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Kármán-Howarth closure equation on the basis of a universal eddy-viscosity1

F. Thiesset,1 R. A. Antonia,1 L. Danaila,2 and L. Djenidi12

1School of Engineering, University of Newcastle, NSW 2308 Callaghan, Australia3

2CORIA, UMR 6614, Avenue de l’Université, BP 12, 76801 Saint Etienne du Rouvray, France4

The Kármán-Howarth equation [1] can be written in5

terms of velocity structure functions [2]6

3∂t(∆u)2 =
1

r4
∂r

[
r4
(

6ν∂r(∆u)2 − (∆u)3
)]
− 4ε.(1)

∆u = u(x + r) − u(x) is the longitudinal velocity incre-7

ment between two points separated by a distance r and8

∂α• = ∂•/ ∂α. Further, ε = 15ν(∂xu)2, is the mean dissi-9

pation rate with ν the kinematic viscosity and the over-10

bar denotes averaging. Second- and third-order struc-11

ture functions (∆u)2 and (∆u)3 appearing in Eq.(1) are12

usually interpreted as the kinetic energy and the kinetic13

energy transfer at a given scale respectively, two crucial14

quantities for modelling turbulent flows.15

In spectral space, the equivalent equation known as16

Lin’s equation [3] reads17

∂tE(k) = T (k)− 2νk2E(k), (2)

in which E(k) is the 3D energy spectrum, k the wavenum-18

ber and T (k) the spectral energy transfer function.19

Eq.(2) describes essentially the same physical mechanism20

as Eq.(1), i.e. the decay, the transfer and the dissipation21

of energy at a given scale or wavenumber.22

In the last fifty years, several closures of Eq.(2)23

have been developed and are still extensively employed.24

Among others, we can cite the Direct Interaction Ap-25

proximation model (DIA) proposed by Kraichnan [4] or26

the Eddy Damped Quasi Normal Markovian (EDQNM)27

closure [5].28

On the contrary, closures of Eq.(1) have not received29

the same attention. To our knowledge, Millionshchikov30

[6] (in Russian), Domaradzki & Mellor [7], Effinger31

& Grossmann [8], Oberlack & Peters [9] and Baev &32

Chernykh ([10] and references therein) are the only au-33

thors who proposed a model (sometimes identical) for34

(∆u)3. All of them are based on the concept of an eddy-35

viscosity νt, i.e. Eq.(1) is then formally rewritten as36

3∂t(∆u)2 =
1

r4
∂r

[
r46 (ν + νt) ∂r(∆u)2

]
− 4ε. (3)

The third-order structure function is thus related to νt37

and (∆u)2 through38

(∆u)3 = −6νt∂r(∆u)2, (4)

where νt is a function of the separation r. Domaradzki39

& Mellor [7] proposed an expression for νt on the basis40

of inertial range asymptotic relations (Rλ → ∞, where41

Rλ =
√
u2λ / ν is the Reynolds number based on the42

Taylor microscale λ ≡
√

15νu2/ε). However, as men-43

tioned by the authors, the latter expression was not con-44

sistent with the scaling (∆u)3 ∝ r3 as r goes to zero. This45

constraint led Oberlack & Peters [9] to handle another ex-46

pression for νt, consistent with both dissipative and iner-47

tial range scaling laws. Here again, νt was parametrized48

through a constant (called κ0 in their paper) the value of49

which relies on asymptotic inertial laws. Even though the50

use of asymptotic relations may be questionable in the51

context of finite Reynolds numbers flows (for instance,52

see [11] and references therein), both models were in sat-53

isfactory agreement with the third-order correlation func-54

tions measured by Stewart & Townsend [12] at (very) low55

Reynolds numbers (Rλ < 60).56

This intriguing feature indicates that the assumption57

of infinite Reynolds numbers is not a necessary condition58

for asymptotic expressions of νt to be employed. There-59

fore, there is matter for investigating the approach to-60

wards the asymptote and the universal properties, i.e.61

the flow and Rλ-dependence, of the turbulent eddy-62

viscosity, with the goal of providing an efficient simple63

closure scheme in physical space.64

The results presented in this paper highlight that the65

Kolmogorov normalized eddy-viscosity reveals a remark-66

able degree of universality over a wide range of scales.67

An analytical expression for νt is provided revealing the68

existence of two universal parameters, the skewness of69

velocity derivative S and a new scale of turbulence called70

rc. In the inertial range and beyond, νt closely follows the71

asymptotic scaling even though neither (∆u)2 nor (∆u)372

indicate any unambiguous scaling. We then take advan-73

tage of these properties to model the third-order struc-74

ture functions in different decaying flows, for Reynolds75

numbers Rλ lying between 50 and 1100. Finally, the76

model is numerically time-integrated to predict the decay77

of second-order structure functions and compared to ex-78

periments in grid turbulence (Rλ ≈ 50) for downstream79

distances up to 80M (M is the grid mesh size).80

In order to derive an analytical expression for νt, we81

first recall that at small scales, (∆u)2 = εr2
/

15ν and82

(∆u)3 = −S
(
εr2 / 15ν

)3/2
. S = − (∂xu)

3
/[

(∂xu)
2
]3/2

83

is the skewness of the longitudinal velocity derivative84

with respect to the longitudinal direction x. It follows85

that in the dissipative range86

νt
ν

=
S

12
√

15
r∗2. (5)

Hereafter, the asterisk denotes normalization by the Kol-87

mogorov scales, i.e. r∗ = r/η with η =
(
ν3/ε

)1/4
. Sec-88

ond, in the context of infinite Reynolds numbers and for89
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scales in the range η � r � L (L is the integral length-90

scale), (∆u)2 = Cu (εr)
2/3

and (∆u)3 = −Auεr (Cu = 2,91

Au = 4/5 [13]). Hence, in the inertial range92

νt
ν

=
1

5Cu
r∗4/3. (6)

Equation (6) was already proposed by Domaradzki &93

Mellor [7], even though we became aware of this after we94

derived it. Following e.g. [14], we match Eqs.(5) and (6)95

into a single expression96

νt
ν

=
Sr∗2

12
√

15
[
1 + γr∗2

]1/3 . (7)

Equation (7) generalizes the expression of [7] by covering97

both dissipative and inertial ranges. In Eq.(7), the cross-98

over length-scale between dissipative and inertial range99

r2c = 1/γ is determined by equating Eqs.(5) and (6),100

yielding r∗c =
(

12
√

15
/

5CuS
)3/2

. As for the EDQNM101

spectral closure, dissipative and inertial range intermit-102

tency effects are not taken into account in the present103

analysis. According to the Kolmogorov theory [13], S,104

Cu and consequently r∗c are universal. However, in the105

context of finite Reynolds number flows, S and r∗c are (a106

priori) two free parameters. In the following, we turn our107

attention to their evolution with respect to the Reynolds108

number.109

The analytical expression for νt (Eq.(7)) is thus com-110

pared to the one inferred from experiments in grid, wake,111

round and plane jet turbulence. The Reynolds number112

is in the range 50 ≤ Rλ ≤ 1100. The grid turbulence113

experiments are described in [15]. The wake flow facility114

is described in [15] while experiments in the round and115

plane jets are outlined in [15]. For the wake, round and116

plane jet experiments, the measurements were made at117

the centerline, thus avoiding to account for any additive118

production terms in Eq.(1) due to the mean shear.119

The dependence on Reynolds number of the measured120

the eddy-viscosity is presented in Fig.1(a). At small121

scales (r∗ . 10), all experimental points converge onto122

a single curve which is well represented by Eq.(5) with123

S = 0.424 (Fig.1(a)). The value of S used here is the124

mean value between the five experiments. S varies by125

only 5% from one experiment to another. This indicates126

that the skewness of the velocity derivative S remains127

constant in agreement with the Kolmogorov theory [13].128

For the range of Reynolds numbers investigated, the ef-129

fect of internal intermittency on S [16] is not discernible.130

Both the constancy and the value itself of S are quite131

consistent with all experimental values compiled by [17],132

at least for the same range of Reynolds numbers. Fur-133

ther, it is in perfect agreement with EDQNM [16].134

As we progress through to the larger scales (10 . r∗ .135

102), even though second-(not shown) and third-order136

structure functions (Fig.1(b)) become Rλ-dependent, the137

eddy-viscosity νt follows the same evolution indepen-138

dently of the Reynolds number. In other words, the139

Kolmogorov normalized eddy-viscosity collapse over a140
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FIG. 1. (a) νt/ν as a function of r∗ measured in dif-
ferent flows (50 ≤ Rλ ≤ 1100). Eq.(7) (dashed line),
Eq.(7) with r∗c = 25 (solid line). The inset depicts the

compensated eddy-viscosity (νt/ν)/r∗4/3. (b) Kolmogorov-
normalized third-order structure functions. Symbols are the
same as in Fig.1(a), solid lines represent the present model
using r∗c = 25

wider range of separations by comparison to (∆u∗)2 and141

(∆u∗)3.142

Then, for separations r∗ & 102, the effect of Reynolds143

number becomes discernible and the r∗4/3 scaling range144

extends as the Reynolds number increases. Note that145

the separation beyond which the measured eddy-viscosity146

differs from the prediction of Eq.(7) in Fig.1(a) corre-147

sponds to the scale beyond which (∆u)3∗/r∗ is almost148

zero in Fig.1(b). Therefore, νt remains universal in the149

range of separations over which the third-order structure150

function has to be modelled. We further observe that,151

though very close to the asymptotic relation Eq.(7), a152

constant value of r∗c = 25.0 (instead of 36.3 providing153

Cu = 2) is more suitable to parametrize νt over the whole154

range of Reynolds numbers. This supports a universal155

value for r∗c , although weaker than the expected (Kol-156

mogorov) value. This is in agreement with the observa-157

tions of [7] revealing that the prefactor in Eq.(6) varies158

by only a few percent in the range 50 ≤ Rλ ≤ 104 and re-159
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mains always smaller than the expected asymptotic value160

even at a very high Reynolds number.161

Finally, the last observation that one can make is that162

at the highest Reynolds number (Rλ = 1100), the scaling163

νt ∝ r∗4/3 is accurately satisfied over almost two decades164

of separations (102 . r∗ . 104) whilst there is no un-165

ambiguous scaling range for neither (∆u)2 (not shown)166

nor (∆u)3 (Fig.1(b)). The scaling range of νt does not167

appear to be sensitive to any intermittency effect and is168

also much more extended than that of second- and third-169

order structure functions.170

At this stage, we can draw the overall conclusion that,171

at least over the range of Reynolds numbers investigated172

here, S and r∗c can be reasonably considered as univer-173

sal. The constancy of S relies on the validity of the Kol-174

mogorov normalization in the dissipative range, which175

holds even at low Reynolds numbers [18]. In contrast,176

the constancy of r∗c is quite intriguing since it is now177

well known that the Kolmogorov ’constant’ Cu and the178

scaling exponent of (∆u)2 are sensitive to the Reynolds179

number variations (at least for Rλ < 104 [11]). To a large180

extent, the observed universality of r∗c is thus most likely181

due to some compensating effects that occur between Cu,182

Au, and the scaling exponent of both (∆u)2 and (∆u)3183

involved in Eq.(6). The consequence is that r∗c remains184

constant with respect to the Reynolds number.185

The universality of νt can be further justified recalling186

that νt(r) ∝ r2
/
τ(r) (see Eq.(19) in [19]), in which the187

characteristic time-scale τ(r) is representative of the cas-188

cade mechanism. In spectral space, one possible expres-189

sion for τ(k) is that of Batchelor and Kraichnan [20] that190

was recently invoked by [21] as a closure for the passive191

scalar spectral equation. In [20], τ(k) was interpreted as192

the time-scale of the strain at a given wavenumber due193

to all larger scales. Using Kolmogorov scaling, τ(k) can194

be expressed as195

τ∗(k∗) ∝

[∫ k∗

0

p∗2E∗(p∗)dp∗
]−1/2

, (8)

where p is a dummy integration variable. In Eq.(8), the196

normalized spectrum is multiplied by p∗2 so that the197

contribution to the integral of the largest scales (low198

wavenumbers) is weak. On the contrary, contributions199

from the smallest scales are magnified and the range of200

scales over which the Kolmogorov scaling is observed is201

extended [18]. In other words, the integrand p∗2E∗(p∗) in202

Eq.(8) always satisfies Kolmogorov scaling over a larger203

range of scales compared to E∗(p∗) [18]. Therefore, since204

νt is intimately related to τ via νt(r) ∝ r2
/
τ(r), the205

same conclusions can be drawn for the eddy-viscosity.206

The idea of invoking a set of scales which yields a col-207

lapse of velocity statistics over a wider range of scales208

was already used in [22] for which the relevant scales are209

λ and q2 = uiui (twice the total kinetic energy). Fur-210

ther, in the energy-containing and inertial ranges, [23]211

demonstrated that the use of u2 and the von Kármán212

length-scale (≡ u2
3/2
/ε) leads to a satisfactory collapse of213

energy spectra. As far as the eddy-viscosity is concerned,214

it appears that the relevant normalization is given by the215

Kolmogorov scales.216

We now take advantage of this extended universality to217

develop a simple closure equation for Eq.(1). Third-order218

structure functions are thus calculated from measured219

second-order structure functions using Eqs.(4) and (7).220

The comparison between modelled and measured third-221

order structure functions is shown in Fig.1(b).222

Since Eq.(7) accurately represents the measured eddy-223

viscosity, it is not surprising to observe that modelled224

and measured third-order structure functions are in ex-225

cellent agreement (Fig.1(b)). The shape and evolution226

of (∆u)3∗/r∗ with respect to the Reynolds number are227

very well reproduced. The minor differences that may be228

observed are rather due to some slight errors in evalu-229

ating the derivative of measured second-order structure230

functions.231

A much more stringent test of the validity of the232

present closure is the following. Starting with an ini-233

tial condition at a particular position in the flow, can234

we reliably predict the decay of second-order structure235

functions downstream? To this end, Eq.(3) has to be236

time-integrated.237

Since theory is compared to a spatially decaying tur-238

bulence (in this case grid turbulence [15]), we relate the239

final time of integration to the downstream distance by240

means of Taylor’s hypothesis, i.e. x ≡ Ut (U is the mean241

flow velocity). The time-integration of Eq.(3) is handled242

using a fourth-order Runge-Kutta algorithm. Derivatives243

∂r• are approximated by a central second-order finite dif-244

ference scheme. Boundary conditions are set as follows,245

(∆u)2(r = 0) = 0 and ∂r(∆u)2(r →∞) = 0.246

Results are given in Fig.2(a). The initial conditions are247

set at x = 20M behind the grid (M = 24.76mm is the248

grid mesh size) and predictions are compared with mea-249

surements at x = 40, 60 and 80M . The initial Reynolds250

number Rλ is about 50 and decreases slightly with x.251

Measured and predicted second-order structure func-252

tions are in good agreement (Fig.2(a)). Minor differ-253

ences can be observed at large separations where the254

model very slightly overestimates (∆u)2. From the de-255

cay of second-order structure functions, one can obtain256

the evolution of one-point statistics, i.e. the longitudinal257

velocity variance 2u2 = (∆u)2(r → ∞), the mean dis-258

sipation rate ε = 15ν limr→0 (∆u)2 / r2, the Taylor and259

Kolmogorov length scales (λ and η) and the Reynolds260

number Rλ. The mean dissipation rate can also be eval-261

uated though the one point energy budget262

ε = −1

2
∂tq2, (9)

where q2 = u2 + v2 + w2 is twice the total kinetic en-263

ergy. The evolution of one-point statistics is depicted in264

Fig.2(b). The variation with respect to the downstream265

distance of all these quantities is globally very well repro-266

duced by the present model. One can further note that267
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FIG. 2. (a) Comparison between measured and predicted
second-order structure functions in grid turbulence (Rλ ≈
50). The time-integration is started at x = 20M . (b) Evolu-

tion of u2/U2, εM/U3(102), λ/M(10−2), η/M and Rλ(10−3)
with x/M . U = 6.4m.s−1 is the mean flow velocity. Symbols
represent measured values whilst solid lines are the predicted
values. The mean dissipation rate ε is estimated from the
relation ε = 15ν(∂xu)2 (B) and from Eq.(9) (C). The mea-
sured Taylor and Kolmogorov length-scales were inferred from
ε computed from Eq.(9).

the magnitude of the measured mean dissipation rate in-268

ferred from ε = 15ν(∂xu)2 is smaller (≈ 15%) than that269

predicted by the model. This discrepancy may be due to270

the smallest scales not being sufficiently resolved by the271

hot wire measurements. Indeed, values of ε using Eq.(9)272

are only ≈ 10% smaller than those predicted.273

The idea of predicting the decay of one-point statis-274

tics from a two-point closure equation was also tackled275

by Lohse [8], with a closure scheme based on the vari-276

able range mean field theory. In the latter study, the277

prediction of basic quantities, such as the normalized278

energy dissipation and enstrophy decay rates, compared279

favourably with experimental results in a particular type280

of decaying flow where the integral length scale does not281

vary with time. Obviously, this type of analytical treat-282

ment cannot be applied to decaying grid turbulence where283

the integral length scale grows continuously with time (or284

distance from the grid).285

In summary, the universal facets of the eddy-viscosity286

for the closure of the Kármán-Howarth equation are ex-287

amined in detail. It is highlighted that νt remains impres-288

sively universal over a remarkable range of scales. An an-289

alytical expression for νt is further proposed, based on the290

observed constancy of the skewness of velocity derivatives291

and highlights the existence of a new scale of turbulence292

called rc. The model is in good agreement with measure-293

ments in different types of decaying flows, over a wide294

range of Reynolds numbers. The closure scheme is finally295

time-integrated and reproduces measured second-order296

structure functions in grid turbulence quite favourably.297
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