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ABSTRACT
Data-flow oriented embedded systems, such as automotive systems

used to render HMI (e.g., instrument clusters, infotainments), are in-

creasingly built from highly variable specifications while targeting

different constrained hardware platforms configurable in a fine-

grained way. These variabilities at two different levels lead to a huge

number of possible embedded system solutions, which feasibility is

extremely complex and tedious to predetermine. In this paper, we

propose a tooled approach that capture high level specifications as

variable dataflows, and targeted platforms as variable component

models. Dataflows can then be mapped onto platforms to express a

specification of such variability-intensive systems. The proposed

tool support transforms this specification into structural and behav-

ioral variability models and reuses automated reasoning techniques

to explore and assess the feasibility of all variants in a single run.

We also report on the application of the proposed approach to an

industrial case study of automotive instrument cluster.

CCS CONCEPTS
• General and reference → Design; Validation; • Computer
systems organization→ Embedded systems; • Software and
its engineering → Software product lines; • Theory of com-
putation → Verification by model checking;
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1 INTRODUCTION
Validating embedded systems design at early stages of development

is of fundamental importance in industry. Ideally embedded system

design should be modeled from high-level specifications, and then
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assess against possible implementations. Data-flow oriented em-

bedded systems, such as automotive systems used to render HMI

(e.g., instrument clusters, infotainments) are typically built from

highly variable specifications. They are composed of a data-flow

driving and feeding graphical processors to provide efficient and

high-quality graphic rendering at a lower cost, while targeted hard-

ware platforms are composed of heterogeneous and constrained

hardware components. The variability is then two-fold, with mul-

tiple graphic data-flow variants that can meet functional require-

ments, and diverse targeted hardware platform, which are highly

configurable in a fine-grained way. These dimensions of variability

dreadfully increase the size of the design space of these embedded

systems (i.e., the number of possible embedded system implemen-

tation designs), making the feasibility assessment of these systems

extremely tedious and complex.

Generally, design spaces of variable systems and protocols are

assessed through variability-aware model checking on variable

transition-based systems [1, 9]. However these approaches are

not capable of automatically map the variable data-flow specifi-

cations on configurable platform descriptions to apply their model-

checking techniques. Consequently, this would imply to manually

infer, model and assess embedded system design spaces from high

level specifications, making this activity extremely tedious, time

consuming, and error-prone.

Facing this issue, we determine three challenges to be tackled:

(i) capturing and modeling from high-level specifications, structure,

behavior and variability of these embedded systems (e.g., data-flow

and platform alternatives, data sizes, memory capacities, graphic

pipelines), (ii) inferring automatically all possible embedded sys-

tem design implementations from specification models and, (iii)

exploring and assessing the feasibility of all system implementa-

tions w.r.t. the predefined structural, behavioral and variability

constraints. Current approaches [15, 16, 23] assess functional fea-

sibility of constrained data-flow-oriented embedded systems, but

do not capture nor manage variability at both levels. Some Ad hoc
techniques are trying to handle either platform variability (as re-

configurable architectures [21, 22][19]) or functional variability (as

multiple scenarios [20, 25] or multi-modes systems [18, 26]). On

the other hand, approaches tackling both kinds of variability [12]

are focusing on optimal platform selections to implement multiple

functional variants at a lower cost, but they do not manage struc-

tural and behavioral properties (e.g. data sizes, memory capacities,

graphic pipelines).

In this paper we propose an approach that extends these re-

searches by supporting a complete modeling and assessment of

structural, behavioral and variability properties of the targeted em-

bedded systems by combining embedded system design engineering
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[15, 16, 23] and software product line engineering techniques [1, 9].

The proposed framework is model driven and i) capture high level

variable data-flow and platform specifications following principles

of separation of concern, ii) maps variable data-flow requirements

into a description of the targeted variable hardware platform, so to

infer the embedded system design space (i.e. all system implemen-

tations), iii) transforms the design space into a behavioral product

line to reuse automated reasoning techniques (i.e. SAT solving,

variability-aware model checking) to explore and assess the func-

tional feasibility of all system design implementations in a single

run. The framework also allows to remove invalid designs from the

design space by constraining it.

The remainder of the paper is organized as follows. Section 2

introduces the context and motivations illustrated by a running

example. Section 3 presents the proposed framework, detailing each

model and step. In Section 4 we report on first experimental results

obtained from the application of the framework implementation on

a real industrial use case in automotive systems. Section 5 concludes

the paper.

2 MOTIVATIONS
Requirement gathering and validation of this research work have

been realized in the context of an industrial collaboration with

Visteon Electronics, a world class leader in automotive systems

(e.g. instruments clusters, infotainment, connected vehicles). In the

following we introduce one of the company case studies, extract a

running example, determine requirements from them and discuss

related work.

2.1 Case study
The case study is focusing on functional validation of some in-

strument clusters. By applying various data-flow image processing

effects, such as blending, warping and scaling, an instrument cluster

system improves driver experience with useful and high quality

2D/3D Human-Machine Interface (HMI). The embedded hardware

platforms used to develop these systems are more and more highly

configurable, but constrained in terms of architecture and capaci-

ties. Furthermore, multiple graphic data-flows variants can meet

the client HMI requirements, but they also depend on the plat-

form architectures and capacities. We consider this case study as

representative of variability-intensive data-flow oriented systems.

Different forms of variability, from high-level data-flows to low-

level platforms lead to a huge number of possible system solutions,

which feasibility is extremely complex and tedious to predetermine

early in the development process.

2.2 Running Example
We now introduce a running example of a simplified instrument

cluster. The data-flow on Fig. 1 represents different image flow

processing that meet the HMI functional requirements. Images are

processed by graphical tasks: image d2 has two different possible
resolutions (e.g. 800x480, 480x320) and will be processed by task C .
Image d1 can be either processed by task A or task B.

On the hardware side (cf. Fig. 2), the platform provides image pro-

cessing capabilities through non programmable pipeline processors

of DCU (Display Controller Unit) or GPU (Graphic Processing Unit)

Figure 1: Functional specification

type, as well as data storage functionalities through RAM (Random

Access Memory) and ROM (Read Only Memory). RAM and GPU are

optional in the actual hardware products, so a system implemen-

tation may contain or not these components. Among variabilities

in platforms, one can write data into and/or read data from RAM

memory while only reading data is possible from ROM. Moreover,

memory storage have limited and possibly variable (e.g. RAM) ca-

pacity. Contrary to a DCU, which renders directly processed images

into display, a GPU needs to store its processing result into RAM.

Graphical hardware processors are often designed as a multi-step

pipeline, composed of several hardware implemented processing

steps, and processor internal fifo memory buffers transferring data

from one step to another. In our example, while a GPU can apply

A followed by B processing on images in a single pass, a DCU can

apply A, then followed by C .

Figure 2: Platform specification

Images and processing could be, respectively, stored and pro-

cessed by multiple components, while images can be stored on

RAM or on ROM: taskA could be processed by both GPU and DCU,

but a data-flow variant containing B task can only be implemented

on a system containing a GPU. Finally, data mapping on memory

are constrained in terms of storage capacity.
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Consequently, to be valid, a system implementation has to fulfill

(i) structural constraints such as not violating maximum memory

capacities, (ii) behavioral constraints such as using correctly pro-

cessor pipelines and memories, and (iii) variability constraints such

as component dependency and exclusion. In our example, the ap-

plication data-flow has 4 variants while the Platform exposes 3

architecture variants. Even with this simplified case, this leads to

178 possible implementations, in which 58 satisfy constraints and

could be developed by engineers.
1

2.3 Related Work
In the context of our work, engineers must be assisted to assess the

functional feasibility of the different potential embedded system

solutions, with means to capture both the high-level functional

requirements and the specifications of targeted variable platforms.

Ideally, a solution should be able to capture structural, behavioral

and variability properties of both functional and platform speci-

fications at a fine-grained level, so to use these input models to

automatically infer all possible embedded system implementation

designs and assess the resulting consistent design space.

In the software product line engineering, lots of approaches[1,

9] are capable to model variable transition-based systems such

as safety-critical systems or protocols, and to validate, through

variability-aware model-checking, temporal properties and behav-

ioral aspects. However, given high-level data-flows and platform

specifications, these approaches are not capable of automatically

map data-flows on platforms in order to infer and assess the re-

sulting design space. Assessing the different mapping manually

is not feasible in practice, as the activity would be tedious and

error-prone.

In embedded system design engineering, most of the approaches

capture high-level application and platform specifications, and map

an application on hardware platforms in order to find, by design
space exploration, an optimized system implementation for a single

functional specification on a single platform [15, 23]. Consequently,

they do not capture nor manage variability at the application level

and hardware platform variability is limited to component capaci-

ties (e.g. memory and bus size, processor frequency). Some other

approaches try to handle some limited variability in functional

specifications (e.g. optional task, alternative tasks, variable data)

(as multiple scenarios [20, 25] or multi-modes systems [18, 26]),

but they do not manage platform variability. Some others try to

handle some limited variability in platforms (e.g. optional resource,

resource dependency, memories sizes) with reconfigurable archi-

tectures [21, 22][19]). To the best of our knowledge, none of these

approaches handle variability in both application and platform sides

so to assess the feasibility of our class of problem.

Interestingly, the recent approach of Graf et. al. [13, 14] manages

some variability in both platform and functional specifications. On

the platform variability side, resource components can be selected

or not, while optional and mutually exclusive task groups are man-

aged on the functional part. However, the approach is handling a

coarse-grain form of requirements and cannot capture some of our

1
Finding the best solution among the remaining correct solutions is also an important

problem, but out of the scope of this paper.

specifications (e.g.data and memory sizes, as well as platform as-

pects such as processor pipelines or fifo buffers). Additionally, only

structural validation of the system implementations is supported.

Behavioral properties (e.g. data sizes, memory capacities, graphic

pipelines) and behavioral constraints (e.g., absence of deadlock,

reachability, liveness, safety etc.), which are fundamental in our

case, cannot be checked.

3 PROPOSED FRAMEWORK
3.1 Overview
The proposed approach follows a model driven decomposition,

based on the well-known robust Y-Chart pattern [2, 16], which

separates application and platform into different concerns. This

allows modular specification and reasoning about the different

parts of the specified embedded systems. Given high-level variable

dataflow and platform inputs that notably captures the variability

of functional and platform specifications, the framework will i)

map all implementation of each data-flow variants on each plat-

form configuration, ii) generate a Featured Transition System (FTS)
[9] from the system design space model, i.e. representing system

implementations (cf. Fig. 3). This model consists in an extended

form of automaton product line, which is then iii) checked in one

run by a variability-aware model checker.

As shown on Fig. 3, our framework consists of three main models

and two processes. We give here an overview while the following

sections will detail and illustrate these elements.

Variable applications: a functional expert is in charge of captur-

ing the functional requirements (cf.fig. 1) of the embedded system

through an extended data-flow (cf. sec. 3.2). This model contains the

classic structure and behavior of the data-flow (data, task, data-path,

etc.), but also captures the variability in both structural properties

(e.g., data size) and behavioral properties (e.g., alternative flows).

Variable platforms: on this side, a platform expert is in charge

of expressing the platform specification (cf. fig. 2) as a templated

component based system (cf. sec. 3.3). This model contains a set

of components connected with each others. Similarly to the appli-

cation one, the platform model also captures the variability of the

defined components.

Variability-aware mapping process: The mapping algorithm (cf.

sec. 3.4) consumes the application and platform input models previ-

ously defined and generates the Variability-Intensive Design Space,
i.e. representing system implementations. It is made of two steps:

(i) it finds for each task data and data-path (cf. fig. 1) all the possible

mappings on appropriate platform processors and storage (cf. fig.

2); basically this is done by matching the task names with the names

of the hardware functions of processors; data-paths are mapped on

reachable memory of appropriate processor hardware functions;

(ii) as the design space contains all mapping possibilities, the algo-

rithm prunes unfeasible mappings w.r.t. structural and variability

constraints.

Design space as a behavioral product line: From the system de-

sign space model, a Behavioral Product Line representing all system
implementations is generated (cf. sec. 3.5). This product line is rep-

resented as a featured automaton, so that we can reuse and adapt

techniques that rely on variability-aware model-checking to vali-

date the inferred systems. The basic idea is to transform a variable
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Figure 3: Framework Overview

data-flow, a variable platform, and mappings to a data-flow automa-

ton using, through a mapping automaton, a platform automaton to

execute it. Valid executions of the application automaton should

then respect generated properties representing end state reachabil-

ity to ensure that the execution is correctly scheduled and executed

onto the platform automaton.

Validation process: The validation process reuses automated rea-

soning techniques to assess structural and behavioral functional

feasibility of the system variants represented by the behavioral

product line (cf. sec. 3.6). The model checking is going to determine

classic properties, such as safety, absence of deadlock, and our state

reachability generated property, on all variants in one run. As a

result, the validation solves and extracts valid variants respecting

all structural, behavioral and variability constraints.

3.2 Applications as Variable Data-Flows
In our approach, a functional expert captures structure, behavior

(data, task, data-path, etc.) and variability aspects (data size, alter-

native flows, etc.) of the functional requirements of the embedded

system through an extended data-flow model. The extensions con-

cern variability and data aspects of functional requirements, and in

the following, we propose a formal data-flow model to do so.

Definition 1. A variable data-flow graph is a tuple
VDG = (T ,D, Path,E, ζ ) where:

• T is a set of tasks,
• D is a set of source data, and, ζ : D → {s0, ..., si ∈ N

∗} returns
a set of alternative sizes of data,

|ζ (d ∈ D) | =



> 1, if d has a variable size
1, if d has not a variable size

• Path is a set of data-paths by which producer and consumer
(i.e. tasks and data) are connected.
• E ⊆ (T ∪ D) × Path ×T is the set of edges representing flows
processing between producers and consumers.

The set of connected, input data-paths to a task I (t ), output data-paths
from a task or data O (v ) are denoted by:

I (t ) : {p ∈ Path |(x ,p, t ) ∈ E},
O (v ∈ T ∪ D) : {p ∈ Path |(v,p,x ) ∈ E}.

Similarly I (p), input tasks to a output data-paths, and O (p), output
tasks from a input data-paths, are denoted by:

I (p) : {prod ∈ T ∪ D |(prod,p,x ) ∈ E},
O (p) : {t ∈ T |(x ,p, t ) ∈ E}.

|I (p) | + |O (p) | =



> 2, if p has alternative flows
2, if p has not flow variability

,

A variable data-flow represents multiple data-flow variants. To

implicitly represent all these variants in a single model, we follow

the same approach as in variable workflows from [13], allowing

data-paths to have multiple input and output tasks connected.

A data-path can be connected to multiple alternative, input tasks

if |I (p) | > 1, and output tasks if |O (p) | > 1. But, If |I (p) | = 1 ∧

|O (p) | = 1, the data-path is connected to only one input and output

task (i.e the data-path has no flow variability).

As data can have alternative sizes, we introduce the function ζ
which returns the set of alternative sizes S = ζ (d ), each datum has

at least one size and if |ζ (d ) | > 1 the size of d is variable.

If the data-flow has no flow variability, ∀p ∈ Path, |I (p) | +
|O (p) | = 2, and no data variability, ∀d ∈ D, |ζ (d ) | = 1, the data-flow

is not variable.

The functional specification of the case study VDGuc is then

represented as

(Tuc = {a,b, c},Duc = {d1,d2}, Pathuc = {p1,p2,p3},
Euc = {(d1,p1,a), (a,p2, c ), (d1,p1,b), (b,p2, c ), (d2,p3, c )})
with,

ζ (d1) = 512, ζ (d2) = {512, 1024},
I (p1) = d1, I (p2) = {a,b}, I (p3) = d2,
O (p1) = {a,b},O (p2) = c,O (p3) = c,
I (a) = I (b) = p1, I (c ) = {p2,p3},
O (a) = O (b) = p2,O (c ) = ∅,O (d1) = p1,O (d2) = p3.
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3.3 Platforms as Variable Resource Graphs
A variable platform specification is represented by a templated com-

ponent based system (multi-pass processors, streaming processor,

read-only memory, read-write memory, write-only memory, first-

in-first-out buffers etc) where platform can have optional resource

components and variability constraints on resources (dependency,

incompatibility, etc.). To capture variability aspects of a platform

specification, we propose a formal architecture model defined as

follows.

Definition 2. A variable resource graph is a tuple
VRG = (Proc, S,Cs , ξ ,θ ,ϕr equires ,ϕexcludes ) where:

• Proc = (F ,B,Cb ⊆ (F ×B) × (B × F )) is a processor composed
of a set F of possible functions, B is a set of processor inter-
nal first-in-first-out buffers and Cb the connections between
the different functions and buffers representing the processor
pipeline.
• S is a set of memory storage, and ξ : S → {c0, ..., ci ∈ N

∗}

returns a set of alternative capacities of storage S,

|ξ (s ∈ S ) | =



> 1, if s has a variable storage capacity
1, if s has not a variable storage capacity

• Cs ⊆ (S × Proc ) ∪ (Proc × S ) is the set of connections between
memory storage and processors,
• R ⊆ Proc ∪ S is the set of resource components (i.e. processors
and memory storage),
• θ : R → B return true if a component (i.e. processor or memory
storage) is optional,
• ϕr equires : R → R captures dependency between resource
components, similarly ϕexcludes : R → R captures incompat-
ibility.

The set of, input memories to a processor function I ( f ), output mem-
ories from a processor function O ( f ) are denoted by:
∃p = (F ,B,Cb ) ∈ Proc,
I ( f ∈ F ) : {m ∈ S ∪ B |(m,p) ∈ Cs ∨ (m, f ) ∈ Cb },
O ( f ∈ F ) : {m ∈ S ∪ B |(p,m) ∈ Cs ∨ ( f ,m) ∈ Cb }.

As a variable platform represents multiple platform configura-

tions, we also capture implicitly all these configurations by intro-

ducing several functions, θ manages the optionality of a resource

component. If θ (r ) = ⊥ the resource is mandatory, otherwise the

resource is optional, ϕr equires and ϕexcludes manages constrained

relations of dependency and incompatibility between resource com-

ponents. ϕr equires (r ) = r0 means that if r is implemented then

r0 must be implemented too. r depends on r0. On the contrary

ϕexcludes (r ) = r0 means that r and r0 cannot be implemented on

the same platform variant. r and r0 are alternatives.
As memory storage can have alternative capacities, we introduce

the function ξ which returns the set of alternative capacities C =
ξ (s ), each memory storage has at least one size and if |ξ (s ) | > 1 the

capacity of s is variable.
If the platform has no component variability ∀r ∈ R,θ (r ) = ⊥

and no variable memory storage, ∀s ∈ S, |ξ (s ) | = 1, the platform is

not variable.

The platform specification of the case study VGuc is then for-

malized as

(Procuc = {DCU ,GPU }, Suc = {RAM,ROM },

Csuc = {(RAM,DCU ), (ROM,DCU ),
(RAM,GPU ), (ROM,GPU ), (GPU ,RAM )})

where,

DCU = (Fdcu = {adcu , cdcu },Bdcu = r0dcu ,
Cbdcu = {(adcu , r0dcu ), (r0dcu , cdcu )}),

GPU = (Fдpu = {aдpu ,bдpu },Bдpu = r0дpu ,
Cbдpu {(aдpu , r0дpu ), (r0дpu ,bдpu )}),

with,

ξ (ROM ) = 4096, ξ (RAM ) = {1024, 2048},
θ (GPU ) = θ (RAM ) = ⊤,θ (DCU ) = θ (ROM ) = ⊥
ϕr equires (GPU ) = RAM,ϕr equires (RAM ) = ∅,
I (aдpu ) = {ROM,RAM },O (aдpu ) = {r0дpu ,RAM },
I (cdcu ) = {r0dcu ,ROM,RAM },O (cdcu ) = ∅.

3.4 Variability-Aware Mapping Process
The mapping algorithm takes as inputs the variable data-flow and

configurable platform models in order to find all embedded system

implementations. We propose a mapping model to not only capture

all implementations of a single data-flow into a single platform but

to capture all data-flow variants implementations onto all platform

configurations. Our variability-aware mapping model can be seen

as a product line of traditional mapping models.

Definition 3. A variability-aware data-flow-oriented mapping
VM = (Tm,Dm,Em) where:

• Tm ⊆ T×F is the set of possible mappings of tasks on processors
∀(t , f ) ∈ Tm, t can be mapped on processor function f because
f can implement t ,

• Dm ⊆ D ×S is the set of mappings of data on memory storage,
• Em ⊆ E × (S ∪B) is the set of data-paths mapping on memory
by which data are consumed/produced.

Definition 4. The Variability-Aware Mapping function M =

VDG × VRG → VM sorts topologically the data-flow and finds
appropriate mapping for each data, task and data-paths of the data-
flow using resources of the resource graph.

Basically, each valid mapping should respect some constraints

such as that

(1) All tasks are mapped to, a least, one processor function:

∀t ∈ T ,∃(t , f ) ∈ Tm,
(2) All data are mapped to, at least, one memory storage:

∀d ∈ D,∃(d, s ) ∈ Dm,
(3) All data-paths are mapped to, at least, one appropriate mapping.

For data-path starting by an input datum, the storage on which the

datum is mapped has to be reachable by the processor function on

which the task consuming the datum is mapped.

∀e = (d ∈ D,p, t ) ∈ E,∃(e, s ∈ S ) ∈ Em,
∃(d, s ) ∈ Dm,∃(t , f ) ∈ Tm, s ∈ I ( f ),

For data-path between tasks, the memory on which the output

of the first task is mapped has to be reachable by the processor

function on which the second task is mapped.

∀e = (t ∈ T ,p, t ′) ∈ E,∃(e,m) ∈ Em,
∃(t , f ) ∈ Tm,∃(t ′, f ′) ∈ Tm,m ∈ O ( f ) ∧m ∈ I ( f ′)

The mapping model of the case study VMuc is then formalized as

(Tmuc = {(a,adcu ), (a,aдpu ), (b,bдpu ), (c, cdcu )},
Dmuc = {(d1,RAM ), (d1,ROM ), (d2,RAM ), (d2,ROM )},
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Emuc = {((d1,p1,a),RAM ), ((d1,p1,a),ROM ),
((d1,p1,b),RAM ), ((d1,p1,b),ROM ),
((a,p2, c ), r0dcu ), ((a,p2, c ),RAM ), ((b,p2, c ),RAM ),
((d2,p3, c ),RAM ), ((d2,p3,ROM ))})

Finally, The design space representing all system implementa-

tions, called variability-intensive embedded system design space is
then composed of a data-flow, platform and mapping:

VDS ⊆ (VDG ×VRG ×VM ).

3.5 Design Space as a Behavioral Product Line
Automata and model-checking techniques have been widely used

to model and validate real-time and embedded systems [4, 5]. In-

terestingly, the basic approach used is to schedule an application

automaton using a platform automaton [11]. Unfortunately, these

approaches are not design to manage any variability aspect of spec-

ifications.

Our framework relies on Featured-Transition-Systems (FTS) to

represent and validate the design space. FTS has the strength to

model explicitly the variability points structurally, through a Fea-

ture Diagram[3] (FD), instead of modeling variability points behav-

iorally, by optional transition with possible constraints[24]. This

eases the transformation to featured automaton and the removal

of invalid implementations from it. In our approach, we also use

LTL property to ensure that all valid execution paths of all system

implementations reach the end state of all task of the data-flow.

Definition 5. A featured automaton is a tuple FA =
(Loc,Loc0, I ,Act ⊆ Af f ∪ϕ∪Com, trans, χ ,Ch,L,AP ,d, λ) such

that:
• Loc is a finite set of locations, Loc0 ∈ Loc , is a set of initial
states and I ∈ Loc , is a set of final states,
• Ch is a finite set of communication channels,
• χ is a finite set of variables,
• Act is a set of,Af f which is a finite set of variable affectations,
ϕ which is a finite set of guards in a boolean expression form
and Com ⊆ {c!m, c?m, c!?m |c ∈ Ch,m ∈ χ }, which is a set of
communications,
• trans ⊆ Loc ×Act × Loc are state transitions,
• d = (N ⊆ Nm ∪Nopt ∪Nxor ,DE ⊆ N ×N ,Tcl ) is a Feature
Diagram (FD), N is the set of mandatory, optional and alter-
natives features, DE represents relation between features, Tcl
are constraints between features, JdKFD ⊆ P (N ) is the set of
valid product configurations,
• λ : trans → B(N ) is a total function that labels transitions
with feature expressions.
• AP is a set of atomic proposition and L : Loc → AP labels
transitions with atomic propositions.

A transition s
α
−→ s ′ is possible for the set of product configurations

P ⊆ Jλ(s
α
−→ s ′)K and if

∀д ∈ α ∩ ϕ, д is satisfied,
∀(c?m) ∈ α ∩Com, wait for data event c!m,
∀(c!?m0) ∈ α ∩Com, send data event c!m0 but wait for data event

c!m1 withm0 =m1.

Definition 6. A Linear Temporal Logic property (LTL) is a tem-
poral expression of atomic proposition that all possible executions of
system variants should satisfy as, Jf aKFA |= φ where

φ ::= a ∈ AP |φ ∧ φ | ⋄ φ . Symbol ⋄means that the property will
become true at some point in the future.

We now show how our design space is transformed to a FA.
To simplify the transformation process, let us use the following

functions:

f : T ∪ Path ∪ R → N , fs : D ∪ S × N
∗ → N ,

fto : Path → N , ff rom : Path → N ,
fto : Path ×T → N , ff rom : T ∪ D × Path → N ,
fm : T ∪ Path → N , ftm : T × F → N , fpm : Path × S ∪ B → N ,

which transforms model elements to features.

For example, in our case study, the functions would be:

f (a) = A, fs (d2, 1024) = D2Size1024
fto (p1) = p1_To, ff rom (pf rom ) = p1_From,
fto (p1,a) = P1ToA, ff rom (a,p2) = P2FromA,
fm (a) = Am , fm (p1) = P1m ,
ftm (a,adcu ) = AOnAdcu , fpm (p1,ROM ) = p1OnROM
f (RAM ) = RAM, fs (RAM, 1024) = RAMSize1024, ...
Similarly,

c : T ∪ D ∪ Path ∪ F ∪ S → Ch,
cm : T ∪ Path → Ch
transforms model elements to communication channels to inter-

act with them at automaton level.

A first functionGenFA : VDG → FA×LTL transforms a variable

data-flow graph into a FA and generates the LTL property in the

following way.

(1.1) it transforms each datum d with variable size into a xor

feature group (Cf. fig.4(a)):

ζ (d ) > 1 =⇒ ∀s ∈ ζ (d ),∃( f (d ) ∈ Nxor , fs (d, s )) ∈ DE
(1.2) it creates the automaton for each source datum d (Cf.fig.4(b)),

after setting the datum size, calling the mapping automaton

(Cf. fig. 6(a, b)) that will allocate the datum on the memory.

∀s ∈ ζ (d ), ∃{t0 = (s0
size (in)=s
−−−−−−−−−→ s1) , where,

|ζ (d ) | > 1 =⇒ λ(t0) = fs (d, s ),

s1
∀p∈O (d ),cm (p )!?in
−−−−−−−−−−−−−−−−−→ s2, s2

∀p∈O (d ),c (p )!in
−−−−−−−−−−−−−−−→ s3} ∈ trans

(2.1) it transforms each variable data-path p in a xor feature group

(Cf. fig. 4(a)).

|O (p) | > 1 =⇒ ∀o ∈ O (p),
∃( fto (p) ∈ Nxor , fto (p,o)) ∈ DE

|I (p) | > 1 =⇒ ∀i ∈ I (p),
∃( ff rom (p) ∈ Nxor , ff rom (i,p)) ∈ DE

(3.1) it creates task/data-paths consistency constraints (Cf. fig.

4(a)).

∀t ∈ T ,∀p ∈ |I (t ) |, |O (p) | > 1 =⇒

∃( f (t ) ⇐⇒ fto (p, t )) ∈ Tcl
∀t ∈ T ,∀p ∈ |O (t ) |, |I (p) | > 1,

∃( f (t ) ⇐⇒ ff rom (t ,p)) ∈ Tcl
(3.2) it creates for each task t the automaton (Cf. fig. 4(c)) that

will wait for data-paths allocation, then call the mapping

automaton (Cf. fig. 6(c)) to execute the task.

∃{t0 = (s0
∀p∈I (t ),c (p )?in
−−−−−−−−−−−−−−→ s1), where,

f (t ) ∈ Nopt =⇒

λ(t0) = f (t ) ∧ λ((s0 −→ s4) ∈ trans ) = ¬f (t ),

s1
∀p∈O (t ),cm (p )!?out
−−−−−−−−−−−−−−−−−−→ s2 , s2

cm (t )!?in,out
−−−−−−−−−−−−→ s3,
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s3
∀p∈O (t ),c (p )!out
−−−−−−−−−−−−−−−→ s4 ∈ I ,
where, L(s4) = tend ∈ AP } ∈ trans

(3.3) it generates the LTL formula that checks that a valid execu-

tion must, at some point, satisfy atomic proposition of all

data-flow task terminal states.

φ = ⋄(∧s ∈I,L(s ),∅L(s ))

(a) Application FD

(b) Datum d1 FA

(c) Task A FA

Figure 4: Partial variable data-flow application FA

The second function GenFA : VRG → FA transforms a variable

resource graph into a FA in the following way.

(1) it creates feature constraints on resource implementation

(Cf. fig. 5(a)).

∀r ∈ R,θ (r ) = ⊤ =⇒ ∃f (r ) ∈ Nopt
∀r ∈ R,∀rr eq ∈ ϕr equires (r ),∃( f (r ) =⇒ f (rr eq )) ∈ Tcl
∀r ∈ R,∀rexc ∈ ϕexcludes (r ),∃( f (r ) =⇒ ¬f (rexc )) ∈
Tcl

(2.1) it creates for each storage s features representing storage

alternative sizes.

∀c ∈ ξ (s ), ∃( f (s ) ∈ Nxor , fs (s, c )) ∈ DE
(2.2) it creates for each storage s an automaton that represents

basic memory behavior (Cf. fig. 5(b)), cons and cap are re-

spectively the consumed size and the maximal capacity of

the storage. Through channels, one can allocate memory,

and if there is not enough memory, an error is raised.

∀c ∈ ξ (s ),∃{t0 = (s0
cons=0
−−−−−−→ s1), where,

f (s ) ∈ Nopt =⇒

λ(t0) = f (s ) ∧ λ((s0 −→ s4) ∈ trans ) = ¬f (s ),

s1
cap=c
−−−−−−→ s2, where, λ(s1

cap=c
−−−−−−→ s2) = f (s, c ),

s2
c (s )?in,cons+=size (in)
−−−−−−−−−−−−−−−−−−−−−→ s3, s3

cons<size
−−−−−−−−−−→ s2,

s3
cons≥size,error
−−−−−−−−−−−−−−−→ s4} ∈ trans

(3) it creates for each processor p an automaton that models

basic graphic processor pipeline behavior (cf. fig. 5(c)). When

a processor function is executed, the input and output are

checked to verify that the pipeline is not misused.

∀p = (F ,B,Cb ) ∈ Proc,∀f ∈ F ,
∀(si ,p) ∈ Cs ,∀(p, so ) ∈Ws ,∀(bi , f ) ∈ Cb ,∀( f ,bo ) ∈ Cb ,

∃{t0 = (s0
c (f )?in,out
−−−−−−−−−−→ s1), where,

f (p) ∈ Nopt =⇒

λ(t0) = f (p) ∧ λ((s0 −→ s4) ∈ trans ) = ¬f (p),

s1
loc (in)=si∧∀(bi ,f )∈Rb ,bi=f r ee
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s2,

s1
loc (in)=bi∧bi=in
−−−−−−−−−−−−−−−−→ s2,

s2
loc (out )=so∧∀(f ,bo )∈Wb ,bo=f r ee
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s3,

s2
loc (out )=bo∧bo=f r ee
−−−−−−−−−−−−−−−−−−−−→ s3, s3

c (f )!in,out
−−−−−−−−−−→ s0} ∈ trans

A third function GenFA : VM → FA transforms a variability-

aware dataflow-oriented mapping into a FA as follows.

(1.1) it creates features representing all possible task mappings

on processor function (cf. fig. 6(a)).

∀(t , f ) ∈ Tm,∃( fm (t ) ∈ Nxor , ftm (t , f )) ∈ DE
(1.2) it creates for each task mapping the automaton that executes

the processor function according to the mapping configura-

tion (cf. fig. 6(c)).

∀t ∈ T ,∀(t , f ) ∈ Tm, ∃{t0 = (s0
cm (t )?in,out
−−−−−−−−−−−−→ s1), where,

fm (t ) ∈ Nopt =⇒

λ(t0) = fm (t ) ∧ λ((s0 −→ s3) ∈ trans ) = ¬fm (t )

t1 = (s1
c (f )!?in,out
−−−−−−−−−−−→ s2), where, λ(t1) = ftm (t , f ),

s2
cm (t )!in,out
−−−−−−−−−−−→ s3}, ∈ trans

(2.1) Like 1.1, it creates features representing all possible data-path

mappings on memory.

∀((x ,p,y), s ) ∈ Em,∃( fm (p) ∈ Nxor , fpm (p, s )) ∈ DE
(2.2) Like 2.2, it creates for each data-path mapping the automaton

that allocates memory (Cf. fig.6(b)).

∀p ∈ Path,∀((x ,p,y), s ) ∈ Em,

∃{s0
cm (p )?out
−−−−−−−−−→ s1, t0 = (s1

c (s )!?out,loc (d )=s
−−−−−−−−−−−−−−−−→ s2), where,

λ(t0) = fpm (p, s ), s2
cm (p )!out
−−−−−−−−−→ s3} ∈ trans

Finally the function GenFA : VDS → FA, defined by:

GenFA ((vdд,vrд,vm)) :
GenFA (vdд) | |GenFA (vrд) | |GenFA (vm),

transforms our design space into a featured automaton.

To preserve the consistency of the design space, variability con-

straints are inferred such as:

(1.1) Task features with variable data-path features are not im-

plemented on all data-flow variants, then those features are

made optional (Cf. fig. 4(a)).

∀t ∈ T ,
∃pi ∈ I (t ), |O (pi ) | > 1 ∨ ∃po ∈ O (t ), |I (po ) | > 1

=⇒ f (t ) ∈ Nopt
(1.2) Variable task features have their mapping variable too; if

a task feature is implemented its mapping must be imple-

mented too, and vice-versa (Cf. fig. 4(a) & 6(a)).

∀t ∈ T , f (t ) ∈ Nopt =⇒

fm (t ) ∈ Nopt ∧ ( f (t ) ⇐⇒ fm (t )) ∈ Tcl
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(a) Platform FD

(b) RAM storage

(c) GPU processor

Figure 5: Partial variable platform FA

(2.1) If a task mapping feature is implemented on a processor

function, the implemented input and output path mappings

have to be reachable (Cf. fig. 6(a)).

∀(t , f ) ∈ Tm,∀pi ∈ I (t ),∀po ∈ O (t ),
∃( ftm (t , f ) ⇐⇒
(

∨
((x,pi ,t ),m∈I (f ))∈Em

fpm (pi ,m))∧

(
∨

((t,po,x ),m′∈O (f ))∈Em
fpm (po ,m

′))) ∈ Tcl

(3.1) If a task mapping feature using an optional processor is

implemented, the processor must be implemented too.

∀p = (F ,x ,y) ∈ Proc, f (p) ∈ Nopt ,∀(t , f ∈ F ) ∈ Tm
=⇒ ∃( ftm (t , f ) =⇒ f (p)) ∈ Tcl

Similarly, if a data-path mapping feature is implemented on fifo

buffer of optional processor (3.2) or optional memory storage (3.3),

the resource have to be implemented.

(3.2) ∀pu = (F ,B,x ) ∈ Proc,∀((y,p, z),b ∈ B) ∈ Em,
f (pu) ∈ Nopt =⇒ ∃( fpm (p,b) =⇒ f (pu)) ∈ Tcl

(3.3) ∀((x ,p,y), s ∈ S ) ∈ Em, f (s ) ∈ Nopt =⇒

∃( fpm (p, s ) =⇒ f (s )) ∈ Tcl

As an illustration, in our case study, the rules would be:

(1.2) A ⇐⇒ Am , B ⇐⇒ Bm
(3.1) BOnBдpu =⇒ GPU , AOnAдpu =⇒ GPU
(3.2) P2OnR0дpu =⇒ GPU
(3.3) P1OnRAM =⇒ RAM , P2OnRAM =⇒ RAM

P3OnRam =⇒ RAM

(a) Mapping FD

(b) data-path Mapping p1 FA

(c) Task Mapping A FA

Figure 6: Partial Variability-Aware Mapping FA

3.6 Validation Process
As our form of behavioral product lines is based on FTS [9], model

checking techniques can be directly reused. In our implementation

(Cf. next section), we reuse the ProVeLines/SNIP checker as a back-

end for the validation process. The process consists in verifying

all execution paths of all products Jf aKFA of the product line, in

an efficient way by exploiting commonalities between different

products. Theoretically, the more the products share common be-

havior and the more efficient should be the variability aware model

checking in comparison of iterative model checking on individual

systems [8]. Instead of exploring all executions for each system

implementation, the model-checker explores an execution π once

for all implementations P able to produce this specific execution:

P = {p ∈ JdKFD |π ∈ Jf a |pKA}.
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As mentioned in the previous section, some system configura-

tions may expose inconsistent behaviors (e.g., memory allocation

error, violation of graphical pipeline constraints). These behaviors

will abort the execution and the basic properties (e.g. safety, absence

of deadlock, state reachability) will obviously not be satisfied. In our

validation process, we are able to remove these configurations from

the system by relying again on the back-end model checker [8].

It computes the set of bad product configurations, which we re-

move from the feature diagram of the product line by adding the

appropriate cross-tree constraints.

4 EVALUATION
4.1 Implementation
The presented framework has been entirely implemented. The vari-

able application and platform input meta-models, the mapping algo-

rithm and the removal of invalid variants from the variable design

space are implemented in Java. Functional and platform variability

specifications are entered through a dedicated API, and the frame-

work then generates explicit variability models. The framework

implementation also infers knowledge about task implementation

capabilities of processors, and generates task, data-path, processor

and memory automata by automatically configuring predefined

templates.

The mapping algorithm implementation is traversing all model

representations to find the appropriate mappings by name match-

ing. Then it generates constrained Feature Models and Featured

Automata in TVL [6] and fPromela specifications. Automated rea-

soning techniques can be used over TVL Feature Models (e.g. SAT

solving [17]) to reason about the structural variability of the rep-

resented system. As for the validation process of the behavioral

product line, it uses the ProVeLines/SNIP model-checker [7, 10],

which takes TVL and fPromela files as input.

4.2 Industrial Use Case
In order to validate our tooled approach on an industrial scale, we

applied it to a real low-end market instrument cluster provided by

Visteon, the automotive systems company we collaborate with.

The functional requirements of the cluster represents a variable

data-flow with 3 source images processed by 8 tasks connected by 9

data-paths. Each source image has two different resolutions (i.e HD

and LD) and two tasks sub flow sequences are alternative through

a xor join/split data-path, resulting in 16 data-flow variants. The

platform specification of the cluster is then represented by a variable

hardware component system with 2 memories (a Video RAM and a

ROM Flash) and 3 processors (twomulti-pass GPU bitblitter and one

streaming- based DCU). Each processor has a pipeline processing

of 4 stages and 3 fifo buffers. In terms of platform variability, the 2

bitblitters and the VRAM are optional. Each memory has 2 different

configurable sizes at manufacturing time. The number of platform

configurations in the use case is then 24.

If each data-flow variant had one possible implementation on

each platform configuration, the number of different cluster system

implementations would be 384. In reality, some platform configura-

tions do not provide the graphical functionalities required by some

data-flow variants. Furthermore, due to multiple task implemen-

tation choices, data-flow variants have several thousand possible

implementation alternatives onto a platform configuration. Setting

the platform configuration to the higher end (i.e. selecting VRAM

and all processors), one can find 72 and 78 possible implementa-

tions for two data-flow variants that take different xor data-path

decisions. This is due to more pipelining opportunities in the sec-

ond data-flow variant, even if there is more data-path mapping

possibilities in the first one.

Table 1 shows time measurements of the complete toolchain

while varying the different variability dimensions over the use

case. In the first seven rows, we observe that the whole process is

performing well with small to medium scale of variabilities. Data

and memory size variability verifications are faster and require

more state exploration than platform component and data-path

variabilities. Component and data-path variabilities are also slower

to check than data andmemory size variabilities. It is likely to be due

to the fact that contrary to size variability, hardware component and

data-path variability are strongly impacting the implementation

variability, and consequently the state space of the model checker.

We also have complemented this experimentation by taking

a single structural data-flow from the industrial use case with a

simulated larger platforms with multiple memories and processors.

Results in the last three rows of Table 1 show that the solving can

scale to a large number of implementation variants, even if the

solving time is significant.

5 CONCLUSION
A tremendous amount of variability can be observed in embedded

systems, and especially in data-flow oriented ones, which are now

systematically built from highly variable specifications and target

diverse hardware platforms configurable at a very high level of

detail. To handle the early functional assessment of all these possi-

ble configurations, we proposed in this paper a tooled framework

that takes variable data-flow specifications and variable hardware

platform models to map them together and transform them into

a behavioral product line representing the potential design space.

The framework allows to use automated reasoning techniques to

explore and assess the feasibility of all represented variants in a sin-

gle run, and invalid products can be removed by adding constraints

to the product line. We also reported on the application of the pro-

posed approach to a real-world industrial use case of automotive

instrument cluster, showing its potential good applicability.

As future work, we first plan to facilitate the usage of the frame-

work with domain specific languages for input models (specifica-

tion and platform), and to conduct larger experiments with them.

We will also extend the framework by providing guidance when

conducting functional validation, and by taking into account non-

functional properties (e.g. cost) so to provide optimized product

selection as a complement to the functional validation presented in

this paper.
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Variability Implementation Platform data-flow States explored Time ms / states /

variants variants variants (re-explored) (ms) variants variants

NONE 78 0 0 2453 (331) 27 0.346 31.448

Data size 624 0 8 15254 (2406) 201 0.322 35.976

Platform 424 24 0 5673 (546) 65 0.153 13.379

Platform and data size 3392 24 8 37435 (4856) 602 0.177 11.036

data-path 150 0 2 4727 (981) 74 0.493 31.513

data-path and data size 1200 0 16 29066 (6994) 587 0,489 24,222

ALL >4800 24 16 72704 (14652) 2361 - -

Platform mult. mem 16408 40 0 134941 (4534) 4010 0.244 8.224

Platform mult. proc 2848 80 0 19625 (3224) 337 0.118 6.890

Pltf. mult. proc & mem 516608 160 0 1341999 (175304) 289721 0.560 2.597

Table 1: Industrial use case results
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