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We assess the extent to which Local Isotropy (LI) holds in a wake flow for different
initial conditions - these may be geometrical (the shape of the bluff body which creates
the wake) and hydrodynamical (the Reynolds number)- as a function of the dynamical
effects of the large-scale forcing (the mean strain S combined with the strain induced by
the coherent motion, S̃). Local isotropy is appraised through either classical kinematic
tests or phenomenological approaches. In this respect, we reanalyse existing LI criteria
and formulate a new isotropy criterion based on the ratio between the turbulence strain
intensity and the total strain (S + S̃). These criteria involve either time-averaged or
phase-averaged quantities, thus providing a deeper insight into the dynamical aspect of
these flows. They are tested using hot wire data in the intermediate wake of five types
of obstacles (a circular cylinder, a square cylinder, a screen cylinder, a normal plate
and a screen strip). We show that in the presence of an organised motion, isotropy is
not an adequate assumption for the large scales but may be satisfied over a range of
scales extending from the smallest dissipative scale up to a scale which depends on the
total strain rate that characterizes the flow. The local value of this scale depends on
the particular nature of the wake and the phase of the coherent motion. The square
cylinder wake is the closest to isotropy whereas the least locally isotropic flow is the
screen strip wake. For locations away from the axis, the study is restricted to the circular
cylinder only and reveals that LI holds at scales smaller than those that apply at the wake
centerline. Arguments based on self similarity show that in the far-wake, the strength
of the coherent motion decays at the same rate as that of the turbulent motion. This
implies the persistence of the same degree of anisotropy far downstream, independently
of the scale at which anisotropy is tested.

Key words: Isotropic turbulence - Wakes

1. Introduction

The analytical framework introduced by Kolmogorov (1941) for describing the proper-
ties of small-scale turbulence at sufficiently large Reynolds numbers has had a tremendous
impact on turbulence research. There continues to be a strong belief among the turbu-
lence community that if a theory of turbulence were to emerge, it would most likely relate
to the small-scale motion whose features tend to exhibit quasi-universal characteristics,
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e.g. Sreenivasan & Antonia (1997). Local isotropy is one of the key assumptions of the
K41 theory. LI is without doubt the most utilised hypothesis, primarily because of the
resulting analytical simplifications, but also because it allows experimentalists to gather
only a minimal amount of information on the fluctuating velocity field. However, LI is
unlikely to be satisfied reliably when a mean shear is present or in wall-bounded flows.
Uniform shear flows constitute an example where even the smallest scales are affected by
the large-scale shear, at least for commonly used values of the Reynolds number (Shen
& Warhaft (2000)). LI also breaks down as the wall is approached, e.g. Antonia et al.
(2009), Krishnamoorthy & Antonia (1987).

The aim of this study is to understand how, in the context of shear flows, the anisotropy
propagates across the scales from the largest to the smallest, how it evolves down the
scales and finally, what the degree of anisotropy is at any given scale. One of our objectives
is to assess the influence of the particular nature of the flow, the differences in initial
conditions and the effect of Reynolds number on local isotropy. The degree to which LI
holds is quantified at a fixed position in the intermediate wake, and the return to isotropy
at larger distances downstream is also investigated.

It is now recognized that the most important signature of the shear is the presence
of coherent structures, which retain, through their size and dynamics, significant infor-
mation about the initial conditions. For instance, the spectral slopes may be drastically
affected by the presence of coherent motions (Morris & Foss (2005)). Therefore, the large-
scale forcing in shear flows includes both the mean strain S, as well as the strain induced
by the coherent motion, S̃ at a fixed location in the flow. Since S̃ is time-dependent, a
dynamical analysis of this effect on the small-scale motion is necessary. Therefore, as a
first step in answering the question of what the isotropy level is at any particular scale, we
consider flows populated by a single-scale, persistent coherent motion (hereafter, CM).
A good candidate is the two-dimensional wake generated by different bluff bodies, and
this study focuses entirely on this flow.

Several previous studies were devoted to characterising this flow, e.g. Antonia et al.
(2002) (hereafter AZR), Zhou & Antonia (1994), Zhou & Antonia (1995), Antonia & Mi
(1998), Kang & Meneveau (2002), etc. In AZR, both porous and impervious bodies were
chosen because of the differences in the organized motion that have been observed when
the shape and/or the porosity of the generators are varied (Cannon et al. (1993), Cimbala
et al. (1988), Antonia & Mi (1998)). Measurements of the spanwise vorticity fluctuations
ωz were made on the centerline of the wakes generated by five different bluff bodies,
i.e. a solid circular cylinder, a circular cylinder constructed from a screen (0.5 mm wire
diameter with a mesh size of 1.6 mm), a solid square cylinder, a solid plate placed normal
to the flow, and a screen strip (Fig. 1). For all of them, the characteristic dimension d
(height or diameter), was the same (25.4mm). The measurements were performed at the
same location (x/d = 70), and at nominally the same Reynolds number (Rλu , the Taylor
microscale Reynolds number ≈ 200). It was emphasized that although the differences in
organisation are most pronounced in the near field, they are not diminished in the far
field. The global level of anisotropy, i.e. the ratio of the variances v2/u2 (u and v are
respectively the longitudinal and transverse velocity components), significantly varied
from flow to flow, being the largest for the screen strip and the smallest for the square
cylinder. These variations were mainly due to variations in v2. AZR further showed that
the autocorrelation coefficients, as well as the second-order structure functions of the
velocity component v, highlighted differences among the five generators. In particular, a
strong periodicity was observed for the porous body wakes at large separations. This was
associated with the vortices which first appear in the mixing layers that originate from
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the edges of the mesh and subsequently undergo pairing, thus increasing their intensity
further downstream.

Second-order structure functions of v also reflected the way energy was injected into the
large scales. Associated with significant changes in v2/u2 between the different wakes are
appreciable variations in both the shape and magnitude of the Kolmogorov-normalised
second-order structure functions over the restricted scaling range (RSR). The RSR is
the range of scales over which the second-order structure functions exhibit a well-defined
scaling, with a power-law exponent smaller than the asymptotic value of 2/3. Oscillations
were observed beyond the large-scale end of this RSR for the porous-body wakes. In
the dissipative range, the distributions of Kolmogorov-normalised second-order structure
functions of v did not appear to collapse as well as those for u, indicating departures from
local isotropy. The derivative variances also emphasised departures from isotropy in each
wake, with little evidence that the departure from isotropy differs perceptibly between the
wakes of the porous generators and those of the impervious bodies. An overall conclusion
of AZR was that the differences observed between the different wakes could not be simply
ascribed to whether the wake generator is solid or porous, the shape of the generator
being also important. The authors were not able to authoritatively comment on whether
small-scale turbulence becomes universal at very large Rλu .

The roadmap of the paper is as follows. We extend the study of AZR, which focused
on the behaviour of the flow at the wake centerline, in several significant ways. First, we
address the question of local isotropy in the central region of a wake (up to a distance of 5
diameters away from the centerline) behind different types of bluff bodies, with particular
emphasis on the circular cylinder. Secondly, and more especially, we observe the effect
on LI of (i) the initial conditions (the large-scale organisation particular to each kind of
generator), (ii) the Reynolds number, and (iii) the local values of S + S̃.

These physical questions are addressed through two tools. The first one is analytical.
Most of the tests them involve velocity increments at a given scale and thus provide a
test of LI at that particular scale, including the smallest scales of the flow. The analytical
toolbox involves two kinds of averaging: time-averaging, as well as phase-averaging.

The second tool is experimental and relies on hot wire measurements in several labo-
ratory wakes. In part, we reanalyse the data of AZR (obtained at a single downstream
location) by applying a wider range of LI criteria on a larger number of quantities than
considered in AZR. Other measurements were performed at the CORIA, mainly for the
circular cylinder, but the lateral distance y for these measurements extended to the po-
sition at which the mean strain is maximum. Details associated with the measurements
are described in Section 2.

Section 3 contains two parts:
• The first is a review of the classical LI tests (Subsection 3.1), in which temporal-averaged
statistics are compared to their isotropic values. These tests are mostly kinematic, but
may also be based on transport equations. The scale at which these tests are applied
may be either large, intermediate, or dissipative. The large-scale forcing (S and S̃) does
not appear explicitly in most of these tests. The dynamical aspect is not tackled along
conventional lines, and we indicate how this is done.
• The second deals with phenomenological LI tests (Subsection 3.2), which explicitly
account for the large-scale strain, as well as its dynamical phase evolution.

Section 4 is devoted to results on the wake centerline. Isotropy tests at different scales
mentioned in Section 3 are investigated experimentally. Small-scale limits of these tests
are also discussed. Finally, Section 5 deals with the role of the combined action of the
mean shear S and of the coherent motion strain S̃, on LI in the wake of a circular cylinder.
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Section 6 deals with the anisotropy effects in the far field. Conclusions are drawn in
Section 7.

2. Experiments

Two types of experiments have been done: the first data set concerns measurements
made at the University of Newcastle in wake flows behind five types of obstacles (sub-
section 2.1). Subsection 2.2 deals with the description of measurements performed at the
CORIA, University of Rouen, in a circular cylinder wake.

2.1. Newcastle data set

Measurements were performed in an open circuit wind tunnel with a 2.4m long test sec-
tion (0.35 × 0.35 m2). Five different generators were used, all of them with the same
characteristic dimension d = 25.4mm: a circular cylinder (CC), a square cylinder (SqC),
a screen cylinder (ScC), a normal plate (P) and a screen strip (SS) (Fig 1). The genera-
tors were located 20cm downstream of the entrance to the test section and spanned the
full width of this section. The measurement location is 70d downstream of the generator,
on the wake centreline. The spanwise and lateral vorticity components (ωz, ωy) were
measured independently, by rotating a single component vorticity probe. Detailed infor-
mation on the generators and the probe is given in AZR. It is sufficient to note here that
all the hot wires (Pt-10% Rh) had a diameter of 2.5 µm and an active length of about
0.5 mm (length to diameter ratio ' 200). The hot wires were operated at an overheat
ratio of 1.5 with constant temperature anemometers. The anemometer output signals
went through buck and gain circuits, before low-pass filtering at a cut-off frequency fc
which was set very close to the Kolmogorov frequency fK(=U/2πη, U is the local mean
velocity and η is the Kolmogorov microscale). The filtered signals were sampled at a
frequency of approximately 2fc into a PC using a 12 bit A/D converter. The sampling
period was in the range 45-100 s. The mean velocity U0 of the incoming stream was
varied from wake to wake to provide data in the range 150 . Rλu . 300. The majority
of the measurements discussed in AZR were made at approximately the same Taylor
microscale Reynolds number Rλu(' 200) in each wake, at the same location x/d = 70.
The corresponding values of U0 were 8.8m/s for CC, 7.5 m/s for SqC, 6.2 m/s for ScC,
8.3 m/s for P and 15.1 m/s for SS.

The separation between hot wires and the sampling frequency were adjusted so that
∆x ≈ ∆y ≈ ∆z ≈ 3 − 6η, depending on the Reynolds number. Whereas a separation
of 3η may be appropriate for correctly inferring derivative statistics, an attenuation of
these statistics is likely with a separation of 6η. This attenuation may be estimated using
the spectral correction method provided by Antonia et al. (1996).

Here, we briefly recall the method for a one-component vorticity probe. The ratio
between the measured spectrum PMu,y and the true spectrum Pu,y of u,y ≡ ∂u/∂y is
(Antonia et al. (1996)):

PMu,y
Pu,y

=
4
∫∫∞
−∞ sin2

(
ky∆y

2

)
E(k)
4πk4

(
k2 − k2

x

)
dkydkz

(∆y)2
∫∫∞
−∞ k2

y
E(k)
4πk4 (k2 − k2

x) dkydkz
, (2.1)

where k =
(
k2
x + k2

y + k2
z

)1/2
is the magnitude of the wave number vector (kx, ky and kz

are wavenumbers along the x, y and z directions respectively) and E(k) is the 3D energy
spectrum. Replacing y by z leads to a similar expression for PMu,z . Note that in reality, the
double integrals in Eq. (2.1) do not extend from −∞ to∞ since the integrated functions
decay to zero.
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Figure 1. Cross section of the five different generators. From top to bottom: CC, SqC, ScC, P,
SS. Also sketched is a one-component vorticity probe in the ωz configuration (ωz is the vorticity
component in the z direction).

λu (mm) ε (m2.s−3) Rλu

CC 6.39 5.30 3.91 0.98 2.47 14.26 164 188 252
SqC 5.78 5.12 3.81 1.74 3.01 20.57 183 197 286
ScC 5.79 5.25 3.54 1.34 2.74 23.94 178 198 255
P 5.69 4.83 3.50 1.46 3.39 22.24 156 186 247
SS 5.29 4.52 3.47 0.88 2.44 14.78 114 140 197

Table 1. Values of the Taylor microscale λu, εiso and the Taylor microscale Reynolds number
Rλu for the five different generators.

For the longitudinal derivatives, the measured spectrum EMu,x is related to the true
spectrum Pu,x via the sinc function, viz.:

PMuα,x
Puα,x

= sinc2

(
kx∆x

2

)
, (2.2)

where uα ≡ u, v, w. It is important to recall that while LI is invoked in Eq. (2.1), the
correction of any streamwise derivative spectrum (Eq. (2.2)) does not require this as-
sumption. Nor is a knowledge of E(k) necessary.

Measurements were performed at three values of the Taylor microscale Reynolds num-

ber Rλu , based on the RMS of u and the Taylor microscale λu
2 = 15ν u

2

ε . The Taylor

microscale λu, the isotropic mean energy dissipation rate εiso = 15ν
(
∂u
∂x

)2
and the Tay-

lor micro-scale Reynolds number for each generator are reported in Table 1, for each

generator. Note that
(
∂u
∂x

)2
was corrected using Eq. (2.2).
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2.2. CORIA data set

The wind tunnel is of the recirculating type with a residual turbulence level smaller than
0.2 %. The test section is 0.4×0.4 m2 and 2.5m long and the mean pressure gradient was
adjusted to zero. The circular cylinder of diameter d = 10mm was placed horizontally,
downstream the contraction, spanning the whole test section. The upstream velocity was
U0 = 6.5m.s−1 corresponding to a Reynolds number based on the cylinder diameter
of 4333 and a Taylor microscale Reynolds number of 70. Measurements were made at
70d downstream of the cylinder and for transverse positions varying between y = 0 and
y = 5d.

Only the streamwise and transverse velocity components u and v were measured.
The X-wire probe (Dantec 55P51) was calibrated using a look-up table technique, with
velocity increments of 1 m/s and angle increments of 50. The hot wires were operated
by a Dantec constant temperature bridge, with an overheat ratio of 1.6. Voltage signals
were passed through amplifiers (SRS SIM983) and low-pass filtered (SRS SIM965) at a
frequency close to the Kolmogorov frequency. The air temperature in the wind tunnel
was kept constant during calibration and measurements, thus avoiding any systematic
errors that slight variations in the mean temperature could induce on hot wire voltages.

3. Description of the analytical tools. LI tests at different scales

This section provides an overview of the analytical tests used in this paper. They are
either kinematic (Subsection 3.1) or phenomenological (Subsection 3.2). In each subsec-
tion, both time-averaged and phase-averaged quantities are considered.

3.1. Kinematics LI tests

3.1.1. Time-averaged quantities

We present here LI tests at any scale r, with particular emphasis on the range of scales
where a scaling law can be defined, if any, the RSR. For relatively high Reynolds numbers,
the scaling laws tend to the asymptotic values of ’2/3’ for the structure function, and
the RSR is identified with an Inertial Range (IR).

Following Monin & Yaglom (2007), the well-known isotropic relation between second-
order structure functions of the longitudinal velocity components and those of the trans-
verse velocity components (u⊥) is given by

(∆u⊥)2|iso =

(
1 +

r

2

d

dr

)
(∆u)2, (3.1)

where r is the separation between the point x and the point x+ = x + r and (∆uα)2 =

(uα (x+ r)− uα (x))
2

(no summation over Greek double indices). The equivalent relation
in the spectral space is

Pu⊥(kx) =
1

2

(
1− kx

∂

∂kx

)
Pu, (3.2)

where Pu is the power spectral density of u and kx the streamwise wave number.

Further, it is straightforward to derive an ’isotropic’ expression for (∆q)2 = ∆ui∆ui
(the summation convention applies to Latin indices), viz.

(∆q)2|iso = (∆u)2 + 2(∆u⊥)2|iso. (3.3)
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The limits at the largest scales of (3.1) and of (3.3) yield

lim
r→∞

(
(∆u⊥)2|iso

/
(∆u⊥)2

)
= u2

/
u2
⊥; (3.4)

lim
r→∞

(
(∆q)2|iso

/
(∆q)2

)
= 3u2

/
q2. (3.5)

This is consistent with the ’global’ isotropic ratios u2/u2
⊥ and 3u2/q2 (q2 = uiui is twice

the turbulent kinetic energy).
Moreover, by applying the limit as r goes to zero of (3.1) and (3.3) and since

lim
r→0

(
(∆u⊥)2|iso

r2

)
= 2

(∆u)2

r2
= 2

(
∂u

∂x

)2

, (3.6)

together with the notations

K1 = 2

(
∂u

∂x

)2
/(

∂v

∂x

)2

K2 = 2

(
∂u

∂x

)2
/(

∂w

∂x

)2

, (3.7)

it can be readily shown that

lim
r→0

(
(∆u⊥)2|iso

/
(∆u⊥)2

)
= 2

(
∂u

∂x

)2
/(

∂u⊥
∂x

)2

= K1 if u⊥ = v;

= K2 if u⊥ = w, (3.8)

whereas

lim
r→0

(
(∆q)2

/
(∆q)2|iso

)
=

1

5
(1 + 2K1 + 2K2) . (3.9)

The individual isotropic ratios K1 and K2, which must be equal to 1 (Taylor (1935)) in
the context of LI, and represent by themselves LI tests, are therefore retrieved in the
limit of small separation. Hence, the isotropic relation between second-order structure
functions of different normal velocity components, but also of their sum, allows us to
assess the departure from LI at any scale.

The isotropic relation between third-order structure functions is (Monin & Yaglom
(2007)):

∆u(∆u⊥)2|iso =
1

6

d

dr
r(∆u)3, (3.10)

Since at the smallest scales, (∆u)3

r3 →
(
∂u
∂x

)3
and ∆u(∆u⊥)2|iso

r3 → 2
3r3 (∆u)3, and with

the notations

G1 =
∂u

∂x

(
∂v

∂x

)2
/

2

3

(
∂u

∂x

)3

G2 =
∂u

∂x

(
∂w

∂x

)2
/

2

3

(
∂u

∂x

)3

, (3.11)

the small-scale limit of Eq. (3.10) yields

lim
r→0

(
∆u(∆u⊥)2

/
∆u(∆u⊥)2|iso

)
=
∂u

∂x

(
∂u⊥
∂x

)2
/

2

3

(
∂u

∂x

)3

= G1 if u⊥ = v

= G2 if u⊥ = w. (3.12)

If LI was valid, the values of G1 and G2 must be equal to 1. Antonia et al. (1997)
reported values of G1 and G2 in the wake of a circular cylinder.
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Equation (3.10) leads to

∆u(∆q)2|iso = (∆u)3 + 2∆u(∆u⊥)2|iso. (3.13)

As discussed by e.g. AZR and Shen & Warhaft (2000), the flow symmetry with respect
to the wake centerline requires

(∆u⊥)3 = 0, (3.14)

for each separation r. The limit at r → 0 of the normalised third-order moment is the
skewness of velocity derivatives, viz.

lim
r→0

(∆u⊥)3
/[

(∆u⊥)2
]3/2

=

(
∂u⊥
∂x

)3
/[(

∂u⊥
∂x

)2
]3/2

= S3
u⊥,x

. (3.15)

These are not LI tests, but rather symmetry tests. We expect that these relations would
not be valid in the sheared region, away from the wake centerline.

Equation (3.1) has often been used to check LI in several studies (Danaila et al. (2001),
Gotoh et al. (2002), Lavoie et al. (2005)). Its equivalent in spectral space, Eq. (3.2),
has also been widely tested by e.g. Champagne et al. (1970), Mestayer (1982), Kim &
Antonia (1993), Saddoughi & Veeravalli (1994). However, Eq. (3.10) has received much
less attention (Gotoh et al. (2002)). Its limiting form as r goes to zero (e.g. Champagne
(1978)) has been tested in a few flows (e.g. Antonia et al. (1997)).

A worthwhile exercise would be to test LI using higher-order moments than considered
here and thus extend our analysis to fourth-order, or higher-order statistics. The latter
may represent refined LI tests which capture departures from LI more and more effectively
as the order of the statistic increases (Shen & Warhaft (2000)). Phan-Thien & Antonia
(1994) tackled this problem and Ould-Rouis et al. (1996) empirically extended the results
to structure functions. However, there are doubts concerning the validity of their results.
Indeed, Phan-Thien & Antonia (1994) characterized the 8-th order moment tensor by
means of a single invariant whereas Siggia (1981) suggested that at least four invariants
are needed. Hierro & Dopazo (2003) obtained a more compact expression (for the 8-
th order moment tensor) than - though in full agreement with - that of Siggia (1981);
they also concluded that their expression was more accurate than the simpler expression
of Phan-Thien & Antonia (1994). Nevertheless, Hierro and Dopazo’s result needs to be
fully tested, especially in the light of the limited experimental evidence in grid turbulence
(Zhou & Antonia (2000)) that the four invariants seem to be related. We limit the present
study to second- and third-order structure functions partly because reliable relations for
fourth-order structure functions are not yet available.

3.1.2. Phase-averaged quantities

Let us now consider the dynamical aspect of the statistics. Although most of the
previous investigations have dealt with the total velocity field, we recall that fluctuating,
quasi-periodic contributions are present in the flow, notably for the v component. In
order to understand the role of the coherent motion and its strain on LI, the next step
is to adopt a different viewpoint.

To this end, any quantity β is decomposed according to β = β + β̃ + β′ where β̃
denotes the periodic contribution associated with the coherent motion and β′ is the
random/turbulent fluctuation, while β is the time-averaged component. One way to cal-
culate β̃ is to perform phase-averaging over the period of the coherent motion (Reynolds
& Hussain (1972)). Hereafter, phase-averages will be denoted 〈.〉. Applying a phase aver-



Dynamical effect of the total strain induced by coherent motion on local isotropy 9

age to the quantity β leads to 〈β〉 = β + β̃ since the phase-averaged random component
vanishes, i.e. 〈β′〉 = 0.

Phase-averaged statistics are obtained as follows. The transverse velocity component
v is first digitally band-pass filtered at the peak frequency of the v spectrum, using an
eighth-order Butterworth filter. The filtering operation is next applied to the Fourier
transform of v in order to avoid any phase shift. Then, the Hilbert transform h of the

filtered signal vf is obtained and the phase φ inferred from the relation φ = arctan
(
h
vf

)
.

Hereafter, the symbol φ indicates the phase of the flow. Finally, the phase is divided into
21 segments and phase-averaged statistics are calculated for each class. The convergence
of statistics was checked, by reducing the number of classes, and found to be satisfac-
tory. By means of this method, phase-averaged quantities are calculated over the period
[−π, π]. As was done by O’Neil & Meneveau (1997), the phase is doubled up to [−2π, 2π]
because of the periodicity, in order to enhance the visual display.

In Hill (2002), the geometrical space (location ~x in the flow) and the separation space

(scales ~r) are made independent by considering the midpoint ~X = 1
2

(
~x+ ~x+

)
with

~x+ = ~x + ~r. The same idea is applied here to phase-conditioned structure functions for
which the phase φ is defined as the phase at the midpoint φ = φ( ~X).

It is instructive to illustrate the phase-variations of the total strain Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Sij is the the mean strain rate, viz.

Sij =
1

2

(
∂U i
∂xj

+
∂U j
∂xi

)
, (3.16)

where double indices represent summation and S̃ij is given by

S̃ij =
1

2

(
∂Ũi
∂xj

+
∂Ũj
∂xi

)
. (3.17)

For simplicity, subscripts ij are hereafter removed, hence 〈S〉 = 〈Sij〉. Therefore, 〈S〉 =

S + S̃ with S = Sij and S̃ = S̃ij . It is important to note here the dependence of 〈S〉 on
the phase φ of the coherent motion. This dependence is depicted in Fig. 2 for various
values of φ/π and y/d, by using experimental data for the CC wake. The maxima of
the total strain occur at phases which are −π/2 + 2nπ (n ∈ N), corresponding to the
position of the saddle points. Also illustrated in the same figure are the streamlines of
the coherent vortices. The most visible are two of them, rotating clockwise (the upper
stream moves from left to right). The centres of these vortices are located at y/d ≈ 1.4
and phases φ = −3π/2± 2nπ (n ∈ N) and correspond to the minimum total strain 〈S〉.

Phase-averaging inescapably leads to a dependence on the phase φ, and eventually on
the scale r of the flow, as is the case for structure functions of any order.

In this context, the isotropic relation between second-order structure functions of the
longitudinal velocity components and those of the transverse velocity components may
be written as

〈
(∆u⊥)2

〉
iso

(r, φ) =

(
1 +

r

2

∂

∂r

)〈
(∆u)2

〉
(r, φ), (3.18)

where the second-order structure function
〈
(∆u⊥)2

〉
(r, φ) is the average of the square of

the velocity increments conditioned by the phase φ of the coherent motion.
Note the analogy between (3.18) and its time-averaged counterpart Eq. (3.1). It is

obvious that such a LI criterion at each phase of the motion is much more restrictive
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Figure 2. The total strain 〈S〉 · d/U0 as a function of the phase φ and the vertical position in
the wake, y/d (CC). The solid lines represent the streamlines of coherent vortices.

than its time-averaged counterpart, Eq. (3.1). All the other LI criteria based on time-
averaged statistics may be written by using the phase-averages. Henceforth, time averages
[·] and phase averages 〈·〉 are used interchangeably.

3.2. Phenomenological LI tests

These tests aim at defining LI criteria involving large-scale phenomena, particularly the
mean strain S as well as S̃. As emphasised earlier, the phase-averaged strain rate S̃
depends on the phase of the coherent motion. We will first consider relatively conventional
LI tests involving time averages (Subsection 3.2.1). Time averages will be applied to the
absolute value (denoted by | · |) of 〈S〉 because anisotropy is insensitive to the sign of the
total strain. Therefore, in the next subsection, the fluctuating strain is implicit in the
quantity S̃t defined by

S̃t = |〈S〉| =
∣∣∣S + S̃

∣∣∣, (3.19)

which does not depend on φ and is necessarily positive. Note that we have chosen the
absolute value as one possible norm, but other definitions may be used instead, such as
the maximum value, or L2 norm.

3.2.1. Time-averaged quantities

We examine whether isotropy is valid at a given scale, by using several criteria, adapted
to the investigated scales: large, intermediate and viscous. The methodology chosen in
order to answer these questions is based on calculating characteristic times

• of the mean and coherent strain time scales. This represented by S̃t
−1

can induce
anisotropy.
• of the structures present at any other scale, τ(r). This scale can be large, in which

case large-scale statistics can relate to both turbulent and coherent motions. τ(r) can
also relate to inertial or small-scales, mostly characterized by random fluctuations.

We first investigate the isotropy at large scales, by calculating the ratio of the charac-
teristic time of the coherent strain and that of the total cascade.

The starting point is the study of Durbin & Speziale (1991) for a uniformly sheared
flow. In order to study LI, they derived a budget equation for each component of the mean
energy dissipation rate, which accounted for the mean strain, S. They demonstrated that
a criterion for LI must be Sq2/ε � 1, where q2/ε, the ratio of the total kinetic energy
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and the mean energy dissipation rate, is the characteristic time of the (total) cascade.
Therefore, Durbin and Speziale’s criterion simply signifies that the ratio between the
total cascade time and the characteristic time of the strain should be much smaller
than 1. We should mention here that, in our opinion, this criterion has more to do with
’isotropy’ rather than ’local isotropy’, since no particular scale is involved. Antonia &
Kim (1994) noted that a disadvantage of using Sq2/ε is that it is zero at the wall (see
their Fig. 8) where S is largest. Moreover, Gualtieri et al. (2002) suggested the same idea
in their relation (14) which expresses Sq2/ε as a function of two large scales, hence with
no dependence on any small scale. Therefore, this criterion is not useful for testing local
isotropy in highly sheared flows, and in particular for the flow under consideration. We
will then adapt it to our case, but specifically for investigating local isotropy.

By analogy, we presume that the coherent strain rate S̃ associated with the organized
motion must play an additional role. This can be emphasised by deriving a transport
equation for the energy dissipation rate, in which the organized motion is accounted for.
We introduce a ratio between the total cascade time q2/ε and 1/S̃t, the inverse of the sum
of the mean and of the absolute value of the coherent strain. Following Durbin & Speziale
(1991), one can therefore argue that local isotropy should be a plausible hypothesis when
the total strain time-scale is very large compared to the total cascade time scale. In other
words,

S̃tq2/ε� 1. (3.20)

For intermediate scales which may be associated with the RSR, the local isotropy
criterion translates to τ(r) � (S̃t)

−1, or, R(r) = τ(r)S̃t � 1, or the equivalent ex-

pression in spectral space, viz. R(k) = τ(k)S̃t � 1. In both spaces, different expres-
sions of the energy transfer characteristic time may be used, such as that suggested
by Batchelor (1959), Kraichnan (1971) and Danaila & Antonia (2009) in spectral space

τ(k) =
(∫ k

0
p2E(p)dp

)−1/2

. This characteristic time is dimensionally consistent with that

proposed by Onsager (1949) τ(k) =
(
k3E(k)

)−1/2
. Injecting a particular expression of the

3D energy spectrum, e.g. E(k) ∝ ε2/3k−5/3 in the criterion R(k) = (k3ε2/3k−5/3)−1/2S̃t
leads to the determination of a wavenumber k beyond which LI in the IR (or RSR, for
finite Reynolds numbers) is an adequate approximation. This wavenumber is given by

k � kS̃ =

√
S̃3
t /ε.

This result generalises the characteristic strain-rate length-scale proposed by Corrsin
(1958), for the purpose of assessing LI in the inertial range, i.e.

LS =

√
ε/S

3
. (3.21)

Obviously, the same methodology can be applied in physical space. In this case, an
expression for the characteristic time at an arbitrary scale r has been proposed by Danaila
et al. (2012).

We briefly recall here Casciola et al. (2003)’s corresponding arguments in physical
space. In particular, these authors provided a physical interpretation of LS , emphasising
that LS represents the cross-over between contributions from the production term due to
the mean shear and the non linear transfer term in the spherically averaged scale-by-scale
kinetic energy budget. In the presence of an organized motion, the production term at
each scale can be defined by (Thiesset et al. (2011))



12 F. Thiesset, L. Danaila and R. A. Antonia

P(r) = 2
〈
∆u′i∆u

′
j

〉(∂U i
∂xj

+
∂ũi
∂xj

)
. (3.22)

In homogeneous turbulence, the limiting value at the largest scales of (3.22) is twice the
production term in the one-point kinetic energy budget (Reynolds & Hussain (1972))

P =
〈
u′iu
′
j

〉(∂U i
∂xj

+
∂ũi
∂xj

)
. (3.23)

By considering classical scaling laws such as
〈
∆u′i∆u

′
j

〉
∝ ε2/3r2/3, and ∆u′∆q′2 ∝ εr,

a characteristic length scale of the form

LS̃ ∝
√
ε/ S̃3

t , (3.24)

can be derived. LS̃ represents the separation at which the kinetic energy production
due to the total (both mean and coherent) strain and the non-linear energy transfer
are of the same order of magnitude. Therefore, a characteristic length scale related to
the total strain is derived and its formulation generalizes the length-scale proposed by
Corrsin (1958). Note finally that we have illustrated these arguments by using scaling
laws such as ’−5/3’ for spectra or ’2/3’ for structure functions. Finite Reynolds numbers
effects and therefore departures from the asymptotic values may be taken into account
by simply considering true values (i.e. smaller than the asymptotic value of 2/3) of the
scaling exponents for the structure functions

For the far (smallest scales) dissipative range for which the scales are of the same
order of magnitude as the Kolmogorov length scale, the associated characteristic time
scale is the Kolmogorov time scale (ν/ε)1/2. When this scale is much smaller than that

associated with the total strain S̃t, LI is tenable at the level of the Kolmogorov length-
scale. Mathematically, this translates to

S̃t
∗ ≡ (ν/ε)1/2S̃t � 1, (3.25)

where S̃t
∗

denotes the Kolmogorov normalised total strain. When this latter criterion is
interpreted in the context of length scales, isotropy should apply for length scales much

smaller than L∗
S̃

=
(
νS̃−1

t

)1/2

. The same result can be obtained directly in real space,

by considering the cross-over between the dissipative term in the scale-by-scale energy
budget equation, viz. 2ν ∂

∂r∆q′2 and the production term (Eq. (3.22)).

3.2.2. Phase-averaged quantities

Here, we propose a LI criterion based on the intensity of the turbulent strain at a given
scale r. The formulation is the following: ”For LI to be valid at a vectorial scale ~r, then
the intensity of the strain at that scale due to any larger scale must be much larger than
the combined effect of the mean shear S and of the coherent motion shear, S̃”.

Mathematically, this can be expressed in terms of two inequalities, depending on
whether time-averaged quantities are used, viz.

s(~r)� S̃t, (3.26)

where s(~r) is the time-averaged strain intensity at the scale ~r, and

sφ(~r, φ)� S̃φ, (3.27)
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with

S̃φ = |〈S〉| , (3.28)

when phase-averaged quantities are used. Here, sφ(~r, φ) is the phase-averaged strain
intensity at the scale ~r and the phase φ.

The next step is to propose adequate expressions for the turbulent strain intensity
s(~r) and sφ(~r, φ). Starting from the definition of the strain tensor Σ = ∇~x~u, we need
to further define the tensor SΣ characterizing the strain at a scale ~r associated with all
the larger scales (Mouri & Hori (2010), Danaila et al. (2012)), i.e. the quantity SΣ(~r) ≡
∇~x+~u+ + ∇~x~u, with ~x+ = ~x + ~r. By considering the two frames to be independent

(Monin & Yaglom (2007)), with ~U identical in the two frames and by invoking the same
decomposition as proposed by e.g. Hill (2002) the final result is

SΣ(~r) = ∇~r∆~u. (3.29)

Therefore, as far as the turbulent field is concerned, the turbulent strain intensity, which
is the absolute value of SΣ, may be defined as follows

s(~r) = (∇~r∆~u)2
1/2
. (3.30)

After some calculations and by supposing that ∆uj
∂2

∂r2k
∆uj ≈ 0 (which is strictly true

for ~r → 0), the final expression of s(~r) for general turbulent flows in which time-averages
are adequate

s(~r) =

(
1

2
L(∆ui)2

)1/2

(~r), (3.31)

where repeated indices indicate summation and L represents the Laplacian operator. In
flows populated by CM, in which phase-averages are more useful, the intensity of the
strain depends on both ~r and the phase φ, and it reads

sφ(~r, φ) =

(
1

2
L
〈
(∆ui)

2
〉)1/2

(~r, φ). (3.32)

Calculating the Laplacian of these functions requires estimates of the velocity field in
several planes, such as provided by PIV (Particle Image Velocimetry), or, preferably,
numerical simulations.

It is important to note that, for LI, the Laplacian can be expressed in spherical coor-
dinates as follows

sφ(r, φ) =

(
1

r

∂

∂r

〈
(∆ui)

2
〉

+
1

2

∂2

∂r2

〈
(∆ui)

2
〉)1/2

(r, φ). (3.33)

The first term on the right side of Eq. (3.33) has already been proposed by Danaila et al.
(2012). This expression will be used later in this paper in order to infer sφ and investigate
phenomenological LI tests involving phase averages.

4. Results at the centerline of the wake of different obstacles

4.1. Kinematic LI tests

4.1.1. Time-averaged quantities

Figures 3(a) and 3(b) represent the ratios between calculated and measured second-
order structure functions for v and w respectively. For each initial condition, this ratio is
almost independent of the Reynolds number (also noted by AZR). The departure from LI
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Figure 3. (a), (b). Ratios between the isotropic predictions and measured second-order structure
functions. In each figure, the increasing Reynolds number is displayed from bottom to top. (a)

(∆v)2|iso/(∆v)2. (b) (∆w)2|iso/(∆w)2. ◦ CC, ut SqC, ♦ ScC, . P, + SS. —— represents the
isotropic ratio of 1, · · · · · · and - - - - represent a departure of 10 and 20% respectively from the
isotropic value of 1. Vertical broken lines correspond approximately to the lower and upper limits
of the RSR; they diverge upwards as the Reynolds number increases, reflecting the increase in
the extent of the RSR with the Reynolds number.

appears to be reasonable in the RSR (with an amplitude of about 10 -15 %) and increases
as r decreases through the dissipative range. Note however that for small scales, this ratio
is calculated by dividing by small values of second-order structure functions, which may
be a possible source of error. Note also that (∆v)2 > (∆v)2|iso and (∆w)2 < (∆w)2|iso
for most of the separations.

For larger separations, the departure from LI is maximum at r ≈ 8−10λu and is more
noticeable on v than w. At this particular separation, the SS wake exhibits the largest
departure from LI followed by the ScC, CC, P and finally the SqC wake for which LI holds
for scales as large as 20-30 λu. The scale at which the departure from LI is maximum
may be associated with the scale at which energy is injected. Therefore, whereas the
dissipative scales exhibit a quasi-universal behaviour, the largest scales clearly vary from
wake to wake, reflecting the influence of the large-scale organisation on the type of wake
generator.

The small-scale limits of the quantities represented in Fig. 3 merit some consideration.
As shown by Eq. (3.8), these small-scale limits should be equal to K1 and K2 respectively.
In order to check the validity of our results for the smallest scales, we have inferred
separately K1, K2. Several values of K1 and K2 in turbulent shear flows are summarized
in Browne et al. (1987) whereas Antonia et al. (1998) reported some of these values in
grid turbulence. For all these flows, some departures from LI are discernible, indicating
persisting effects of a large scale anisotropic forcing. As pointed out by Antonia et al.
(1986), the controversy concerning the validity of LI at the level of the dissipative range
depends on the severity of the tests themselves and has, to large extent, reflected the
difficulties of measuring small scale quantities. Indeed, the imperfect spatial resolution of
most hot wire probes, leads to an attenuation of the velocity derivatives. Hence, assessing
LI from small scale measurements requires special vigilance.

The correction procedure (2.1) is based on LI whereas the present study aims at testing
its validity. We thus need to verify whether the correction induces a bias in the assessment
of LI. To this end, we compare the raw and corrected values of the ratios K1 and K2.
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Figure 4. (a), (b). Ratio between measured and calculated third-order structure func-

tions. The Reynolds number increases from bottom to top. (a) ∆u(∆v)2/∆u(∆v)2|iso. (b)

∆u(∆w)2/∆u(∆w)2|iso. ◦ CC, ut SqC, ♦ ScC, . P, + SS. —— represents the isotropic ra-
tio of 1, · · · · · · and - - - - represent a departure of 10 and 20% respectively from isotropy. The
inclined broken lines delineate approximately the boundaries of the RSR.

The corrected values of K1 and K2 are calculated by integrating (from 0 to infinity) the
corresponding ’true’ spectra, i.e. obtained from the measured spectra by using Eqs. (2.1)
and (2.2). With respect to Eq. (2.2), the values of K1 and K2 are modified only slightly
by the correction method. The results do not change significantly with the Reynolds
number and the type of generator. We have checked that the values of K1 and K2 (either
corrected, or not) are recovered at the smallest scales of Figs. 3(a) and 3(b) (these
are indicated by the horizontal arrows on the left vertical axis of these two figures),
in conformity with Eqs. (3.8), thus validating once again the calculated values of the
derivative statistics.

Ratios between measured and calculated third-order structure functions are plotted
in Fig. 4. In contrast with the second-order structure functions for which the ratio
(∆u⊥)2|iso/(∆u⊥)2 was displayed, here we represent ∆u(∆u⊥)2/∆u(∆u⊥)2|iso.

The departure from the isotropic prediction is approximatively constant (and suffi-
ciently small) within the dissipative range. Moreover, the factors G1 and G2 are explicitly
recovered in the limit of small separations, indicated by horizontal arrows in Fig. 4.

A strong departure, again more noticeable on v than w, is observed for scales situated
within the RSR. For larger separations, the deviation is much bigger than that reported
for second-order structure functions, and it continuously grows as the scale keeps increas-
ing. For that reason, values beyond r = 10λu are not shown. The departure is largest
for the SS wake and smaller in order of importance for the ScC, CC, P, and the SqC
wakes. Differences between the behaviours of v and w, irrespectively of the criterion, are
attributable to the different way energy is injected in the system: here, fluctuations of
v are mostly created through instabilities associated with the CM. Further downstream,
pressure-velocity correlations act to redistribute the energy, which is continuously rein-
jected in v by the persistent coherent motion, to the other velocity components. Therefore,
a detailed investigation of statistics associated with each individual velocity component
may a priori highlight energy exchanges among different velocity components and hence
possible imbalances between them.

Whereas the evaluation of statistics associated with individual velocity components
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Figure 5. (a) Ratio between calculated and measured second order structure functions

(∆q)2|iso/(∆q)2. Increasing Reynolds number is displayed from bottom to top. (b) Ratio be-

tween measured and calculated third order structure functions ∆u(∆q)2/∆u(∆q)2|iso. Increasing
Reynolds number from bottom to top. ◦ CC, ut SqC, ♦ ScC, . P, + SS. —— represents the
isotropic ratio of 1, · · · · · · and - - - - represent a departure of 10 and 20% respectively from
isotropy. The inclined broken lines delineate the approximate boundaries of the RSR.

may result in very tough LI tests due to the previously mentioned imbalances, we continue
our investigation by examining the transport of the total kinetic energy at a given scale.
Figure 5 represents the isotropic expressions relating second- and third-order structure
functions applied to the scalar quantity ∆q2 and its non linear transfer ∆u(∆q)2. It
is noteworthy that the departure from LI, typically less than 5%, is smaller than that
of the individual velocity components v or w. This underlines the compensation which
arises from the inequalities ∆v2 > ∆v2|iso and ∆w2 < ∆w2|iso. In the limit of small
separations (Eq. 3.9), 1

5 (1 + 2K1 + 2K2) → 1 whereas K1 6= K2 6= 1. Deviations from

LI are maximum at r ≈ 10λu for both (∆q)2 and ∆u(∆q)2, as is the case for (∆v)2 and
(∆w)2. Moreover, the SS wake exhibits once again the strongest anisotropy followed by
ScC, CC, P and SqC.

We conclude this temporal-average analysis by summarising the main results obtained
by applying several tests of isotropy to second and third-order moments of velocity in-
crements:
• for the smallest scales, i.e. in the dissipative range (scales smaller than the Taylor

microscale), LI is a good assumption on the wake centerline. For these scales, there is no
clear dependence on initial conditions or on the Reynolds number.
• For scales situated in a range loosely identified with the RSR, LI is a reasonable

approximation, although there is some dependence on initial conditions and a slight
dependence on the Reynolds number. This result holds for tests based on second-order
structure functions, whereas third-order structure functions are more severe LI tests
(for these tests, the departure from LI is as large as 50%). This is consistent with the
analysis of Shen & Warhaft (2000) who showed that anisotropy becomes more and more
perceptible with increasing order of the LI test. We infer that for the majority of the
LI tests discussed here, LI is tenable for scales smaller than La (or ’anisotropy’ scale),
which lies between 2 and 10 Taylor microscales, depending mainly on the particular test
that is used and the Reynolds number and the type of generator.
• Departures from LI are noted for scales larger than La, mainly for the transverse
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Figure 6. 〈(∆v)2〉(r, φ)/v2 (top) and the time-averaged second-order structure function of v

(CC), (∆v)2(r)/v2 (CC). Tha value of the Reynolds number is Rλu = 190.

velocity fluctuation v. The observed departures from LI at scales larger than La must be
correlated with the persisting footprint of the organised motion on v (e.g. Hayakawa &
Hussain (1989), Matsumura & Antonia (1993)).

We have thus shown that LI is a reasonable approximation for the smallest scales, and
is most closely satisfied by the square cylinder wake. The least isotropic wake is that
generated by the screen strip, for which vortex merging leads to the production of a very
persistent coherent motion. For scales smaller than La, which satisfy LI reasonably, there
is no perceptible dependence on the Reynolds number, at least for this range of Reynolds
numbers.

4.1.2. Phase-averaged quantities

Whereas the value of the scale La for which LI is no longer valid has been deter-
mined from time-averaged quantities, it is worth extending our analysis by examining
the dynamical variation of this scale as a function of the phase of the CM.

It is first useful to detail the scale-phase variation of 〈(∆v)2〉(r, φ). Figure 6, top, dis-
plays 〈(∆v)2〉(r, φ)/v2, as a function of the scale r normalised by the Taylor microscale
λu and the phase φ (normalised by π). Note that in homogeneous turbulence, this nor-
malised ratio should be equal to 2 at large scales. The values of the phase conditioned
second-order structure functions progressively increase as r keeps increasing, and reach
a maximum for r/λu ≈ 9 (this scale is equal to half the distance between two successive
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vortices), followed first by a slight decrease and then by a quasi-periodic behaviour for the
largest scales. The maxima of 〈(∆v)2〉(r, φ)/v2 occur at scales which are multiples of the
first maximum. The trend of 〈(∆v)2〉(r, φ)/v2 is uniform in φ for small scales, consistent
with the fact that small-scale fluctuations are not dynamically connected with the CM.
At larger scales, where the CM is present, there is a hint of periodicity along the φ axis
(for r/λu ≈ 2), followed by a clear periodicity at scales r/λu ≈ 9, as emphasised earlier.
At these scales, the energy distribution is strongly affected by the presence of the CM.
The average along the φ axis of the function 〈(∆v)2〉(r, φ)/v2 is equal to (∆v)2(r)/v2, as
shown in Fig. 6 (bottom) as a function of r/λu. Similarly to the large-scale periodic trend
of the scale-phase second order structure functions, the large-scale limit of (∆v)2(r)/v2

overshoots the value of 2 at r/λu ≈ 9, then decreases and finally tends towards a constant
for larger scales.

The dynamical aspect of 〈(∆v)2〉(r, φ) should be understood in association with the
phase variations of the total strain (Fig. 2). In particular, for y = 0 for which the results
in Fig. 6 were obtained, we note that the maxima of 〈(∆v)2〉(r, φ) correspond to the
phases of the CM where the strain is extremum (either positive, or negative).

We now present results for one LI test from a dynamical viewpoint, i.e. the ratio be-
tween

〈
(∆u⊥)2

〉
iso

(r, φ)/
〈
(∆u⊥)2

〉
(r, φ), where

〈
(∆u⊥)2

〉
iso

is given by relation (3.18).
This ratio is illustrated in Fig. 7 on the wake centerline, for the same Reynolds number
(Rλu ' 190) and for three obstacles only. We have selected the SqC, CC and SS, because
they represent the two extrema (the most and least isotropic, SqC and SS respectively),
as well as an intermediate case, CC, representative of many practical applications. If LI
holds at a scale r and a phase φ, then the ratio

〈
(∆u⊥)2

〉
iso

(r, φ)/
〈
(∆u⊥)2

〉
(r, φ) should

be equal to 1.

For SqC (Fig. 7(a)), the values of
〈
(∆u⊥)2

〉
iso

(r, φ)/
〈
(∆u⊥)2

〉
(r, φ) range between

0.8 and 1.2 (the colorbar of the figure goes down to 0.3 for the sake of uniformity between
the three parts of this figure). More Precisely, the values of this ratio are approximately
equal to 0.8 for the smallest scales associated with the dissipative range. The departure
from isotropy is of the order of 20%, independently of the scale, and is fully consistent
with that reported for time-averaged quantities (Fig. 3(a)). These values monotonically
increase for the RSR scales (between 1 and 10 λu). The isotropic value of 1 is reached
for scales approximately equal to 15 λu, with very slight variations around this value.
Therefore, the dynamical evolution of the scale La exhibits smooth variations around the
value of 15λu. Note that the value of La obtained from time-averaged statistics is 20-30
λu. This is consistent with the fact that dynamical tests are more restrictive.
The maximum departure of the ratio from the isotropic value of 1 is associated with two
kinds of points in Fig. 7(a). First, there are points for which the value of

〈
(∆u⊥)2

〉
iso

(r, φ)

/
〈
(∆u⊥)2

〉
(r, φ) is 0.8. This occurs at phases which are odd multiples of π/2, for which

the absolute value of the total strain is maximal, and with scales as large as ≈ 20λu. Sec-
ond, there are locations where

〈
(∆u⊥)2

〉
iso

(r, φ)/
〈
(∆u⊥)2

〉
(r, φ) ≈ 1.2 (the maximum

positive departure from 1). These points are situated at scales as large as 30 λu and at
phases corresponding to integer multiples of π, for which the large-scale strain is a priori
absent.

For CC, LI is tenable up to scales approximately equal to 10λu. This limit is larger
for phases where the coherent strain is absent and smaller when the coherent strain is
important (either positive, or negative). The value of La inferred from time-averaged
statistics (Fig. 3.1) is 15 λu. The maximum departure from LI occurs at r ≈ 15λu
(smaller than that for the SqC) and for phases corresponding to the coherent strain
extrema. Finally, for SS, the values of the ratio

〈
(∆u⊥)2

〉
iso

(r, φ)/
〈
(∆u⊥)2

〉
(r, φ) are
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Figure 7. The dependence of
〈
(∆u⊥)2

〉
iso

(r, φ)/
〈
(∆u⊥)2

〉
(r, φ) on r/λu and φ(π). (a) SqC.

(b) CC. (c) SS. The value of Rλu ' 190, closely the same for the three obstacles.

as small as 0.4, thus exhibiting the largest anisotropies. The dynamical behaviour of La
reveals variations between 2λu and 20 λu. The minima are associated with phases equal
to odd multiples of π/2 (where the absolute value of the coherent strain is maximum),
whereas the maxima correspond with phases where the coherent motion strength is zero.
The value of La obtained from time-averaging is approximately 10λu, which is again
larger than that determined through the more refined and stringent dynamical tests.
The largest anisotropy occurs at r ≈ 10λu and for phases for which the strength of the
coherent strain is the largest.

4.2. Phenomenological LI tests

A direct connection has been established between the large-scale strain and anisotropy.
We now aim at quantifying explicitly the effect of the strain on LI.

Time-average quantities are first examined in 4.2.1. Phase-averaged quantities are con-
sidered in 4.2.2.

4.2.1. Time-averaged quantities

We now present experimental results obtained in the intermediate field. On the wake
centreline, the transverse velocity component v constitutes the most important contribu-



20 F. Thiesset, L. Danaila and R. A. Antonia

10000 20000 3000040000

1

2

3

4

Red

S̃
t
q2
/
ǫ

SqC

P

ScC

CC

SS

Re0d

(a)

10000 20000 3000040000
10

0

10
1

10
2

Red

S̃
t

SS

CC
P

SqC

ScC

Re1d

(b)

Figure 8. (a) S̃tq2/ε, —— : Re0d. (b) Absolute value of the coherent shear S̃t for various
Reynolds numbers, —— : Re1d. ◦ CC, ut SqC, ♦ ScC, . P, + SS.

tion to the rate of coherent strain, i.e. S̃t ≈
∣∣ ∂ṽ
∂x

∣∣ (here, the spatial derivative is calculated
from the time/phase derivative via Taylor’s hypothesis).

In Fig. 8 (a), we plot the values of S̃tq2/ε for each generator. For each wake, the

inequality S̃tq2/ε � 1 is violated, which is consistent with the persistence of large-scale

anisotropy. SS is most influenced by the rate of coherent strain with S̃tq2/ε ≈ 4.5 followed

by ScC (S̃tq2/ε ≈ 3.2), CC (S̃tq2/ε ≈ 2.5), P (S̃tq2/ε ≈ 1.5) and SqC (S̃tq2/ε ≈ 0.9).
In conclusion, by comparing the characteristic time of the coherent motion strain rate

with that associated with the total cascade, we have again confirmed that at the centerline
of the wake, where the mean strain rate is equal to zero, global isotropy is unlikely to
hold.

We next address the influence of the Reynolds number via dimensional arguments
which assume that the most appropriate scales are Ud (the velocity defect) and y0.5 (the
half-width of the mean velocity profile), even though these similarity scales apply strictly
to the far field. Therefore,

S̃t ∝ Ud/y0.5;

q2 ∝ U2
d ;

ε ∝ U3
d/y0.5. (4.1)

Further, by considering that at this location in the flow Ud ∝ U0 and y0.5 ∝ d, and
provided the proportionality constants do not vary discernibly with the Reynolds number,
their ratio leads to

S̃tq2/ε ∝ Re0
d, (4.2)

where Red is the Reynolds number based on U0 and d. This indicates that the ratio
S̃tq2/ε is constant with respect to Red. The coherent shear is expected to affect signif-
icantly the turbulent field, independently of the Reynolds number. Both Figs. 8(a) and

8(b) suggest that the dimensional analysis which predicts the evolution of S̃tq2/ε and of

S̃t with the Reynolds number is well supported by the experimental data. At this stage, it
would appear that, in the presence of an anisotropic organised motion, the attainment of
an asymptotic isotropic state for large scales and large Reynolds numbers is questionable.
This is not surprising.
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Figure 9. (a) Variation of LS̃/d with Red, (b) Variation of LS̃/λu with Red. —— : Re
1/2
d . ◦
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We investigate the possible dependence of the scale LS̃ on the initial conditions and
the Reynolds number based on the upstream mean velocity field. The same dimensional
arguments as used previously in this section lead to

LS̃/d ∝ Re0
d,

LS̃/λu ∝ Re
1/2
d . (4.3)

The length-scale LS̃ is therefore constant with respect to the Reynolds number and
the ratio between LS̃ and λu increases. We have chosen to study the evolution of LS̃ with
respect to λu since λu is often identified with the scale at which the non-linear transfer
is maximum. Further, λu can be determined reasonably accurately.

Experimental data represented in Fig. 9(a) show that the coherent shear length scale
LS̃ increases from 1d for SS to 10d for SqC. Whilst expressing LS̃ in terms of d may not
be particularly meaningful since d is not a local scale, the fact that the variation of LS̃
with Red is negligible signifies that LS̃ is a geometrical scale linked to initial conditions

through the total strain S̃t.

In order to test Eq. (4.3), the ratio LS̃/λu is plotted in Fig. 9(b). The magnitude
extends between 4 to 8λu for the SS wake. This value corresponds roughly with the
position of the maximum departure from the isotropic value of ’1’ of the test observed in
Fig. 3(a) for instance. LS̃ also corresponds to the scale at which the departure from LI
is first noticeable in Figs. 3(a), 3(b) and 5(a). Therefore, it corresponds to the scale La
which we wish to quantify phenomenologically. For SqC, the ratio LS̃/λu is about 100,
which is consistent with LI for this particular set of initial conditions.

We conclude this subsection by underlining the fact that, on the wake centerline, phe-
nomenological LI tests based on time-averages reinforce the message already delivered via
the conventional, kinematic tests. More specifically, i) the large scales are not isotropic;
and ii) for the intermediate scales, La is as large as 100 λu for SqC, 10→ 20 λu for CC
and 4 to 8 λu for the least isotropic flow, viz. SS. Therefore, LS̃ represents a good approx-
imation to the anisotropy scale La, as determined from LI tests involving time-averaged
quantities.
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Figure 10. Values of log10(S̃φ/sφ) as functions of r/λu and the phase φ/π. (a), SqC. (b), CC.
(c), SS. Rλu ' 190. The dotted lines represent the scale L−1.

4.2.2. Phase-averaged quantities

Here, we test the phenomenological LI criterion sφ(r, φ)� S̃φ(φ) against experimental

data. Figure 10 depicts log10(S̃φ/sφ) as a function of r/λu and the phase φ/π, for three
obstacles: SqC (Fig. 10(a)) which has been shown to be the most isotropic flow, followed
by CC (Fig. 10(b)) and SS (Fig. 10(c)), the least isotropic wake. The LI criterion may
be expressed as follows: ’LI should hold if log10(S̃φ/sφ) ≤ −1’.

For the three figures, small values of log10(S̃φ/sφ) (dark zones) occur for small scales,
whereas large values (much larger than −1), as highlighted by white regions, are found
mostly at large scales. The curve for which log10(S̃φ/sφ) = −1, called ’L−1’, is represented
by dotted lines on the three figures. This curve separates the region of small values of
r (for which LI holds), from the region of large scales, the latter being anisotropic. The
scale L−1 obviously depends on φ. Its magnitude varies between 1 and 20λu for SqC, 0.5
and 10 λu for CC and 0 and 8λu for SS. The phase for which L−1 is minimum is fully
correlated with the extremum values of the coherent strain S̃φ (Fig. 2). At the phases for

which S̃φ = 0, the influence of the coherent motion is absent, so that LI is free to develop
and L−1 can increase. Temporal averages of L−1(φ) are fully consistent with different
estimations of the anisotropy scale La, as discussed previously. Note however that the
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Figure 11. Values of the ratios (a): (∆v)2iso/(∆v)2 and (b): (∆v)3/εr, at several distances
away from the CC wake centerline as functions of r/λu, at Rλu ' 70. ◦, y/d = 0; �, y/d = 0.4;
♦, y/d = 0.8; O, y/d = 1.3. In (a), the horizontal dotted lines delineate the boundaries of ±20%
departures from the isotropic value of 1.

scale L−1, through its dependence on the phase, provides more insight into the dynamics
of the flow.

5. Results in presence of a mean shear

We now focus on the sheared region of the flow where the mean shear is not negligible.
For simplicity, LI is tested only for CC, at several locations away from the axis, up to
1.3d. This distance corresponds to a maximum absolute value of the mean shear. The
presentation of the results is organised in similar manner to that for the wake center-
line. Subsection 5.1 deals with kinematic LI tests, whereas phenomenological tests are
discussed in Subsection 5.2. In each subsection, both time-averaged and phase-averaged
quantities are used.

5.1. Kinematic LI tests

5.1.1. Time-averaged quantities

Figure 11(a) represents the ratio between the isotropic estimate of the second-order
structure functions of the vertical velocity fluctuations (∆v)2

iso (as given by relation

3.1) and the measured value of (∆v)2, as a function of the normalized scale r/λu and
for several distances from the wake centerline. For isotropy, this ratio should be equal
to 1, independently of the scale. At the wake centerline (y/d = 0), (∆v)2

iso/(∆v)2 is
very close to 1 for scales in the range 1→ 3λu, which corresponds approximately to the
RSR. For larger scales, this ratio diminishes to values as small as 0.8, followed by a rapid
tendency towards a plateau, with a magnitude of about 1.25 at scales equal to or larger
than 20λu.

At a small distance from the wake centerline (y/d = 0.4), the results follow closely
those at the centerline. Further away, at y/d = 0.8, the extent to which LI holds is
comparable to that at the centerline. The scales for which the ratio (∆v)2

iso/(∆v)2 ≈ 1
are almost the same as those for y/d = 0, whereas for larger scales the departure from 1
is greater (∼ 1.3). Finally, at y/d = 1.3, the large-scale anisotropy is significant, arguably
because the effect of the shear is more persistent. The ratio (∆v)2

iso/(∆v)2 is as large as
1.4 at the largest scales. Noticeable is the fact that, for all locations, LI holds well within
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the RSR, whereas the small departure from isotropy (up to 10%) appears to be more
important in the dissipative range. The latter result is very likely caused by dividing by
small values of (∆v)2.

Figure 11(b) illustrates the third-order structure function of the vertical velocity com-
ponent v, normalised by εr for the four spatial locations investigated. At the wake cen-
terline, this ratio is very nearly equal to zero throughout the whole range of scales, as
expected from symmetry. With increasing distance from the centerline, this dissymmetry
coefficient progressively decreases for scales associated with the RSR, down to values as
low as −0.25. For the largest scales, this coefficient is again very nearly equal to zero.
Hence, the inconsistency between Figs. 11(a) (which is rather a proof of LI) and 11(b)
hinges on the fact that 〈(∆v)3〉 is a test of symmetry rather than a LI test. In addition,
it is interesting to note that the behaviour of (∆v)3 appears to be intimately connected
to the mean shear S. Indeed, the sign of (∆v)3 is opposite to that of S and its maximum
value reflects the magnitude of the mean shear. Although not shown here for y larger
than 1.3d (maximum shear), (∆v)3 begins to decrease towards zero. Further analysis is
needed to derive a relation between (∆v)3 and S

In summary, away from the centerline, anisotropy is unambiguously present at the
largest scales of the flow. There is no strong evidence of anisotropy at scales associated
with the RSR. However, it is not possible to draw firm conclusions on whether departures
from local isotropy in the dissipative range are genuine or simply an artefact of dividing
by small quantities.

5.1.2. Phase-averaged quantities

We next turn our attention to kinematic LI tests applied to phase-averaged quantities.
These are presented for the vertical component of the velocity field, v.

Figure 12 represents the phase-averaged second-order structure functions for v nor-
malized by its variance, 〈(∆v)2〉/v2, as a function of the scale r/λu and the phase φ(π)
of the coherent motion, at y/d = 1.3. The behaviour of 〈(∆v)2〉/v2 at y/d = 1.3 is very
similar to that on the wake centerline.

The dynamical aspect of 〈(∆v)2〉(r, φ) should be understood in association with the
phase variations of the total strain, Fig. 2. Careful inspection of this figure reveals that
the extrema of the total strain S+ S̃ occur at the same phases (i.e. odd multiples of π/2)
almost independently of the spatial location y. A further comment is in order, concerning
the regions for which the normalized second-order structure functions of v are maximum.
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It has been previously noted (Fig. 6) that these maxima occur at phases for which S̃
is extremum, and for r/λu ≈ 9. It is worth noting that away from the centerline, the
periodicity of these regions is not π, but rather 2π (a complete period of the coherent

motion). This behaviour is associated with the fact that for e.g. φ(π) = 0.5, S̃ < 0 (see

Fig. 2), the total strain S + S̃ is smaller than S, and for these phases, the local strain

is diminished. On the contrary, at φ(π) = −0.5 (and multiples), S̃ > 0 (see Fig. 2),

the total strain S + S̃ is larger than S, and at these phase locations, the local strain is
enhanced. Therefore, the period of any phase-averaged quantity in the sheared region of
the wake is exactly 2π. Only at the wake centerline, where S = 0, the period may be π,
as emphasised in Fig. 6(a). For phases associated with S̃ > 0, therefore with a maximal
total strain, the increase of the ratio

〈
(∆v)2

〉
(r, φ)/v2 towards the maximum value of 2.5

is more important and starts at smaller scales (r/λu ≈ 3) than for phases where S̃ < 0.
We now present results for one LI test from a dynamical viewpoint, i.e. the ra-

tio
〈
(∆v)2

〉
iso
/
〈
(∆v)2

〉
, where

〈
(∆v)2

〉
is given by relation 3.18. This ratio is illus-

trated in Fig. 13 at y/d = 1.3. If LI holds at a scale r and a phase φ, then the ratio〈
(∆v)2

〉
iso
/
〈
(∆v)2

〉
should be equal to 1. The maximum departure of the ratio from the

isotropic value of 1 is associated with phases which are odd multiples of π/2, for which
the absolute value of the total strain is maximal, and with scales as large as ≈ 20λu.
At these scales, the value of

〈
(∆v)2

〉
iso
/
〈
(∆v)2

〉
is 1.3. The approximate value of the

anisotropy scale La for the CC wake at y = 1.3d is 3 λu.

5.2. Phenomenological LI tests

The phenomenological LI criterion sφ(r, φ) � S̃φ(φ) is now tested against experimental

data. Figure 14 depicts log10(S̃φ/sφ) as functions of r/λu and the phase φ/π, for the
CC wake, at a spatial location y/d = 1.3 away from the centerline. Again, a possible
statement of the LI criterion is ’LI should hold if log10(S̃φ/sφ) ≤ −1’. As in the case of

results previously presented at the wake centerline, small values of log10(S̃φ/sφ) (dark
zones) occur for small scales, whereas large values (much larger than −1), as highlighted
by white regions, are found mostly at large scales. The curve for which log10(S̃φ/sφ) = −1,
i.e. ’L−1’, is represented by dotted lines. This curve separates the region of small values
of r (for which LI holds), from the region with large anisotropic scales. As emphasised by
this figure, L−1 varies between 0.8λu and 8λu. Its magnitude is smaller than at the wake
centerline, where the mean shear is absent. The phase for which L−1 is minimum is fully
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Figure 14. Values of log10(S̃φ/sφ) as functions of r/λu and the phase φ/π, at y/d = 1.3. The
dotted lines represent the scale L−1.

correlated with the extremum values of the coherent strain S̃φ (Fig. 2). At the phases for

which S̃φ = 0, the influence of the coherent motion is absent, so that LI becomes more
noticeable and L−1 can increase.

6. Persisting effects of the coherent motion in the far field

The possibility that the effects of the organized motion or coherent structures persist in
the far field is considered here. For this purpose, the downstream evolution of S̃tq2/ε, LS̃ ,
L∗
S̃

as well as their ratios need to be examined. It is now well established that the far field
of the wake flow is characterised by a self-similar state with respect to the streamwise
direction (Townsend (1976), Wygnanski et al. (1986), George (1989), Browne & Antonia
(1986)) when statistics are normalized by Ud and y0.5, as illustrated by relations (4.1).

Furthermore, by using the fact that the downstream evolutions of Ud and y0.5 are given
by

Ud ∝ (x− x0)−1/2

y0.5 ∝ (x− x0)1/2, (6.1)

where x0 is a virtual origin, we expect that

S̃tq2/ε ∝ (x− x0)0

S̃∗ ∝ (x− x0)0

LS̃/λu ∝ (x− x0)0

L∗
S̃
/λu ∝ (x− x0)0. (6.2)

These relations suggest that S̃tq2/ε, LS̃ , L∗
S̃

and S̃∗ do not vary with x− x0.
In the light of these remarks, LI is unlikely to be verified more accurately in the far

wake. This would be consistent with the experimental observations of Browne et al.
(1987), who indicated that anisotropy is not negligible at 420d. Moreover, our results
support the proposition of George (1989) that there is no universal self-similarity (see
also Wygnanski et al. (1986)) but only local self-similarity conditioned by the topology
and amplitude of the organised motion associated with each set of initial conditions.
They further strongly point to the likelihood that, associated with the notion of local
self-similarity, the level of local anisotropy will differ by varying amounts between far-
wakes generated by different obstacles. In particular, the anisotropy in the far-wakes
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generated by porous bodies of the type considered in the present study ought to be
greater than that in the far-wakes of solid bodies. One cannot rule out that the level
of anisotropy may differ among the far-wakes in each of the two previous groups. For
example, the far-wake of a solid square cylinder is likely to be be more isotropic than
that of a solid circular cylinder.

7. Conclusions and suggestions for future work

The effect on local isotropy due to an anisotropic coherent motion and shear has been
assessed by means of hot-wire measurements in two-dimensional wakes downstream of
different obstacles.

Isotropy is tested for a wide range of scales, from the dissipative to the largest scales.
Different analytical expressions, all based on LI, involving statistics at a particular scale
or spatial derivatives, are tested against experimental data. The analytical relations are
either kinematic or phenomenological and the LI tests involve either temporal or phase
averages, the latter being particularly well suited for characterizing flows populated by
coherent motions.

Particular attention has been paid to the centerline of the wake, where we have shown
that the largest scales are anisotropic. The assessment of LI was then extended to the
inertial and dissipative scales by means of isotropic relations between structure functions.
The small scales are not strongly affected by the type of wake-generator. Different isotropy
criteria for both dissipative and large scales are recovered by considering the limiting
forms of these relations when the separation is either very small or very large. These
conclusions seem to point to a ’universal’ isotropic behaviour of the small scales. However,
in the inertial range, second-order structure functions are closer to isotropy than third-
order structure functions, consistent with the conclusions of Shen & Warhaft (2000).

We have shown that isotropy is a reasonable approximation for the smallest scales,
especially for the square cylinder. The least isotropic flow is the screen strip wake, for
which the merging of vortices arising from Kelvin Helmholtz instabilities is delayed and
the CM is more noticeable at 70d than for the other wake flows. As far as the influence
of the Reynolds number is concerned, we note that over the range of scales for which
LI holds, there is no clear dependence on the Reynolds number. LI is tenable for scales
smaller than La. For scales larger than La, departures are clearly visible, especially on
the transverse velocity component v.

We have further determined the approximate value of the scale La, by using kinematic
tests, based on either temporal or phase averages. The largest values of La were obtained
for SqC, for which the tests involving time-averages led to La ' 20 − 30λu, whereas
the tests based on phase-averages yielded La ' 15λu with relatively small variations
around this value. Since these latter tests are more stringent, the anisotropy is detected
at smaller scales. The smallest values of La were provided by SS, for which the tests
involving time-averages led to La ' 10λu, whilst the dynamical tests emphasized that
La has a maximum value of 20λu (associated with the phases for which the total strain is
negligible), and a minimum value as small as 2λu (when the strength of the total strain
is most important).

Away from the wake centerline, the value of La is small, thus emphasising the effect
of the shear which is superposed to that of the coherent motion. Since La is not likely to
depend on the Reynolds number, it is simply a geometrical scale.

We next addressed the question of correlating the value of La with large-scale properties
such as the mean strain S and the coherent motion strain S̃, which in turn are linked
to the initial conditions (geometrical and hydrodynamical). In the absence of analytical
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expressions for La, potential surrogates for this scale were identified either from i) time-
averaged, or ii) phase-averaged quantities.

i) The first is LS̃ , which involves the total strain (the sum of the mean strain and
the time-averaged coherent motion strain) and approximates the scale La inferred from
time-averages reliably.

ii) The second is L−1. To gain some insight into how the organized motion causes
departures from isotropy, we have also tested phenomenological criteria for LI using
phase-averaged quantities, e.g. the phase averaged strain and phase-averaged structure
functions. The scale L−1 was constructed so that the intensity of the large-scale strain
(including both the mean and coherent motion strain) represents 10% of the small-scale
strain. Whereas the threshold of 10% is arbitrarily chosen, we need to recognize that
the merit of this phenomenological criterion stands in the fact that it allows LI to be
tested at each phase and each scale. The scale L−1 involves both the total strain and
the turbulent strain intensity at each phase and represents a reasonable surrogate of the
scale La determined from the phase-averaged quantities. Once again, SqC generates the
most isotropic wake, whereas the SS wake is the most anisotropic.

An interesting further perspective of this work would be to establish a Rλu − S̃t phase
diagram, thus extending the idea of Schumacher et al. (2003) by adding to the mean
strain rate the strain rate arising from the coherent motion. This diagram would allow
estimates of the combination of Rλu and S̃t values for which LI is first validated, with the
caveat that whilst such estimates may be possible for second and third-order statistics,
such as those considered in this paper, they may not exist for higher-order statistics.

The possibility that the effects of the organized motion persist in the the far field
has also been addressed. To this end, we have considered some very simple arguments
based on self-similarity. We have shown analytically that S̃tq2/ε,S̃∗, LS̃/λu and L∗

S̃
/λu

remain constant when the distance downstream of the obstacle increases. The effect of
the organized motion is expected to persist even though the distance from the obstacle
becomes extremely large. This trend needs to be confirmed by further experiments.

More work is also needed to explain the dynamical processes which result in local
anisotropy in the presence of an organized motion, paying particular attention to the
influence of the anisotropic energy fluxes. In this context, it would be useful to assess
the influence of the coherent motions on scale-by-scale budgets for the energy associated
with each velocity component, rather than just the trace ∆q2. This could lead to further
insight into the interactions between different velocity components.
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