
HAL Id: hal-01660175
https://hal.science/hal-01660175v1

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Audiovisual Rendering of Recorded Audio
and Related Data with the WavesJS Building Blocks

Benjamin Matuszewski, Norbert Schnell, Samuel Goldszmidt

To cite this version:
Benjamin Matuszewski, Norbert Schnell, Samuel Goldszmidt. Interactive Audiovisual Rendering of
Recorded Audio and Related Data with the WavesJS Building Blocks. Web Audio Conference (WAC),
Apr 2016, Atlanta, United States. �hal-01660175�

https://hal.science/hal-01660175v1
https://hal.archives-ouvertes.fr

Interactive Audiovisual Rendering of Recorded Audio and
Related Data with the WavesJS Building Blocks

Benjamin Matuszewski
CICM/musidanse EA1572, université Paris 8,

STMS Lab IRCAM-CNRS-UPMC
Paris, France

benjamin.matuszewski@ircam.fr

Norbert Schnell, Samuel Goldszmidt
STMS Lab IRCAM-CNRS-UPMC

Paris, France
norbert.schnell, samuel.goldszmidt@ircam.fr

ABSTRACT
This article presents a set of components for the interactive
audiovisual rendering of recorded audio signals and related
data streams (e.g. audio descriptors and annotations) to-
gether with a set of example applications. The components
are based on SVG graphics and the Web Audio API. The
construction of both, the graphical user interface and the
audio rendering of an application relies on a small hierar-
chical structure of classes that formalize different aspects
of the rendering and facilitate both the implementation of
complex applications using the provided components and
the extension of the library by further defined graphics and
audio rendering components. The library and the example
applications described in the article are freely available.

CCS Concepts
•Applied computing → Sound and music computing;
•Software and its engineering → Software libraries
and repositories;

Keywords
HTML 5; Web Audio API; Audio Visualization; Audio Pro-
cessing; Graphical User Interface

1. INTRODUCTION
The manifold applications of interactive audio enabled by

the Web Audio API [9] spread over a wide range of different
domains. Many other digital technologies such as audio plu-
gins have applications in very different domains such as mu-
sic performance, composition, and audio post-production.
In this context, the Web Audio API particularly contributes
to the convergence of these applications with the domain of
online publishing and education. This convergence is well il-
lustrated by projects like the BBC’s interactive web site on
the BBC Radiophonic Workshop [1], the Noteflight Work-
sheets of The Musician’s Guide to Theory and Analysis [14]
or Google’s Inside Abbey Road [5].

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA.

© 2016 Copyright held by the owner/author(s).

While the projects cited above focus on interactive au-
diovisual representations of sheet music and analog audio
devices, many other applications use temporal representa-
tions of audio data. Available libraries are specifically de-
signed for the visualization of audio waveforms [6, 4], audio
recording, editing and composition [2, 8] or the visualization
and archivation of multimodal data [7]. Other than these li-
braries, WavesJS offers low-level components and formaliza-
tions for the development of specific interactions for a very
large range of applications.

In this article we present a set of flexible building blocks
that support the audiovisual rendering of recorded audio sig-
nals and related data streams that are usually represented
by Array, ArrayBuffer or AudioBuffer objects. Typical
applications of the library feature the aligned display of au-
dio segments and annotations that are associated to one
or multiple tracks as well as their synchronized playback.
The library facilitates the construction of complex interac-
tions with the rendered graphics and audio. The graphical
user interface components have been designed to easily cre-
ate aligned superposed and/or juxtaposed representations of
audio signals and related data streams such as audio descrip-
tors, motion capture signals and descriptors as well as event
or segmentation markers and annotations. The related au-
dio components provide a formalism for synchronizing the
rendering of buffered data and other data streams. Using
these components, the temporal alignment of different data
segments and different rendering techniques can be arbitrar-
ily defined in advance and dynamically changed during the
rendering.

Since the presentation of earlier versions at the Web Au-
dio Conference in 2015 [10, 12], the components described
in this article have been profoundly revised and integrated
into a single library, WavesJS , that has been published on
GitHub.1 The library is written in ES6/ES2015 and imple-
ments a light hierarchy of classes free of external dependen-
cies. It includes unit tests with code coverage reports.

After a brief overview of the library’s features and imple-
mentation, the article briefly details example applications
based on the described components.

2. BUILDING BLOCKS
The building blocks provided by the WavesJS library are

separated into a graphical user interface and an audio part,
wavesjs-ui and wavesjs-audio. The development of both

1https://github.com/wavesjs/

https://github.com/wavesjs/

sides of the library have followed independent paths forged
by inherent constraints of their respective environments (i.e.
Scalable Vector Graphics rendering and Web Audio API).
While the library does not impose any predefined relation-
ship between graphics and audio rendering, the APIs have
been designed to work together and follow similar modular
approaches.

Timeline

Track

Layer

Shape

Transport

Transported

TimeEngine

User Interface Components Audio Components

Figure 1: Overview of the hierarchical structures of
user interface and audio components.

The developer using the library has to create a structure
of hierarchical elements on both sides (see figure 1). At the
root of this hierarchy, each side of the library provides a con-
tainer that hosts the rendering of temporal data aligned to
a common reference time (i.e. the Timeline on the graphics
side and the Transport on the audio side).

The library allows for choosing among different graphical
appearances and sound synthesis techniques for the same
stream segment. While on the graphics side, the Shape class
defines the appearance of the data on screen, a particular
audio synthesizer is implemented as a TimeEngine. Both of
these classes provide an interface that formalizes the ren-
dering of atomic elements of a given stream in respect to
their graphical alignment on screen and, respectively, their
synchronisation to a common playback time and the timing
of the audio subsystem. Based on this formalization, devel-
opers can integrate their own primitives into the framework.

On both sides of the library, the alignment of rendered
stream segments to the reference time (i.e. Timeline and
Transport) is determined by the attributes start, offset,
duration, and stretch (see figure 2). Multiple segments as-
sociated to the same Timeline or Transport can arbitrarily
overlap.

reference rendering time

stretch factor

durationoffset time

rendered stream segment

start time

original data stream

0

Figure 2: Parametrized alignment of a stream seg-
ment to the reference rendering time.

While the graphical components provide high-level ab-
stractions for implementing graphical interactions with the
constructed interfaces (i.e. the EventSource class), the
audio components provide the necessary methods for the

1 import loaders from 'waves−loaders ';
2 import ui from 'waves−ui ';
3 import audio from 'waves−audio ';
4 const loader = new loaders.AudioBufferLoader ();
5
6 loader.load ('assets /drum−loop.wav ').then ((audioBuffer) => {
7 const $track = document.querySelector ('# track ');
8 const visibleWidth = 1000 , height = 120;
9 const pixelsPerSecond = visibleWidth / audioBuffer.duration;

10
11 // setup ui rendering components
12 const timeline = new ui.core.Timeline (pixelsPerSecond ,

visibleWidth);
13 const axis = new ui.helpers.TimeAxisLayer ({ height: 12 });
14 const waveform = new ui.helpers.WaveformLayer (audioBuffer , {

height });
15 const cursor = new ui.helpers.CursorLayer ({ height });
16
17 timeline.createTrack ($track , height , 'main−track ');
18 timeline.addLayer (axis , 'main−track ', 'axis ', true);
19 timeline.addLayer (waveform , 'main−track ');
20 timeline.addLayer (cursor , 'main−track ');
21
22 // setup audio rendering components
23 const playerEngine = new audio.PlayerEngine ();
24 playerEngine.buffer = audioBuffer;
25 playerEngine.cyclic = true;
26 playerEngine.connect (audio.audioContext.destination);
27
28 const playControl = new audio.PlayControl (playerEngine);
29 playControl.setLoopBoundaries (0, audioBuffer.duration);
30 playControl.loop = true;
31 playControl.start ();
32
33 // setup mouse interaction
34 timeline.on ('event ', (e) => {
35 if (e.type !== 'mousedown ' && e.type !== 'mousemove ') {

return; }
36 const position = timeline.timeToPixel.invert (e.x);
37 playControl.seek (position);
38 });
39
40 (function updateCursor () {
41 cursor.currentPosition = playControl.currentPosition;
42 cursor.update ();
43 requestAnimationFrame (updateCursor);
44 }());
45 }). catch ((err) => { console.error (err.message); });

Figure 3: Code example for the hierarchical con-
struction of graphical and audio rendering compo-
nents as well as mouse interactions. The example
features the looped playback of an audio file with a
running cursor that the user can move to arbitrarily
control the playback.

nonlinear rendering of recorded audio and related temporal
data. The audio rendering of aligned data streams can be
played back forwards or backwards at any speed and arbi-
trarily jump and loop. To support the implementation of
complex interactions, the graphical and audio components
allow for dynamically changing the data content, alignment,
and boundaries of the rendered stream segments.

Figure 3 shows the code for setting up the components for
the audiovisual rendering of a sound file. In this example,
the user can manipulate the cursor to control the playback
of a sound file loaded into an audio buffer.2

2.1 UI Components
The UI part of the library provides primitives to display

and to interact with temporal data or metadata such as
audio and motion signals, descriptors, and annotations.

The Timeline class exposed by the API provides the con-
text for any visualization of temporal data. As shown in
figure 4, a Timeline usually contains a hierarchical struc-
ture of Track, Layer, and Shape objects to manage different
aspects of the graphical interaction and rendering. Multi-
ple Track objects added to the same Timeline are vertically
juxtaposed and horizontally aligned to an abscissa which
corresponds to a common reference time. Each Track can

2http://wave.ircam.fr/demo/playback-control

http://wave.ircam.fr/demo/playback-control

Timeline

Track 1

Track 2

Figure 4: Overview of the hierarchical relations be-
tween the main classes of the user interface API.
Provided shapes and their possible alignment among
a shared Timeline through the Track.

contain one or multiple Layer objects each spanning over
a specified time range (i.e. start time and duration). The
Layer objects of a particular Track can arbitrarity overlap.
Ultimately, each Layer contains Shape objects correspond-
ing to temporal objects that may be associated to a single
moment (e.g. a marker) or a time span (e.g. a segment).

To insert the graphical objects into an HTML document,
Track objects are associated to DOM elements such as the
items of a -list as shown in the code example 5. The
rendering of Track, Layer, and Shape objects is based on
the SVG standard which allows for the use of native features
such as user interactions (e.g. mousedown, mousemove) and
CSS styling.

1
2 <li id="track−1" >
3 <li id="track−2" >
4
5
6 <script >
7 const $track1 = document.querySelector ('#track−1');
8 const $track2 = document.querySelector ('#track−2');
9

10 const timeline = new Timeline (pixelsPerSecond , visibleWidth);
11 const track1 = new Track ($track1 , height);
12 const track2 = new Track ($track2 , height);
13
14 timeline.add (track1);
15 timeline.add (track2);
16 </script >

Figure 5: Code example for the construction of two
Track objects and their association to a Timeline.
The example emphasizes how the Track objects are
inserted into the HTML document through their re-
lation to a given DOM element.

Timeline and Layer Time Contexts
The hierarchical composition of visualizations as Layer ob-
jects within a Timeline, implies two temporal contexts for
the rendering of graphical primitives, the TimelineTimeCon-
text and the LayerTimeContext.

The TimelineTimeContext of a Timeline essentially de-
termines which time segment is displayed and how much
space it occupies on screen. This mapping is parametrized
through the attributes zoom, offset, and visibleWidth. It
allows for interactively navigating through a given timeline
while maintaining view consistency upon the DOM struc-
ture. The example code in figure 6 shows how the attributes
of a TimelineTimeContext affect the <svg> and <g> tags
created by the registered tracks.

1 <svg width ="${ visibleWidth }">
2 <!−− background −−>
3 <rect ><rect >
4 <!−− main view −−>
5 <g class =" offset " transform =" translate (${ offset }, 0)">
6 <g class =" layout ">
7 <!−− layers −−>
8 </g>
9 </g>

10 <g class =" interactions "><!−− for feedback −−></g>
11 </svg >

Figure 6: A pseudo-code example for the DOM
structure created by a Track when rendered into
the DOM and how the visibleWidth and offset at-
tributes of the TimelineTimeContext are used by a
Track to maintain its DOM structure.

A Layer has to refer to a LayerTimeContext that de-
termines the segment of the displayed data (i.e. through
the attributes offset and duration) as well as its position-
ing on the timeline (i.e. through the attributes start and
stretch). This mapping can be modified at runtime. Two
Layer objects can share a common LayerTimeContext which
allows for interactions such as the alignment of a waveform
and its gain automation curve across arbitrary transforma-
tions of their common reference. The example code in figure
7 shows how the attributes of a LayerTimeContext affect the
<svg> and <g> tags created by a layer.

1 <g class =" layer " transform =" translate (${ start }, 0)">
2 <svg class ="bounding−box" width ="${ duration }">
3 <g class =" offset " transform =" translate (${offset , 0})">
4 <!−− background −−>
5 <rect class =" background " ></rect >
6 <!−− shapes and common shapes are inserted here −−>
7 </g>
8 <g class =" interactions "><!−− for feedback −−></g>
9 </svg >

10 </g>

Figure 7: A pseudo-code example for the DOM
structure of a Layer when inserted and rendered
into a Track and how the start, duration and offset
attributes of the LayerTimeContext bounded to the
Layer are used to maintain its DOM structure.

The final mapping between the temporal layout of the
data and its rendering on screen is determined by the com-
pound application of these two levels of transformation.

Modularity and Extensibility
To allow for easily extending the library by user defined
classes, all primitives — apart from Timeline, Track and
Layer — are derived from a set of base classes sharing com-
mon interfaces. The following abstract classes3 are provided:

BaseShape – defines specific shape to render the data.
Provided extensions of this class include Marker, Seg-
ment, Cursor, Dot and Line (i.e. for breakpoint func-
tions), Waveform, and TraceDots and TracePath (i.e.
to display mean/range).

BaseBehavior – defines a specific interaction with a shape.
Specific behaviors are defined for all provided shapes
(e.g. the SegmentBehavior defines how to move and
resize a Segment).

3 These classes are considered to be abstract by convention.

EventSource – defines a new event emitter that allows
for creating custom user interactions. The provided
derived classes are Surface for mouse input on each
Track and a global Keyboard listener.

BaseState – defines specific event handlers for the
Timeline (e.g. selection, edition, zooming). This
class, along with the EventSource, enables developers
to implement their own interaction system in a unified
way (see figure 8).

Tracks Layer Shapes

DOM

Data

Timeline

TimeContext

Layer

TimeContext

Behaviors

State A State B State C

Timeline

EventSource

Figure 8: Propagation of an event emitted by an
EventSource to the current state of a Timeline. Differ-
ent states extending the BaseState abstract class can
modify programmatically different aspects of the vi-
sualization.

Even if this architecture requires each Layer to be config-
ured with its own data, timeContext, shape, and behavior,
it enables the user to flexibly create high-level abstractions
and reusable components such as plugins or WebCompo-
nents.

2.2 Audio Components
Similar to the user interface API, the audio side of the

library provides a set of classes to build a hierarchical struc-
ture that defines the aligned synchronized of recorded data
streams. The audio components are based on the concepts
of time engines and masters that we already described in
[12]. The TimeEngine class provides a general formalization
of components that require precise and flexible scheduling
and synchronization. For the rendering of prerecorded data,
TimeEngine objects implementing the transported interface,
such as a sample player or a granular player, are controlled
by a Transport master. When being controlled by a com-
mon Transport, multiple TimeEngine objects generate syn-
chronized data streams.

Other than on the graphics side of the library, TimeEngine
objects are directly added to a Transport without the neces-
sity to create an intermediate object (see figure 1). However,
when adding a TimeEngine, the Transport creates and re-
turns a Transported object that, similar to the Layer on
the graphics side, manages the alignment of the temporal
data according to the Transport position.4 As for a graphics

4 While the API uses time to refer to the real-time au-

Layer, the alignment of a stream segment (e.g. an audio seg-
ment) to the Transport position is defined by its attributes
start, offset, duration and stretch (see figure 2). All
of these attributes can be changed dynamically during play-
back. Since the Transport itself implements a TimeEngine
interface, a Transport object can be added to another. This
allows for creating recursive structures in which complex
compositions of stream segments may be included to an-
other stream as a single segment.

For each data stream to be rendered, the user has to
choose or implement an appropriate TimeEngine that gen-
erates the desired rendering. For the rending of audio data
stored in an AudioBuffer the library provides three different
TimeEngine classes:

PlayerEngine – functions like a conventional audio player
implementing different playback speeds through re-
sampling (based on a single AudioBufferSourceNode)

GranularEngine – uses granular synthesis to realize arbi-
trary changes of playback time and speed

SegmentEngine – requires an array of markers to trigger
atomic sound segments (e.g. percussive events, sylla-
bles) in synchronization to an arbitrarily evolving play-
back time

The current version of the library does not provide any
ready made component to render other data streams than
recorded audio. However, the TimeEngine interface makes it
very simple to create components that render data streams
without having to deal explicitly with the synchronization
to other data streams nor with user interactions.

3. EXAMPLE APPLICATIONS
The WavesJS library has been designed with a wide range

of contexts and applications in mind. To illustrate the flex-
ibility of the API, this section presents a set of applica-
tions from different domains including music information
retrieval, musicology, pedagogy, and music performance.

3.1 Music Information Retrieval
The first example application illustrates a use case in the

field of music information retrieval. It enables the valida-
tion and demonstration of music information retrieval al-
gorithms applied to a music recording. The graphical user
interface (see figure 9) displays an overview of the song’s
waveform above a more detailed segment of the stereo wave-
form aligned to metadata (i.e. visualizations of beats, chord
progression, and song structure).5

The region of the detailed audio segment is displayed as a
highlighted rectangle superposed to the overview waveform.
The region can be moved around to scroll through the whole
song. When pressing the play button on the top of the
interface, the recording is played back and two cursors show
the current position of the playback, one in the overview
waveform and another on the detailed segment.

dio clock, it refers to the reference rendering provided by
a Transport as position. This also allows for an intuitive
definition of playback speed.
5 The data has been automatically extracted from the
recording by three different algorithms, Ircambeat, Ir-
camchord, and Ircamsummary (http://anasynth.ircam.fr/
home/english/software).

http://anasynth.ircam.fr/home/english/software
http://anasynth.ircam.fr/home/english/software

10/14/2015 Wave - Beat, Chords and Structure of 1901 - Phoenix

http://wave.ircam.fr/demo/phoenix-1901/ 1/1

Beat, Chords and Structure recognition algorithm by Sound Analysis-Synthesis IRCAM Research Team

00:00:000 00:10:000 00:20:000 00:30:000 00:40:000 00:50:000 01:00:000 01:10:000 01:20:000 01:30:000 01:40:000 01:50:000 02:00:000 02:10:000 02:20:000 02:30:000 02:40:000 02:50:000 03:00:000

00:08:000 00:09:000 00:10:000 00:11:000 00:12:000 00:13:000 00:14:000 00:15:000 00:16:000 00:17:000 00:18:000 00:19:000 00:20:000 00:21:000 00:22:000 00:23:000 00:24:000 00:25:000

j Cmaj Fmaj Amin Cmaj Amin Fmaj Amin Cmaj Amin

Figure 9: Screenshot of the Phoenix - 1901 applica-
tion

The application that uses the audio data and annotations
for the song 1901 by Pheonix has been published at the
following URL:

� http://wave.ircam.fr/demo/phoenix-1901/.

3.2 Musicography
Similar to the previous example, this application renders

aligned audio waveforms and descriptors. In this case, the
data is not only used for the visualization but also for the
interaction with audio recordings. The application features
recordings of 10 different interpretations of the First Pre-
lude of The Well-Tempered Clavier by Johann Sebastian
Bach performed by different piano, organ and harpsichord
players. The recordings’ audio waveforms and the extracted
audio descriptors are displayed in 10 juxtaposed tracks. In
addition, a pianoroll representation of the piece’s score is
displayed at the bottom of the interface (see figure 10).

10/15/2015 Bachothèque | IRCAM - Wave

http://wave.ircam.fr/demo/bachotheque/ 1/1

 Select Zoom Seek Common time scale

Desenclos

Fischer 19331934

Gould 1963

Jacobs 1957

Kirkpatrick 1963

Landowska 19481954

Růžičková

Thiry

Walcha 1973

Walcha 1961

Figure 10: Screenshot of the Bachotheque applica-
tion (reduced to 4 of 10 tracks).

The user can select and playback arbitrary segments of the
recordings. Since the recordings are temporally aligned to
the score, an audio segment selected at one track is automat-
ically mapped to the corresponding segments of the other 9
tracks and the pianoroll. This enables the user to compare
selected musical passages across the different recordings.

The application has been published at the following URL:
� http://wave.ircam.fr/demo/bachotheque/

3.3 Musicology
Figure 11 shows a screenshot of a musicological applica-

tion that presents the third movement of the piece Voi(rex)
by Philippe Leroux from 2002 [3]. The application recreates
the organisation of sounds excerpts recorded from a cham-
ber orchestra in a multitrack audio editor. Each of the 9
tracks refers to a specific operation (e.g. applying a filter
or a harmonizer) that the composer applied to the sound
segments.

10/14/2015 Wave - Philippe Leroux - VOI(REX) (2002) 3ème mouvement

http://wave.ircam.fr/demo/leroux-voirex/ 1/2

 RESET

Wave - Philippe Leroux - VOI(REX) (2002) 3ème mouvement IRCAM / ANR

Figure 11: Screenshot of the Voi(rex) application

By moving the sound segments within their track, users
can create their own version of the movement. The rendering
of the segments continues consistently when they are moved
during playback.

The application has been published at the following URL:
� http://wave.ircam.fr/demo/leroux-voirex/

3.4 Pedagogy
Mixed electro-acoustic music works (i.e. combining live

instruments and electronic sounds) often require a complex
technical setup which represents a considerable barrier for
the appropriation of this repertoire by musicians — espe-
cially students. The application shown in figure 12 pro-
poses an incomplete web implementation of the piece Jupiter
(1987) by Philippe Manoury. It allows a flutist and a second
performer to play the first page of the score directly from
a browser. While the flutist interprets the soloist score, the
other performer controls audio effects using a graphical user
interface embedded into the score.

Figure 12: Screenshot of the Jupiter application.

Even if the audio processing is not yet as complete as in
the original Max/MSP patch, the example demonstrates the
basic concept the application. We imagine that mixed mu-
sic works can be developed on the web platform which in
the near future should allow for high-quality rendering in a
concert situation as well as for web publishing in a pedagog-
ical context. The implementation of such works based on
shared and open standards may also better guarantee their
preservation than current solutions.

The application has been published at the following URL:
� http://wave.ircam.fr/demo/manoury-jupiter/.

3.5 Performance
As already suggested above, the tools provided by the li-

brary are also suited for the context of music performances
and interactive installations. The example shown in figure
13 allows for performing with recorded audio content by
shaking a mobile device. The concept of the application
has been originally developed for a participative live per-

http://wave.ircam.fr/demo/phoenix-1901/
http://wave.ircam.fr/demo/bachotheque/
http://wave.ircam.fr/demo/leroux-voirex/
http://wave.ircam.fr/demo/manoury-jupiter/

formance [13] and later adopted for a cycle of workshops
with teenagers [11]. Entering the application, the user is
first asked to record a fragment of sound. The recorded au-
dio (i.e. using the getUserMedia API) is segmented using
an onset-detection algorithm and the obtained segments are
ordered according to their overall intensity. When shaking
a mobile device, the percussive sound segments extracted
from the recording are played in a steady tempo whereby
the intensity of the segments is controlled according to the
intensity of shaking (i.e. using the DeviceMotion API). At
the same time, the user can interact with a visual repre-
sentation of the segmented audio waveform on the device’s
touch screen.

The application has been published at the following URL:
� http://cosima.ircam.fr/apps/shaker/.

Figure 13: Screenshot of the Shaker application.

4. CONCLUSION
We presented a set of building blocks for the audiovisual

rendering of recorded audio and related data that are pro-
vided by the WavesJS library. The description of the com-
ponents has emphasized the similarity and differences of the
graphical user interface and audio parts of the library. The
flexibility of the library and its large range of applications
has been illustrated by a set of examples that have devel-
oped as a proof of concept and validation of the library’s
concepts and implementation.

Our tests of the current version of the library have con-
firmed its stability and satisfying performance. Neverthe-
less, some performance problems could occur in very com-
plex applications that accumulate a large number of tracks.
Some of these issues could be solved by providing alternative
canvas-based implementations for the graphical rendering of
complex shapes like audio waveforms. However, currently
these implementations require to work around remaining is-
sues and inconsistencies across browsers (e.g. the joint use
of a <foreignObject> and <canvas> elements in complex
DOM structures).

Up to now, we have used the library in our own projects,
which allowed us to develop and validate the key concepts as
well as implementational details through several iterations.
A fully functional and documented version of the the library
is published on GitHub6 and we hope that it will be adopted
by a wide range of developpers.

6http://wavesjs.github.io/

5. ACKNOWLEDGEMENTS
The developments described in this article have been con-

ducted in the context of the WAVE and CoSiMa research
projects funded by the french National Research Agency
(ANR, projects ANR-12-CORD-0027 and ANR-13-CORD-
0010). We would like to thank our colleagues and project
partners Victor Saiz, Sébastien (Robi) Robaszkiewicz, Jean-
Philippe Lambert, Karim Barkati, Riccardo Borghesi, Fré-
déric Bevilacqua, and Nicolas Donin for their precious con-
tributions to this work.

6. REFERENCES
[1] BBC R&D. Recreating the sounds of the BBC

Radiophonic Workshop using the Web Audio API.
http://webaudio.prototyping.bbc.co.uk/, 2012.

[2] M. Buffa, A. Hallili, and P. Renevier. MT5: A
HTML5 Multitrack Player for Musicians. In WAC –
1st Web Audio Conference, Paris, France, 2015.

[3] N. Donin, S. Goldszmidt, and J. Theureau. De
Voi(rex) à Apocalypsis, fragments d’une genèse.
Exploration multimédia du travail de composition de
Philippe Leroux. L’inoüı, revue de l’Ircam, (2006)(2),
2006.

[4] C. Finch, T. Parisot, and C. Needham. Peaks.js:
Audio waveform rendering in the browser. http:
//www.bbc.co.uk/rd/blog/2013/10/audio-waveforms,
2013.

[5] Google. Inside Abbey Road.
https://insideabbeyroad.withgoogle.com, 2015.

[6] Katspaugh. wavesurfer.js. http://wavesurfer-js.org/,
2012.

[7] O. Mayor. Web-based Visualizations and Acoustic
Rendering For Multimodal Data From Orchestra
Performances Using Repovizz. In WAC – 1st Web
Audio Conference, Paris, France, 2015.

[8] J. Monschke. Building a Collaborative Music
Production Environment Using Emerging Web
Standards. Master’s thesis, HTW Berlin, Germany,
2014.

[9] C. Rogers, P. Adenot, and C. Wilson. Web Audio API
– W3C Editor’s Draft.
http://webaudio.github.io/web-audio-api/.

[10] V. Saiz, B. Matuszewski, and S. Goldszmidt. Audio
oriented UI components for the web platform. In WAC
– 1st Web Audio Conference, Paris, France, 2015.

[11] N. Schnell and S. Robaszkiewicz. Collective Sound
Checks – Shaker.
http://cosima.ircam.fr/2014/07/15/cosc-shaker/,
2014.

[12] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt. Of
Time Engines and Masters. In WAC – 1st Web Audio
Conference, Paris, France, 2015.

[13] A. Tanaka, B. Caramiaux, and N. Schnell.
Mubufunkscatshare: Gestural energy and shared
interactive music. In CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’13,
pages 2999–3002, New York, NY, USA, 2013. ACM.

[14] I. W. W. Norton & Company. The Musician’s Guide
to Theory and Analysis – Noteflight Worsheets.
http://wwnorton.com/college/music/theory-analysis2,
2012.

http://cosima.ircam.fr/apps/shaker/
http://webaudio.prototyping.bbc.co.uk/
http://www.bbc.co.uk/rd/blog/2013/10/audio-waveforms
http://www.bbc.co.uk/rd/blog/2013/10/audio-waveforms
https://insideabbeyroad.withgoogle.com
http://wavesurfer-js.org/
http://webaudio.github.io/web-audio-api/
http://cosima.ircam.fr/2014/07/15/cosc-shaker/
http://wwnorton.com/college/music/theory-analysis2

	Introduction
	Building Blocks
	UI Components
	Audio Components

	Example Applications
	Music Information Retrieval
	Musicography
	Musicology
	Pedagogy
	Performance

	Conclusion
	Acknowledgements
	References

