are normalized by Kolmogorov and Batchelor324

scales respectively (Fig. 5(a)), one observes a perfect collapse for the dissipative scales325

up to the inertial range (strictly the restricted scaling range notwithstanding the quite326

low Reynolds number of the flow). Altogether, self-similarity is satisfied for wavenumbers327

kηK,B ≥ 2 × 10−2. For wavenumbers kηK,B < 10−2, there is a systematic increase in the328

amplitude of the spectra with x. This is explained by the non-constancy of the Reynolds329

number based on the Taylor microscale Rλ = u′λ/ν which increases from about 210 to 300330

for 1.5 ≤ x/D ≤ 4 (see e.g. Refs. 4, 8, and 9). Note also that the range of wavenumbers331

over which spectra of u and θ satisfy self-similarity is wider than that of v. A peak in the v332

spectra is easily discernible around kηK ∼ 10−2, which progressively diminishes in amplitude333

as x increases. At x = 3.5D the spectrum of v follows closely that at x = 4.0D. The peak334

in the v spectrum is a footprint of the organized motion which monotonically shrinks as335

x increases. The peak ceases to be discernible for x ≥ 3.5D. Arguably, the delay in the336

approach towards self-preservation for v that was observed for one-point statistics is likely337

to be due to these coherent structures and more particularly to the time they need before338

reaching a quasi-equilibrium state.339

When using the George similarity variables2 (see Fig. 5(b)), the collapse is satisfactory340

notwithstanding the slightly larger scatter in the inertial range. For v, a significant departure341

is also observed in the dissipative range. This differs from what is generally observed for342

example in grid4,8,9 or wake turbulence17. In these flows, it is generally observed than343

the George similarity2 is satisfied over a wider range of scales than with the Kolmogorov344

similarity. Here again, this feature is simply related to the Reynolds number Rλ which345

substantially increases (by a factor 1.5) between x = 1.5D and x = 4D.346

Spectra normalized by the outer similarity variables δ, U0 and θ0 are presented in Fig.347

5(c). In contrast to the Kolmogorov or George similarity variables, the outer scales lead to348

a satisfactory collapse for the large-scales, including also a part of the pseudo-inertial range.349

However, there is a significant drift towards high wavenumbers as x increases. In addition350

to the similarity analysis as provided in §IVB, this feature can be further explained by first351

recalling the definition of the normalized dissipation rate Cǫ352

ǫ = Cǫ
U3
0

δ
=

Cǫ

A3
I

u′3

δ
(18)

AI = u′/U0 and Cǫ were verified to be constant with x (see Figs. 2(b) and 4(a) for AI and353
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Cǫ respectively). Using Eq. (18) it can be shown that354

δ

λ
=

Cǫ

15A3
I

Rλ (19a)

δ

ηK
=

Cǫ

A3
I

15−3/4R
3/2
λ (19b)

U2
0

u2
K

=
1

A2
I

√
15

Rλ (19c)

Therefore, since Rλ increases, then the ratios δ/λ and δ/ηK increase and hence the normal-355

ized spectra progressively drift towards high wavenumbers. Unsurprisingly, similar deduc-356

tions can be made when the shear length-scales are used for normalisation (Fig. 5(d)) since357

Lu
S and Lθ

S are both proportional to δ.358

We now turn our attention to the accuracy of the self-preservation hypothesis for second-359

order structure functions (∆β)2 (β ≡ u, v, θ). Whilst spectra and structure functions are360

simply related by361

Eβ(k) =
β2

π

∫ ∞

0

(

1− (∆β)2

2β2

)

cos(kr)dr, (20)

their physical interpretation differs. Indeed, spectra strictly represent the energy density at362

a given wavenumber whereas structure functions are more likely to represent a cumulative363

energy distribution for scales ≤ r (e.g. Refs 50–52). Second, Eβ(k) = [m3s−2] whereas364

(∆β)2 = [m2s−2] which means that, in addition to a velocity scale, a length scale has to be365

invoked for normalizing the spectra which is not the case for structure functions. Therefore,366

it is of interest to further study the accuracy with which self-preservation is satisfied in367

physical space.368

Second-order structure functions normalized by the four different sets of similarity vari-369

ables are plotted in Figs. 6(a), 6(b), 6(c) and 6(d). Also included in Fig. 6(a) are the370

DNS structure functions of u and θ (Refs. 53 and 54) for a plane mixing layer at a similar371

Reynolds number (Rλ = 250). In the intermediate range of scales, some very slight dif-372

ferences are discernible, which may be attributed to the differences in the initial/boundary373

conditions. However, the degree of agreement (especially in the dissipative range) is suffi-374

ciently satisfactory to unambiguously support the reliability of the present measurements.375

With Kolmogorov or Batchelor scales (Fig. 6(a)), one observes a perfect collapse for (∆β)2376

at rather small scales, i.e. from the dissipative range up to the middle of the pseudo-inertial377

range. This is absolutely consistent with our theoretical expectations performed in §IVB.378
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Here again, the range of r over which (∆u)2 and (∆θ)2 satisfy self-preservation is wider379

than for (∆v)2. A hint of a bump is discernible in the structure function of v for scales380

r ≈ 3 × 102, highlighting the persisting influence of the coherent motion17,55,56. With the381

George variables (Fig. 6(b)), in agreement with section §IVB, scatter is observed in the382

inertial range, especially for u and θ. As far as the transverse velocity component v is con-383

cerned, the departure from self-similarity surprisingly appears in dissipative range. This is384

most likely due to a bias when dividing (∆v)2 by v2, the latter being altered by the energy385

contribution of the coherent motion. As was observed in the energy spectra, the use of either386

outer-variable (Fig. 6(c)) or shear-variables (Fig. 6(d)) leads to a reasonable collapse from387

large down to intermediate scales, whereas in the dissipative range, the different curves tend388

to drift towards small-scales when x increases.389

In summary, complete self-preservation, i.e. self-similarity of energy spectra and structure390

functions over the whole range of scales or wavenumbers, appears to be untenable since Rλ391

significantly increases with respect to the streamwise distance. As a consequence, the range392

of scales over which self-similarity is observed depends on the particular choice of similarity393

variables. Kolmogorov variables are suitable for small up to intermediate scales. A significant394

departure from self-similarity is observed in the inertial range when using George similarity395

whereas outer and shear variables are equally suitable for normalizing large and intermediate396

scales. These observations are in perfect agreement with the theoretical analysis presented397

in §IVB.398

The fact that large and small-scales both satisfy self-similarity with an overlap at inter-399

mediate scales, if normalized by their respective relevant quantities, suggests that complete400

self-preservation could be plausible. If such a scaling exists, it would rely on a more sophisti-401

cated transformation than the one arising from a single set of similarity variables. Notably,402

such a scaling should account for the relative behaviour of the different similarity variables.403

The next section addresses this issue.404

D. Log-similarity of energy spectra and structure functions405

The main idea is to use both outer and inner variables in a single representation for energy406

spectra and structure functions. In other words, instead of invoking only one set of velocity,407

length, and scalar characteristic scales, a new type of normalization could be proposed using408
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two sets of similarity variables: one targeting the large-scales, the other the small-scales.409

Then one should define an appropriate transformation so that the relative behaviour between410

outer and inner scales is accounted for. One solution is a log-type similarity. This type of411

similarity solution is not new. It has been first observed and justified for the temperature field412

in a Rayleigh-Bénard convection flow28 and further investigated in detail for the dynamical413

field in fully developed homogeneous isotropic turbulence29–31.414

Let us first define two functions fuα

δ and fuα
ηK

such as415

fuα

δ =
log
(

C1
(∆uα)2

U2

0

)

log
(

U2

0

u2

K

) (21a)

fuα

ηK
=

log
(

C1
(∆uα)2

u2

K

)

log
(

U2

0

u2

K

) . (21b)

fuα

δ and fuα
ηK

(uα ≡ u, v) are respectively functions of rδ and rηK defined by416

rδ =
log
(

C2
r
δ

)

log
(

δ
ηK

) (22a)

rηK =
log
(

C2
r
ηK

)

log
(

δ
ηK

) . (22b)

C1 and C2 are two constants. For the scalar field, similar definitions can be proposed417

f θ
δ =

log
(

C1
(∆θ)2

∆θ2
0

)

log
(

∆θ2
0

θ2
B

) (23a)

f θ
ηB

=
log
(

C1
(∆θ)2

θ2
B

)

log
(

∆θ2
0

θ2
B

) (23b)

rδ =
log
(

C2
r
δ

)

log
(

δ
ηB

) (23c)

rηB =
log
(

C2
r
ηB

)

log
(

δ
ηB

) . (23d)

418

From Eqs. (21a), (21b), (22a) and (22b), it can be shown that419

fuα

δ (rδ) = fuα

ηK
(rηK − 1)− 1. (24)
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This very general identity holds for any set of similarity variables (as far as they are different)420

and is not limited only to (δ, U0) and (ηK , uK). Eq. (24) suggests that if fuα

δ (rδ) is self-421

similar, then so does fuα
ηK

(rηK ) since they are related by a simple translation. Therefore,422

this has the major advantage of circumventing the particular choice of similarity variables423

that can be made for normalization and hence, a universal scaling independent of the sets424

of similarity variables is likely to emerge. Similar definitions can be proposed for the energy425

spectra426

Euα

δ =
log
(

C1
4π2Euα

U2

0
δ

)

log
(

U2

0
δ

u2

K
ηK

) (25a)

Euα

ηK
=

log
(

C1
4π2Euα

u2

K
ηK

)

log
(

U2

0
δ

u2

K
ηK

) , (25b)

Eθ
δ =

log
(

C1
4π2Eθ

∆θ2
0
δ

)

log
(

∆θ2
0
δ

u2

B
ηB

) (25c)

Eθ
ηB

=
log
(

C1
4π2Eθ

θ2
B
ηB

)

log
(

∆θ2
0
δ

u2

B
ηB

) , (25d)

427428

which are respectively functions of kδ and kηK,B
429

kδ =
log (2πC2kδ)

log
(

δ
ηK,B

) (26a)

kηK,B
=

log (2πC2kηK,B)

log
(

δ
ηK,B

) . (26b)

Similarly, it is straightforward to show that430

Euα

δ (kδ) = Euα

ηK
(kηK − 1)− 1. (27)

The prefactor 2π in Eqs. (26a) and (26b) and the factor 4π2 in Eqs. (25a) and (25b)431

arise from the definition of the wavenumber and the Fourier Transform respectively. It is432

interesting to note that this log-similarity law is quite similar to the one proposed by Refs.433

30 and 31. Indeed, using e.g. Eqs. (19c) and (19c), the expression for the energy spectra434
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can be recast as follows435

Euα

δ ∝
log
(

Euα

E†

)

log
(

Rλ

R†

) (28a)

kδ ∝
log
(

k
k†

)

log
(

Rλ

R†

) (28b)

where E†, R† and k† are some constants which are introduced here only for convenience.436

The log-similarity as given here by Eqs. (21a), (21b), (25a) and (25b) thus appears to be437

analogous to the log-similarity law proposed by Refs. 29–31.438

The log-similarity has been tested using the present measurements and the results are439

presented in Figs. 7(a) and 7(b). With the exception of v for which, as already mentioned,440

the coherent motion contributes significantly to the energy distribution at large scales, the441

log-similarity law seems to be satisfied closely over the whole range of scales. Pragmatically442

speaking, this type of scaling acts as a compression-dilatation transformation of the spectra443

(or structure functions) and wavenumbers (or separations) so that they all fall onto a single444

curve. As a consequence, the analytical considerations of Refs. 30 and 31 on the basis of445

a multifractal analysis, are likely to apply here to theoretically justify the plausibility of a446

log-similarity in the axisymmetric mixing layer, albeit the quite low Reynolds number of the447

flow. The values for C1 and C2 were empirically assessed and set to 0.25 and 1 respectively.448

Further investigations are needed to provide a physical interpretation for these constants449

and to explore their dependence on the initial conditions, the Reynolds number and the450

type of flow.451

V. CONCLUSION452

Self-preservation for one- and two-point statistics in the slightly heated axisymmetric453

mixing layer of a round jet has been investigated by means of hot- and cold-wire anemometry.454

Special care has been paid to the reliability of the present measurements for which use was455

made of (i) a 60◦ X wire probe, calibrated by a look-up table method, to capture high velocity456

angles and high turbulence levels, (ii) a local convection velocity in Taylor’s hypothesis and457

(ii) an instantaneous correction method for the cold-wire time response.458

Analysis of one-point statistics reveals that the dynamical and scalar fields follow different459

approaches towards self-similarity, the latter being reached more rapidly for u than for v460
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and θ. Altogether, all these quantities appear to attain a self-preserving state at x = 3.5D461

corresponding to a Reynolds number Reδ based on the upstream velocity U0 and the shear462

layer momentum thickness δ of 6.4 × 103. It is clear that the approach to similarity of463

v′/U0 and uv/U2
0 is delayed relative to that for u′/U0. This is interpreted as being caused464

by the footprint of coherent structures whose contribution is mostly perceptible on v and465

progressively decreases as x increases. Spectra and structure functions of v corroborate this466

interpretation.467

Four different sets of similarity variables are tested for normalizing spectra and structure468

functions. For this purpose, in addition to the scales Lu
S and US which pertain to the dynam-469

ical field, a shear length-scale Lθ
S and characteristic temperature scale θS are introduced on470

the basis of the scale-by-scale budget for the second-order temperature structure function.471

Lu
S and Lθ

S allow the range of scales which is affected by the presence of the mean velocity472

and temperature gradient, to be assessed. They are believed to be relevant quantities for a473

slightly heated mixing layer. Experimental data reveal that the shear variables behave as474

outer variables, i.e. Lu
S and Lθ

S are proportional to δ whilst US and θS scale as U0 and θ0475

respectively. This is simply explained by the self-similar behaviour of the normalized mean476

energy and scalar dissipation rates.477

Since the Reynolds number Rλ increases significantly with the streamwise distance x,478

complete self-preservation is not attainable. Instead, the range of scales complying with self-479

similarity depends on the particular choice of similarity variables. A similarity analysis of480

the two-point transport equation featuring only the production term has been performed and481

confirms this. Komogorov variables appear to be suitable at small and intermediate scales,482

i.e. in the range ηK,B ≤ r . Lu,θ
S . George’s similarity variables are adequate for normalizing483

the very small- and very large-scales but there are significant departures at intermediate484

scales where the non-linear energy transfer dominates. We noted also a bias, in the context485

of George’s similarity, associated with the non-negligible contribution of coherent motion to486

the velocity variance. On the other hand, outer and shear variables lead to a satisfactory487

collapse of spectra and structure functions at large and intermediate scales down to the488

cross-over length-scale between viscous and inertial effects.489

Log-similarity, which accounts for the variations of Rλ or equivalently the relative be-490

haviour between outer and inner variables, has been introduced and tested. Instead of using491

a single set of length, velocity or temperature characteristic scales for normalizing two-point492
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statistics, log-similarity relies on two sets of similarity variables. This has the major ad-493

vantage of circumventing the particular choice of the two sets of similarity variables since it494

was proven that e.g. fδ(rδ) and fηK (rηK ) are related by a simple translation transformation.495

Results show that log-similarity applies for all scales with a very high degree of accuracy.496

This observation opens the door to new perspectives for using the log-similarity hypothesis497

in flows where Rλ varies such as grid turbulence in the initial period, the far field of a plane498

jet or the intermediate wake region. However, whilst at very high Reynolds numbers, the499

inertial range is sufficiently developed for log-similarity to be an intuitive or plausible scal-500

ing, at low to moderate Reynolds numbers, there should be a limit in terms of variations501

of Rλ for the log-similarity to be satisfied. Indeed, variations in curvature of second-order502

structure functions (or spectra) in the pseudo-inertial range, which result from variations of503

Rλ, are unlikely to be compensated indefinitely by a simple compression-dilatation transfor-504

mation. The plausibility of the log-similarity in turbulence should further be demonstrated505

on a dynamical basis (i.e. the scale-by-scale budget) rather than on phenomenological ar-506

guments using multifractal models. These issues are left for future work. The two constants507

C1 and C2 were introduced and assessed empirically. Further work is also needed to investi-508

gate in detail their physical meaning and their dependence on the Reynolds number, initial509

conditions or the type of flow.510
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FIG. 1. (a) Sketch of the jet facility and coordinate system. (b) Schematic of the hot-cold wire

probe used for the present measurements. (c) Mean velocity (open symbols) and rms profiles (closed

symbols) near the jet exit. ◦ present measurements, ⊓⊔ data from Burattini et al.34, ♦ data from

Hussain & Clark35, —— Blasius profile. (d) Cut-off frequency of the cold wire measured using a

square wave current injection. ◦ present measurements with a Pt 0.6µm wire probe, ⊓⊔ present

measurements with a Pt-10%Rh 0.63µm wire probe, ♦ data from Lemay & Benäıssa40 with a

Pt-10%Rh 0.58µm wire probe submitted to the current injection test, △ data from Fiedler41 using

a Pt-10%Rh 0.63µm wire probe and a chopped laser beam, ⊲ data from Antonia et al.
42 using a

Pt-10%Rh 0.63µm wire probe and the pulsed wire technique. —— and - - - - correspond to the

theoretical expectations for a Pt 0.6µm and a Pt-10%Rh 0.63µm wire respectively and — · — is

the fit using the functional fc = A1 +A2

√
U0 +A3U0, with A1 = 2.06, A2 = 1.70 and A3 = −0.18.
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FIG. 2. Profiles of (a) mean velocities, (b) rms, (c) higher order statistics, as a function of the

normalized transverse distance ξ for different downstream positions. ♦ x = 1.5D, Reδ = 2.8× 103.

⊓⊔ x = 2D, Reδ = 3.7 × 103. ⊳ x = 2.5D, Reδ = 4.6 × 103. △ x = 3D, Reδ = 5.5 × 103. ◦
x = 3.5D, Reδ = 6.4× 103. ⊲ x = 4D, Reδ = 7.2× 103. —— Hussain & Clark35 and — · — Xu &

Antonia44. (d) Streamwise evolution of the shear layer length-scales δ, δ0.1 and δω together with

their respective linear fit (lines).
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FIG. 3. Profiles of (a) mean scalar values, (b) rms of scalar fluctuations, (c) and (d) velocity-

scalar correlations as a function of the normalized transverse distance ξ for different downstream

positions. See Fig. 2(a) for legend. In (a) - - - - corresponds to the data of Rajagopalan &

Antonia45 obtained in the shear layer of a heated plane jet.
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FIG. 5. Spectra in the range 1.5D ≤ x/D ≤ 4D, normalized by (a) either Kolmogorov (uK , ηK)

or Batchelor scales (θB , ηB), (b) George similarity variables (u2α, λ), (θ
2, λθ), (c) outer variables δ

and either U0 or θ0, (d) shear length-scales (Lu
S , US) or (Lθ

S , θS). Spectra of v and θ are shifted

upwards by a factor of 25 and 252 respectively. The arrows indicate the direction of increasing x.

In (a) square symbols correspond to the spectra measured by Ref. 33 in the plane shear layer
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FIG. 6. Second-order structure functions in the range 1.5D ≤ x/D ≤ 4D, normalized by (a) either

Kolmogorov (uK , ηK) or Batchelor scales (θB , ηB), (b) George similarity variables (u2α, λ), (θ
2, λθ),

(c) outer variables δ and either U0 or θ0, (d) shear length-scales (Lu
S , US) or (Lθ

S , θS). Structure

function of v and θ are shifted upwards by a factor of 5 and 25 respectively. The arrows indicate

the direction of increasing x. In (a) the symbols correspond to the data of Refs. 53 and 54
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FIG. 7. Log-similarity for the energy spectra and structure functions. (a) Energy spectra with

C1 = 0.25 and C2 = 1, spectra of v and θ are shifted upwards by factors of 0.2 and 0.4 respectively.

(b) structure functions with C1 = 0.25 and C2 = 1, structure functions of v and θ are shifted

upwards by factors of 0.2 and 0.4 respectively.
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