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Introduction

Last couple of decades witnessed a tremendous growth of research in robot olfaction addressing a number of issues including release of toxic gases in tunnels and mines, gas leaks in industrial setup, early detection of forest fire, oil spills, search and rescue of victims and clearing leftover mine after an armed conflict [START_REF] Settles | Sniffers: Fluid-dynamic sampling for olfactory trace detection in nature and homeland security-the 2004 freeman scholar lecture[END_REF][START_REF] Gage | Many-robot mcm search systems[END_REF][START_REF] Ishida | Plume-tracking robots: A new application of chemical sensors[END_REF]. Recently, odor source localization via autonomous agents on other planets such as Mars has also been carried out [START_REF] Formisano | Detection of methane in the atmosphere of mars[END_REF][START_REF]Detection of methane in the martian atmosphere: evidence for life?[END_REF][START_REF] Lefevre | Observed variations of methane on mars unexplained by known atmospheric chemistry and physics[END_REF][START_REF] Mumma | Strong release of methane on mars in northern summer 2003[END_REF][START_REF]Is there methane on mars?[END_REF]. While behavior of biological entities such as mate seeking by moths, foraging by lobsters, prey tracking by mosquitoes and blue crabs, etc., have long been imitated in simple and complex algorithms for olfaction problems; techniques such as probabilistic inference [START_REF] Farrell | Plume mapping via hidden markov methods[END_REF][START_REF] Vergassola | Infotaxis" as a strategy for searching without gradients[END_REF], robust control, swarm intelligence [START_REF] Cui | A swarm approach for emission sources localization[END_REF], biased random walk [START_REF] Lytridis | Odor-based navigational strategies for mobile agents[END_REF], optimization and meta-heuristics prove more effective in the problem of odor source localization. An odor plume containing filaments, or odor molecules, is generally referred to the downwind trail formed as a consequence of mixing of contaminant molecules in any kind of movement of air.

Odor source localization problem is characterized by three stages-instantaneous plume sensing, maneuvering of the agents and cooperative control of the agents. Early works reported on odor source localization date back to 1984 when Larcombe et al. [START_REF] Larcombe | Robotics in nuclear engineering: Computer assisted teleoperation in hazardous environments with particular reference to radiation fields[END_REF] discussed application of chemically sensitive robots in nuclear industry by considering a chemical gradient based odor dispersal. During 1990s, a lot of work incorporating chemical gradient based approaches have been reported. See [START_REF] Rozas | Artificial smell detection for robotic navigation[END_REF][START_REF] Genovese | Self organizing behavior and swarm intelligence in a pack of mobile miniature robots in search of pollutants[END_REF][START_REF] Buscemi | Cellular robotics: Behaviour in polluted environments[END_REF] and references therein, in which the odor dispersal was assumed smooth and diffusion dominated. However, in practice, this assumption leads to poor performance for above ground agents owing to the geometry and dimensions of the agents used. For underground search, this assumption might be valid and satisfactory results have been obtained, as illustrated in [START_REF] Russell | Chemical source location and the RoboMole project[END_REF][START_REF] Russell | Locating underground chemical sources by tracking chemical gradients in 3 dimensions[END_REF][START_REF] Russell | Robotic location of underground chemical sources[END_REF]. In order to overcome difficulties associated with diffusion dominated odor dispersal model, reactive plume tracking was put forward whose performance was improved by combining vision with sensing [START_REF] Martinez | Cooperation between vision and olfaction in a koala robot[END_REF][START_REF] Loutfi | Putting olfaction into action: using an electronic nose on a multi-sensing mobile robot[END_REF][START_REF] Ishida | Three-dimensional gas-plume tracking using gas sensors and ultrasonic anemometer[END_REF]. Algorithms such as chemotaxis [START_REF]A comparison of reactive robot chemotaxis algorithms[END_REF], anemotaxis [START_REF] Farrell | Plume mapping via hidden markov methods[END_REF][START_REF] Pang | Chemical plume source localization[END_REF], infotaxis [START_REF] Vergassola | Infotaxis" as a strategy for searching without gradients[END_REF] and fluxotaxis [START_REF] Zarzhitsky | Physics-based approach to chemical source localization using mobile robotic swarms[END_REF] heavliy relied on sensing capabilities of the agent. Agent maneuvering techniques were also based on bio-inspired algorithms some of which include Braitenberg style [START_REF] Braitenberg | Vehicles: Experiments in Synthetic Psychology[END_REF], E. coli algorithm [START_REF] Lytridis | Odor-based navigational strategies for mobile agents[END_REF], Zigzag dung beetle approach [START_REF]Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors[END_REF], silkworm moth style [START_REF] Russell | Chemical source location and the RoboMole project[END_REF][START_REF] Marques | Electronic nose-based odour source localization[END_REF][START_REF]Olfaction-based mobile robot navigation[END_REF] and their variants. However, efficiency of such algorithms was limited by the quality of sensors and the manner in which they were used. Most of these techniques also failed to consider turbulence dominated flow and resulted in poor tracking performance.

The dynamical optimization problem of odor source localization can be effectively solved using multiple agents working in cooperation. The obvious advantages of leveraging multi-agent systems (MAS) are increased probability of success, redundancy, improved overall operational efficiency and spatial diversity in having distributed sensing and actuation. A tremendous growth of research attention towards cooperative control has been witnessed in the past decade [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF][START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF][START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF][START_REF] Yu | Distributed higher order consensus protocols in multiagent dynamical systems[END_REF] but very few have addressed the problem of locating source of an odor. Hayes et al. [START_REF] Hayes | Swarm robotic odor localization: Off-line optimization and validation with real robots[END_REF] proposed a distributed cooperative algorithm based on swarm intelligence for odor source localization and experimental results proved multiple robots perform more efficiently than a single autonomous robot. A Particle Swarm Optimization (PSO) algorithm [START_REF] Kennedy | Particle swarm optimization[END_REF] was proposed by Marques et al. [START_REF] Marques | Particle swarm-based olfactory guided search[END_REF][START_REF] Jatmiko | A pso-based mobile robot for odor source localization in dynamic advectiondiffusion with obstacles environment: theory, simulation and measurement[END_REF] to tackle odor source localization problems. To avoid trapping into local maximum concentrations, modified PSO algorithms based on electrical charge theory where neutral and charged robots have been used have been proposed [START_REF] Jatmiko | A pso-based mobile robot for odor source localization in dynamic advectiondiffusion with obstacles environment: theory, simulation and measurement[END_REF]. Lu et al. [START_REF] Lu | A distributed architecture with two layers for odor source localization in multi-robot systems[END_REF] proposed a distributed coordination control protocol based on PSO to address the problem. It should be noted that simplified PSO controllers are a type of proportional-only controller and the operating region gets limited between global and local best. This needs complicated obstacle avoidance algorithms and results in high energy expenditure. Lu et al. [START_REF] Lu | Decision-making in a multi-robot system for odor source localization[END_REF] also proposed a cooperative control scheme to coordinate multiple robots to locate odor source in which a particle filter has been used to estimate the location of odor source based on wind information, a movement trajectory has been planned, and finally a cooperative control scheme has been used to coordinate movement of robots towards the source. It is worthy to note that the dynamical models used in these works are oversimplified to integrator dynamics, and the account of unknown perturbations seems to be overlooked. Moreover, the control algorithms that have been used prove ineffective in stabilizing nonholonomic systems.

Motivated by these studies, we have implemented a robust and powerful hierarchical cooperative control strategy to tackle the problem. First layer is the group level in which the information about the source via instantaneous sensing and swarm intelligence is obtained. Second layer is designed to maneuver the agents via a simplified silkworm moth algorithm. Third layer is based on cooperative sliding mode control and the information obtained in the first layer is passed to the third layer as a reference to the tracking controller.

Contributions

The contributions of this work are threefold.

1. As opposed to existing works on cooperative control to locate source of odor, we have considered a more general formulation by taking nonlinear dynamics of MAS into account. When the uncertain function is zero, the problem reduces to stabilizing integrator dynamics.

2. The control layer is designed on the paradigms of sliding mode, a robust and powerful control with inherent robustness and disturbance rejection capabilities. The reaching law, as well as the sliding manifold in this study are nonlinear and novel resulting in smoother control and faster reachability to the manifold. Use of sliding mode controller also helps in achieving a finite time convergence as opposed to asymptotic convergence to the equilibrium point. The proposed control provides stability and ensures robustness even in the presence of bounded disturbances and matched uncertainties.

3. Odor propagation is non-trivial, i.e., odor arrives in packets, leading to wide fluctuations in measured concentrations. Plumes are also dynamic and turbulent. As odor tends to travel downwind, direction of the wind provides an effective information on relative position of the source. Hence, we have used wind information based on a measurement model describing movement of filaments and concentration information from swarm intelligence to locate the source of odor.

Paper Organization

After introduction to the study in section 1, remainder of this work in organized as follows. Section 2 provides insights into preliminaries of spectral graph theory and sliding mode control. Section 3 presents dynamics of MAS and mathematical problem formulation, followed by hierarchical distributed cooperative control scheme in section 4.

Results and discussions have been carried out in section 5, followed by concluding remarks in section 6.

Preliminaries

Spectral Graph Theory for Multi-Agent Systems

A directed graph, also known as digraph is represented throughout in this paper by G = (V, E, A). V is the nonempty set in which finite number of vertices or nodes are contained such that V = {1, 2, ..., N }. E denotes directed edge and is represented as

E = {(i, j) ∀ i, j ∈ V & i = j}. A is the weighted adjacency matrix such that A = a(i, j) ∈ R N×N .
The possibility of existence of an edge (i, j) occurs iff the vertex i receives the information supplied by the vertex j, i.e., (i, j) ∈ E. Hence, i and j are termed neighbours. The set N i contains labels of vertices that are neighbours of the vertex i. For the adjacency matrix A, a(i, j

) ∈ R + 0 . If (i, j) ∈ E ⇒ a(i, j) > 0. If (i, j) / ∈ E or i = j ⇒ a(i, j) = 0.
The Laplacian matrix L [START_REF] Fan | Spectral Graph Theory[END_REF] is central to the consensus problem and is given by L = D -A where degree matrix, D

is a diagonal matrix, i.e, D = diag(d 1 , d 2 , ..., d n ) whose entries are d i = n j=1 a(i, j).
A directed path from vertex j to vertex i defines a sequence comprising of edges (i, i 1 ), (i 1 , i 2 ), ..., (i l , j) with distinct vertices i k ∈ V, k = 1, 2, 3, ..., l.

Incidence matrix B is also a diagonal matrix with entries 1 or 0. The entry is 1 if there exists an edge between leader agent and any other agent, otherwise it is 0. Furthermore, it can be inferred that the path between two distinct vertices is not uniquely determined. However, if a distinct node in V contains directed path to every other distinct node in V, then the directed graph G is said to have a spanning tree. Consequently,the matrix L + B has full rank [START_REF] Fan | Spectral Graph Theory[END_REF]. Physically, each agent has been modelled by a vertex or node and the line of communication between any two agents has been modelled as a directed edge.

Sliding Mode Control

Sliding Mode Control (SMC) [START_REF] Young | A control engineer's guide to sliding mode control[END_REF] is known for its inherent robustness. The switching nature of the control is used to nullify bounded disturbances and matched uncertainties. Switching happens about a hypergeometric manifold in state space known as sliding manifold, surface, or hyperplane. The control drives the system monotonically towards the sliding surface, i.e, trajectories emanate and move towards the hyperplane (reaching phase). System trajectories, after reaching the hyperplane, get constrained there for all future time (sliding phase), thereby ensuring the system dynamics remains independent of bounded disturbances and matched uncertainties.

In order to push state trajectories onto the surface s(x), a proper discontinuous control effort u SM (t, x) needs to be synthesized satisfying the following inequality.

s T (x) ṡ(x) ≤ -η s(x) , (1) 
with η being positive and is referred as the reachability constant.

∵ ṡ(x) = ∂s ∂x ẋ = ∂s ∂x f (t, x, u SM ) (2) 
∴ s T (x) ∂s ∂x f (t, x, u SM ) ≤ -η s(x) . (3) 
The motion of state trajectories confined on the manifold is known as sliding. Sliding mode exists if the state velocity vectors are directed towards the manifold in its neighbourhood. Under such consideration, the manifold is called attractive, i.e., trajectories starting on it remain there for all future time and trajectories starting outside it tend to it in an asymptotic manner. Hence, in sliding motion,

ṡ(x) = ∂s ∂x f (t, x, u SM ) = 0. (4) 
u SM = u eq is a solution, generally referred as equivalent control is not the actual control applied to the system but can be thought of as a control that must be applied on an average to maintain sliding motion and is mainly used for analysis of sliding motion.

Dynamics of MAS & Problem Formulation

Consider first order homogeneous MAS interacting among themselves and their environment in a directed topology.

Under such interconnection, information about the predicted location of source of the odor through instantaneous plume sensing is not available globally. However, local information is obtained by communication among agents whenever at least one agent attains some information of interest. The governing dynamics of first order homogeneous MAS consisting of N agents is described by nonlinear differential equations as

ẋi (t) = f (x i (t)) + u SMi (t) + ς i ; i ∈ [1, N ] ∈ N, (5) 
where f (•) : R + × X → R m is assumed to be locally Lipschitz over some fairly large domain D L with Lipschitz constant L, and denotes the nonlinear dynamics of each agent, which may be fully or partially known. Also X ⊂ R m is a domain in which origin is contained. x i and u SMi are the state of i th agent and the associated control respectively. ς i represents bounded exogenous disturbances that enter the system from input channel, i.e., ς i ≤ ς max < ∞.

The problem of odor source localization can be viewed as a cooperative control problem in which control laws u SMi need to be designed such that the conditions lim t→∞ x i -x j = 0 and lim t→∞ x i -x s ≤ θ are satisfied. Here x s represents the probable location of odor source & θ is an accuracy parameter.

Hierarchical Distributed Cooperative Control Scheme

In order to drive the agents towards consensus to locate the source of odor, we propose the following hierarchy.

Group Decision Making

This layer utilizes both concentration and wind information to predict the location of odor source. Then, the final probable position of the source can be described as

ψ(t k ) = c 1 p i (t k ) + (1 -c 1 )q i (t k ), (6) 
with p i (t k ) as the oscillation centre according to a simple Particle Swarm Optimization (PSO) algorithm and q i (t k )

captures the information of the wind. c 1 ∈ (0, 1) denotes additional weighting coefficient.

Remark 1. The arguments in [START_REF] Lefevre | Observed variations of methane on mars unexplained by known atmospheric chemistry and physics[END_REF] represent data captured at t = t k instants (k = 1, 2, ...) as the sensors equipped with the agents can only receive data at discrete instants.

It should be noted that ψ is the tracking reference that is fed to the controller. Now, we present detailed description of obtaining p i (t k ) and q i (t k ).

Simple PSO algorithm that is commonly used in practice has the following form.

v i (t k+1 ) = ωv i (t k ) + u PSO (t k ), (7) 
x i (t k+1 ) = x i (t k ) + v i (t k+1 ). ( 8 
)
Here ω is the inertia factor, v i (t k ) and x i (t k ) represent the respective velocity and position of i th agent. This commonly used form of PSO can also be used as a proportional-only type controller, however for the disadvantages mentioned earlier, we do not use PSO as our final controller. PSO control law u PSO can be described as

u PSO = α 1 (x l (t k ) -x i (t k )) + α 2 (x g (t k ) -x i (t k )). (9) 
In ( 9), x l (t k ) denotes the previous best position and x g (t k ) denotes the global best position of neighbours of i th agent at time t = t k , and α 1 & α 2 are acceleration coefficients. Since, every agent in MAS can get some information about the magnitude of concentration via local communication, position of the agent with a global best can be easily known.

By the idea of PSO, we can compute the oscillation centre p i (t k ) as

p i (t k ) = α 1 x l (t k ) + α 2 x g (t k ) α 1 + α 2 , (10) 
where

x l (t k ) = arg max 0<t<t k-1 {g(x l (t k-1 )), g(x i (t k ))}, (11) 
x g (t k ) = arg max

0<t<t k-1 {g(x g (t k-1 )), max j∈N a ij g(x j (t k ))}. (12) 
Thus, from ( 9), ( 10)

u PSO (t k ) = (α 1 + α 2 ){p i (t k ) -x i (t k )}, (13) 
which is clearly a proportional-only controller with proportional gain α 1 + α 2 , as highlighted earlier.

In order to compute q i (t k ), movement process of a single filament that consists several order molecules has been modelled based on study in [START_REF] Farrell | Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes[END_REF]. If x f (t) denotes position of the filament at time t, va (t) represent mean airflow velocity and n(t) be some random process, then the model can be described as

ẋf (t) = va (t) + n(t). (14) 
Without loss of generality, we shall regard the start time of our experiment as t = 0. From ( 14), we have

x f (t) = t 0 va (τ )dτ + t 0 n(τ )dτ + x s (0). (15) 
x s (0) denotes the real position of the odor source at t = 0.

Assumption 4.1. We assume the presence of a single, stationary odor source. Thus, x s (t) = x s (0).

Implications from remark 1 require [START_REF] Genovese | Self organizing behavior and swarm intelligence in a pack of mobile miniature robots in search of pollutants[END_REF] to be implemented at t = t k instants. Hence,

x f (t k ) = t m=0 va (τ m )∆t + t m=0 n(τ m )∆t + x s (t k ), (16) 
x f (t k ) = x s (t k ) + v a (t k ) + w (t k ). (17) 
In [START_REF] Russell | Chemical source location and the RoboMole project[END_REF],

t m=0 va (τ m )∆t = v a (t k ) and t m=0 n(τ m )∆t = w (t k ).
Remark 2. In [START_REF] Russell | Chemical source location and the RoboMole project[END_REF], the accumulated average of v a (t k ) and w (t k ) can also be considered for all possible filament releasing time.

From [START_REF] Russell | Chemical source location and the RoboMole project[END_REF],

x f (t k ) -v a (t k ) = x s (t k ) + w (t k ). (18) 
The above relationship, [START_REF] Russell | Locating underground chemical sources by tracking chemical gradients in 3 dimensions[END_REF] can be viewed as the information about x s (t k ) with some noise w (t k ). Hence,

q i (t k ) = x s (t k ) + w (t k ). (19) 
Therefore, ψ in ( 6) can now be constructed from ( 10) & (19).

Path Planning

Since, detection of information of interest is tied to the threshold value defined for the sensors, the next state is updated taking this threshold value into account. Thus, the blueprints of path planning can be described in terms of three types of behavior.

1. Surging: If the i th agent receives data well above threshold, we say that some clues about the location of the source have been detected. If the predicted position of the source at t = t k as seen by i th agent be given as

x si (t k ), then the next state of the agent is given mathematically as

x i (t k+1 ) = x si (t k ). (20) 
2. Casting: If the i th agent fails to detect information at any particular instant, then the next state is obtained using the following relation.

x i (t k+1 ) = x i (t k ) -x si (t k ) 2 + x si (t k ). (21) 
3. Search and exploration: If all the agents fail to detect odor clues for a time segment [t k , t k+l ] > δ 0 for some l ∈ N and δ 0 ∈ R + being the time interval for which no clues are detected or some constraint on wait time placed at the start of the experiment, then the next state is updated as

x i (t k+1 ) = x si (t k ) + φ σ . (22) 
In ( 22), φ σ is some random parameter with σ as its standard deviation and φ as its mean.

Distributed Control

In the control layer, we design a robust and powerful controller on the paradigms of sliding mode. It is worthy to mention that based on instantaneous sensing and swarm information, at different times, each agent can take up the role of a virtual leader whose opinion needs to be kept by other agents. ψ from ( 6) has been provided to the controller as the reference to be tracked. The tracking error is formulated as

e i (t) = x i (t) -ψ(t k ) ; t ∈ [t k , t k+1 [. (23) 
In terms of graph theory, we can reformulate the error variable as

i (t) = (L + B)e i (t) = (L + B)(x i (t) -ψ(t k )). ( 24 
)
From this point onward, we shall denote L + B as H. Next, we formulate the sliding manifold

s i (t) = λ 1 tanh(λ 2 i (t)), (25) 
which is a nonlinear sliding manifold offering faster reachability to the surface. λ 1 ∈ R + represents the speed of convergence to the surface, and λ 2 ∈ R + denotes the slope of the nonlinear sliding manifold. These are coefficient weighting parameters that affect the system performance. The forcing function has been taken as

ṡi (t) = -µ sinh -1 (m + w|s i (t)|)sign(s i (t)). (26) 
In [START_REF] Braitenberg | Vehicles: Experiments in Synthetic Psychology[END_REF], m is a small offset such that the argument of sinh -1 function remains non zero and w is the gain of the controller. The parameter µ facilitates additional gain tuning. In general, m << w. This novel reaching law contains a nonlinear gain and provides faster convergence towards the manifold. Moreover, this reaching law is smooth and chattering free, which is highly desirable in mechatronic systems to ensure safe operation.

Theorem 4.1. Given the dynamics of MAS (5) connected in a directed topology, error candidates [START_REF]A comparison of reactive robot chemotaxis algorithms[END_REF][START_REF] Pang | Chemical plume source localization[END_REF] and the sliding manifold [START_REF] Zarzhitsky | Physics-based approach to chemical source localization using mobile robotic swarms[END_REF], the stabilizing control law that ensures accurate reference tracking under consensus can be described as

u SMi (t) = -(ΛH) -1 µ sinh -1 (m + w|s i (t)|)sign(s i (t))Γ -1 + (f (x i (t)) -ψ(t k )) (27) 
where

Λ = λ 1 λ 2 , Γ = 1 -tanh 2 (λ 2 i (t)), w > sup t≥0 { ς i } & µ > sup{ ΛHς i Γ }.
Remark 3. As mentioned earlier, λ 1 , λ 2 ∈ R + . This ensures Λ = 0 and hence its non singularity. The argument of tanh is always finite and satisfies λ 2 i (t) = πι(κ + 1/2) for κ ∈ Z, thus Γ is also invertible. Moreover the non singularity of H can be established directly if the digraph contains a spanning tree with leader agent as a root.

A =         0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0         , B =         1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0         , D =         1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1         , L = D -A =         1 0 -1 0 0 0 0 0 0 -1 1 0 0 0 -1 1         , L + B =         2 0 -1 0 0 1 0 0 0 -1 1 0 0 0 -1 1         (38) 
Dynamics of the agents have been taken as

ẋi = 0.1 sin(x i ) + cos(2πt) + u SMi (t) + ς i ; i ∈ [1, 5] ∈ N. (39) 
Filaments that are released from the odor source get dispersed in the environment, and this dispersion is characterized by diffusion. However, in practice, effects of wind, heat and other perturbing factors lead to turbulence diffusion and make the diffusion approximation of the environment less accurate. The turbulence effect is difficult to model in a mathematical fashion. The effects of wind and diffusion in the environment are also characterized by advection phenomenon. Therefore, it is more realistic to consider a turbulence dominated diffusion-advection plume model for the odor source localization problem under the following assumptions.

Assumption 5.1. The airflow velocity is uniform throughout the domain for all time in which odor source localization is being carried out.

Assumption 5.2. The turbulence diffusion coefficient K needs to be known in priori via suitable measurements. If K is not known beforehand, then K = f (v a ) can be estimated during the experiment with the data obtained by sensors (e.g. anemometers, gas sensors).

In this study, advection model given in [START_REF] Cao | Consensus based distributed concentration-weighted summation algorithm for gas-leakage source localization using a wireless sensor network[END_REF][START_REF] Matthes | Source localization by spatially distributed electronic noses for advection and diffusion[END_REF] has been used to simulate the plume with both additive and multiplicative disturbances. A steady concentration profile for very large period of time (t → ∞) can be written as

C( #» r , ∞) = q 0 2πKd i exp - v a 2K (d i -#» r + #» r 0 ) , (40) 
where #» r 0 = x s (t) denotes the coordinates of the odor source, d i = x i -x s , q 0 is the filament release rate and K is the turbulent diffusion coefficient that is independent of the diffusing material. The initial conditions for simulation are taken to be large values, i.e., far away from the equilibrium point. Time varying disturbance has been taken as ς i = 0.3 sin(π 2 t 2 ), accuracy parameter θ = 0.001 and maximum mean airflow velocity vamax = 1 m/s. Other key parameters are mentioned in table 1. The results for both the cases of localization in R 1 and R 2 have been presented here to illustrate the efficacy of the proposed algorithm. The information of the plume is obtained by sensing the dispersed odor filaments released from the odor source. Figure 3 depicts agents keeping parallel formation and locating the odor source. The tracking controller tries to minimize the error between the predicted next state and the actual next state.

Norms of tracking errors in R 1 have been shown in figure 4. It is clear that the errors lie in close vicinity of zero, which is expected of such controller. Figure 5 is the plot of sliding manifolds during consensus in R 1 . As soon as consensus is established, the sliding variables convergence to the origin in finite time. Note that this convergence is quite fast, and by tailoring the design parameters carefully, one may obtain the desired convergence speed. In fact, nonlinear sliding manifolds prove to be advantageous over linear ones. In linear sliding manifolds, the magnitude of error is directly proportional to the magnitude of control effort needed to maintain sliding motion. In order to satisfy actuator constraints, the control effort is upper and lower bounded by some finite value, thereby making only a part of the sliding manifold attractive (termed as sliding regime). There is no guarantee of desired performance or stability outside the sliding regime. Moreover, if the reference state is too far from the current system state and the actuator saturates, the controller is unable to cope up, resulting in instability. Hence, it is beneficial to design nonlinear sliding manifolds that can hold the system states regardless of their location in the phase plane.

To avoid confusion between state variable x and axis labelled as x in the usual sense, we have designated abscissa as first axis and ordinate as second axis in our discussion. Similar to figure 4, in R 2 , norms of tracking error variables along first and second axis have been depicted in figures 6 and 7 respectively. Once again, it is evident that the error is minimal. Complete elimination of error is not possible because the agents progress towards the source under less than complete information. However, with robust control protocols, the error has been confined to a small vicinity of zero, depicting accurate tracking. Figure 8 illustrates agents coming in consensus to locate source of odor in R 2 . It is evident that state trajectories start from spread out initial conditions and ultimately come to consensus in finite time to locate the odor source. Figure 9 shows the case when agents make parallel formation to locate the source in R 2 . In both the cases, the domain in which odor source localization has been carried out is depicted by the limits of first and second axes. 

Concluding remarks and outlook

The problem of odor source localization by MAS has been dealt with in a hierarchical manner in this work. The problem shapes into a cooperative control problem wherein agents are driven towards consensus in finite time to locate the true odor source. Use of sliding mode control with novel nonlinear sliding manifolds and smooth reaching law facilitated faster convergence to the sliding manifold and a chattering free response. Via numerical simulations, it has been confirmed that the proposed strategy is faster and provides accurate tracking even in the presence of time varying disturbances. Moreover agents keep their formation throughout the search. We look forward to extend the study to heterogeneous agents and the localization problems under communication constraints shortly.
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Table 1 :

 1 Values of the parameters used in simulation

	c 1	ω max	α 1	α 2	λ 1	λ 2	µ	m	w	q 0	K
	0.5 2 rad/s 0.25 0.25 1.774 2.85 5 10 -3 2 2 mg/sec 0.02 m 2 /sec

Proof. From [START_REF] Pang | Chemical plume source localization[END_REF] and [START_REF] Zarzhitsky | Physics-based approach to chemical source localization using mobile robotic swarms[END_REF], we can write ṡi (t) = λ 1 {λ 2 ˙ i (t)(1 -tanh 2 (λ 2 i (t)))} (28)

= λ 1 λ 2 ˙ i (t){1 -tanh 2 (λ 2 i (t))}

= ΛH( ẋi (t) -ψ(t k ))Γ [START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF] with Λ & Γ as defined in Theorem 4.1. From ( 5), ( 31) can be further simplified as

Using [START_REF] Braitenberg | Vehicles: Experiments in Synthetic Psychology[END_REF], the control that brings the state trajectories on to the sliding manifold can now be written as

which is same as [START_REF]Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors[END_REF], thereby concluding the proof.

Remark 4. The control ( 27) can be practically implemented as it does not contain the uncertainty term.

It is crucial to analyze the necessary and sufficient conditions for the existence of sliding mode when control protocol ( 27) is used. We regard the system to be in sliding mode if for any time t 1 ∈ [0, ∞[, system trajectories are brought upon the manifold s i (t) = 0 and are constrained there for all time thereafter, i.e., for t ≥ t 1 , sliding motion occurs.

Theorem 4.2. Consider the system described by [START_REF]Detection of methane in the martian atmosphere: evidence for life?[END_REF], error candidates [START_REF]A comparison of reactive robot chemotaxis algorithms[END_REF][START_REF] Pang | Chemical plume source localization[END_REF], sliding manifold (25) and the control protocol [START_REF]Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors[END_REF]. Sliding mode is said to exist in vicinity of sliding manifold, if the manifold is attractive, i.e., trajectories emanating outside it continuously decrease towards it. Stating alternatively, reachability to the surface is ensured for some reachability constant η > 0. Moreover, stability can be guaranteed in the sense of Lyapunov if gain µ is designed as µ > sup{ ΛHς i Γ }.

Proof. Let us take into account, a Lyapunov function candidate

Taking derivative of (33) along system trajectories yield

Substituting the control protocol ( 27) in [START_REF] Kennedy | Particle swarm optimization[END_REF], we have

where

Thus, the derivative of Lyapunov function candidate is negative definite confirming stability in the sense of Lyapunov.

Since, µ > 0, s i > 0 and sinh -1 (•) > 0 due to the nature of its arguments. Therefore, ( 36) and ( 26) together provide implications that ∀s i (0), s i ṡi < 0 and the surface is globally attractive. This ends the proof.

Results and discussions

Interaction topology of the agents [START_REF] Sinha | Cooperative control of multi-agent systems to locate source of an odor[END_REF] represented as a digraph has been shown here in figure 1. The associated graph matrices have been described below. Computer simulations have been performed assuming that agent 1 appears as virtual leader to all other agents, making the topology fixed and directed for this study. It should be noted that, the theory developed so far can be extended to the case of switching topology and shall be dealt in future.