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Projected dynamical systems

in a complementarity formalism

W.P.M.H. Heemels∗ J.M. Schumacher† S. Weiland‡

May 8, 2000

Abstract

Projected dynamical systems have been introduced by Dupuis and Nagurney as dynamic extensions

of variational inequalities. In the systems and control literature, complementarity systems have

been studied as input/output dynamical systems whose inputs and outputs are connected through

complementarity conditions. We show here that, under mild conditions, projected dynamical systems

can be written as complementarity systems.

Keywords: variational inequalities, complementarity, discontinuous dynamical systems, systems theory,

optimization.

1 Introduction

In this paper, we connect two classes of discontinuous dynamical systems. One is the class of projected

dynamical systems introduced by Dupuis and Nagurney [6] and further developed by Nagurney and

Zhang [18]. These systems are described by differential equations of the form

ẋ(t) = ΠK(x(t), −F (x(t))), (1)

where F is a vector field, K is a closed convex set, and ΠK is a projection operator that prevents the

solution from moving outside the constraint set K (cf. section 2 below for a precise definition). These
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systems are used for studying the behaviour of oligopolistic markets, urban transportation networks,

traffic networks, international trade, and agricultural and energy markets (spatial price equilibria). Their

stationary points can be characterized by means of variational inequalities; one may therefore say that

projected dynamical systems provide a dynamic extension of variational inequalities.

We shall compare projected dynamical systems with complementarity systems, which may be considered

as dynamical extensions of complementarity problems (cf. section 3). Although particular forms of

complementarity systems have been used for a long time in the context of specific applications such

as electrical networks with ideal diodes (see e.g. Van Bokhoven [2]) and mechanical objects subject

to unilateral constraints (Lötstedt [15]), the idea of coupling complementarity conditions to a general

input/output dynamical system has first been proposed in 1996 by Van der Schaft and Schumacher [24].

Within the general class of dynamical systems that is obtained in this way there is a natural subdivision

corresponding to classifications that are used for input/output dynamical systems. In this paper we shall

have occasion to use in particular so-called gradient-type complementarity systems. To our knowledge

this specific class of dynamical systems has not been introduced before in the literature. We note, though,

that the class of nonsmooth dynamical systems recently studied by Seeger [27] contains systems that may

be considered as reversed-time versions of gradient-type complementarity systems with linear dynamics.

Complementarity systems are nonsmooth dynamical systems; they switch between several dynamical

regimes and may show impulsive motions resulting in discontinuities of some system variables. Since

complementarity systems are subject to both continuous dynamics and discrete switching, one may also

consider them as a subclass of hybrid dynamical systems [1, 20, 26]. Because of the nonsmoothness of

trajectories, the formulation of a solution concept for complementarity systems is nontrivial; see Van der

Schaft and Schumacher [24,25] and Heemels et al. [9,13]. Questions of (local) existence and uniqueness of

solutions have been studied under various assumptions in [13,24,25], Heemels et al. [10,12], and Lootsma

et al. [14]. Analysis of numerical simulation methods based on time-stepping can be found in Çamlıbel

et al. [3] and [9].

The study of complementarity systems is motivated by a broad range of applications (see Heemels et

al. [11] for an overview): electrical networks with diodes, mechanical systems subject to unilateral con-

straints or Coulomb friction, control systems with relays, saturation characteristics or deadzones, variable

structure systems, dynamical systems with static piecewise linear relations, hydraulic systems with one-

way valves and optimal control problems with state or control constraints.

It is well known that variational inequalities and complementarity problems are closely related; see for

instance Harker and Pang [8]. It is therefore reasonable to expect that projected dynamical systems and

complementarity systems are also related. In this paper we show that there is indeed a natural relation-

ship. Specializing to the stationary points, we obtain as a corollary the classical result which states that,

under mild conditions, variational inequalities may be rewritten as mixed nonlinear complementarity
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problems [8, Prop. 2.2]. Moreover, we obtain a proof of existence and uniqueness of solutions of projected

dynamical systems that is independent of the original proof by Dupuis and Nagurney [6] and in particular

does not use the Skorokhod problem (see Skorokhod [28]). Complementarity systems have already been

used extensively in the engineering literature (see for instance [15], Pfeiffer and Glocker [19], and [25])

and the establishment of a relation between the domains of projected dynamical systems and of com-

plementarity systems makes it possible to compare and transfer analytic and computational techniques

between the two. It also follows that the interpretation of projected dynamical systems as tatonnement

or adjustment processes carries over to a class of complementarity systems.

The following notational conventions and terminology will be used. If k is a positive integer, k̄ denotes the

set {1, . . . , k}. For an index set I ⊆ k̄, we denote its complement with respect to k̄ by Ic := {i ∈ k̄ | i �∈ I}.

The cardinality of a set I will be denoted by |I|. A vector u ∈ R
k is said to be nonnegative (nonpositive)

if ui � 0 (ui � 0) for all i ∈ k̄, and in this case we write u � 0 (u � 0). Given a matrix M ∈ R
k×l and

subsets I ⊆ k̄ and J ⊆ l̄, we denote the submatrix (Mij)i∈I,j∈J by MIJ . In case I = k̄ we write M•J

rather than Mk̄J , and similarly if J = l̄ we use MI•. The transpose of a matrix M is denoted by M�. In

the Euclidean space R
k the standard inner product is denoted by 〈·, ·〉 and for u, v ∈ R

k we write u⊥v

if 〈u, v〉 = u�v = 0. We denote the restriction of a function f : [0, T ] → R to an interval (a, b) ⊆ [0, T ]

by f |(a,b). A function f : R
n → R

p will be said to be real-analytic and convex if its component functions

fi : R
n → R are real-analytic and convex.

2 Projected dynamical systems

In this section we recall the definition of projected dynamical systems (PDS) [6,18]. The defining ingredi-

ents are a closed convex set K, which usually corresponds to the constraint set of a particular application,

and a vector field F whose domain contains K. The projected dynamics is described by the equation

ẋ(t) = −F (x(t)) on the interior of K, but on the boundary a modification is applied to prevent the

solution from leaving the constraint set.

To be more precise, let a closed and convex set K ⊆ R
n be given. The cone of inward normals at x ∈ K

is defined by

n(x) = {γ | 〈γ, x − k〉 � 0 for all k ∈ K}. (2)

Note that n(x) = {0}, when x is contained in the interior of K. Given x ∈ K and v ∈ R
n, define the

projection of the vector v at x with respect to K by

ΠK(x, v) = v − 〈v, n∗(x)〉n∗(x), (3a)
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where

n∗(x) ∈ arg max
n∈n(x), ‖n‖�1

〈v,−n〉. (3b)

Note that ΠK(x, v) is well-defined even though n∗(x) may not be uniquely specified by (3b). The projected

dynamical system PDS(F, K) corresponding to a closed convex set K and a vector field F on K is defined

by

ẋ(t) = ΠK(x(t), −F (x(t))). (4)

The ordinary differential equation (4) has a discontinuous right hand side and is therefore not covered

by the standard theory of differential equations. The following notion of solution is proposed in [18].

Definition 2.1 [18] An absolutely continuous function x : [0, T ] → K is a solution to PDS(F, K) on

[0, T ] with initial state x0 ∈ K if x(0) = x0 and (4) holds almost everywhere in [0, T ].

The definition (3) of the projection operator ΠK is convenient for the development below. An alternative

definition is the following one. For x ∈ K and v ∈ R
n define

ΠK(x, v) = lim
δ→0

PK(x + δv) − x

δ
, (5)

where PK is the projection operator that assigns to each vector x in R
n the vector in K that is closest

to x in the Euclidean norm ‖ · ‖ (i. e. PKx = arg mink∈K‖x − k‖). It has been proven by Dupuis [5] that

the formulations in (3) and (5) are equivalent when K is convex and compact with nonempty interior.

In [6] the same result is stated under the assumption that K is a convex polyhedron (i. e. an intersection

of finitely many closed half-spaces).

3 Complementarity systems

A complementarity system may be specified (in “semi-explicit affine form”, see [24]) by functions f :

R
n → R

n, gi : R
n → R

n and h : R
n → R

p. The defining equations for the complementarity system

corresponding to f , gi and h are

ẋ(t) = f(x(t)) +
∑p

i=1gi(x(t))ui(t) (6a)

y(t) = h(x(t)) (6b)

0 � y(t) ⊥ u(t) � 0 (6c)

The relation (6c) implies that for all i at least one of the equalities ui(t) = 0 and yi(t) = 0 must be

satisfied. Hence, for all times t there exists an index set J such that ui(t) = 0, i �∈ J and yi(t) = 0, i ∈ J .
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In the engineering literature this index set is sometimes called the active index set, mode or discrete state

of the system at time t. The mode may change during the time evolution of the system. The times at

which this happens are called event times.

In general a complementarity system may not have a continuous solution, even when the defining functions

f , g and h are smooth, and so one needs to introduce larger function spaces to define solutions (cf.

[12, 13, 24, 25]). Although the solution concept below is not the most general one, it suffices for the

purpose of the paper. We need the notion of right-isolated sets. A subset E of R is said to be right-

isolated if for each t ∈ E there exists an ε > 0 such that (t, t + ε) ∩ E = ∅.

Definition 3.1 A continuous function x : [0, T ] → R
n is called a solution to (6) with initial state x0

on the interval [0, T ], if x(0) = x0 and there exist a right-isolated set E ⊂ [0, T ] and two functions

u : [0, T ] → R
p, y : [0, T ] → R

p such that for any interval (a, b) ⊆ [0, T ] with (a, b) ∩ E = ∅ the following

conditions hold:

1. the restriction (u, x, y)|(a,b) is real-analytic and satisfies (6a–6b) for all t ∈ (a, b);

2. there exists an index set J ⊆ p̄ such that uJc(t) = 0, yJ(t) = 0, uJ(t) � 0 and yJc(t) � 0 for all

t ∈ (a, b).

This definition allows solutions that exhibit accumulations of event times (“Zeno solutions”). Since E is

right-isolated, such accumulations only take place forward in time. Note that a similar restriction is not

present in Def. 2.1.

By considering several types of dynamics in (6a–6b), one may define several classes of complementarity

systems such as linear complementarity systems [13,24] and Hamiltonian complementarity systems [24].

For the purpose of this paper we shall be particularly interested in gradient-type complementarity systems;

these systems are related to the gradient systems that have been studied by Van der Schaft [23]. To

specify a gradient-type complementarity system, take functions F : R
n → R

n and h : R
n → R

p. Let the

gradients of the component functions hi(x) of h(x) be denoted by ∇hi(x) (taken to be row-vectors) and

let H(x) denote the matrix whose i-th row is equal to ∇hi(x) (i.e. the Jacobian matrix of h at x). The

gradient-type complementarity system GTCS(F, h) is given by the equations

ẋ(t) = −F (x(t)) +
∑p

i=1[∇hi(x(t))]�ui(t) (7a)

y(t) = h(x(t)) (7b)

0 � y(t) ⊥ u(t) � 0, (7c)

which is a special case of (6). Equation (7a) can compactly be written in terms of the Jacobian H of h as

ẋ(t) = −F (x(t)) + [H(x(t))]�u(t). (8)
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The above definition makes implicit use of the standard inner product of R
n, but it would also be possible

to use a coordinate-free treatment as in [23]. There is a closer analogy with the gradient systems studied

by Van der Schaft when in (7) the function F is defined as the gradient of some potential function. In

that case (7) is referred to as a gradient complementarity system.

4 Projected dynamical systems as complementarity systems

In this section we consider projected dynamical systems specified by a vector field F and a convex set

K, and we provide conditions under which these systems can be rewritten as gradient-type complemen-

tarity systems. It will be assumed that the convex set K can be represented by means of finitely many

inequalities.

Assumption 4.1 The set K allows a representation in the form

K = {x ∈ R
n | h(x) � 0} (9)

where h : R
n → R

p is real-analytic and convex.

If h represents K as in (9), we define for x ∈ K the active index set I(x) as

I(x) := {i ∈ p̄ | hi(x) = 0}. (10)

To prevent technical complications that would obscure the main line of reasoning, we shall use the

following constraint qualification in conjunction with Assumption 4.1.

Assumption 4.2 For h as in (9) and H the Jacobian of h, the matrix HI(x)•(x) has full row rank for

all x ∈ K.

Concerning the vector field F , we shall use the following assumptions.

Assumption 4.3 The vector field F is real-analytic.

Assumption 4.4 There exists a constant B ∈ R such that F satisfies the linear growth condition

‖F (x)‖ � B(1 + ‖x‖) for all x ∈ K. (11)

Assumption 4.5 There exists a constant C ∈ R such that

〈−F (x) + F (y), x − y〉 � C‖x − y‖2 for all x, y ∈ K. (12)
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Remark 4.6 Assumption 4.1 implies that K is convex and closed. A characterization of K as in (9) is

possible in all applications of projected dynamical systems mentioned in [18]. In [6] it is even assumed

that K is a convex polyhedron. Assumptions 4.4 and 4.5 are used in [18] to prove existence and uniqueness

of solutions to the projected dynamical system specified by F and K.

The following theorem is the main result of this paper. The theorem will be proved in the next section.

Theorem 4.7 Let a set K ⊆ R
n, a vector field F : R

n → R
n and a function h : R

n → R
p be given such

that Assumptions 4.1–4.5 are satisfied. For all initial states x0 ∈ K, both the projected dynamical system

PDS(F, K) and the gradient-type complementarity system GTCS(F, h) have a unique solution defined on

[0, ∞). Moreover, these solutions coincide.

Remark 4.8 It will follow from the proof given below that without Assumption 4.4 the theorem still

holds, except that the solutions are not guaranteed to exist on [0, ∞). To be specific, suppose that [0, T1)

is the maximal interval on which a solution can be defined for PDS(F, K). Similarly, let [0, T2) be the

maximal interval for which GTCS(F, h) admits a solution. Then T := T1 = T2 > 0, both solutions are

unique on [0, T ), and the solutions are equal to each other.

Remark 4.9 The constraint qualification Assumption 4.2 is introduced here for simplicity. In the liter-

ature on complementarity systems, weaker assumptions have been used. Specifically, Lötstedt [15] uses

the condition that the Jacobian matrix H(x) should have locally constant row rank to prove the existence

and uniqueness of solutions to equations representing unilaterally constrained mechanical systems.

Remark 4.10 Thm. 4.7 provides some additional information about the solutions to PDS(F, K). Under

the assumptions of the theorem, solutions to projected dynamical system are real-analytic on the open

intervals belonging to a set of the form [0, ∞) \ E . Moreover, the exceptional set (the set of event times)

E is a right-isolated set.

Remark 4.11 It follows in particular that, under the conditions of Thm. 4.7, the stationary points of

the projected dynamical system PDS(F, K) coincide with those of the gradient-type complementarity

system GTCS(F, h). When K is a convex polyhedron, the stationary points x̄ of PDS(F, K) are given

by the variational inequality [18, Lemma 1]

〈F (x̄), x − x̄〉 � 0 ∀x ∈ K. (13)

The stationary points x̄ of GTCS(F, h) are given by the mixed nonlinear complementarity problem

0 = −F (x̄) +
∑p

i=1[∇hi(x̄)]�ui (14a)

y = h(x̄) (14b)

0 � y ⊥ u � 0. (14c)
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In this way we recover the well-known result (see for instance [8, Prop. 2.2]) that, under a suitable

constraint qualification, variational inequalities may be rewritten as mixed nonlinear complementarity

problems.

5 Proof of the main result

We start with a characterization of the projection ΠK in terms of a minimization problem. The proof

will be given below on the basis of a duality argument.

Theorem 5.1 Let K ⊂ R
n be of the form (9) for a real-analytic and convex function h : R

n → R
p. For

all x ∈ K and v ∈ R
n, we have

ΠK(x, v) = arg min
w∈W (x)

‖w − v‖, (15)

where W (x) is the “cone of admissible velocities” given by

W (x) = {w ∈ R
n | ∇hi(x)w � 0 for all i ∈ I(x)} (16)

with I(x) specified by (10).

The duality result that we will use to prove Thm. 5.1 is stated in Prop. 5.2 below. The notation C0 is

used to denote the polar cone (see e. g. Rockafellar [21, p. 121]) of a set C ⊆ R
n:

C0 = {x ∈ R
n | 〈x, y〉 � 0 for all y ∈ C}. (17)

Proposition 5.2 Let W ⊆ R
n be a closed convex cone with nonempty interior and let v ∈ R

n be given.

Define w∗ by

w∗ = arg min
w∈W

‖w − v‖ (18)

and let z∗ be such that

z∗ ∈ arg max
z∈W 0, ‖z‖�1

〈v, z〉. (19)

Then

w∗ = v − 〈v, z∗〉z∗. (20)

Proof. We apply the Fenchel duality theorem (Luenberger [16, p. 201]) to the convex function f(w) :=

‖w−v‖ defined on C := R
n and the concave function g(w) := 0 defined on D := W . One easily computes

(cf. for instance [21, Section 12]) that the conjugate sets of C and D are C∗ = {z ∈ R
n | ‖z‖ � 1} and
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D∗ = −W 0, and that the conjugate functions of f and g are given by f∗(z) = 〈v, z〉 for z ∈ C∗ and

g∗(z) = 0 for z ∈ D∗. From the Fenchel duality theorem, we therefore have

min
w∈W

‖w − v‖ = max
z∈W 0, ‖z‖�1

〈v, z〉. (21)

Now, suppose first that minw∈W ‖w − v‖ > 0; then ‖z∗‖ = 1. In this case, there exists a real number

α � 0 such that w∗ − v = −αz∗ [16, p. 136]. We have −α = −‖αz∗‖ = −‖w∗ − v‖ = −〈v, z∗〉 by (21);

this proves (20). Next, suppose that minw∈W ‖w − v‖ = 0. Then v ∈ W and hence w∗ = v. We have

maxz∈W 0,‖z‖�1〈v, z〉 = 0, so that 〈v, z∗〉 = 0 and consequently equation (20) is also correct in this case.

�

Remark 5.3 The proof implies that 〈w∗, z∗〉 = 0. Together with the conditions w∗ ∈ W , z∗ ∈ W 0,

and v = w∗ + 〈v, z∗〉z∗, this shows that 〈v, z∗〉z∗ is actually the projection PW 0v of v onto the cone W 0

(Moreau [17, p. 238]).

Proof of Thm. 5.1 Fix an arbitrary x ∈ K. From [21, Cor. 23.7.1 and 23.8.1] it follows that the cone

of inward normals of K at x, denoted by n(x), and the cone of inward normals of W (x) at 0, denoted by

nW (x)(0) satisfy

n(x) = nW (x)(0) = {γ ∈ R
n | γ =

∑
i∈I(x)

[∇hi(x)]�λi for certain λi � 0}. (22)

By definition of the cone of inward normals and the polar cone (see (2) and (17)), nW (x)(0) is equal

to −W (x)0. Hence, n(x) = −W (x)0. The claim of the theorem now follows by applying Prop. 5.2 to

W = W (x) and using that W 0 = −n(x). �

Next we establish a connection to a linear complementarity problem (LCP). See Cottle et al. [4] for an

extensive treatment of LCPs.

Theorem 5.4 Let a subset K of R
n be of the form (9) for a real-analytic and convex function h : R

n →
R

p. Fix x ∈ K. Let H be the Jacobian matrix of h at x, and let I := I(x) = {i | hi(x) = 0} be the active

index set. Then we have

ΠK(x, v) = v + H�
I•u (23a)

where the vector u ∈ R
|I| solves the LCP

0 � u ⊥ HI•v + HI•[HI•]�u � 0. (23b)

Proof. By Thm. 5.1, the vector ΠK(x, v) is the projection of v onto the cone W (x) defined in (16). In

terms of the notation introduced in the statement of the theorem, we have

W (x) = {w ∈ R
n | HI•w � 0}. (24)
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The fact that the projection onto this cone can be found from (23) is well-known; one may for instance

use the Kuhn-Tucker conditions. An alternative approach is to use the result by Moreau [17] which states

that in order to compute the projection of a vector v in a Hilbert space on a closed cone W , it is enough

to find w and w0 such that v = w +w0, w ∈ W , w0 ∈ W 0, and w ⊥ w0; the projection PW v is then given

by w. In our case W (x) is given by (24) so that the polar cone W 0(x) can be written as (see e.g. the

proof of Thm. 5.1)

W 0(x) = {w0 ∈ R
n | w0 = −[HI•]�u for some u � 0}. (25)

Therefore the three conditions of the LCP (23b) are exactly the conditions that ensure, by Moreau’s

theorem, that ΠK(x, v) is given by (23). Note in particular that the condition [HI•]�u ⊥ v + [HI•]�u is

equivalent to u ⊥ HI•v + HI•[HI•]�u. �

The discussion so far may be summarized as follows.

Corollary 5.5 A function x : [0, T ] → R
n is a solution to the projected dynamical system (4) if and only

if there exists a locally integrable function u : [0, T ] → R
p such that, with I(x) the active index set as in

(10) and H(x) the Jacobian matrix of h at x ∈ K, one has for almost all t ∈ [0, T ]:

ẋ(t) = −F (x(t)) + [HI(x(t))•(x(t))]�uI(x(t))(t) (26a)

uI(x(t))c(t) = 0 (26b)

0 � uI(x(t))(t) ⊥ −HI(x(t))•(x(t))F (x(t)) + HI(x(t))•(x(t))[HI(x(t))•(x(t))]�uI(x(t))(t) � 0. (26c)

In the proof of the main theorem we shall use the following result, which can easily be derived from

Thm. 3.2 in [25]. The quoted theorem gives a local existence and uniqueness result for complementarity

systems of the form (6).

Theorem 5.6 Let real-analytic functions F : R
n → R

n and h : R
n → R

p be given. Take x0 ∈ R
n such

that h(x0) � 0. If Assumption 4.2 is satisfied, then there exists an ε > 0 such that GTCS(F, h) has a

solution x on [0, ε) with initial condition x0. Moreover, this solution is unique.

Proof. Define I = I(x0) as in (10) and apply Thm. 3.2 in [25] to the system GTCS(F, hI), i.e. ẋ(t) =

−F (x(t))+[HI•(x(t))]�uI(t) and 0 � hI(x(t))⊥uI(t) � 0 with I = I(x0) . Since hi(x0) > 0 for i �∈ I(x0),

it is clear that continuous solutions to GTCS(F, hI) with initial state x0 are solutions to GTCS(F, h) for

sufficiently small t, and vice versa.

Note that HI•(x0)[HI•(x0)]� is positive definite due to Assumption 4.2 and hence, is also a P-matrix

(i.e. has only positive principal minors) [4, Thm. 3.1.6 and Thm. 3.3.7]. Consequently, Thm. 3.2 in [25]
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applies to GTCS(F, hI) and the result follows. �

Now we are in a position to prove the main result of this paper.

Proof of Thm. 4.7 Take x0 ∈ K. According to Theorem 5.6 there exists a real-analytic triple (u, x, y)

that satisfies (7) on [0, ε). In particular, there exists an index set J ⊆ p̄ such that yJ(t) = 0 and uJc(t) = 0

for all t ∈ [0, ε).

We now want to show that the trajectory x that has been defined in this way on [0, ε) is also a solution

to PDS(F, K) on [0, ε). It is immediately clear that (26a) is satisfied because it is just another way of

writing (8). For x ∈ K, define I(x) as in (10). From the fact that yJ(t) = 0 on [0, ε) it follows that

J ⊆ I(x(t)) for t ∈ [0, ε). Therefore I(x(t))c ⊆ Jc and so uI(x(t))c(t) = 0 for t ∈ [0, ε). Hence, (26b) is

satisfied. It remains to show that uI(x(t))(t) satisfies the LCP (26c) on (0, ε). It is clear from (7c) that

the inequality uI(x(t))(t) � 0 is satisfied on (0, ε). For t ∈ (0, ε), we have

0 = ẏJ(t) = −HJ•(x(t))F (x(t)) + HJ•(x(t))[HJ•(x(t))]�uJ(t). (27)

Dropping all arguments now to lighten the notation, we have from uJc = 0 and J ⊆ I that

(HI•[HI•]�uI)J = HJ•[HJ•]�uJ . (28)

Since obviously (HI•F )J = HJ•F , it follows from (27) and from uJc = 0 that the orthogonality condition

in (26c) holds. The final inequality in (26c) follows by expressing ẏi(t) similarly to (27), and noting that

ẏi(t) � 0 whenever yi(t) = 0 (i.e. whenever i ∈ I(x(t))), because otherwise the inequality yi(t) � 0 on

[0, ε) would be violated.

If the limit limt↑ε x(t) =: x(ε) exists, the existence of a solution to (7) starting from x(ε) on [ε, ε + ε1)

for some ε1 > 0 follows from Thm. 5.6. Hence, we have a solution x to (7) on [0, ε + ε1) in the sense of

Definition 3.1. In the same way as above, it can be shown that x is a solution of PDS(F, K) on [0, ε+ε1).

We now have to show that actually a solution to GTCS(F, h) can be constructed on all of [0, ∞). In

principle it might happen that the above construction only leads to a solution on some interval [0, T ) with

T < ∞. To proceed by contradiction, assume that we are in such a situation. The following estimates

hold for 0 � t � T :

‖x(t)‖ � ‖x0‖ +
∫ t

0
‖ΠK(x(τ), −F (x(τ)))‖dτ

� ‖x0‖ +
∫ t

0
‖F (x(τ))‖dτ

� ‖x0‖ + BT + B

∫ t

0
‖x(τ)‖dτ.

The second step follows easily from the definition of ΠK (see [18, Eq. (2.19)] or use the orthogonality

mentioned in Remark 5.3) and the third inequality is a consequence of (11). Using Gronwall’s lemma we
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see from this that x(·) is bounded on [0, T ); say ‖x(t)‖ � M for t ∈ [0, T ) for some constant M > 0. It

follows in particular that no “finite escape time” can occur. Moreover, it follows that the solution x is

Lipschitz continuous and hence uniformly continuous on [0, T ). Indeed, for 0 � t < s < T we have

‖x(t) − x(s)‖ �
∫ s

t

‖ΠK(x(τ), −F (x(τ)))‖dτ

�
∫ s

t

‖F (x(τ))‖dτ

� B

∫ s

t

(1 + ‖x(τ)‖)dτ

� B(1 + M)(s − t).

By a standard result in analysis (see for instance Rudin [22, Exc. 4.13]) this implies that the limit

x(T ) := limt↑T x(t) exists. Since by continuity arguments h(x(T )) � 0, continuation is possible be-

yond T according to Thm. 5.6, and we have reached a contradiction. Therefore, it follows that there

is a unique solution of the gradient-type complementarity system GTCS(F, h) on [0, ∞) which is also

a solution of the projected dynamical system PDS(F, K). The uniqueness of solutions to PDS(F, K)

follows from Assumption 4.5 as in [18, p. 33]. �

Remark 5.7 The existence of solutions to PDS(F, K) on [0, ∞) is shown in [18] by a method based

on the Skorokhod Problem [28]. The proof above provides an alternative argument. In fact the proof

shows that Assumptions 4.1–4.3 are sufficient for local existence of solutions to PDS(F, K). With the

additional Assumption 4.4, one can prove existence on [0, ∞). The argument to prove uniqueness uses

Assumption 4.5 and is essentially due to Filippov [7].

6 Conclusions

We have shown that, under mild conditions, projected dynamical systems can be rewritten as gradient-

type complementarity systems. This result may be looked at as a dynamic version of the well known

fact that, under suitable conditions, variational inequalities may be rewritten as mixed nonlinear com-

plementarity problems. The class of gradient-type complementarity systems is a subclass of the class of

complementarity systems which has received a considerable amount of attention in the engineering and

applied physics literature. The establishment of a connection between the domains of projected dynam-

ical systems and complementarity systems facilitates the transfer of techniques from one domain to the

other. As an interesting bonus, we have obtained a new, and in the authors’ opinion more direct, proof

for the existence of solutions to projected dynamical systems.
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