
HAL Id: hal-01660263
https://hal.science/hal-01660263

Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical interactions between the coherent motion
and small scales in a cylinder wake

F. Thiesset, L. Danaila, R. a. Antonia

To cite this version:
F. Thiesset, L. Danaila, R. a. Antonia. Dynamical interactions between the coherent motion and small
scales in a cylinder wake. Journal of Fluid Mechanics, 2014, 749, pp.201 - 226. �10.1017/jfm.2014.222�.
�hal-01660263�

https://hal.science/hal-01660263
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Dynamical interactions between the coherent
motion and small scales in a cylinder wake

F. THIESSET1,2, L. DANAILA1†,
AND R. A. ANTONIA2
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Most turbulent flows are characterized by coherent motion (CM), whose dynamics reflect
the initial and boundary conditions of the flow and are more predictable than that of the
random motion (RM). The major question we address here is the dynamical interaction
between the CM and the RM, at a given scale, in a flow where the CM exhibits a
strong periodicity and can therefore be readily distinguished from the RM. The question
is relevant at any Reynolds number, but is of capital importance at finite Reynolds
numbers, for which a clear separation between the largest and the smallest scales may
not exist.
Both analytical and experimental tools are used to address this issue. First, phase-

averaged structure functions are defined and further used to condition the RM kinetic
energy at a scale r on the phase φ of the CM. This tool allows the dependence of the
RM to be followed as a function of the CM dynamics. Scale-by-scale energy budget equa-
tions are established on the basis of phase-averaged structure functions. They reveal that
energy transfer at a scale r is sensitive to an additional forcing mechanism due to the
CM. Second, these concepts are tested using hot-wire measurements in a cylinder wake,
in which the CM is characterized by a well-defined periodicity. Because the interaction
between large and small scales is most likely enhanced at moderate/low Reynolds num-
bers, and is also likely to depend on the amplitude of the CM, we choose to test our
findings against experimental data at Rλ ∼ 102 and for downstream distances in the
range 10 ≤ x/D ≤ 40. The effects of an increasing Reynolds number are also discussed.
It is shown that: (i) a simple analytical expression describes the second-order structure

functions of the purely coherent motion. The energy of the CM is not associated with
any single scale; instead, its energy is distributed over a range of scales. (ii) Close to the
obstacle, the influence of the CM is perceptible even at the smallest scales, the energy of
which is enhanced when the coherent strain is maximum. Further downstream from the
cylinder, the CM clearly affects the largest scales, but the smallest scales are not likely
to depend explicitly on the CM. (iii) The isotropic formulation of the random motion
energy budget compares favorably with experimental results.

Key words: Turbulent wake, coherent motion, scale-by-scale energy budget

1. Introduction

Turbulent flows give rise to a wide and continuous range of scales. The largest eddies
reflect the way the kinetic energy is injected in the system and therefore depend on the
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type of flow. In contrast, one frequently asserts that the anisotropic and non-universal
influence of the largest scales diminishes during the first non-linear local interactions
and is thus expected to decline at the smallest scales. Consequently, it is still often
postulated that the smallest scales have the best prospect of being universal or quasi-
universal (Sreenivasan & Antonia 1997) a paradigm usually attributed to Kolmogorov
(1941a,b) (hereafter K41). One of the premises of K41 is that small-scale turbulence at
sufficiently high Reynolds numbers is statistically independent of the large scales, and
is stationary, homogeneous and isotropic. Taking these premises for granted, K41 states
that (i) the statistical properties of the small scales are determined universally by ν and
ǫ (the kinematic viscosity and the mean energy dissipation rate); (ii) those in the inertial
range (if the Reynolds number allows one to exist) are determined by ǫ only.
K41 was formulated for large Reynolds numbers, whereas the turbulent flows gener-

ally encountered in practical situations are characterized by low to moderate Reynolds
numbers. It is essential to recall at this stage that significant departures from the scal-
ing proposed by K41 are due to finite Reynolds number effects. Although the small
scales have indeed the ’best prospect’ of being universal, they may also exhibit strong
departures from universality, depending both on the statistics used to filter the small
scales and on the physical quantity chosen to represent the largest ones. Pragmatically
speaking, testing small-scale universality (SSU) involves at least three parameters: the
mathematical functions used to filter both the small scales and the large scales, as well
as the Reynolds number of the flow. In this regard, the validity of SSU may depend on
the severity of the chosen test. Before providing a general classification of these tests, it
should be kept in mind that ’universality’ implicitly supposes local isotropy. Testing SSU
can be done at several levels.
• A basic level, which involves low (second-and-third) order statistics, e.g. spectra,

second-and-third order structure functions. In physical space, one common way to retain
small scales is considering increments at that scale, which represent motions at scales
≤ r (not only at the particular scale r). It can be argued that (Kholmyansky & Tsinober
2008) neither the original derivation of the Kolmogorov 2/3 and 4/5 laws, nor all the
subsequent derivations of the 4/5 law use the assumption of locality of interactions and
the existence of a cascade. In obtaining the 5/3 and 2/3 laws, only phenomenological
assumptions are necessary (K41), underpinned by the local isotropy hypothesis. Nothing
is supposed about either the nature of the large scales, or the exact dynamics of the
cascade, i.e. how energy flows from one scale to another scale. Nonetheless, results such
as 5/3, 2/3 and 4/5 (the latter is ensuing from the Navier-Stokes equations) are extremely
robust and ubiquitous, provided the Reynolds number (the single parameter that dictates
if SSU is verified at this level) is sufficiently high.
Danaila et al. (2004) made a a further step in understanding the role of large scales
in transport equations for the second-order structure functions, thus allowing the finite
Reynolds number effects to be quantified. The effect of the ’large scales’ is generally
represented by the processes associated with the decay, production and turbulent dif-
fusion of the turbulent energy. The dependence of small-scale statistics on large-scale
effects is in general enhanced as the Reynolds numbers decreases. This framework led
Antonia & Burattini (2006) to assess the Reynolds number that ought to be reached
for K41 to be satisfied and it was proven that a Taylor-based Reynolds number as high
as 50,000 is needed for decaying turbulence to reach the 4/5 law. A similar result was
obtained in spectral space for Lin’s equation (closed via the EDQNM approach), which
includes the decay term (e.g. Tchoufag et al. (2012)). Even though analyses in spectral
space can provide significant insight into the degree of the interactions between differ-
ent scales in some canonical situations (Domaradzki et al. 1987), even when the flow is
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slightly inhomogeneous (e.g. Cambon & Gréa (2013)), the strong inhomogeneity gener-
ally encountered in complex flow configurations does not allow the use of spectra and
dynamical equation in Fourier space. Considerations in physical space are thus likely to
be the best solution for investigating these flows. In addition, we have to mention that the
analogy between the real-space and spectral-space expressions of different physical quan-
tities is not straightforward, as the spectra strictly correspond to the energy distribution
at a given wavenumber, whereas the second-order structure functions tend to represent
the energy at all scales ≤ r (Townsend 1956; Davidson & Pearson 2005; Mouri & Hori
2010; Danaila et al. 2012a). Cambon et al. (2013) discussed in detail the differences and
analogies between analyses in spectral and physical space. Finally, as far as we are aware,
conditional statistics are not usually considered in spectral space, whereas these are often
utilized in physical space.
• A refined level, for which low-order statistics representing small scales (often, incre-

ments) are conditioned by quantities representing large scales (either the mean shear, the
local value of the velocity, the local phase of the coherent motion when this is pertinent,
etc.). This conditioning represents a priori a more stringent test of SSU and allows for
the correlations between the large scales and small scales to be highlighted.
A statistical measure of the effect of the large scales is the sum of velocities at two points
separated by a distance r (Hosokawa 2007; Mouri & Hori 2010). An interesting analysis
along this direction is provided by Hosokawa (2007), who demonstrated the statistical
dependence of the difference and sum of velocities at two points, thus underlining the
statistical dependence of small scales on the larger ones. Moreover, this author has shown
that this clear dependence is fully compatible with the 4/5 law. This analytical treatment
was then accurately confirmed by the experiments of Kholmyansky & Tsinober (2008) in
different high Reynolds number flows. Hence, we now possess strong evidence, on both
theoretical and experimental fronts, that even at very high Reynolds numbers, the way
energy is distributed between different scales depends on the large scales and most likely
involve both local and non-local interactions. Consequently, one should expect these
interactions to be even more predominant for Reynolds numbers normally encountered
in the laboratory. This issue is worth being explored and characterized analytically and
hence some new statistical tools that quantify the interactions between large (and in
particular the CM) and small scales has to be developed.
To this end, one possibility is to consider velocity increments, which represent motions
at scales ≤ r (e.g. Mouri & Hori (2010); Danaila et al. (2012a)), conditioned by another
parameter characterizing motions at scales ≥ r (Mouri & Hori 2010). The first study
based on conditional structure functions is that of Praskovsky et al. (1993). The latter
reported structure functions conditioned by the instantaneous velocity in two different
high Reynolds number shear flows. These suggested a strong correlation between large
and inertial subrange scales. Praskovsky et al. (1993) finally concluded that these find-
ings are in contradiction with the random sweeping decorrelation hypothesis (Tennekes
1975) which was first stated by supposing statistical independence between eddies. Sub-
sequently, measured structure functions were conditioned by the instantaneous velocity
in the atmospheric boundary layer (Sreenivasan & Dhruva 1998). Despite the very high
Reynolds number, a strong correlation between large and small scales also emerged. Ac-
cording to Sreenivasan & Dhruva (1998), this result may highlight the persisting influence
of the mean shear on the smallest scales.
More recently, Blum et al. (2010, 2011) measured structure functions conditioned by the
average of the velocity at points x and x + r in different shearless flows. These authors
pointed out that small scales were perturbed by the large scales at very different levels
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depending on the flow type. They concluded that conditional structure functions provide
a reference tool for comparing large-scale effects in different flows.
To summarize this overview, (i) at a basic level, considering low-order statistics of

velocity increments as a small-scale filter unconditioned by large scales, leads to the
SSU to be valid (2/3, 5/3, 4/5), provided the Reynolds number is sufficiently high. (ii)
At a refined level, if we consider small-scale statistics that are conditioned on large
scales, SSU seems to break down, at least for Reynolds numbers encountered in the
laboratory. This violation of SSU is not in contradiction with K41, as the latter was
aimed at unconditioned statistics. Therefore, the validity of SSU clearly depends on the
chosen test and the way the effect of the large scales is quantified.
A further step in understanding and quantifying the interaction between large and

small scales is done in the present work. We address the issue of the dynamical depen-
dence of low-order statistics on the large-scale activity of a Coherent Motion (CM). More
precisely, rather than investigating the plausibility of SSU which is likely to be pertinent
at very large Reynolds numbers, we focus here on such interactions that may occur in
finite Reynolds number flows. This choice is motivated by the fact that (i) finite Reynolds
flows are encountered in practical situations and (ii) these interactions are likely to be
more perceptible at low Reynolds number. Investigating the nature of the interactions
between CM and the small-scale motion is the principal motivation of the present work.
A better understanding of the effect of the large-scale CM on the smallest scales is of
major practical interest, for example for designing new efficient sub-grid scale models
(O’Neil & Meneveau 1997; Kang & Meneveau 2002).
Because of the pioneering work of Townsend (1956) and many other researchers (e.g.

Brown & Roshko (1974, 2012)), it is now well known that most shear flows contain so-
called coherent structures. These are energy-containing eddies present at rather large
scales, which strongly persist in time and/or in space. In terms of characteristic time-
scales, Thiesset et al. (2013b) showed that the life-time of the CM is much larger than
that of the small scales. The topology of the organized motion depends on initial con-
ditions and their related statistics are not universal (Antonia et al. 2002; Thiesset et al.
2013b). The plane wake flow is one possible candidate for studying the degree of SSU
in presence of a CM. As a reminder, at a Reynolds number ReD (≡ U0D/ν, U0 is the
upstream velocity, D the cylinder diameter and ν the kinematic viscosity) of about 45
(Williamson 1996), the well-known two-dimensional Bénard-von Kármán appears and
degenerates in three dimensions at a Reynolds of about 150 (Williamson 1996). Then,
for Reynolds numbers ReD > 103, the shear layers emanating from the sides of the cylin-
der destabilise and start being turbulent. The normalized shedding frequency, i.e. the
Strouhal number, monotonically increases for a Reynolds number ReD between 45 and
1000, before reaching a plateau in the range 103 < ReD < 104 with a value of about
0.21 (Roshko 1954). The wake flow is particularly suited for investigating the interactions
between the CM and small scales for the simple reason that the CM is sharply identified
in spectral space, and its frequency (or, Strouhal number) remains constant over a long
distance downstream the obstacle (Roshko 1954; Williamson 1996). In other words, in
contrast with some other flows as the shear layer for which the CM reveals some cycle-
to-cycle variations, or the boundary layer for which a large variety of coherent structures
are present, the CM pertaining to the wake flow is characterized by strongly stable struc-
tures that are advected almost identically in the direction of mean flow. The information
contained within the CM persists until the far field (Bisset et al. 1990; Zhou & Antonia
1995; Thiesset et al. 2013b) and influence small-scale statistics due to non-local interac-
tions and to a larger extent to finite Reynolds numbers effects. As far as the wake flow
is concerned, it was proven that the CM can induce a strong anisotropy through the
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additional effect of the coherent strain (Thiesset et al. 2013b). It was also stated that
the energy distribution and the maximum value of the energy transfer may be altered
significantly depending on the amplitude of the coherent motion (Thiesset et al. 2013a).
The results presented by Thiesset et al. (2013b,a) suggest that significant progress are
needed to unravel the physical processes at play in the dynamical relationship between
coherent and small scales.
The present study addresses a few specific issues: (i) What is the nature and degree of

interaction between large and small scales? (ii) What are the energy budget equations at
a given scale in flows where a CM may be discernible? (iii) Can we determine a reliable
analytical expression for the distribution of energy among different scales in the presence
of the CM?
To unravel these issues, the way we condition structure functions is somewhat different

to that presented previously. Based on the approach advocated by Reynolds & Hussain
(1972), we propose to condition structure functions by a particular value of the phase φ
arising from the phase-averaging operation.
This study focuses entirely on a circular cylinder wake flow, which is investigated

by means of hot wire experiments. Different streamwise locations were studied, from
x = 10D to x = 40D (D is the cylinder diameter) leading to a decreasing amplitude of
velocity coherent fluctuations. Investigations concentrate mostly on the wake centerline,
where the mean shear is absent. This allows us to focus only on the influence of the
coherent motion, thus avoiding the additive effect of the mean shear.
Following the definition of the phase-conditioned structure functions (§2.1), energy

budget equations for both coherent and random motion are first derived in §2.2. This
allows us to highlight the relevant quantities that ought to be assessed for the interactions
between the coherent motion and the small scales to be unravelled. Then, measurements
in the intermediate wake of a circular cylinder are described in §2.3. One-point statistics
are then presented in §3.1, with particular emphasis on the typical topology of the CM
pertaining to the wake flow. The interactions between coherent and random fluctuating
fields are illustrated by means of second (Subsection §3.2) and third-order (Subsection
3.3) phase-averaged structure functions. The isotropic formulation of the scale-by-scale
budget of the random motion is tested against experimental data in §4. Conclusions are
drawn in Section 5.

2. Tools of investigation

2.1. Phase-averaged structure functions

Before describing in detail the main achievements of the present study, we first briefly
discuss the tools that allow to highlight the features of the coherent motion pertaining
to the wake flow. To this end, it is first useful to separate the contribution of the CM
from that of the turbulent random motion (RM). In flows where a coherent motion
is discernible, one often invokes the triple decomposition (Reynolds & Hussain 1972)
according to which any fluctuating quantity β is decomposed as

β = β + β̃ + β′ (2.1)

where β, β̃ and β′ denote the mean, coherent and purely turbulent components of β
respectively. To extract the information on the coherent motion, a phase averaging is
performed (hereafter noted by angular brackets), namely

〈β〉 (φ) = β + β̃(φ) (2.2)



6 F. Thiesset, L. Danaila and R. A. Antonia

since by definition 〈β′〉 = 0. φ characterizes the phase of the CM. As far as the velocity
and pressure fields are concerned, the triple decomposition reads (Reynolds & Hussain
1972)

Ui = U i + ũi + u′
i, P = P + p̃+ p′ (2.3a)

ui = ũi + u′
i, p = p̃+ p′, (2.3b)

〈u′
i〉 = 0, 〈p′〉 = 0. (2.3c)

In the past, phase-averaging has been applied mostly to the velocity one-point statistics,
in order to emphasize for example the energy contribution of the coherent motion to the
Reynolds stress. However, similar treatments can be carried out concerning two-point
statistics with the view of relating the temporal dynamics of the energy distribution
across the scales to that of the organized motion.
Phase-averaging is thus applied to the n− th order structure functions (here, n ranges

from 1 to 3). Second- and third-order structure functions are as usually functions of r,
but specific to our methodology, they are also functions of the phase φ

〈(∆uα)
n〉 (~r, φ) =

〈[
uα

(
~X +

1

2
~r

)
− uα

(
~X − 1

2
~r

)]n〉
(~r, φ) (2.4a)

= 〈[uα (~x+ ~r)− uα (~x)]
n〉 (~r, φ) (2.4b)

which represents the ensemble average of the n − th order increment ∆uα = uα(~x +

~r)−uα(~x) of the velocity component uα, knowing φ( ~X). ~X is the midpoint between two
points of space ~x and ~x + ~r. Classical time-averaged structure functions are calculated
by integrating 〈(∆uα)

n〉 over all values of φ ∈ [−π;π] and are denoted by 〈(∆uα)n〉. An
important remark is that for n = 1,

〈∆uα〉 = ∆ũα 6= 0. (2.5)

Unlike the classical structure function, the first-order phase-averaged structure function
is not zero for r 6= 0. However 〈∆uα〉 = 0. Another result concerns the second-order
structure functions of the total fluctuating velocity field uα, which is the sum of the
second-order structure functions of the random and coherent motions, namely

〈
(∆uα)

2
〉
= (∆ũα)

2 +
〈
(∆u′

α)
2
〉
. (2.6)

The influence of the phase, on the total, organized and random kinetic energy at a given
scale, can thus be assessed separately. Similar results can be obtained for third-order
structure functions.

2.2. Dynamical transport equations for phase-conditioned two-point statistics

As a further step for investigating flows populated by CM, it is of interest to derive an
energy budget equation for second-order phase-averaged structure function. The partic-
ular expected outcome is to highlight the influence of the CM dynamics on the energy
distribution and thereof on the energy transferred at a scale r (and smaller). One advan-
tage of phase-averaging is that it allows transport equations to be written for both the
CM as well as the purely RM.

2.2.1. General formulation

The starting point is the Navier-Stokes equation

∂Ui

∂t
+ Uj

∂Ui

∂xj

= − ∂P

∂xi

+ ν
∂2Ui

∂xj∂xj

, (2.7)
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where P is the kinematic pressure and ν the kinematic viscosity. The summation conven-
tion applies to repeated Roman indices. By further using Eq. (2.3), Reynolds & Hussain
(1972) obtained the dynamical equations of the coherent and random components, which
are respectively

Dũi

Dt
+ ũj

∂U i

∂xj

+
∂

∂xj

(
ũiũj − ũiũj

)
+

∂

∂xj

(〈
u′
iu

′
j

〉
− u′

iu
′
j

)
= − ∂p̃

∂xi

+ ν
∂2ũi

∂x2
j

, (2.8a)

Du′
i

Dt
+ ũj

∂u′
i

∂xj

+ u′
j

∂U i

∂xj

+ u′
j

∂ũi

∂xj

+
∂

∂xj

(
u′
iu

′
j −

〈
u′
iu

′
j

〉)
= − ∂p′

∂xi

+ ν
∂2u′

i

∂x2
j

. (2.8b)

D
Dt

= ∂
∂t

+ U j
∂

∂xj
is the material derivative. Eqs. (2.8a) and (2.8b) are written at points

~x and ~x+ = ~x+ ~r separated by a distance ~r. Then, the equation at point ~x is subtracted
from that at point ~x+, so that

∂∆ũi

∂t
+∆

(
U j

∂ũi

∂xj

)
+∆

(
ũj

∂U i

∂xj

)
+∆

(
∂

∂xj

(
ũiũj − ũiũj

))

+∆

(
∂

∂xj

(〈
u′
iu

′
j

〉
− u′

iu
′
j

))
= −∆

(
∂p̃

∂xi

)
+ ν∆

(
∂2ũi

∂x2
j

)
, (2.9a)

∂∆u′
i

∂t
+∆

(
U j

∂u′
i

∂xj

)
+∆

(
ũj

∂u′
i

∂xj

)
+∆

(
u′
j

∂U i

∂xj

)
+∆

(
u′
j

∂ũi

∂xj

)

+∆

(
∂

∂xj

(
u′
iu

′
j −

〈
u′
iu

′
j

〉))
= −∆

(
∂p′

∂xi

)
+ ν∆

(
∂2u′

i

∂x2
j

)
, (2.9b)

Eq. (2.9a) is the dynamical equation of coherent velocity increments, and Eq. (2.9b) the
dynamical equation of random velocity increments. We consider that the mean velocity
field is sufficiently uniform for its spatial increments to be negligible compared with those
of both the random and coherent motions, viz. ∆Ui ≪ ∆ũi, ∆Ui ≪ ∆u′

i. Hence, the two
following transport equations for ∆ũi and ∆u′

i can be derived

D∆ũi

Dt
+∆ũj

∂U i

∂xj

+∆

(
∂

∂xj

(
ũiũj − ũiũj

))

+∆

(
∂

∂xj

(〈
u′
iu

′
j

〉
− u′

iu
′
j

))
= −∆

(
∂p̃

∂xi

)
+ ν∆

(
∂2ũi

∂x2
j

)
, (2.10a)

D∆u′
i

Dt
+∆

(
ũj

∂u′
i

∂xj

)
+∆u′

j

∂U i

∂xj

+∆

(
u′
j

∂ũi

∂xj

)

+∆

(
∂

∂xj

(
u′
iu

′
j −

〈
u′
iu

′
j

〉))
= −∆

(
∂p′

∂xi

)
+ ν∆

(
∂2u′

i

∂x2
j

)
. (2.10b)

As proposed by Hill (2001), Danaila et al. (2002), Danaila et al. (2004), we use derivatives

with respect to the midpoint ~X defined by ~X = (~x+ ~x+)/ 2, so that ∂/ ∂xj = − ∂/ ∂rj+
∂/ 2∂Xj and ∂/ ∂x+

j = ∂/ ∂rj + ∂/ 2∂Xj. We further assume that the two points ~x and

~x+ are independent (Hill 2001; Danaila et al. 2002, 2004), viz. ∂ui/x
+

j = ∂u+

i

/
xj = 0.

After multiplying Eq. (2.10a) by 2∆ũi and Eq. (2.10b) by 2∆u′
i, applying phase averaging

followed by time averaging, and noting that
〈
∆u′

j∆u′
i

〉
= 〈∆ui∆uj〉 −∆ũi∆ũj (2.11a)

〈
∆uj∆q2

〉
= ∆ũj∆q̃2 +∆ũj

〈
∆q′2

〉
+
〈
∆u′

j∆q′2
〉
+ 2∆ũi

〈
∆u′

j∆u′
i

〉
, (2.11b)
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we finally obtain the scale-by-scale energy budget of the coherent motion (Thiesset et al.
2011)

D

Dt
∆q̃2 +

∂

∂Xj

[
Σũj∆q̃2 + 2

〈
Σu′

j∆u′
i

〉
∆ũi + 2∆ũi∆p̃

]
+ 2∆ũi∆ũj

∂U i

∂xj

−
〈
Σu′

j∆u′
i

〉 ∂

∂Xj

∆ũi +
∂

∂rj
∆ũj∆q̃2 + 2∆ũi

∂

∂rj

〈
∆u′

i∆u′
j

〉

−ν

[(
2
∂2

∂r2j
+

1

2

∂2

∂X2
j

)
∆q̃2 + 2Σ

(
∂ũi

∂xj

∂ũj

∂xi

)]
= −2Σǫ̃. (2.12)

For the random motion, the corresponding energy budget equation is (Thiesset et al.
2011)

D

Dt
∆q′2 +

∂

∂Xj

[
Σu′

j∆q′2 +Σũj 〈∆q′2〉+ 2∆u′
i∆p′

]
+ 2∆u′

i∆u′
j

∂U i

∂xj

+
〈
Σu′

j∆u′
i

〉 ∂

∂Xj

∆ũi +
∂

∂rj

(
〈∆uj∆q2〉 −∆ũj∆q̃2

)
− 2∆ũi

∂

∂rj

〈
∆u′

i∆u′
j

〉

−ν

[(
2
∂2

∂r2j
+

1

2

∂2

∂X2
j

)
∆q′2 + 2Σ

(
∂u′

i

∂xj

∂u′
j

∂xi

)]
= −2Σǫ′. (2.13)

∆q̃2 = ∆ũi∆ũi and ∆q′2 = ∆u′
i∆u′

i are the coherent and random kinetic energies at a
given scale respectively. Σ• = •(~x+ ~r) + •(~x) is the sum of any quantity • at two points

separated by a distance ~r. The quantities ǫ̃ = ν
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)2
and ǫ′ = ν

2

(
∂u′

i

∂xj
+

∂u′

j

∂xi

)2
are

the mean energy dissipation rates of the coherent and the random motions, respectively.

For the sake of clarity, these equations are formally rewritten as

Ic +Acm +Dcc +D†
rc +Dcp + Pcm − Prc + Tc + Fc + Vc = −2Σǫ̃; (2.14a)

Ir +Arm +Drr +D††
rc +Drp + Prm + Prc + T − Tc −Fc + Vr = −2Σǫ′. (2.14b)

where I, A, D, P , T , F et V denote respectively the non stationarity, advection, diffu-
sion, production, transfer, forcing and viscous terms. The subscripts m, c, r correspond
to the mean, coherent and random motions, and Dp indicates the pressure diffusion.
When two indices are present, the first one identifies the quantity on which that effect
applies, whereas the second index points to the effect responsible for that effect (e.g., Drc

indicates the diffusion of RM through the CM). Further, we can shed light on D†
rc and

D††
rc, the transport of random statistical quantities by the organized motion.

By comparison with Danaila et al. (2002, 2004), there are additional terms which
emerge in the present equations, e.g. the terms Prc, Tc and Fc which can be identified
as the production of random fluctuations by the coherent motion, the coherent kinetic
energy transfer and the forcing associated by the presence of a coherent motion. All three
are present in equations (2.12) and (2.13), but with opposite signs. This means that the
terms which can be identified as a loss of energy for the coherent motion (Eq. (2.12)),
represent a gain of energy for randomly fluctuating motion (Eq. (2.13)). Equations (2.12)
and (2.13) provide a general framework which allows the physics of the interaction be-
tween coherent and random fields to be unravelled.

In a globally homogeneous context, the limit at the largest scales of Eqs. (2.12) and
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(2.13) is twice the one-point energy budgets provided by Reynolds & Hussain (1972)

1

2

D

Dt
q̃2 + ũiũj

∂U i

∂xj

+
∂

∂xj

(
ũj p̃+

1

2
ũj q̃2 + ũi

〈
u′
iu

′
j

〉)
−
〈
u′
iu

′
j

〉 ∂ũi

∂xj

= −ǫ̃; (2.15a)

1

2

D

Dt
q′2 + u′

iu
′
j

∂U i

∂xj

+
∂

∂xj

(
u′
jp

′ +
1

2
u′
jq

′2 +
1

2
ũj 〈q′2〉

)
+
〈
u′
iu

′
j

〉 ∂ũi

∂xj

= −ǫ′. (2.15b)

At this stage, Eqs. (2.12) and (2.13) are functions of the time t, the reference point vector
~x and the separation vector ~r. This leads to a problem in 7 dimensions (8 before time-
averaging). In order to reduce the number of degrees of freedom, one generally invokes
the local isotropy assumption. The practical consequence is that these isotropic forms
lend themselves to be tested experimentally, with the constraint that two-point statistics
are usually evaluated along one particular direction. Further, this allows us to compare
the present considerations with those developed over the last half century (Kolmogorov
1941a; Yaglom 1949; Antonia et al. 1997; Danaila et al. 2002, 2004).

2.2.2. Locally homogeneous and isotropic context

First, if homogeneity holds at the level of the viscous scales, then the viscous term of
e.g. the random motion reduces to (Hill 2001)

−ν

[(
2
∂2

∂r2j
+

1

2

∂2

∂X2
j

)
∆q′2 + 2Σ

(
∂u′

i

∂xj

∂u′
j

∂xi

)]
= −2ν

∂2

∂r2j
∆q′2, (2.16)

Then, in a locally isotropic context, the divergence and the Laplacian operators are
expressed as (Danaila et al. 2002, 2004)

∂

∂rj
=

2

r
+

∂

∂r
,

∂2

∂r2j
=

(
2

r
+

∂

∂r

)
∂

∂r
. (2.17)

By further using (2.17), after multiplying (2.12) and (2.13) by r2 = rjrj , integrating with
respect to r and dividing by r2, we obtain

1

r2

∫ r

0

s2
(
Ic +Acm +Dcc +D†

rc + Pcm − Prc +Dcp

)
ds

+∆ũ‖∆q̃2 +
2

r2

∫ r

0

∆ũi

∂

∂s
s2
〈
∆u′

‖∆u′
i

〉
ds− 2ν

∂

∂r
∆q̃2 = −4

3
ǫ̃r; (2.18a)

1

r2

∫ r

0

s2
(
Ir +Arm +Drr +D††

rc + Prm + Prc +Drp

)
ds

+
〈
∆u‖∆q2

〉
−∆ũ‖∆q̃2 − 2

r2

∫ r

0

∆ũi

∂

∂s
s2
〈
∆u′

‖∆u′
i

〉
ds− 2ν

∂

∂r
∆q′2 = −4

3
ǫ′r. (2.18b)

Eqs. (2.18a) and (2.18b) are the energy budget equations for the coherent and random
components in a locally isotropic context. Here, s is a dummy variable and the subscript
‖ denotes the direction parallel to the separation vector. When the spatial separation is
inferred using Taylor’s hypothesis, this direction coincides with that of the mean flow.
The first line of Eqs. (2.18a) and (2.18b) represents the energy contribution of the

largest scales (Danaila et al. 2002, 2004). The main difference with respect to the ex-
tended form of Kolmogorov equation (Antonia et al. 1997), is the appearance of several
extra terms due to the presence of CM. The effective energy transfer of the random veloc-

ity component is explicit and consists of the total energy transfer
〈
∆u‖∆q2

〉
(including

the coherent and random contributions), from which are subtracted the coherent energy
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1

x
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D = 12.7mm

Side viewFront view

Figure 1. (a) Definition of the coordinate system. (b) Sketches of the vorticity probe.

transfer ∆ũ‖∆q̃2 and the forcing term 2

r2

∫ r

0
∆ũi

∂
∂s
s2
〈
∆u′

‖∆u′
i

〉
ds. In section 4, results

based on experimental data will be shown.

2.3. Experiments

We recall briefly the most important features of the experimental set-up and measurement
technique. The principal characteristics of the measurements reported here (performed
at three downstream locations) are reported in Table 1. For more detailed information,
the reader can refer to Zhou et al. (2003).
Measurements were carried out in an open-circuit wind tunnel with a working section

of 0.35× 0.35m2 and 2.4m long. The cylinder of diameter D = 12.7mm (Fig. 1) is placed
horizontally, across the working section. The upstream velocity U0 is 3ms−1 correspond-
ing to a Reynolds number ReD = U0D

ν
= 2540 (ν is the kinematic viscosity). Larger

values of the upstream velocity U0 than reported by Zhou et al. (2003), were also used,

leading to larger values of the Taylor micro-scale Reynolds number Rλ =

√
u2λ
ν

. u2 is

the streamwise velocity variance, λ is the Taylor micro-scale: λ2 = 15νu2/ǫ and ǫ the
mean energy dissipation rate (see Zhou et al. (2003) for the values and the procedure
employed for measuring ǫ). Measurements were made at different downstream locations:
x = 10, 20, 40D, and different transverse positions, from y = 0 to y = 3D.
A hot-wire probe, consisting of four cross-wires (Fig. 1) was used to measure simulta-

neously all three vorticity components (see Zhou et al. (2003) for more details about the
probe).
Phase-averaged statistics are obtained as follows. The transverse velocity component

v was digitally band-pass filtered at the Strouhal frequency, using a eighth-order But-
terworth filter. The filtering operation is implemented on the Fourier transform of v in
order to avoid any phase shift. As proposed by Perrin et al. (2007), the Hilbert trans-
form h of the filtered signal vf is subsequently calculated and the phase φ inferred from

the relation φ = arctan
(

h
vf

)
. Finally, the phase is divided into 41 segments and phase-

averaged statistics are calculated for each segment. The statistical convergence of calcu-
lated structure functions is known to be a common issue (Nichols-Pagel et al. 2008), and
more especially when conditional structure functions are needed. In the present study,
the convergence of statistics for second and third-order moments were checked, by reduc-
ing the number of segments for the phase, and found to be satisfactory. By means of our
method, phase-averaged quantities are calculated over the period [−π, π]. As was done
by O’Neil & Meneveau (1997), the phase is doubled up to [−2π, 2π] by taking advantage
of the periodicity, in order to enhance the visual display.
In Marati et al. (2004), the geometrical space (location in the flow) and the separation
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x/D 10 20 40

u2 (m2.s−2) 0.276 0.133 0.045

v2 (m2.s−2) 0.716 0.208 0.047

w2 (m2.s−2) 0.137 0.097 0.42

ǫ (m2.s−3) 6.4 2.2 0.48
Lv/D 4.15 4.13 4.24

λ (mm) 3.1 3.7 4.6
η (mm) 0.15 0.20 0.29

Rλ 109 90 65

Table 1. Relevant flow parameters on the centerline of the wake for downstream distances of

10, 20 and 40D. The Reynolds number Rλ =
(
u2

)1/2

λ / ν, with λ =
√

15νu2/ǫ is based on the

longitudinal velocity fluctuations since u is weakly influenced by the CM.

space (turbulent scales) are made independent by considering the location specified by

the midpoint ~X = 1

2

(
~x+ ~x+

)
with ~x+ = ~x + ~r. The same idea is applied here to

phase-averaged structure functions for which the phase φ is defined as the phase at

the midpoint φ = φ( ~X). Defining φ = φ(~x) or φ = φ( ~x+) would have led to a linear
dependence between φ and r.

3. Results. Phase-averaged statistics in the wake flow

3.1. Flow topology and one-point, time-averaged quantities

The kinetic energy of the organized motion is compared to that of the total fluctuating

field (Figs. 2(a), 2(b), 2(c)). Ratios ũα
2/u2

α are calculated at several lateral y/D, as well
as three downstream locations (10D, 20D and 40D).
On the wake centerline, one observes that the organized motion is mostly perceptible

on the transverse velocity component v. Its energy contribution represents ≈ 70% of the
transverse velocity variance at 10D, and is still perceptible at 40D where ṽ2/v2 ≈ 10%.
In contrast, ũ2 represents only 5% of the total variance at x = 10D, y = 0 and is
negligible beyond 20D. The location of the maximum of ũ2/u2 lies between y = 1D and
y = 2D, depending on the downstream distance. This transverse position is related to
the position of the coherent structures which move away from the centerline when the
downstream distance increases. At this particular transverse position, ũ2/u2 ≈ 1

2
ṽ2/v2.

Finally, the spanwise kinetic energy w is entirely uncorrelated with the organized motion,
as emphasized by Kiya & Matsumura (1988) in the wake of a normal plate.
One of the main advantages of phase averaging is that it permits temporal and/or

spatial dynamics associated with the presence of the organized motion to be empha-
sized. With regard to the wake flow, one generally displays statistics in the (φ, y) plane
(Zhou & Antonia 1995; Bisset et al. 1990) to relate e.g. the spatial organization of ki-
netic energy to that of the CM. The phase-averaged sectional streamlines of the half-
wake are reported in Figs. 3(a), 3(b) and 3(c) for downstream positions varying from
10 to 40D. These are calculated and displayed following the procedure of Bisset et al.
(1990); Zhou & Antonia (1993); Zhou et al. (2003). Sectional streamlines are observed
in a frame of reference moving at a convection velocity of the coherent structures Uc

(see Zhou & Antonia (1992); Lin & Hsieh (2003); Zhou et al. (2003) for values of Uc),
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Figure 2. Energy contribution of the coherent motion. ◦ : 10D, ⊓⊔ : 20D, ♦ : 40D. (a) ũ2/u2,

(b) ṽ2/v2, (c) w̃2/w2.

the direction of which is from the right to the left, while the main flow is from left to
right. Phase-averaged sectional streamlines reveal the position of the vortex cores which
are centered around φ = π

2
± 2kπ (k ∈ N) and at lateral positions varying between

0.25D at 10D and 1D at 40D. The saddle points are located at φ = −π
2
± 2kπ and

y ≈ 1 − 1.5D as x increases. Moreover, near the cylinder the coherent structures are
skewed along the y direction, with the highest intensity located very nearly the wake
centerline. Further downstream, the coherent structures cores are located away from the
centerline (y ≈ 1D), and they occupy a smaller volume due to the total circulation (Γ)
being very nearly conserved in the near-field of the wake.

We now turn our attention to the repartition of coherent kinetic energy in the (φ, y)
plane. Iso-values of ũ are reported in Figs. 3(d), 3(e), 3(f) and those of ṽ in Figs. 3(g),
3(h), 3(i). Note that φ = 0±kπ and y = 0 correspond to the location of the absolute max-
imum of the coherent transverse velocity fluctuation ṽ. In contrast, local maxima of the
longitudinal component ũ is phase-shifted by φ = π

2
, with maximum values correspond-

ing to the upper boundary of the positive vortex (φ = π
2
± 2kπ) (Matsumura & Antonia

1993). Minimum values are located at the upper boundary of vortices of negative sign
(φ = π ± 2kπ) (Matsumura & Antonia 1993). Note also that on the wake centerline,
ũ reveals a periodicity of period π due to the symmetric arrangement of vortices with
respect to the centerline. In Figs. 3(j), 3(k) and 3(l) is displayed the coherent strain

S̃ = ∂〈U〉
∂y

+ ∂〈U〉
∂x

in the (φ, y) plane at the three downstream positions investigated. The
coherent strain is of particular interest since it may induce an additional production
term of both coherent and random fluctuations (Reynolds & Hussain 1972). In the wake
flow, this quantity reveals local maxima located at saddle points, i.e. φ = −π/2 ± 2kπ.
The strong connection between the energy distribution across turbulent scales and the
coherent strain will be emphasized in subsection 3.2.

In summary, it is highlighted that the coherent motion is mostly discerned on v with
local extrema of ṽ located at φ = 0±kπ and y = 0d. Phase averaged sectional streamlines
show that coherent structures are centred around φ = π

2
± 2kπ and 0.25d < y < 1d

depending on the streamwise location.

In the light of the previous remarks, this study will focus entirely on the wake centerline
where the energy contribution of the coherent motion is maximum. In addition, this allows
the effect of the coherent strain to be separated from that of the mean shear which is
absent on the wake axis. It has been well established that the mean shear influences the
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Figure 3. (a, b, c) Phase-averaged sectional streamlines. (d, e, f) Contours of ũ/U0. (g, h, i)

Contours of ṽ/U0. (j, k, l) Contours of S̃D/U0. The flow direction is from left to right. Left,
x = 10D; center, x = 20D; right, x = 40D.

behaviour of the smallest scales even at large Reynolds numbers (Praskovsky et al. 1993;
Sreenivasan & Dhruva 1998; Shen & Warhaft 2000).

3.2. Second-order phase-averaged structure functions

We begin with phase-averaged second-order structure functions of the longitudinal veloc-
ity component u. We report the scale-by-scale energy distribution, of the total fluctuating
field (Figs. 4(a), 4(b), 4(c)), of the coherent motion (Figs. 4(d), 4(e), 4(f)) and of the
random part (Figs. 4(g), 4(h), 4(i)) in the (φ, r) plane, for x varying from 10 to 40D. The
separation r is calculated by means of Taylor’s hypothesis (i.e. r = Ucτ = Uc/Fs, Fs is
the sampling frequency) and thus coincides with the direction of the mean flow x. The
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Figure 4. Phase-averaged second-order structure function of the longitudinal velocity com-
ponent u (in logarithmic scales log

10
). (a ,b, c):

〈
(∆u)2

〉
/u2. (d, e, f): (∆ũ)2/ũ2. (g, h, i):〈

(∆u′)2
〉
/u′2. Left x = 10D; center, x = 20D; right, x = 40D. Vertical lines correspond to

φ = 0 and φ = ±3π/2.
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r axis is normalized by Lv, the streamwise distance between two consecutive vortices of
the same sign; Lv = 4.15D, 4.13D and 4.24D for x = 10, 20 and 40D respectively.
A careful analysis of Figs. 4(a), 4(b), 4(c) reveals the range of scales which are influ-

enced by the coherent motion. At x = 10D, the kinetic energy at the smallest scales
is strongly enhanced at φ = −π

2
± kπ. This phase location corresponds to the maxima

(in amplitude) of the coherent strain. At 20D, the dependence of the phase is no longer
visible at the smallest scales, but it still persists at the largest scales (r/Lv > 0.2). At
40D, the influence of the coherent motion among all values of the separation r is not
discernible.
Concerning the (r, φ)-energy distribution of the coherent motion (Figs. 4(d), 4(e), 4(f)),

we observe that (∆ũ)2 is zero for a phase φ = 0± k π
2
. Also, (∆ũ)2 = 0 for r = Lv

2
+ kLv

2
.

This indicates that the periodicity in u is half the distance between two vortices so that
ũ(x)− ũ(x+ Lv

2
+kLv

2
) = 0 and thus

〈
(∆u)2

〉
(r = Lv

2
+kLv

2
) =

〈
(∆u′)2

〉
(Lv

2
+kLv

2
). At

40D, the amplitude of ũ is too small for the phase-average operation to reliably capture
the energy distribution of the CM.
An important remark is that even though the r axis is limited to 3Lv, the pattern

observed in (∆ũ)2 continues indefinitely. Indeed, since the periodicity leads to a Dirac
function in spectral space, the same periodicity has an infinite extent in physical space.
Therefore, the localization in terms of scales of the coherent motion energy is lost in
physical space, and its energy distribution is spread over an infinite range of scales.
The (r, φ) energy distribution of the random motion along the longitudinal direction,

for downstream distances varying from x = 10D to 40D, are plotted in Figs. 4(g), 4(h),
4(i). The topology of

〈
(∆u′)2

〉
(r, φ) is very similar to that of the total fluctuating field.

This reveals that the phase correlation observed in Figs. 4(a), 4(b) is not representative
of the longitudinal coherent forcing ũ, whose topology is clearly different. In contrast,
the phase correlation at small scales may be caused by a forcing in another direction,
most likely in the y direction associated with ṽ. To unravel this issue, we now focus
on the transverse velocity, whose contribution to the total kinetic energy is much more
significant than that of u.
The phase-averaged transverse structure functions of the total fluctuating field v (Figs.

5(a), 5(b), 5(c)), of the coherent component ṽ (Figs. 5(d), 5(e), 5(f)), and of the randomly
fluctuating field v′ (Figs. 5(g), 5(h), 5(i)) for downstream distances varying from 10 to
40D are now presented. The phase-correlation of the total fluctuating field (Figs. 5(a),
5(b), 5(c)) is clearly visible. A distance of 40D is needed before the phase-correlation
disappears for small scales; however it is still perceptible for scales beyond r = 0.2Lv ≈
2λ. As in the case of u, the energy at any scale r of the transverse velocity component
v is enhanced at a phase φ = π

2
± kπ and is much smaller at a phase φ = 0 ± kπ.

The topology of
〈
(∆v)2

〉
is very analogous to that of (∆ṽ)2 (Figs. 5(d), 5(e), 5(f))

which was not the case for u. For example, the phase π-periodicity and separation Lv-
periodicity are recovered. Further, the local maxima and minima correspond to those
of the coherent motion. Hence, this statistical tool allows us to assert that the coherent
motion makes a strong energy contribution to the total fluctuating field, especially in
the intermediate wake. By virtue of Eq. (2.6), we can calculate the random structure
function of the velocity component v (Figs. 5(g), 5(h), 5(i)). At 40D, the phase-averaged
structure function is of similar shape to the usual time-averaged structure function, and
the phase-correlation is lost. However, at 10D and 20D, there is still a strong influence
of the phase, even at very small scales. Note also that the topology in the (r, φ) plane is
quite comparable to that of u, but amplitudes differ significantly (by a factor ≈ 2).
We have emphasized that ṽ is the most important fluctuation. It is therefore impor-

tant to dispose of a model for its statistics. Figures 5(d), 5(e), 5(f) emphasize that the
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Figure 5. Phase-averaged second-order structure function of the transverse velocity component
v (in logarithmic scales log

10
). (a ,b, c):

〈
(∆v)2

〉
/v2. (d, e, f): (∆ṽ)2/ṽ2. (g, h, i):

〈
(∆v′)2

〉
/v′2.

Left, x = 10D; center, x = 20D; right, x = 40D. Vertical lines correspond to φ = 0 and
φ = ±3π/2.
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Figure 6. Phase-averaged second-order structure function of the coherent transverse velocity
component ṽ :

〈
(∆ṽ)2

〉
/ṽ2. Symbols � : φ = π

2
, ◦ : φ = π

4
, ♦ : φ = 3π

4
. Comparison with the

analytical expression Eq. (3.1). - - - - : φ = π
2
. —— : φ = π

4
and φ = 3π

4
. (a) 10D, (b) 20D,

(c) 40D.

coherent fluctuations contours in the (φ, r) plane are very similar. This particular fea-
ture indicates that a possible analytical expression can be applied to model the energy
distribution among different scales. The phase-averaged structure function can be for ex-
ample written as the product of two sinus functions parametrized by Lv, the streamwise
distance between two consecutive vortices, and ṽ2, the variance of the coherent part of
the transverse velocity, viz.

(∆ṽ)2/ṽ2 = 8 sin2(φ) sin2

(
π

r

Lv

)
, (3.1)

Therefore, for φ = 0±kπ, (∆ṽ)2 = 0 and for φ = π/2±kπ (∆ṽ)2/ṽ2 = 8 sin2(π r
Lv

), as is

observed experimentally. Further, (∆ṽ)2 = 0 for r = Lv ±kLv, and (∆ṽ)2/ṽ2 = 8 sin2(φ)
for r = Lv/2 ± kLv in agreement with Figs. 5(d), 5(e), 5(f). Note also that, due to the
symmetry of the sinus function

(∆ṽ)2(φ ± k
π

2
) = (∆ṽ)2(−φ± k

π

2
). (3.2)

Then, the time-averaged structure function is obtained by integrating Eq. (3.1) over the
period φ ∈ [−π;π]

(∆ṽ)2/ṽ2 = 4 sin2
(
π

r

Lv

)
. (3.3)

Equation (3.3) can be easily demonstrated by supposing ṽ = cos
(
2π x

Lv

)
and applying a

spatial average over the period [0; 2π]. In Figs. 6(a), 6(b), 6(c), we compare the experi-
mental phase-averaged structure functions with those modelled by Eq. (3.1) for the three
values of x/D and three different phase references. At x = 10D (Fig. 6(a)), the model
is qualitatively able to reproduce the shape of the phase-averaged structure functions.
However, there are quantitative differences. For example, for φ = π

2
, the maximum value

is weaker than that predicted by the model. In contrast, at the same phase reference,
the model underestimates the energy distribution at the smallest scales. Further, the
symmetry property Eq. (3.2) is violated since (∆ṽ)2(3π

4
) 6= (∆ṽ)2(π

4
). This asymmetry is
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x = 10D
x = 20D
x = 40D
4 sin2

(

π r

Lv

)

Figure 7. Time-averaged second order structure function of the coherent velocity component
v. —— : Analytical expression based on Eq. (3.3), symbols ◦ : 10D, ⊓⊔ : 20D, ♦ : 40D.

discernible in Fig. 5(d), and may be associated with another superposed sinusoidal signa-
ture. The latter may be phase-shifted from the main sinusoidal function that is accounted
for in Eq. (3.1). At x = 20D and x = 40D(Fig. 6(b), 6(c)), the symmetry (Eq. (3.2))
is recovered and the sine-type model closely follows the experimental phase-averaged
structure functions.
To summarize, the sine-type model for phase-averaged structure functions indicates

only small departures from the measurements, especially at 10D. However, as empha-
sized by Fig. 7, the time-averaged structure function of the coherent motion is very well
reproduced by Eq. (3.3). This provides very encouraging experimental support for the
ability of this very simple model to represent the essential physics of the coherent motion,
that is the distribution of energy among scales. In addition, let us recall that some ana-
lytical expressions of time-averaged structure functions have already been proposed, for
example by Aivalis et al. (2002); Kurien & Sreenivasan (2000), and recently successfully
invoked by Antonia et al. (2003), Antonia & Burattini (2006) in grid turbulence. These
expressions which relate mostly to a purely random field can be added to Eq. (3.3) by
virtue of Eq. (2.6) to assess the energy distribution of the total kinetic energy in a flow
where a CM persists.

3.3. Third-order phase-averaged structure functions

We now turn our attention to third-order phase-averaged structure functions, and espe-
cially the mixed structure function

〈
∆u∆v2

〉
. After applying the triple decomposition to〈

∆u∆v2
〉
and with 〈∆u′

α〉 = 0 we obtain
〈
∆u(∆v)2

〉
= ∆ũ(∆ṽ)2 +

〈
∆u′(∆v′)2

〉
+∆ũ

〈
(∆v′)2

〉
+ 2∆ṽ 〈∆u′∆v′〉 . (3.4)

Obviously, the phase-averaged third-order structure function of the random field can be
assessed from Eq. (3.4), knowing ∆ũ and ∆ṽ,

〈
(∆v)2

〉
and

〈
∆u(∆v)2

〉
. In Figs. 8(a),

8(b) and 8(c), are represented the third-order structure functions of the total fluctuating
field for x = 10, x = 20D and x = 40D respectively.

〈
∆u∆v2

〉
is divided by ǫr, where ǫ

is the mean kinetic energy dissipation rate reported by Zhou et al. (2003).
First, one observes a strong small-scale phase-correlation, even at 40D. This indicates

that the phase-correlation is clearly much more significant for third-order moments than
for second-order structure functions. We can thus expect that for higher moments and
especially for fourth-order moments which give a first indication or measure of internal
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Figure 8. Phase-averaged third-order structure functions. (a ,b, c): −
〈
∆u(∆v)2

〉
/ǫr. (d, e, f):

−∆ũ(∆ṽ)2/ǫr. (g, h, i): −
〈
∆u′(∆v′)2

〉
/ǫr. left x = 10D, center x = 20D, right x = 40D. The

horizontal dashed line represents the Taylor microscale λ. Vertical lines correspond to φ = 0
and φ = ±3π/2.
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intermittency, the phase correlation may be more significant, whether the order of the
moment is even or odd may also play a significant role. This issue is left for future work.
In the inertial range and in a locally isotropic context, we expect

−
〈
∆u(∆v)2

〉
= −1

3

〈
(∆u)3

〉
≤ 4

15
ǫr ≈ 0.267ǫr. (3.5)

We observe that the maximum of the phase-averaged third-order structure functions can
achieve some very high values, especially at 10D and 20D where −

〈
∆u(∆v)2

〉
/ǫr is

≈ 20 and ≈ 6 times greater than the expected isotropic value of 4/15. These maxima are
located at φ = π

2
± kπ where the coherent strain is maximum. This is the experimental

evidence of a strong anisotropy of the total fluctuating field at rather small scales. The
connection between the positions of the latter anisotropy and that of the coherent strain
is fully consistent with the conclusions of Thiesset et al. (2013b). The coherent third-
order structure function (Figs. 8(d), 8(e) and 8(f)), is not negligible at 10D and tends
to decrease as x increases. At x = 40D, the maximum value of the third-order structure
function is two orders of magnitude smaller than that of the total fluctuating field.
However, irrespectively of x, since positive and negative coherent fluctuations are of the
same amplitude, the time-averaged third-order structure function of the coherent motion
is particularly weak.
In Fig. 8(g), 8(h) and 8(i), we represent the random phase-averaged third-order struc-

ture functions between x = 10D and x = 40D. Here again, the phase correlation is
easily discernible, and more accentuated than that of the second-order moments. At
x = 20, 40D, the maximum value exceeds the isotropic expectation of 4/15, while at
40D the maximum value is roughly consistent with isotropy. The phase location of these
maxima is φ = π

4
± kπ. By comparison with Fig. 8(a), 8(b) and 8(c), these maxima are

also localized at smaller scales (r ≈ 1 − 2λ) and have a smaller magnitude. Since the
third-order structure function of the coherent motion is particularly small especially at
40D, the difference between

〈
∆u(∆v)2

〉
and

〈
∆u′(∆v′)2

〉
is mostly due to the other sub-

tracted terms and particularly to 2∆ṽ 〈∆u′∆v′〉 (not shown), which may be interpreted
as the sweeping of the random Reynolds stress by the organized motion.
In summary, phase-averaged structure functions are an adequate tool for highlighting

the influence of the coherent motion. The latter persists even at the smallest scales
and relatively far downstream of where the energy was injected. The influence is more
perceptible on third-order moments than on second-order moments. For example, at x =
40D, there is no more footprints of the coherent motion on phase-averaged second-order
structure functions. However, the interaction persists in third-order moments. Other
measurements were made with the same vorticity probe, at the same spatial locations,
but at a higher Taylor microscale Reynolds number (up to Rλ ≈ 300). Although these
data are not reported in this study, they reveal that the scale beyond which the CM has an
influence remains constant (in terms of Lv, which does not vary over the range of Reynolds
numbers investigated). This observation was already predicted by Thiesset et al. (2013b)
using dimensional arguments. Nevertheless, since the Taylor and Kolmogorov length-
scales progressively diminish as the Reynolds number increases, the range of scales which
is not influenced by the dynamics of the CM extends. In other words, the degree of
interactions between the CM and small scales must be understood as a finite Reynolds
number effect and should be discernible especially at small Reynolds numbers. We can
thus expect SSU to be recovered at infinite Reynolds numbers since the degree of the
interactions between the CM and the small scale progressively diminishes.
On the other hand, we have to mention that it would be incorrect to conclude that the

phase-correlation at the smallest scales is the experimental evidence for the existence of
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non-local interactions between separated scales. Indeed, it was shown that the coherent
motion energy is not precisely localized in physical space (in contrast with the spectral
space) and extends over an infinite range of scales. This conclusion queries the ability of
second-order structure functions to describe effectively the energy at a particular scale
r. According to Townsend (1956); Davidson & Pearson (2005); Mouri & Hori (2010);
Danaila et al. (2012a), second-order structure functions represent the energy of every
scale smaller than r rather than the energy of a scale of typical size r.

4. Experimental assessment of scale-by-scale energy budget

At the centerline, the locally isotropic scale-by-scale budget of the random motion can
be written

− 1

r2

∫ r

0

s2Armds−
〈
∆u‖∆q2

〉

+∆ũ‖∆q̃2 +
2

r2

∫ r

0

∆ũi

∂

∂s
s2
〈
∆u′

‖∆u′
i

〉
ds+ 2ν

∂

∂r
∆q′2 =

4

3
ǫ′r, (4.1)

which means that in the limit of large scales, the advection term is almost entirely
compensated by the energy dissipation rate; other large scale terms such as longitudinal
production or turbulent diffusion are, as a first approximation, negligible compared to
the advection term.
First, let us assess the adequacy of the local isotropy hypothesis on the wake center-

line. To this end, we use the isotropic relation between second-order structure functions
(Monin & Yaglom 2007)

(∆u⊥)2|iso = (∆u)2 +
r

2

∂

∂r
(∆u)2, (4.2)

in which u⊥ denotes either v or w. In Fig. 9(a), we report the ratio between measured
and calculating structure functions (using Eq. (4.2)) of the velocity component v, v′ and
w. If isotropy holds, the ratio must be equal to 1 for all values of r.
First, the spanwise velocity component w closely follows the isotropic relation. The

departure from local isotropy does not exceed 10%. At the smallest scales, the transverse
component v respects isotropy and the ratio increases as we progress through to larger
scales. The maximum deviation from isotropy is observed at r/Lv ≈ 0.5 ≡ r ≈ 5λ and
the value of the ratio approaches 50%. As was emphasized by Thiesset et al. (2013b),
this departure from local isotropy can be explained by the presence of the coherent
strain associated with the organized motion. However, statistics of the random part of
the fluctuating transverse motion are much closer to the isotropic value, and Eq. (4.2) is
respected with a maximum departure of about 30%.Therefore, isotropy is roughly verified
on the centerline of the wake for scales smaller than ≈ 3λ. For larger scales the departure
from local isotropy attains 30% which does not seem unreasonable as far as experimental
sources of errors are concerned.
Note that the local axisymmetry hypothesis should have been a more comfortable

approximation since (∆v′)2 ≈ (∆w′)2 for r < 2 − 3λ. This indicates that a possible
extension of the present work is to derive the axisymmetric energy budgets equations
which account for the coherent motion, following the procedure outlined for example by
Danaila et al. (2012b). However, the comparison with experiments is much more difficult
since this requires the measurements of three-point correlation functions using, at least,
two X-probes separated in the transverse direction (Sjögren & Johansson 1998; Valente
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fer term divided by ǫ′r. —— total transfer term −
〈
∆u‖∆q2

〉
, — · — coher-

ent transfer and forcing term ∆ũ‖∆q̃2 + 2

r2

∫ r

0
∆ũi

∂
∂s

s2
〈
∆u′

‖∆u′
i

〉
ds, - - - - Sum

−
〈
∆u‖∆q2

〉
+ ∆ũ‖∆q̃2 + 2

r2

∫ r

0
∆ũi

∂
∂s

s2
〈
∆u′

‖∆u′
i

〉
ds. (c) Scale-by-scale budget of the

random motion (Eq. (4.1)) divided by ǫ′. ——: 4

3
ǫ′r, ×: − 1

r2

∫ r

0
s2Armds, ⊓⊔ −

〈
∆u‖∆q2

〉
, ◦ :

−
〈
∆u‖∆q2

〉
+ ∆ũ‖∆q̃2 + 2

r2

∫ r

0
∆ũi

∂
∂s

s2
〈
∆u′

‖∆u′
i

〉
ds, +: 2ν ∂

∂r
∆q′2, △: left hand side of Eq.

(4.1).

2013). For this reason, we are interested here only in the isotropic formulation of the
scale-by-scale energy budgets.
Let us now turn our attention to the effective transfer term that was emphasized in

the previous analytical section. Fig. 9(b) shows the total non linear transfer −
〈
∆u‖∆q2

〉
,

the additional coherent transfer and forcing due to the coherent motion ∆ũ‖∆q̃2 +

2

r2

∫ r

0
∆ũi

∂
∂s
s2
〈
∆u′

‖∆u′
i

〉
ds as well as the effective transfer inferred from their sum,

as a function of the separation r/Lv.
For weakly turbulent flows, the non linear transfer term is smaller than 4

3
ǫr, because of

the cross-over between viscous and large-scale effects (Danaila et al. 2002, 2004). Here,

−
〈
∆u‖∆q2

〉
/ǫ′r ≈ 0.63. The additional energy transfer associated with the coherent

motion is negative, its value being quite small, although not negligible. Its contribution
is non zero for all separations with a maximum contribution at about 2λ. Finally, the
maximum effective transfer of the random motion is smaller than the total transfer by
about 12%. Even though the difference of 12% between the total energy transfer and the
effective energy transfer is not large, its influence may persist far from the injection of
energy (Thiesset et al. 2013b) and thus remains the key for providing some insight into
the energy transfer along the cascade in the wake flow, for which the CM is discernible.
In a recent study (Thiesset et al. 2013a), it was observed that the maximum value of non
linear transfer term measured in the wake of different generators was always larger than
the one expected for grid turbulence for which the CM is absent. We thus prove here
that this difference is associated with the presence of the CM whose macroscopic effect
(i.e. when the RM and CM are not dissociated) is to enhance the total energy transfer.
The Reynolds number has also an influence on the amplitude of the effective energy
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transfer. Using the data at higher Reynolds numbers, it was observed that the difference
between the total and the effective energy transfers diminishes as the Reynolds number is
enhanced, and might be negligible beyond Rλ = 250− 300 for the circular cylinder wake.
Therefore, the effect of the CM on the energy transfer must be interpreted as a finite
Reynolds number effect. On the other hand, this difference between the total and the ef-
fective energy transfer depends also on initial conditions since different generators lead to
different amplitudes of the coherent motion (see e.g. Antonia et al. (2002); Thiesset et al.
(2013b,a)). Therefore, the Reynolds number that is required for the forcing due to the
CM to be negligible depends on initial conditions, and is expected to be larger for porous
generators than for impervious ones. The extra-transfer term is non zero over a large
range of scales. However, one cannot claim that this quantifies the non local interactions
between coherent and random fields because of the loss of localization in physical space,
as mentioned previously.
The balance between right and left sides of (4.1) is reasonably satisfied at all scales

(Fig. 9(c)). The weak imbalance at rather large scales implies that either local isotropy no
longer holds or that other production and/or diffusion terms must be taken into account
in Eq. (4.1).

5. Conclusions

The connection between the temporal dynamics of the coherent motion and the energy
distribution across all scales has been highlighted by means of phase-averaged structure
functions. This original statistical tool allows us to assess the range of scales affected
by the CM dynamics. Moreover, we are able to separate the energy contributions of the
coherent and random fluctuations. Phase-averaging the structure functions measured in
a cylinder wake yields three main outcomes.
First, it is shown that, as the distance downstream of the cylinder increases, (i) the

scale at which the forcing associated with the CM is perceptible continually increases,
(ii) phase-scale structure functions reveal also that a scale r is correlated with that of
the coherent strain, the effect of the latter being to locally enhance the energy at any
scale r.
Second, we have proposed a simple analytical expression for the CM energy distribu-

tion. This treatment relies on two parameters that may depend on the type flow: the
length scale Lv and the variance ṽ2. This expression can be used together with available
analytical expressions for the second-order structure functions which relate to the ran-
dom motion, therefore providing an analytical description of the total fluctuating field
statistics.
Finally, energy budget equations which account for the organized motion are derived.

Both general and isotropic formulations are obtained. They highlight a few additional
terms. One of these is interpreted as an additional forcing exerted by the CM on the
random motion. At x = 40D, this term represents about 12% of the total transfer term,
but its influence may persist far downstream. The isotropic formulation is tested against
experimental data at the wake centerline. The weak imbalance between the analytical
formulation and the measurements at rather large scales appears to underline the inad-
equacy of local isotropy at these scales.
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