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1 On self-preservation and log-similarity in a slightly heated axisymmetric mixing layer

2 F. Thiesset,! V. Schaeffer,® L. Djenidi,>*® and R. A. Antonia®
3 School of Engineering, University of Newcastle, NSW 2308 Callaghan,
4 Australia

This paper reports an experimental investigation of self-preservation for one- and
two-point statistics in a slightly heated axisymmetric mixing layer. Results indicate
that the longitudinal velocity fluctuation u seems to approach self-preservation more
rapidly than either the transverse velocity fluctuation v or the scalar fluctuation
0. The Reynolds number Res = Uyd/v (U being the jet inlet velocity and § the
momentum thickness) that ought to be achieved for the one-point statistics to behave
in a self-similar fashion is assessed. Second, the relevance of different sets of similarity
variables for normalizing the energy spectra and structure functions is explored. In
particular, a new set of shear similarity variables, emphasizing the range of scales
influenced by the mean velocity and temperature gradient, is derived and tested.
Since the Reynolds number based on the Taylor microscale increases with respect
to the streamwise distance, complete self-preservation cannot be satisfied; instead,
the range of scales over which spectra and structure functions comply with self-
preservation depends on the particular choice of similarity variables. A similarity
analysis of the two-point transport equation, which features the large scale production
term, is performed and confirms this. Log-similarity, which implicitly accounts for
the variation of the Reynolds number, is also proposed and appears to provide a

reasonable approximation to self-preservation, at least for u and 6.

5 PACS numbers: 47.27.-i, 47.27.wj, 01.50.Pa
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s I. INTRODUCTION

7 The hypothesis of self-preservation which assumes that the flow is governed by a single set
¢ of length, velocity and scalar scales has been extensively applied for describing the spatio-
o temporal evolution of some canonical turbulent flows. Among the literature, this hypothesis
1 has led to significant contributions to the study of homogeneous isotropic turbulence (Refs.
u 1-4 among others) and to scalar fluctuations evolving in isotropic turbulence (e.g. Refs.

1011 wake

12 5-9). Self-preservation has also been applied to homogeneous shear turbulence
13 flows!2717, turbulent jets'®!822 and turbulent shear-layers?*27. It is important to stress that
11 the quest for self-preserving solutions has motivated many aspects of research in turbulence
15 since it has the tremendous advantage of reducing partial differential equations to ordinary

16 differential equations.

v Generally speaking, one-point statistics (mean values, Reynolds stress, etc) as well as
18 as two-point statistics (e.g. spectra or structure functions) can be studied under the con-
10 straints imposed by self-preservation. When applied to two-point statistics, complete self-
2 preservation implicitly suggests that all scales behave similarly. It is now well known that
2 this requires the Reynolds number R, based on the Taylor microscale A (to be defined later)
» and a typical fluctuation u’ to be constant (see e.g. Refs. 2—4, and 21). Indeed, the con-
2 stancy of Ry ensures that the ratios between the different length-scales (the integral scale,
21 the Taylor microscale, the Kolmogorov scale) and velocity scales (for instance the rms, the
2 Kolmogorov velocity, ...) are also constant®?1?2, In such cases, inner scales (e.g. the Taylor
2 microscale or the Kolmogorov length-scale) can be used interchangeably with outer scales
= (the integral length-scale for example) because they all behave similarly. This circumvents
28 the question of which are the most relevant similarity variables to be used for normaliza-
2 tion. The only flows for which this constraint is respected is the far field of the round jet
w0 (at least along the axis), the far field of a cylinder wake (preliminary results gathered by
a1 our group suggest that z/D, where D is the diameter of the cylinder, needs to exceed a
» value of about 200 before R, is constant), and the initial period of decay of grid turbu-
13 lence at an infinitely large Reynolds number. Therefore, the range of flows complying with
u self-preservation appears to be very limited especially since the third flow is unlikely to be

35 realizable.

s For turbulent flows for which R, varies significantly, complete self-preservation, i.e. self-



s similarity of spectra or correlation functions at all scales, cannot be satisfied. Consequently,
s the range of scales satisfying self-preservation depends on the particular choice of similarity
» variables (see e.g. Refs. 4, 8, and 9), and it appears that outer variables are relevant for
» normalizing the large-scales whilst inner variables are likely to be appropriate at small-scales.
s Therefore, performing a self-similarity analysis in flows where R, varies significantly remains

2 a challenging task.

53 On the other hand, log-similarity has been subsequently proposed as an alternative to the
a classical picture of self-similarity. Log-similarity was first applied to temperature spectra in
s Rayleigh-Bénard convection®® and was shown to hold over an impressive range of Rayleigh
« numbers. Nelkin? soon suggested the applicability of such a similarity for fully developed
s homogeneous isotropic turbulence. The main theoretical arguments in favour of the plau-

28,3031 and variational approaches of

s sibility of log-similarity rely on a multifractal analysis
w small-scale intermittency!. Clearly, the relevance of such approaches when the Reynolds

so number is only moderate remains somewhat debatable.

s1  The main objective of the present study is to investigate in detail the accuracy with which
s2 self-similarity is satisfied in a heated axisymmetric shear layer. In particular, the focus is on
s3 the approach towards self-preservation for one-point statistics, velocity-temperature correla-
s« tions as well as two-point statistics such as spectra and structure functions. Both dynamical
ss and scalar fields are examined. Whilst the validity of self-preservation in the axisymmetric
ss shear layer does not need to be further demonstrated, it is of interest to extend the analysis
s to higher-order statistics (up to the third-order), previous studies being usually limited to
s first- and second-order statistics®®* 27, Note that the axisymmetric shear layer has been less
so studied than the plane mixing layer for which extensive measurements of high-order statis-
o0 tics and small-scale quantities have been performed for example by Refs. 32 and 33. In
s1 addition, to the best of our knowledge, extending the study of self-preservation to two-point
s statistics in the shear layer has not been attempted previously. This seems quite surprising,
63 given that the shear layer is an archetypal flow, which feels the presence of a strong shear
o as well as a persisting organized motion?*. Consequently, this particular flow appears to be
es nicely tailored for studying the interactions between different ranges of scales and how they
ss could reach a possible equilibrium. For example, it is of interest to assess the range of scales
o7 directly influenced by the mean shear and the mean temperature gradient, how they differ

s¢ in behaviour with the small-scales and which quantities are relevant for normalizing them.



s Moreover, the Reynolds number R, is known to increase with respect to the streamwise dis-
70 tance. The shear layer is thus perfectly suited for investigating the departure from complete
n self-preservation associated with the spatial variation of R),. Further, the relevance of the
722 log-similarity, whose major advantage is to implicitly account for this variation, can also be
73 assessed.

72 This paper is organized as follows. The experimental apparatus is first outlined in §II.
7 Second, the approach towards self-similarity for one-point statistics is investigated in §III.
7 The analysis is further extended to two-point statistics in §IV. For this purpose, four different
7 sets of similarity variables are tested both analytically (§IV B) and experimentally (§IV C),
7 notably the shear similarity variables which are defined in §IV A. Log-similarity is then

79 applied to the experimental data in §IV D. Conclusions are finally drawn in §V

o II. EXPERIMENTS

s Experiments were performed in a mixing layer associated with a slightly heated round
g2 jet. The jet facility has been described in detail for example in Refs. 21 and 34. The jet
s nozzle has a diameter of D = 55mm, and the jet exit velocity U, was set to 12.3m.s™ .
sa The corresponding Reynolds number Rep = UyD /v is 46,700 (v is the kinematic viscosity).
ss Some measurements were carried out in the boundary layer at the jet exit and it was found
s that the mean velocity was consistent with a Blasius profile (see Fig. 1(c)). The maximum
& turbulence level in the boundary layer was found to be of about 3.5%, i.e. in the range of
s typical experiments?®:34:35(see Fig. 1(c)). The air at the inlet of the centrifugal blower was
g0 heated using an electrical fan heater. The jet facility was also completely lagged with a glass
o0 wool layer covered with a metallic foil overlay to obtain a more uniform mean temperature
a1 profile at the exit. The homogeneity of the temperature profile at the jet exit was checked
o« using a thermocouple and found to be within 10%. The temperature excess 6y ~ 15°C
o3 on the jet centerline. The ratio Gr/Re% (Gr = gD?(0y + T,)/v*T, is the Grashof number
o with 7, is the ambient absolute temperature and ¢ the gravity acceleration) was about
o5 3.5 x 1073 indicating that temperature can be considered as a passive scalar, since buoyancy
o is negligible. Simultaneous velocity and temperature measurements were performed at six
or different downstream distances from the jet nozzle 1.5 < z/D < 4 and for several transverse

e positions traversing the shear layer.



o  The longitudinal U and transverse V' velocity components in the x in y direction re-
wo spectively (Fig. 1(a)) were measured using a X-wire probe, consisting a two Wollaston
1 (Pt-10%Rh) wires of diameter 2.5um and typical length of 0.5mm. The angle between the
102 two wires was chosen to be about 60° in order to capture high velocity angles that may
103 occur in this particular region of the flow (see Fig. 1(b)). The lateral separation between
104 the two wires were about 0.5mm. The hot-wires were operated by in-house constant tem-
105 perature anemometer at an overheat ratio of 1.5. The hot-wire voltages were corrected from

106 temperature variations using®®

Tw - Tcal )1/2 (1)

B0 = Enlt) (12708
w7 where E. and F,, are the corrected and measured voltages respectively. T, , Teq and T'(t)
s are respectively the wire temperature, the air temperature during calibration and the air
0o temperature during measurements. Calibration was made in situ in the potential core of
10 the jet. The look-up table method?™3? was employed for calibrating the X-wire probe with
m velocity magnitudes in the range 0-30m.s~! with velocity increments of 1m.s™! and angles
12 in the range £60° with increments of 10°.
s A Wollaston (Pt) wire of nominal diameter d,, = 0.6um, operated by in-house constant
us current circuits, was used for temperature measurements. The current supplied to the wire
us was 0.1mA, so that the wire was essentially insensitive to the flow velocity. The wire was
us etched for alength [, &~ 0.6mm, yielding a ratio ,,/d,, of about 1000. A square-wave injection

17 technique*4°

was adopted for the determination of the frequency response of the cold wire.
us As emphasized in Fig. 1(d), the Pt-0.6um wire was chosen since the cut-off frequency f. was
1o found to be larger than for a Pt-10%Rh-0.63um wire. The instantaneous temperature signal
120 is then corrected following the method of Ref. 43. The cut-off frequency was first fitted using
w21 the functional f, = 1/277, = A;+Asv/Uy+A3Uy, which allows to compute the instantaneous
122 time constant 7,,(t) knowing the instantaneous velocity magnitude \/m The
123 corrected temperature 6 is then calculated from measured temperature 6, following 6 =
124 Oy + Ty (£)00,, /Ot. The correction method of Ref. 40 was also tested and led to some very
125 similar corrections for the temperature signal and related statistics. The cold-wire probe has
1 an angle of 30° with the X-wire probe, the latter being aligned with the jet axis (Fig. 1(b)).

127 The cold-wire is displaced by about 0.7mm from the hot-wires in order to avoid interferences

128 (Fig. 1(b))



120 The output signals from anemometer channels, operating the cold and hot wires, were
130 passed through buck-and-gain circuits and low-pass filtered at a frequency f. slightly larger
s than the Kolmogorov frequency fx = U/27ng (U is the mean velocity and nx the Kol-
132 mogorov length-scale to be defined later). The signals were acquired using a National in-
133 strument 16 bits A/D converter at a sampling frequency fs = 2f.. Convergence of velocity
134 and scalar statistics was checked and found to be satisfactory. The high turbulence level
135 in the shear layer can significantly alter the reliability of the classical Taylor hypothesis
s & = Ut. Therefore, for calculating two-point statistics, a local convection velocity is used in
137 the Taylor hypothesis; for this purpose we followed the same procedure as outlined in Ref.

138 21.

1 III. SELF-PRESERVATION OF ONE-POINT STATISTICS

o We first pay particular attention to the approach towards self-preservation for one-point
11 statistics. At this stage, the relevant scales are the inlet velocity U, for the velocity field,
12 the temperature excess 6y = T'(y = 0) — 1, for the temperature field, whilst the normalized

13 transverse coordinate £ is given by

_ Y~ Yos
£= 5 (2)

s o5 is the position y where the longitudinal mean velocity U is equal to Uy/2 (hereafter, the
s overbar denotes time averaged values) and the momentum thickness § is defined by

= [T (=T

s 0 can be used interchangeably with the shear-layer thickness do1 = %09 — Y01 (Y00 and
w7 9o, are the transverse locations where U /Uy is 0.1 and 0.9 respectively) and the vorticity

us thickness o,

Uo
— (4)
o ()

Jy

0w =

19 since 9, dp1 and d,, all behave similarly with the downstream distance x. More precisely, all
150 these length-scales are known to be proportional to x (e.g. Refs. 24, 26, and 35).
s Figs. 2(a), 2(b), 2(c) present the first-, second- and third-order statistics of the velocity

152 field normalized by the relevant quantities. A compilation of some published experimental

6



153 data are also given to assess the accuracy of the present measurements. Whilst the agreement
152 between the present measurements and the published data of Refs. 35 and 44 is satisfactory
155 for the mean velocity U /Uy, there are some slight differences as far as second-order statistics
16 are concerned. These discrepancies may be first attributed to some differences in the initial

157 conditiong?6:27:44

, especially the turbulence level which is slightly larger than that of Ref. 35.
158 Second, and perhaps to a larger extent, these departures may be due to the particular probe
150 used for measuring u and v (a 60° X-wire probe being likely to be more adequate than a
160 45° in this region of the flow) and to the calibration method (the look-up table being more

161 reliable than the yaw-angle method especially in highly turbulent flows3?).

12 It is observed that the longitudinal velocity component reaches a self-similar state rather
163 quickly and there is a perfect collapse of both U/Uy and u'/Uy (the prime stands for the
16« Tms value) for all the range of measurements 1.5D < x < 4D (only the range of £ < 3 is
165 considered for analysing self-similarity since for higher transverse distances, fluctuations in
166 the potential core of the jet progressively increase). However, the collapse for the transverse
167 velocity component v is attained less rapidly, and a distance of z = 3.5D (= Res = Uyd /v =
168 6.4 x 10%) has to be reached for v'/Uy to behave in a self-similar fashion. This remark holds
160 also for the Reynolds stress uo/UZ and higher-order statistics such as the kinetic energy flux
im0 (vu? +v3)/US. Note that some measurements at a larger distance from the jet nozzle would
11 have been necessary to confirm this since the assessment of self-similarity relies only on the
12 two profiles at = 3.5D and 4D. However, the present measurements seem to indicate that
173 a Reynolds number Res = 6.4 x 103 has to be attained for self-preservation to be satisfied
s for all velocity components. In Ref. 35, it was observed that v'/U, was self-similar beyond
175 £ = 0.71D (no measurements were made at smaller distances) corresponding to Res &~ 10%
7 which is consistent with our observation. Noticeable is the fact that the maximum value
177 for both v'/Uy and ww/UZ progressively decreases before reaching its self-similar value of
s about 0.14 and -0.01 respectively. This may be associated with the presence of coherent
1o structures, known as the Kelvin-Helmholtz vortices?*, whose energetic contribution to v’
180 and wv decreases as x increases. This point will be further confirmed when analysing two-

181 point statistics.

12 The downstream evolution of the shear layer characteristic length-scales ¢, g1 and d,, is
183 plotted in Fig. 2(d), together with their respective linear fit. The proportionality between d,

184 091 and 0, and the streamwise distance z is well verified for the present measurements. The

7



185 slope for 99/0z is equal to 0.0394 which is slightly larger than the commonly encountered
185 values generally in the range [0.029-0.037]2%%7. 98y ;/0x = 0.185 which is comparable with
157 some published values [0.17-0.23] (Ref. 26 and references therein). 0é,/0x = 0.153 in
e agreement with the data of Brown and Roshko?* [0.145 - 0.22]. The linearity of 9, dy1 and
189 0, with x confirms that they can be used interchangeably for normalizing the transverse

100 distance y.

1 We now turn our attention to the scalar field. For convenience, the temperature excess 6
192 relative to the ambient temperature T, is considered here, viz. § = T—T,. Experimental data
103 for the mean scalar value @, and the rms of scalar fluctuations @', the velocity-temperature
10 correlations uf, vf and the temperature flux v62, normalized by the appropriate set of simi-
105 larity variables (the temperature excess Afy = T'(y = 0) — T, and the momentum thickness
106 0), are given in Fig. 3(a), 3(b), 3(c) and 3(d) respectively. Even though comparing the
107 plane and axisymmetric shear layer may be rather misleading, the mean temperature profile
103 we obtain is roughly consistent with that inferred from Ref. 45. The mean and fluctu-
1w ating temperature fields (Fig. 3(a) and 3(b)) appear to reach a self-similar state around
200 x = 3.5D, i.e. at the same position as the transverse velocity component. The velocity-
2o temperature correlations uf and vf (Fig. 3(c)) appear to be of opposite sign and also attain
202 self-preservation at a streamwise distance of = 3.5D. The transverse temperature flux,
203 .. the transport of temperature fluctuations #* by the transverse velocity component v is
200 Tepresented in Fig. 3(d). Here again, the profiles are roughly consistent with self-similarity

205 for downstream distance x > 3.5D.

206 In summary, one-point statistics of the velocity components u,v and the scalar field 6
207 reach a self-preserving state following different approaches. It is observed that statistics
208 Of u attain self-similarity more rapidly than that of v and 6. Arguably, this difference in
200 behaviour is likely to be attributed to the contribution of the coherent motion which is
210 mostly visible on v and diminishes with the streamwise distance. This statement can be
on further confirmed using energy spectra and structure functions on which we now turn our

212 attention.



23 IV.  SELF-PRESERVATION OF TWO-POINT STATISTICS

au Extending the analysis of self-preservation to two-point statistics provides a deeper insight

215 into the flow details since the evolution of the turbulence structure at a given scale can be

=

216 assessed. In the present study, the relevance of four different sets of similarity variables for

=

217 normalizing energy spectra and structure functions is tested

-

25 e The Kolmogorov variables®® uy = (v€)1/* and nyx = (v3/€)/* (€ = 15v(0u/dx)? is the

219 mean kinetic energy dissipation rate) for normalizing the velocity spectra and structure
220 functions. For the temperature field, the Batchelor variables are used g = \/W
21 and np = ng/Pr (the Prandtl number Pr = v/k with k the temperature diffusion
222 coefficient and & = 3r(00/0x)? is the scalar dissipation rate).

223 e The George similarity variables?, i.e. the velocity variance u2 (u, stands for either u or

24 v) and the Taylor microscale A = y/15vu2 /¢ for the velocity field and the temperature
225 variance 62 and the Corrsin microscale \g = \/SKm/Eg for the scalar field.

226 e The outer variables. The term ”outer variables” should be understood as macroscopic
227 scales, for instance 0 is the characteristic length-scale and Uy and 6y are used for

28 normalizing the dynamical and scalar field respectively.

220 e The shear variables which are defined below.

20 A. Definition and assessment of the shear characteristic scales

2 In order to derive the shear characteristic scales, we will consider the simplified case of
»» homogeneous shear turbulence. It is important to stress that this hypothesis might not be
o33 strictly applicable to the axisymmetric shear layer since e.g. the turbulent diffusion term
2 is likely to contribute®? to the energy budget. However, it is obvious that the production
235 mechanism associated with the mean shear is a predominant feature of the shear layer,
23 especially at a transverse position £ = 0 (see Ref. 32).

o7 Let us first recall the arguments of Ref. 47 that allow to derive the shear length-scale for

28 the dynamical field. In a turbulent flow dominated by the mean shear, the scale-by-scale



20 budget is given by!!

O(Au)?
or

6v

[ — 4
— (Au)3 E/ s*AulAvS,ds = gET’. (5)

- 0
20 AP = f(x+r)—pF(x) is the velocity increment of the quantity 5 = u, v, § between two points
2 separated by a distance r. The first term on LHS of Eq. (5) corresponds to the viscous
22 term and dominates at rather small scales. The second term is identified as the non-linear
23 transfer term whose contribution is mostly perceptible at intermediate scales. The third

24 term corresponds to a production term through the mean velocity gradient S, = U /dy

11,47 147

25 and dominates at rather large scales™*’. Casciola et al.*" suggested that the shear length-

48

26 scale LY first defined on dimensional arguments by Corrsin®® can be identified as the scale

27 for which the production term in Eq. (5) balances the non-linear transfer term, i.e.

% =rsuch as (Au)?(r) = %/ s*AulAvS,ds (6)
™ Jo

25 Assuming (Au)3 o< e and AulAv o (er)?/? (which strictly hold only at very high Reynolds
20 numMbers), one obtains

€

=1/ 7

2w

20 Then, from the one-point energy budget which features only the production and dissipation

251 terms, one can write
U2S, ~¢ (8)

252 which leads to a shear characteristic velocity Us = y/€/S,,. A similar analysis can be carried

23 out for the scalar field by first recalling the scale-by-scale budget of (Af)? in presence a

25 mean temperature gradient®?
OAE — 2 [, 4
2K o Au(Af)? — ﬁ/o s“AvAOSyds = 60T (9)

25 where Sy = 00 /0y is the mean temperature gradient. Assuming Au(A#)2 oc &r and dudf o
26 (€)Y (gr)/3(€/€)1/°, and identifying the scale L% for which the transfer term is equal to
257 the production term, a shear length-scale for the scalar field can be similarly derived, wviz.

E3/2
L% = 0 10
S E1/2 Sg ( )

10



s One can further write the one-point budget of the temperature variance in the following

259 fOl"IIl
UgbOgSp ~ € (11)

20 yields a shear characteristic temperature 05 = €/Sg+/S,/e. L% and L% allow to assess the
21 range of scales which are in essence influenced by the presence of the mean shear and tem-
%2 perature gradient?”. For r > L% L% statistics of the velocity and scalar fields are dominated
3 by production effects. On the other hand, the non-linearity of the cascade mechanism is
264 supposed to be sufficiently strong for scales smaller than Lg to behave in a universal manner,
s independently of the large scales.

26 The shear characteristics scales are plotted in Fig. 4(a) and 4(b). We plot the ratios
27 0/ L% and §/L% since L% and L% tend to infinity when the mean velocity and temperature
s gradient goes to zero. For —4 < £ < 2, both L% and L% are proportional to § (see Fig. 4(a)),
90 indicating that the shear length-scales are characteristic of rather large scale phenomena and
o0 fall into our definition of outer length-scales. The proportionality of L% and L% to § is simply
on related to the fact that €U3 /6 and €Uy03 /6 behave in a self-similar fashion. The ratios 6/ L%
o2 and /LY are about 3 at € = 0. It thus appears that L% and L% are slightly smaller than
213 the shear layer momentum thickness 6. The characteristic velocity Ug and temperature
o Og are also presented in Fig. 4(b). Here again, all curves collapse reasonably well when
s normalized by Uy and 6y, confirming that the shear characteristic scales can be identified as

276 outer macro-scales.

o7 B. A priori analysis of self-similarity for two-point statistics

s The aim of this section is to analyse a priori the adequacy of the different similarity
79 variables for normalizing two-point statistics. For this purpose, let us write second- and

250 third-order structure functions in dimensionless form

(Au)? = U*(x)f(r/L) (12a)
(Au)® = U(x)g(r/L) (12b)
(Auldv) = UP(2)h(r/L) (12¢)

21 Injecting Eqs. (12) into Eq. (5), yields

ERAT LR

' = [F3] (13)

11



2 where 7 = r/L, the prime denotes differentiation with respect to 7 and T' = fof 5*hds. The

23 three functions appearing in Eq. (13) can be expressed as

UL

Fy = Rep = — (14a)
1%
S, L
Fy = Rep™ (14b)
4 €L?
B=som (14c)

e Complete self-similarity implies that all terms within brackets must behave similarly with
285 . Since one of them appears to be constant, then Fj, F, and F3 should be also constant.
86 Performing a similarity analysis without presupposing any particular form for &/ and L
2¢7 inescapably leads to several possible solutions depending on the constants F; to F3 used for
2 deriving them. For example, using Eqs. (14a) and (14c¢) leads to the Kolmogorov scales as
20 the relevant length-scales whilst the shear variables emerge from the use of Eqs. (14a) and
200 (14b). However, none of them are suitable in terms of simultaneously satisfying all three
201 constraints. This indicates that complete self-similarity cannot be satisfied in the shear layer.
22 To further describe this, let us assess the range of scales satisfying self-similarity depending

203 on the particular set of similarity variables that is chosen.

1

204 e The Kolmogorov scales nx and ug. Recalling that in the shear layer € o« 7, we
205 obtain
Fl — UKTK oxX xo (15&)
v
Sy
Fy = 29K o 12 (15b)
Uk
4 en; 0
F3 = g@ X T (15C)
296 Therefore, Kolmogorov similarity will be satisfied only at small scales for which the
207 production term can be neglected. Arguably, this could be respected for scales in the
208 range 0 <r < LY.
2o o George similarity variables A o< 2!/2 and v’ o< 2°
/
A
F = vA_ Ry o< z'/? (16a)
v
Su
Fy = R, — X 20 (16b)
u
4 €N? 0
F; = E o XY (16¢)

12



300 which indicates that George similarity is expected to be relevant for both very small
301 and very large scales. However, some substantial departures from self-similarity are

302 expected in the intermediate range where g is predominant.

303 e Outer similarity variables 0 oc z and Uy

Upd
F=" 2z (17a)
v
Upd SuA
P =" ot (17b)
vou
4 €*
Fy=-— xa 17c
T WU (17¢)
304 The use of outer similarity variable will be relevant for the range of scales over which
305 the viscous term 2f'/7 is negligible. This is expected to be respected for scales in the
306 range r. < 17 < 00, where r. is the cross-over length-scale between the viscous and
307 inertial range, viz. r./nx =~ 304 (see e.g. Ref. 4).

308 e Shear variables. Since L‘Z x ¢ and Ug o< Uy, similar deductions can be drawn for the

300 shear similarity variables.

50 An analogous analysis for Eq. (9), which is not reported here for the sake of clarity,
su leads to exactly the same conclusions. In summary, depending on the particular choice of
sz similarity variables, the range of scales which satisfies self-preservation differs. The Kol-
a3 mogorov variables are expected to be relevant for small and intermediate scales, departure
se from self-similarity when using George variables are likely to be observed at intermediate
a5 scales whilst outer and shear characteristic scales are adequate for large and intermediate

a6 scales.

a7 C.  Similarity of energy spectra and structure functions

as We first consider the degree with which energy spectra comply with self similarity when
s19 normalized by the four different sets of similarity variables presented in the previous section.
20 In Figs. 5(a), 5(b), 5(c) and 5(d) are plotted energy spectra at £ ~ 0 in the range 1.5D <
m x < 4D. In Fig. 5(a), a comparison of present spectra with those of Ref. 33 at Ry = 330
m2 is given. The agreement at intermediate and small scales is almost perfect over two decades

23 thus validating the present assessment of the energy spectra.

13



2« When velocity and temperature spectra are normalized by Kolmogorov and Batchelor
s scales respectively (Fig. 5(a)), one observes a perfect collapse for the dissipative scales
26 Up to the inertial range (strictly the restricted scaling range notwithstanding the quite
27 low Reynolds number of the flow). Altogether, self-similarity is satisfied for wavenumbers
28 kg g > 2 X 1072, For wavenumbers knks < 1072, there is a systematic increase in the
2o amplitude of the spectra with x. This is explained by the non-constancy of the Reynolds
s number based on the Taylor microscale Ry = u/\/v which increases from about 210 to 300
s for 1.5 < z/D < 4 (see e.g. Refs. 4, 8, and 9). Note also that the range of wavenumbers
32 over which spectra of v and 0 satisfy self-similarity is wider than that of v. A peak in the v
333 spectra is easily discernible around kng ~ 1072, which progressively diminishes in amplitude
14 as x increases. At x = 3.5D the spectrum of v follows closely that at x = 4.0D. The peak
15 in the v spectrum is a footprint of the organized motion which monotonically shrinks as
16 ¢ increases. The peak ceases to be discernible for x > 3.5D. Arguably, the delay in the
s approach towards self-preservation for v that was observed for one-point statistics is likely
138 to be due to these coherent structures and more particularly to the time they need before
139 reaching a quasi-equilibrium state.

1 When using the George similarity variables® (see Fig. 5(b)), the collapse is satisfactory
s notwithstanding the slightly larger scatter in the inertial range. For v, a significant departure
s 18 also observed in the dissipative range. This differs from what is generally observed for
w3 example in grid*®? or wake turbulence!”. In these flows, it is generally observed than
su the George similarity? is satisfied over a wider range of scales than with the Kolmogorov
us similarity. Here again, this feature is simply related to the Reynolds number R, which
16 substantially increases (by a factor 1.5) between x = 1.5D and = = 4D.

s Spectra normalized by the outer similarity variables §, Uy and 6, are presented in Fig.
1s 5(c). In contrast to the Kolmogorov or George similarity variables, the outer scales lead to
a9 a satisfactory collapse for the large-scales, including also a part of the pseudo-inertial range.
;0 However, there is a significant drift towards high wavenumbers as x increases. In addition
551 to the similarity analysis as provided in §IV B, this feature can be further explained by first

ss2 recalling the definition of the normalized dissipation rate C,

v C.u?
e=C2=—— (18)
5 A3S

33 A = u' /Uy and C, were verified to be constant with = (see Figs. 2(b) and 4(a) for A; and
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s Ce respectively). Using Eq. (18) it can be shown that

) C.

) C
O Meqg3/ap3? 19b
Nk A? A ( )
v

— R 19¢

s Therefore, since Ry increases, then the ratios §/A and §/nk increase and hence the normal-
56 ized spectra progressively drift towards high wavenumbers. Unsurprisingly, similar deduc-
7 tions can be made when the shear length-scales are used for normalisation (Fig. 5(d)) since
s L% and L% are both proportional to 4.

0 We now turn our attention to the accuracy of the self-preservation hypothesis for second-

360 order structure functions (AB)? (6 = w,v,0). Whilst spectra and structure functions are

se1 simply related by

™

Es(k) = S /OOO (1 — (iﬁﬁf) cos(kr)dr, (20)

;2 their physical interpretation differs. Indeed, spectra strictly represent the energy density at
363 a given wavenumber whereas structure functions are more likely to represent a cumulative

4 energy distribution for scales < r (e.g. Refs 50-52). Second, Fjs(k) = [m®s~2] whereas

s (AS)2 = [m?s~2] which means that, in addition to a velocity scale, a length scale has to be
366 invoked for normalizing the spectra which is not the case for structure functions. Therefore,
37 it is of interest to further study the accuracy with which self-preservation is satisfied in
38 physical space.

0 Second-order structure functions normalized by the four different sets of similarity vari-
w0 ables are plotted in Figs. 6(a), 6(b), 6(c) and 6(d). Also included in Fig. 6(a) are the
sn DNS structure functions of u and 6 (Refs. 53 and 54) for a plane mixing layer at a similar
w2 Reynolds number (R, = 250). In the intermediate range of scales, some very slight dif-
w3 ferences are discernible, which may be attributed to the differences in the initial /boundary
s conditions. However, the degree of agreement (especially in the dissipative range) is suffi-
s ciently satisfactory to unambiguously support the reliability of the present measurements.
7 With Kolmogorov or Batchelor scales (Fig. 6(a)), one observes a perfect collapse for (AS)?

57 at rather small scales, i.e. from the dissipative range up to the middle of the pseudo-inertial

ss range. This is absolutely consistent with our theoretical expectations performed in §IV B.
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w7 Here again, the range of r over which (Au)? and (A#)? satisfy self-preservation is wider
=0 than for (Av)2. A hint of a bump is discernible in the structure function of v for scales
w1 7 ~ 3 x 102, highlighting the persisting influence of the coherent motion!”*%°¢. With the
32 George variables (Fig. 6(b)), in agreement with section §IV B, scatter is observed in the
383 inertial range, especially for u and 0. As far as the transverse velocity component v is con-

34 cerned, the departure from self-similarity surprisingly appears in dissipative range. This is

% most likely due to a bias when dividing (Av)2? by v2, the latter being altered by the energy
386 contribution of the coherent motion. As was observed in the energy spectra, the use of either
37 outer-variable (Fig. 6(c)) or shear-variables (Fig. 6(d)) leads to a reasonable collapse from
388 large down to intermediate scales, whereas in the dissipative range, the different curves tend
380 to drift towards small-scales when z increases.

0  Insummary, complete self-preservation, i.e. self-similarity of energy spectra and structure
;a1 functions over the whole range of scales or wavenumbers, appears to be untenable since R)
s significantly increases with respect to the streamwise distance. As a consequence, the range
303 of scales over which self-similarity is observed depends on the particular choice of similarity
304 variables. Kolmogorov variables are suitable for small up to intermediate scales. A significant
05 departure from self-similarity is observed in the inertial range when using George similarity
36 Whereas outer and shear variables are equally suitable for normalizing large and intermediate
so7 scales. These observations are in perfect agreement with the theoretical analysis presented
308 in §IV B.

s The fact that large and small-scales both satisfy self-similarity with an overlap at inter-
w0 mediate scales, if normalized by their respective relevant quantities, suggests that complete
w01 self-preservation could be plausible. If such a scaling exists, it would rely on a more sophisti-
w2 cated transformation than the one arising from a single set of similarity variables. Notably,
a03 such a scaling should account for the relative behaviour of the different similarity variables.

s04 The next section addresses this issue.

ws D.  Log-similarity of energy spectra and structure functions

ws  The main idea is to use both outer and inner variables in a single representation for energy
a7 spectra and structure functions. In other words, instead of invoking only one set of velocity,

w8 length, and scalar characteristic scales, a new type of normalization could be proposed using
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w0 two sets of similarity variables: one targeting the large-scales, the other the small-scales.
a0 Then one should define an appropriate transformation so that the relative behaviour between
a1 outer and inner scales is accounted for. One solution is a log-type similarity. This type of
a2 similarity solution is not new. It has been first observed and justified for the temperature field
a3 in a Rayleigh-Bénard convection flow?® and further investigated in detail for the dynamical
29-31

s field in fully developed homogeneous isotropic turbulence

as  Let us first define two functions fi and fye such as

s = (21a)

= K /. (21b)

we f5 and fle (u, = u,v) are respectively functions of r5 and r,, defined by

7@ (22a)
g

a7 C7 and Cy are two constants. For the scalar field, similar definitions can be proposed

log <C1 (izgz)

7= 10g<M) (230)
| _es(cE)
J}B-—-——igg(gggj—— (23b)
log 023)
g (%) (23c)
Tnp 10g< nL) (23d)

e (i)

no  From Egs. (21a), (21b), (22a) and (22b), it can be shown that

57 (rs) = fye(rge = 1) = L. (24)
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20 This very general identity holds for any set of similarity variables (as far as they are different)
a1 and is not limited only to (6,Uy) and (nx,ux). Eq. (24) suggests that if fi'(rs) is self-

w22 similar, then so does (ry.) since they are related by a simple translation. Therefore,

nK
w3 this has the major advantage of circumventing the particular choice of similarity variables
24 that can be made for normalization and hence, a universal scaling independent of the sets
s of similarity variables is likely to emerge. Similar definitions can be proposed for the energy

426 Spectra

A2 By,
log (Cr75)
2
s (55
2
Ue URTK
EnK - ) ( U2s ) ) (25b)
08 udnK

7|_2
e (05)

U __
E6 —

(25a)

0
E§ = W (250)
upnB
log (Cl %;QEQ)
0 BB
EﬁB - log <A986> ) (25d)
U%UB
423
2o which are respectively functions of ks and k. ,
log (2mCskd
ks = %65’2) (26a)
log (2nCsk
S 1 ”026 i) (26D)
0 Similarly, it is straightforward to show that
By (ks) = Eye (ke — 1) — 1. (27)

m The prefactor 27 in Egs. (26a) and (26b) and the factor 472 in Eqgs. (25a) and (25b)
a2 arise from the definition of the wavenumber and the Fourier Transform respectively. It is
a3 interesting to note that this log-similarity law is quite similar to the one proposed by Refs.

s 30 and 31. Indeed, using e.g. Eqgs. (19¢) and (19¢), the expression for the energy spectra
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435 can be recast as follows

s (3
Bl — >/ 28a
T log () 25
1 &
oc —E KT ;;;)
log ()

|:UD1

=

ks (28b)

s where ET, R and k' are some constants which are introduced here only for convenience.
a7 The log-similarity as given here by Eqgs. (21a), (21b), (25a) and (25b) thus appears to be
138 analogous to the log-similarity law proposed by Refs. 29-31.

10 The log-similarity has been tested using the present measurements and the results are
a0 presented in Figs. 7(a) and 7(b). With the exception of v for which, as already mentioned,
w1 the coherent motion contributes significantly to the energy distribution at large scales, the
w2 log-similarity law seems to be satisfied closely over the whole range of scales. Pragmatically
w3 speaking, this type of scaling acts as a compression-dilatation transformation of the spectra
aa (or structure functions) and wavenumbers (or separations) so that they all fall onto a single
ws curve. As a consequence, the analytical considerations of Refs. 30 and 31 on the basis of
us a multifractal analysis, are likely to apply here to theoretically justify the plausibility of a
a7 log-similarity in the axisymmetric mixing layer, albeit the quite low Reynolds number of the
us flow. The values for C] and Cy were empirically assessed and set to 0.25 and 1 respectively.
uo Further investigations are needed to provide a physical interpretation for these constants
0 and to explore their dependence on the initial conditions, the Reynolds number and the

451 type of flow.

2 V. CONCLUSION

i3 Self-preservation for one- and two-point statistics in the slightly heated axisymmetric
ss4 mixing layer of a round jet has been investigated by means of hot- and cold-wire anemometry.
w5 Special care has been paid to the reliability of the present measurements for which use was
s made of (i) a 60° X wire probe, calibrated by a look-up table method, to capture high velocity
w7 angles and high turbulence levels, (ii) a local convection velocity in Taylor’s hypothesis and
w8 (11) an instantaneous correction method for the cold-wire time response.

o Analysis of one-point statistics reveals that the dynamical and scalar fields follow different

w0 approaches towards self-similarity, the latter being reached more rapidly for u than for v
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w1 and 0. Altogether, all these quantities appear to attain a self-preserving state at x = 3.5D
a2 corresponding to a Reynolds number Res based on the upstream velocity Uy and the shear
w3 layer momentum thickness § of 6.4 x 103. It is clear that the approach to similarity of
w0 V' /Uy and ww/UZ is delayed relative to that for «'/Uy. This is interpreted as being caused
a5 by the footprint of coherent structures whose contribution is mostly perceptible on v and
a6 progressively decreases as x increases. Spectra and structure functions of v corroborate this
w7 interpretation.

s Four different sets of similarity variables are tested for normalizing spectra and structure
a0 functions. For this purpose, in addition to the scales L% and Ug which pertain to the dynam-
w0 ical field, a shear length-scale L% and characteristic temperature scale g are introduced on
a1 the basis of the scale-by-scale budget for the second-order temperature structure function.
a LY and LY allow the range of scales which is affected by the presence of the mean velocity
a3 and temperature gradient, to be assessed. They are believed to be relevant quantities for a
aa slightly heated mixing layer. Experimental data reveal that the shear variables behave as
a7 outer variables, i.e. L% and L% are proportional to 0 whilst Ug and 6g scale as Uy and 6,
a6 respectively. This is simply explained by the self-similar behaviour of the normalized mean
a7 energy and scalar dissipation rates.

as  Since the Reynolds number R, increases significantly with the streamwise distance =z,
aro complete self-preservation is not attainable. Instead, the range of scales complying with self-
a0 similarity depends on the particular choice of similarity variables. A similarity analysis of
a1 the two-point transport equation featuring only the production term has been performed and
w2 confirms this. Komogorov variables appear to be suitable at small and intermediate scales,
a3 g.e. in the range ng p <1 S Lg’e. George’s similarity variables are adequate for normalizing
s the very small- and very large-scales but there are significant departures at intermediate
w5 scales where the non-linear energy transfer dominates. We noted also a bias, in the context
a6 of George’s similarity, associated with the non-negligible contribution of coherent motion to
a7 the velocity variance. On the other hand, outer and shear variables lead to a satisfactory
a8 collapse of spectra and structure functions at large and intermediate scales down to the
w0 cross-over length-scale between viscous and inertial effects.

wo  Log-similarity, which accounts for the variations of R, or equivalently the relative be-
s01 haviour between outer and inner variables, has been introduced and tested. Instead of using

10 a single set of length, velocity or temperature characteristic scales for normalizing two-point
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103 statistics, log-similarity relies on two sets of similarity variables. This has the major ad-
s0a vantage of circumventing the particular choice of the two sets of similarity variables since it
w5 was proven that e.g. f5(rs) and f, (r,,) are related by a simple translation transformation.
w6 Results show that log-similarity applies for all scales with a very high degree of accuracy.
o7 This observation opens the door to new perspectives for using the log-similarity hypothesis
w0 in flows where R, varies such as grid turbulence in the initial period, the far field of a plane
a0 jet or the intermediate wake region. However, whilst at very high Reynolds numbers, the
so0 inertial range is sufficiently developed for log-similarity to be an intuitive or plausible scal-
so0 ing, at low to moderate Reynolds numbers, there should be a limit in terms of variations
s2 of R for the log-similarity to be satisfied. Indeed, variations in curvature of second-order
s03 structure functions (or spectra) in the pseudo-inertial range, which result from variations of
saa IR, are unlikely to be compensated indefinitely by a simple compression-dilatation transfor-
sos mation. The plausibility of the log-similarity in turbulence should further be demonstrated
ss on a dynamical basis (i.e. the scale-by-scale budget) rather than on phenomenological ar-
so7 guments using multifractal models. These issues are left for future work. The two constants
sos C7 and Cy were introduced and assessed empirically. Further work is also needed to investi-
so0 gate in detail their physical meaning and their dependence on the Reynolds number, initial

s10 conditions or the type of flow.
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FIG. 1. (a) Sketch of the jet facility and coordinate system. (b) Schematic of the hot-cold wire
probe used for the present measurements. (c) Mean velocity (open symbols) and rms profiles (closed
symbols) near the jet exit. O present measurements, O data from Burattini et al.?*, { data from
Hussain & Clark3>, —— Blasius profile. (d) Cut-off frequency of the cold wire measured using a
square wave current injection. O present measurements with a Pt 0.6pum wire probe, O present
measurements with a Pt-10%Rh 0.63um wire probe, < data from Lemay & Benaissa’® with a
Pt-10%Rh 0.58um wire probe submitted to the current injection test, /A data from Fiedler*! using

1_42

a Pt-10%Rh 0.63um wire probe and a chopped laser beam, > data from Antonia et al.** using a

Pt-10%Rh 0.63pum wire probe and the pulsed wire technique. and - - - - correspond to the
theoretical expectations for a Pt 0.6pum and a Pt-10%Rh 0.63um wire respectively and — - — is

the fit using the functional f. = A; + As\/Uy+ A3Up, with A; = 2.06, A5 = 1.70 and A3 = —0.18.
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FIG. 2. Profiles of (a) mean velocities, (b) rms, (c) higher order statistics, as a function of the
normalized transverse distance ¢ for different downstream positions. { z = 1.5D, Res = 2.8 x 103.
Ox = 2D, Res = 3.7 x 103. < o = 2.5D, Re; = 4.6 x 103. A x = 3D, Res = 5.5 x 103. O
x=235D, Res =6.4x10%. > & =4D, Res = 7.2 x 103. —— Hussain & Clark® and — - — Xu &
Antonia®*. (d) Streamwise evolution of the shear layer length-scales &, dp.1 and &, together with

their respective linear fit (lines).
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FIG. 3. Profiles of (a) mean scalar values, (b) rms of scalar fluctuations, (c) and (d) velocity-
scalar correlations as a function of the normalized transverse distance £ for different downstream
positions. See Fig. 2(a) for legend. In (a) - - - - corresponds to the data of Rajagopalan &

Antonia®® obtained in the shear layer of a heated plane jet.
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FIG. 4. (a) Profiles of §/L% and &/L%, with the shear length-scales L% = /¢/S3 and LY =

\/Eg/ 2 /e'/253. (a) Profiles of the shear characteristic velocity Us = 1/€/S, and characteristic
temperature fg = €9/Sp/ Sy /€. See Fig. 2(a) for legend.
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FIG. 5. Spectra in the range 1.5D < /D < 4D, normalized by (a) either Kolmogorov (ug, nx)
or Batchelor scales (63, np), (b) George similarity variables (u2, A), (62, Ag), (c) outer variables &
and either Uy or g, (d) shear length-scales (LY, Us) or (L%, fs). Spectra of v and 6 are shifted
upwards by a factor of 25 and 252 respectively. The arrows indicate the direction of increasing .

In (a) square symbols correspond to the spectra measured by Ref. 33 in the plane shear layer
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FIG. 6. Second-order structure functions in the range 1.5D < /D < 4D, normalized by (a) either
Kolmogorov (ug, 1) or Batchelor scales (63, n5), (b) George similarity variables (u2, \), (62, \g),
(c) outer variables ¢ and either Uy or 6, (d) shear length-scales (L%, Us) or (L%, 0g). Structure
function of v and 6 are shifted upwards by a factor of 5 and 25 respectively. The arrows indicate

the direction of increasing z. In (a) the symbols correspond to the data of Refs. 53 and 54
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FIG. 7. Log-similarity for the energy spectra and structure functions. (a) Energy spectra with
C1 = 0.25 and Cy = 1, spectra of v and 0 are shifted upwards by factors of 0.2 and 0.4 respectively.

(b) structure functions with C; = 0.25 and Cy = 1, structure functions of v and 6 are shifted

upwards by factors of 0.2 and 0.4 respectively.
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