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Kármán-Howarth closure equation on the basis of a universal eddy-viscosity

mogorov scales, i.e. r * = r/η with η = ν

The Kármán-Howarth equation [1] can be written in terms of velocity structure functions [2] 3∂ t (∆u) 2 = 1 r 4 ∂ r r 4 6ν∂ r (∆u) 2 -(∆u) 3 -4 . (1) ∆u = u(x + r) -u(x) is the longitudinal velocity increment between two points separated by a distance r and 2 , is the mean dissipation rate with ν the kinematic viscosity and the overbar denotes averaging. Second-and third-order structure functions (∆u) 2 and (∆u) 3 appearing in Eq.( 1) are usually interpreted as the kinetic energy and the kinetic energy transfer at a given scale respectively, two crucial quantities for modelling turbulent flows.

∂ α • = ∂•/ ∂α. Further, = 15ν(∂ x u)
In spectral space, the equivalent equation known as Lin's equation [3] reads

∂ t E(k) = T (k) -2νk 2 E(k), (2) 
in which E(k) is the 3D energy spectrum, k the wavenumber and T (k) the spectral energy transfer function.

Eq.( 2) describes essentially the same physical mechanism as Eq.( 1), i.e. the decay, the transfer and the dissipation of energy at a given scale or wavenumber.

In the last fifty years, several closures of Eq. (2) have been developed and are still extensively employed.

Among others, we can cite the Direct Interaction Approximation model (DIA) proposed by Kraichnan [4] or the Eddy Damped Quasi Normal Markovian (EDQNM) closure [5].

On the contrary, closures of Eq.( 1) have not received the same attention. To our knowledge, Millionshchikov (∆u) 3 . All of them are based on the concept of an eddyviscosity ν t , i.e. Eq.( 1) is then formally rewritten as

3∂ t (∆u) 2 = 1 r 4 ∂ r r 4 6 (ν + ν t ) ∂ r (∆u) 2 -4 . (3) 
The third-order structure function is thus related to ν t and (∆u) 2 through (∆u

) 3 = -6ν t ∂ r (∆u) 2 , (4) 
where ν t is a function of the separation r. Domaradzki & Mellor [7] proposed an expression for ν t on the basis of inertial range asymptotic relations (R λ → ∞, where distances up to 80M (M is the grid mesh size).

R λ = u 2 λ / ν

80

In order to derive an analytical expression for ν t , we 81 first recall that at small scales, (∆u) 2 = r 2 15ν and 82

(∆u) 3 = -S r 2 / 15ν 3/2 . S = -(∂ x u) 3 (∂ x u) 2 3/2 83
is the skewness of the longitudinal velocity derivative 84 with respect to the longitudinal direction x. It follows 85 that in the dissipative range

86 ν t ν = S 12 √ 15 r * 2 . ( 5 
) 2 scales in the range η r L (L is the integral length- scale), (∆u) 2 = C u ( r) 2/3 and (∆u) 3 = -A u r (C u = 2,
A u = 4/5 [13]). Hence, in the inertial range

ν t ν = 1 5C u r * 4/3 . (6) 
Equation ( 6) was already proposed by Domaradzki & Mellor [7], even though we became aware of this after we derived it. Following e.g. [14], we match Eqs.( 5) and ( 6) into a single expression

ν t ν = Sr * 2 12 √ 15 1 + γr * 2 1/3 . (7) 
Equation ( 7) generalizes the expression of [7] by covering both dissipative and inertial ranges. In Eq.( 7), the crossover length-scale between dissipative and inertial range r 2 c = 1/γ is determined by equating Eqs.( 5) and ( 6 The analytical expression for ν t (Eq.( 7)) is thus compared to the one inferred from experiments in grid, wake, round and plane jet turbulence. The Reynolds number is in the range 50 ≤ R λ ≤ 1100. The grid turbulence experiments are described in [15]. The wake flow facility is described in [15] while experiments in the round and plane jets are outlined in [15]. For the wake, round and plane jet experiments, the measurements were made at the centerline, thus avoiding to account for any additive production terms in Eq.( 1) due to the mean shear.

The dependence on Reynolds number of the measured the eddy-viscosity is presented in Fig. 1(a). At small scales (r * 10), all experimental points converge onto a single curve which is well represented by Eq.( 5) with S = 0.424 (Fig. 1(a)). The value of S used here is the mean value between the five experiments. S varies by only 5% from one experiment to another. This indicates that the skewness of the velocity derivative S remains constant in agreement with the Kolmogorov theory [13].

For the range of Reynolds numbers investigated, the effect of internal intermittency on S [16] is not discernible.

Both the constancy and the value itself of S are quite consistent with all experimental values compiled by [17],

at least for the same range of Reynolds numbers. Further, it is in perfect agreement with EDQNM [16].

As we progress through to the larger scales (10 r * tions of [7] revealing that the prefactor in Eq.( 6) varies 

195 τ * (k * ) ∝ k * 0 p * 2 E * (p * )dp * -1/2 , ( 8 
)
where p is a dummy integration variable. In Eq.( 8), the 
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The idea of invoking a set of scales which yields a col-207 lapse of velocity statistics over a wider range of scales 208 was already used in [22] for which the relevant scales are 209 λ and q 2 = u i u i (twice the total kinetic energy). Fur-210 ther, in the energy-containing and inertial ranges, [23] 211 demonstrated that the use of u 2 and the von Kármán 216

We now take advantage of this extended universality to 217 develop a simple closure equation for Eq.( 1). Third-order 218 structure functions are thus calculated from measured 219 second-order structure functions using Eqs.( 4) and (7).
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The comparison between modelled and measured third- Since theory is compared to a spatially decaying tur-238 bulence (in this case grid turbulence [15]), we relate the 

= - 1 2 ∂ t q 2 , (9) 
where q 2 = u 2 + v 2 + w 2 is twice the total kinetic en- the magnitude of the measured mean dissipation rate in-268 ferred from = 15ν(∂ x u) 2 is smaller (≈ 15%) than that 269 predicted by the model. This discrepancy may be due to

[ 6 ]

 6 (in Russian), Domaradzki & Mellor [7], Effinger & Grossmann [8], Oberlack & Peters [9] and Baev & Chernykh ([10] and references therein) are the only authors who proposed a model (sometimes identical) for

  ), yielding r * c = 12 √ 15 5C u S 3/2 . As for the EDQNM spectral closure, dissipative and inertial range intermittency effects are not taken into account in the present analysis. According to the Kolmogorov theory [13], S, C u and consequently r * c are universal. However, in the context of finite Reynolds number flows, S and r * c are (a priori) two free parameters. In the following, we turn our attention to their evolution with respect to the Reynolds number.

10 2 )

 2 FIG. 1. (a) νt/ν as a function of r * measured in different flows (50 ≤ R λ ≤ 1100). Eq.(7) (dashed line), Eq.(7) with r * c = 25 (solid line). The inset depicts the compensated eddy-viscosity (νt/ν)/r * 4/3 . (b) Kolmogorovnormalized third-order structure functions. Symbols are the same as in Fig.1(a), solid lines represent the present model using r * c = 25

158

  by only a few percent in the range 50 ≤ R λ ≤ 10 4 and re-3 mains always smaller than the expected asymptotic value 160 even at a very high Reynolds number. 161 Finally, the last observation that one can make is that 162 at the highest Reynolds number (R λ = 1100), the scaling 163 ν t ∝ r * 4/3 is accurately satisfied over almost two decades of separations (10 2 r * 10 4 ) whilst there is no un-165 ambiguous scaling range for neither (∆u) 2 (not shown) 166 nor (∆u) 3 (Fig.1(b)). The scaling range of ν t does not sion for τ (k) is that of Batchelor and Kraichnan [20] that 190 was recently invoked by [21] as a closure for the passive 191 scalar spectral equation. In [20], τ (k) was interpreted as 192 the time-scale of the strain at a given wavenumber due 193 to all larger scales. Using Kolmogorov scaling, τ (k) can 194 be expressed as

196

  normalized spectrum is multiplied by p * 2 so that the 197 contribution to the integral of the largest scales (low 198 wavenumbers) is weak. On the contrary, contributions 199 from the smallest scales are magnified and the range of 200 scales over which the Kolmogorov scaling is observed is 201 extended [18]. In other words, the integrand p * 2 E * (p * ) in 202 Eq.(8) always satisfies Kolmogorov scaling over a larger 203 range of scales compared to E * (p * ) [18]. Therefore, since 204 ν t is intimately related to τ via ν t (r) ∝ r 2 τ (r), the 205 same conclusions can be drawn for the eddy-viscosity.

  212length-scale (≡ u 2 3/2 / ) leads to a satisfactory collapse of 213 energy spectra. As far as the eddy-viscosity is concerned, 214 it appears that the relevant normalization is given by the 215 Kolmogorov scales.

221

  order structure functions is shown in Fig.1(b).

222

  Since Eq.(7) accurately represents the measured eddy-223 viscosity, it is not surprising to observe that modelled 224 and measured third-order structure functions are in ex-225 cellent agreement (Fig.1(b)). The shape and evolution 226 of (∆u) 3 * /r * with respect to the Reynolds number are 227 very well reproduced. The minor differences that may be 228 observed are rather due to some slight errors in evalu-229 ating the derivative of measured second-order structure 230 functions. 231 A much more stringent test of the validity of the 232 present closure is the following. Starting with an ini-233 tial condition at a particular position in the flow, can 234 we reliably predict the decay of second-order structure 235 functions downstream? To this end, Eq.(3) has to be 236 time-integrated.
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  final time of integration to the downstream distance by 240 means of Taylor's hypothesis, i.e. x ≡ U t (U is the mean 241 flow velocity). The time-integration of Eq.(3) is handled 242 using a fourth-order Runge-Kutta algorithm. Derivatives 243 ∂ r • are approximated by a central second-order finite dif-244 ference scheme. Boundary conditions are set as follows, 245 (∆u) 2 (r = 0) = 0 and ∂ r (∆u) 2 (r → ∞) = 0. 246 Results are given in Fig.2(a). The initial conditions are 247 set at x = 20M behind the grid (M = 24.76mm is the 248 grid mesh size) and predictions are compared with mea-249 surements at x = 40, 60 and 80M . The initial Reynolds 250 number R λ is about 50 and decreases slightly with x. 251 Measured and predicted second-order structure func-252 tions are in good agreement (Fig.2(a)). Minor differ-253 ences can be observed at large separations where the 254 model very slightly overestimates (∆u) 2 . From the de-255 cay of second-order structure functions, one can obtain 256 the evolution of one-point statistics, i.e. the longitudinal 257 velocity variance 2u 2 = (∆u) 2 (r → ∞), the mean dis-258 sipation rate = 15ν lim r→0 (∆u) 2 / r 2 , the Taylor and 259 Kolmogorov length scales (λ and η) and the Reynolds 260 number R λ . The mean dissipation rate can also be eval-261 uated though the one point energy budget
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 22 Fig.2(b). The variation with respect to the downstream 265

the smallest scales not being sufficiently resolved by the 271 hot wire measurements. Indeed, values of using Eq. (9) 272 are only ≈ 10% smaller than those predicted.
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The idea of predicting the decay of one-point statis-274 tics from a two-point closure equation was also tackled 275 by Lohse [8], with a closure scheme based on the vari-276 able range mean field theory. In the latter study, the