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Abstract. The scale-by-scale energy budget equation for turbulent kinetic energy has been
written in flows with coherent motions. The general and the locally isotropic formulations are
both provided. In particular, the contribution to the production, diffusion and energy transfer
terms associated with the coherent motion are emphasized. Preliminary results are shown in the
intermediate wake of a cylinder for the phase-scale second- and third-order structure function.

1. Introduction

Since the studies of the pioneer Townsend (1976), it is now well established that an organized
motion persists in many turbulent shear flows (jets, wakes, shear layes,...). Recent efforts has
been thus devoted to the extraction of coherent structures in the idea of learning more about
their dynamical nature and their contribution to the Reynolds stresses. There are now many
experimental and numerical support of the persisting influence of the organized motion far
downstream the injection of turbulent energy (Cimbala et al. (1988), Bisset et al. (1990)).

The work of Reynolds & Hussain (1972) is the first analytical attempt to describe turbulent
flow revealing an organized wave. They derived dynamical equations and one-point energy
budgets for both the coherent and the random part of the velocity field. They proposed the
phase averaging operator which allows to assess the dynamical process associated with coherent
structures one step beyond the temporal averaging.

Nevertheless, at least two points - with one moving relatively to the other - are needed to
define a scale and account for the wide and continuous variety of scales which characterize a
turbulent flow. For that reason, two-point statistics (correlations of structure functions) were
originally considered by Taylor (1935), Kármán & Howarth (1938), Kolmogorov (1941), Yaglom
(1949) and many others since yet. These lasts stipulate that there is a scale beyond which the
influence of the anisotropic/coherent large scales is no more perceptible and as a consequence the
velocity statistics become isotropic. For that reason the organized motion were not considered.

Now, for most of turbulent flows, the separation between large and small scales is not wide
enough for this supposition to be valid. The energy contribution of the largest scales - whether
coherent or not - is still perceptible even on the smallest scales. In the light of previous remarks,
it is therefore necessary to dissociate the energy contribution of the coherent motion from the rest
of the purely turbulent field. The aim of this study is to derive the scale-by-scale budgets which



account for the coherent motion. The general as well as the locally isotropic formulations are
provided. These equations put light on some additional terms corresponding to the transport,
production, forcing of random fluctuations by the organized motion.

Then, we turn our attention on the particular case of the wake behind a cylinder in which
the scale-phase second- and third- order structure functions are calculated from hot wire
experiments. We particularly focus on this flow because it is reputed to reveal a turbulent
but still persisting Bénard-Von Kármán street even in the so-called far field (Cimbala et al.
(1988), Bisset et al. (1990)). The effect of the organized wave on the kinetic energy distribution
and its dynamical influence on the energy transfer is evidenced. Also the scale-by-scale budget
of the random field is well supported by experimental data.

2. Analytical background

2.1. General formulation
Starting from the triple decomposition Ui = U i + ũi + u′i, (Ui is the instantaneous velocity in

the ith direction, [.], [̃.] and [.]′ denote respectively the mean, the organized and the random
motion) Reynolds & Hussain (1972) obtained the dynamical equations for both the random and
the coherent motion :
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+ ũj
∂U i
∂xj

+
∂

∂xj

(
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∂2ũi
∂x2j

(1)

∂u′i
∂t

+ U j
∂u′i
∂xj

+ ũj
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In (1) and (2), 〈.〉 is the phase averaging operation and ν is the kinematic viscosity and p
is the pressure divided by the density. Following the procedure established by Antonia et al.
(1997) and Danaila et al. (2004), (1) and (2) are both written at a point ~x and ~x+ = ~x+ ~r and
subtracted (~r is the separation vector between the two points and the superscript + hereafter
denotes quatities considered at the point ~x+~r). Yields the transport equations of the organized

and random velocity increment, ∆ũi = ũ+i − ũi and ∆u′i = u
′+
i − u′i respectively :

∂∆ũi
∂t

+ ∆

(
U j

∂ũi
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At this stage, the statistics at the two points ~x and ~x+ are considered as independent variables
in a similar manner than Hill (2002) or Danaila et al. (2004). Then, considering the gradient

with respect to the mid-point ~X = 1
2 (~x+ ~x+) (Hill (2002), Danaila et al. (2004)) :
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multiplying (3) and (4) by 2∆ũi and 2∆u′i respectively, applying a phase followed by a time
averaging, and noting that : 〈
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〈
∆u′j∆u

′
i

〉
(7)

we obtain the energy budgets for the organized and the random motion :
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where ∆q̃2 = ∆ũi∆ũi and ∆q′2 = ∆u′i∆u
′
i (double indices indicate the summation) is the

turbulent kinetic energy at a given scale of the organized and random motion respectively.
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is the mean dissipation of the coherent and the

random motion.
For the sake of simplicity, (8) and (9) can be formally written as :
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Arm +Drr +D2
rc + Prm − Prc +Drp + T − Tc −Fc + Vr + 2

(
ε′ + ε′+

)
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where A, D, P, T , F et V denote respectively the advection, diffusion, production, transfer,
forcing and viscous terms. The subscript m, c, r correspond to the mean, coherent and random
motion, and Dp indicate the pressure diffusion.

(8) and (9) are the general formulations of the scale by scale budgets which account for the
coherent motion in which each term depends on the separation vector ~r. For homogeneous flows
and in the limit to large separations, the scale-by-scale budgets (8) and (9) are fully consistent



with the one point energy budget provided by Reynolds & Hussain (1972) (Eq(3.2b) et (3.2c)
p.266 of Reynolds & Hussain (1972)). By means of DNS, each term can be evaluated without
any other assumption. (8) and (9) will therefore constitute the general fundamental basis to
unravel the physics of the coherent and random fields interaction.

As different from Danaila et al. (2004), some additional terms appear. Particularly, the terms
Prc, Tc and Fc, identified as the production of random fluctuations by the coherent motion, the
coherent kinetic energy transfer and the forcing associated by the presence of a coherent motion
are emphasized. These terms are both present in the two equation (8) and (9) but their sign
differ from one to the other. This means that which represents a loss of energy for the organized
motion (8) constitutes a gain for the random motion (9). Furthermore we put light on the
transport of random statistical quantities by the organized motion D1

rc and D2
rc.

2.2. Simplifications in the locally homogeneous and isotropic context
We now turn our attention on the derivation of (8) and (9) in a locally homogeneous and
isotropic context. This assumption yields to considerable simplifications as regards to analytical
treatments and experimental confrontations (Danaila et al. (1999), Danaila et al. (2001)).
Furthermore, some comparisons with some previous isotropic considerations (Antonia et al.
(1997), Danaila et al. (2004), Yaglom (1949)) are needed at this stage.

Considering first a locally homogeneous turbulent flow, the viscous term simplifies :
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coherent motion. Then, in the context local isotropy, the divergence and the Laplacian operator
are expressed as :
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Using (13), multiplying (8) and (9) by r2 = rjrj , integrating over r and dividing by r2, yields :
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+∆ũ‖∆q̃2 +
2

r2

∫ r

0
∆ũi
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(14) and (15) are the scale-by-scale energy budgets of the organized and random motion
respectively in a locally homogeneous and isotropic context. s is a dummy variable and the
subscript ‖ denotes the direction parallel to direction of the separation vector. From experiments
for which the spatial separation is inferred from the Taylor hypothesis, this direction coincides
with the direction of the mean flow.



The first line of both (14) and (15) represents the energy contribution of largest scales (Danaila
et al. (2004)). The main difference with the classical Yaglom’s equation (second line of (15))
consists in some extra terms due to the presence of the coherent motion. The effective energy
transfer of the random velocity component is explicit and is thus constituted of the total energy
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∆ũ‖∆q̃2 and the forcing term 2
r2

∫ r
0 ∆ũi
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3. Results in the wake of a circular cylinder

3.1. Measurements
The analytical considerations previously mentioned are now used to assess the essential physics
and particularly the dynamical nature associated with the presence of the organized motion.
Some previously reported hot wire measurements made in Newcastle (Australia) by Zhou et al.
(2003) under the supervision of R.A Antonia are thus reinterpreted in terms of two-points
statistics. The measurements were conducted in a open circuit wind tunnel with a square
working section of 0.35 × 0.35m and 2.4m long. The cylinder of diameter d = 12.7mm is
placed horizontally to generate the wake flow. The three vorticity components are measured
simultaneously by means of a four-X-wire probe (see Zhou et al. (2003)). The downstream
location investigated here is 40d, sufficiently far from the energy injection to expect the local
isotropy to be verified and close enough to accurately extract the organized motion. The free
stream velocity U0 is 3m.s−1 corresponding to a Reynolds number based on the cylinder diameter
and the upstream velocity of Red = 2525 and a turbulent Reynolds number based on a typical
fluctuation and the Taylor micro-scale of 70 on the wake centerline. For the estimates of velocity
derivatives, the separations ∆x ≈ ∆y ≈ ∆z are set equal to 6η. This spatial resolution leads to
an attenuation of velocity derivatives which were corrected using the spectral method proposed
by Zhu & Antonia (1996). The mean dissipation rate is estimated using the isotropic relation

ε = 15ν
(
∂u
∂x

)2
in which

(
∂u
∂x

)2
were corrected following the procedure of Zhu & Antonia (1996).

The spatial separation ∆x is calculated by means of the Taylor hypothesis, ∆x = −Uc∆t, where
Uc is the average convection velocity of vortices. This velocity is defined as the mean velocity at
the vortices center location and is equal to Uc = 0.92U0 at 40d downstream the cylinder (Zhou
et al. (2003))).

To calculate phase averaged statistics, the transverse velocity signal v is bandpass filtered at
frequency centred on Strouhal frequency. The Hilbert transform h of the filtered signal vf is

calculated and the phase is inferred from φ(t) = Atan
(
h(t)
vf (t)

)
. Finally, the phase is divided into

32 segments and phase averaged statistics are calculated for each class. We dispose of about 750
integral time-scales for each segment providing a correct convergence of statistics.

3.2. Phase-scale second- and third-order structure functions
The essential difference compared to the classical energy budget is the phase averaging operation
which allows us to assess the temporal dynamic associated with the coherent motion one step
beyond the time averaging. Second- and third-order functions are as usual function of r, and
also of the phase φ of the organized wave, before being time-integrated.

Fig1(a) and 1(b) report the phase dynamics of the scale-by-scale distribution of the turbulent
kinetic energy of the organized and random motion respectively on the wake center-line. In
Fig1(a), one can note a strong temporal periodicity of period φ = π on the kinetic energy
distribution of the organized motion. This periodicity is also observable on the r axis when the
organized motion is highly intense (not shown). This reveals the spatio-temporal periodicity of
the Von Kármán street. Concerning the energy distribution of random fluctuations (Fig1(b)),



the influence of the organized motion is less perceptible. Its shape in scale r is very similar to
that of the ’classical’ time integrated second-order structure function.
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Figure 1. (a) log10
(
∆q̃2

)
function of r and φ on the wake center line at x = 40d, r is normalized

by Lv = 4.2d, the streamwise distance between two consecutive vortices. (b) log10
(〈

∆q′2
〉)

function of r and φ on the wake center line at x = 40d. (c) Transfer term −
〈
∆u‖∆q

2
〉
/ε′r

function of r and φ on the wake center line at x = 40d. (d) Phase averaging of the spanwise
vorticity component ω̃z normalized by d/U0 in the plan (φ, y).

The non linear transfer term −
〈
∆u‖∆q

2
〉

divided by εr is displayed on Fig1(c). The temporal
periodicity is strongly discernible, and reveal two maximum at a phase location φ = ±π/2 and a
scale r ≈ Lv/10 ≈ λ, where λ is the Taylor micro-scale. Furthermore, at φ = 0 this term reveal
some negative values.

In Fig1(d), is calculated the phase averaged spanwize component of the vorticity field.
The Von Kármán street is thus magnified, and reveal a negative sign vortex centred at
φ = −π/2, y = 0.75d. Its partner of positive sign, not visible on the figure, is located at
φ = π/2, y = −0.75d. Therefore, the two maximum previously emphasized on the non linear
transfer term coincide with the vortex center. It is therefore evidence that the organized motion
induce a strong temporal dynamic on the transfer of kinetic energy at a scale r.



3.3. Scale-by-scale budget
We now turn our attention on time averaged structure functions. In Fig2, are displayed the
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For weakly turbulent flows the non linear transfer term is less than 4
3εr because of the cross

over between viscous and large scale effects (Danaila et al. (1999), Danaila et al. (2004)). Here,

−
〈
∆u‖∆q2

〉
/εr ≈ 0.93. The additional energy transfer associated with the coherent motion is

negative, its value is quite small but not negligible. Its contribution is non zero for all separation
with a maximum contribution located at about 2λ. Finally, the effective transfer of the random
motion is quite smaller than the total transfer of about 12% at the maximum location.

On the wake centerline, the isotropic scale-by-scale budget of the random motion is :
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which means that in the limit of large scales, the advection term is almost only compensated
by dissipation of energy. All terms of the scale-by-scale budget (16) are shown on Fig3.

The balance of the right- and left-hand side of (16) is relatively well verified for all scales.
The degree of accuracy of the experimental validation of (16) is as precise as the local isotropy is
achieved. Therefore, the experimental investigation in the cylinder intermediate wake supports
the analytical considerations provided in Section 1.
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4. Concluding remarks

The scale-by-scale budgets of the kinetic energy of the organized and random field are derived
in a general and isotropic formulation. It emphasized some additional diffusion, production,
transport terms as well as some extra energy transfer and forcing associated with the presence of
the coherent motion. These considerations explicitly evidences that the effective energy transfer
of the random motion is constituted by the total energy transfer from which it is subtracted the
coherent energy transfer and the forcing by the organized structures. The hot wire measurements
in the cylinder wake are then employed to emphasized the temporal dynamic associated with
the presence of the organized wave. It is shown that the energy transfer is clearly influenced by
the coherent motion, revealing two maximum located in the vortex center. The time-integrated
scale-by-scale budget (16) is also well supported by experimental calculations.
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