come     Evolution problem associated with a moving convex set in a Hilbert space

The following problem artses from the theory of elastoplastic mechanical systems [ 14. 1 7].

Let H be a real Hilbert space; Jet I be an interval of R containing its origin t 0 but not necessarily bounded nor closed on the right. One gives a multifunction (i.e., a set-valued mapping) t ~.--.,... C(t) from I into H , such that the sets C(t) are nonempty closed and convex. When the language of kinematics is used, tis inter- preted as the time and C is called a moving set. Denote by x ~ ~(t, x) the indicator function of C(t) (i.e., tf;(t, x) = 0 if x E C(t) and -1-oo otherwise).

Given a E C(t 0 ), the problem is that o_f finding a (single-valued) mapping u.: I-~ l!, absolutely continuous on every compact subinterval of I, such that u(t 0 ) = a (1.1) and that, for almost every t in I, --duidt E o~(t, u(t)}.

(1.2)

Recall that the set 8~(t, x), the subdifferential of the convex function x ~~ ~(t, x) at the point x, equals the closed convex cone formed by the elements of H which arc, in a classical sense, outward normal to the convex set C(t) at the point x. This cone is cq1pty if and only x ¢ C(t); when x E C(t) it contains at least the zero of H and may reduce to that single clement (for instance, if x is internal to C(t)).

'rhe evolution process ddmed by condition ( 1.2) may be depicted in a mechan- ica1language, especially clear if C(t) possesses a nonempty interior~ The moving point t r+ u(t) remains at rest as long as it happens to lie in this interior.; when caught up with by the boundary of the moving set, it can only proceed in an inward normal direction, as if pushed by this boundary, so as to go on belonging to C(t).

Because of this image, we shall !efer to a function u satisfying (1.1) and (1.2) as a solution of the sweeping process by the moving set C, for the initial value a.

Another vivid mechanical interpretation holds when the space H has the dimension 2. In that case let us picture the product H X R a~ the physical threedimensional space, with R corresponding to a vertical axis oriented downward.

Imagine the set G = {(x, t) E H X R: x E C(t)} as a solid cavity, supposed to have a smooth boundary, and the curve y = {(x, t) E H x R: x = u(t)}, i.e., the graph of the unknown function u, as a tiny stationary waterstream falling down the cavity. Condition.(1.2) is equivalent to the statements: (i) any arc of this stream which happens to be loose from the cavity wall is rectilinear and vertical; (ii) when water is running over the wall, it describes a line orthogonal to the level curves of the wall surface, i.e., a line of steepest descent; this agrees with hydrodynamics under the simplifying assumption that inertia may be neglected comparatively to friction and gravity; (iii) the minus sign in (1.2) precisely expresses that such a flow in contact with the wall may take place only on a part of this wall exposed upward; if it crosses the rim of a possible overhang, water will get loose from the surface and fall vertically down as formulated in (i).

The preceding are two examples of mechanical problems with unilateral requirements. As a matter of fact the convexity of the set C(t) appears in these two examples as a mere mathematical convenience. On the contrary, in the more sophisticated problems arising from the dynamics of mechanical systems with perfect unilateral constraints [12, 13] and whose mathematical treatment is closely related to the study of (1.2), convexity is involved in an essential way; such is also the case in the application to plasticity [START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF] which constitutes our main motivation.

Condition (1.2) is a special case of dujdt E ocp(t, u(t)), (

where rp(t, •): H--+ ]-oo, + ex:>] denotes, for each t, a convex, l.s~c. function;

this itself is a special case of -dujdt E A(t, u(t)), (1.4) where A(t, •)is, for eacht, a multifunction H ~ H, maximal monotone in the sense of Minty. By elementary calculation, the monotonicity of A implies that for every two locally absolutely continuous solutions u 1 and u 2 of (1.4), the real function t ~ I ul(t)-Uz(t)i is nonincreasing (in all the paper we shall denote by I I the norm in H}; thus at most one of such solutions can agree with some initial condition. At the time the author delivered hist first multigraph • seminar report on the subject [START_REF]MoREAU, Probleme d'evolution associe a un convexe mobile d'un espace hilbertien[END_REF]16], evolution "equations, (1.3) or (1.4) Were only studied under stringent assumptions, involving that the''domain'' dorrf A(t, •) = {x E H: A(t, x) =1= 0} was independent oft. The case where A does not depend on t amounts to the generation of semigroups of nonlinear contractions in H [START_REF] Brezrs | Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Kato | Nonlinear semi-groups and evolution equations[END_REF][START_REF] Komura | Nonlinear semi-groups in Hilbert space[END_REF]. Concerning (1.2), on the contrary, nothing remains to study if the set dom ot{;(t, •) = C(t) is constant. Thus one of the motives for a thorough inves- tigation of (1.2) is that it displays, so to speak in a pure state, the difficulties raised by an evolutive domain.

Another specific feature of (1.2) is that the right member is a conical subset of H, i.e., it is invariant under the multiplication by positive real numbers; one easily checks (21] that every monotone multifunction possessing this property is actually contained in some Bif;, thus equal to cif; if it is maximal monotone. The main consequence of the right member being a cone is the invariance of (1.2) under absolutely continuous increasing changes of v-ariable. In the language of mechanics this expresses that the chain of the successive positions of the n1oving point u are associated with the chain of the successive configurations of the moving set C in a way which does not depend on the timing. This more generally is a typical feature of the quasi-static evolution of elastoplactic systems. in the study of which (1.2) plays a key part. Mathematically, performing such changes of timing amounts to remove the pr£vilege of the Lebesgue measure. In fact the last section of this paper shows how the replacernent of the Lebesgue measure by nonnegative real measures, possibly possessing son1e atoms, provides the natural extension of the formulation ( 1.2) to discontinuous motions, a case of mechanical importance.

l\1ost of the work devoted to Eqs. (1.3) or (1.4) rests on the technique of Yosida regularization. In the special case of (1.2} this technique an1ounts to replacing if; by some penalty function of the set C(t); when (1.2) figures as an intermediate step in the solution of some elastoplastic problem, Y osida technique finally results in the consideration of some viscosity which may be physically meaningful; concerning this aspect, the reader will refer to [START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF], where an unfamiliar extension of Y osida regularization is also developed: By making the Y osida coefficient vary abruptly with time, one may establish in the same line the convergence of an algorithm of time discretization.

No use of regularization is made in the present paper; some evolved technique of tin1e discretization is developed instead which provides deeper results. The efficiency of this method may be ascribed to the fact that it relies on the ordering of the successive configurations of C( t) rather than on the proper timing and also that the essentially unilateral character of the process is taken into account.

Concerning the evolution problems of the general form (1.3) or (1.4) the reader may refer to [START_REF] Damlamian | Problemes d'evolution dans les Hilberts et applications[END_REF][START_REF] Attouch | PICARD~ Inequation variationnelle d'evolution avec conditions unilateral~s[END_REF][START_REF] Kenmochi | The semi-discretisation method and nonlinear time-dependent parabolic variational inequalities[END_REF][START_REF] Kenmochi | Some nonlinear parabolic variational inequalities and applications[END_REF].

On the other hand a stochastic version of (1.2) is studied in [START_REF] Castaing | Version aleatoite du probleme de rafte par un convexe variable[END_REF][START_REF] Castaing | Rafle par un convexe aleatoire a variation continue a droite[END_REF]. Some nonclassical concepts have to be summarized before we state the results of the present paper.

b Retraction of a JJfultifunction

The existence of a locally absolutely continuous solution of (1.1), (1.2) obviously requires a certain regularity of the given multifunction t ~ C(t).

In the first approach [START_REF]MoREAU, Probleme d'evolution associe a un convexe mobile d'un espace hilbertien[END_REF], the author assumed that this multifunction was locally absolutely continuous in the sense of the Hausdmff distance between subsets of H. This is actually a requirement of useless strength; if, on some interval [t 1 , t 1 + E], the multifunction Cis nondecreasing, or even if

t f-+ V n C(t)
is so, where V denotes some neighborhood of a point x 1 E C(t 1 ), visibly the constant function t ~ u(t) = x 1 is a solution of (1.2) on this interval. Some regularity for the motion of the set C is needed only when this set retracts, effectively sweeping the point u.

This induces to some unilateral rating for the displacement of sets. For two subsets A, B of an arbitrary metric space (E, o) let us consider the dissymmetric ecart e(A, B) = sup inf o(a, b), (1.5) aeA beB where the supremum and the infimum are relative to the ordering of [0, + oo]; this entails, for instance, e( 0, B) = 0. Clearly e(A, B) = 0 if and only if A is contained in cl B, the closure of B. The Hausdorff "distance" h(A, B) equals the maximum of e(A, B) and e(B, A).

For any three subsets of (E, o), one proves that the corresponding values of e verify the ''triangle inequality''. In all the paper, I is supposed to possess an origirr t 0 co.L ined in it and we shall specify r, the 1•etractionjunction of C, as r(t) = ret(C; t 0 ) '• The reader will refer to [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF] for the general study of this mccpt; we only quote here the fact to be used in the sequel.

For every s ::( tin I one has e(C(s), C(t)) ~ r(t) -r(s). (1.6) As this is finite, we conclude by making s = t 0 that the assumi on C(t 0 ) =F 0 implies C( t) =I= 0 for every t in I.

From r being finite it also ensues [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF]Proposition 4.a) that when T tends to t from the right, the multifunction T I-> C( r) possesses a limit in the classical sense that the two sets lim inf C(T) = {x E E: lin18(.~, C(T)) = 0}, where r+(t) stands for limrF r(T).

lc. Local-Step Functions and Local-Step Multifunctions

Vve still suppose that the interval I posse~ses an origin t 0 and contains it. Let us denote by lfp(I) the set of the elements P described as follows: P is a partition of I into a family of subintervals of any sort (some of them possibly reduced to single points) such that every compact subset of I is covered by finitely many members of this partition; such a partition may be called locally finite. Then P is a countable or finite family of intervals which will be indexed in concordance with their succession in I, namely, P: Io 'Il , ... , I i , .... (1.8) The origin of / 0 is t 0 , the origin of I, necessarily contained in it; call ti the origin of Ii , nonnecessarily belonging to .this interv<1l.

A function (resp. multifunction) defined on I is said to be local-step if it is constant on each member of some P E lfp(J). If F is such a multifunction of I into a metric space, the retraction of F over a compact subinterval [s) t] of I is easily constructed: call ] 0 , ] 1 , ... , fm, indexed according to their succes- sion, those of the intersections (s, t] n I i which are nonempty: for each j = 0, 1, ... , m, choose a 3 E ] 1 ; then m ret(F; s, t) = L e(F(ai_ 1 ), F(aj)).

i =l (1 .9) Starting now from the multifunction C into the Hilbert spaceH, considered in the preceding section, and from P E lfp(I) as described in ( 1. (1.11) (1.12)

Clearly, since the function r is nondecreasing, aPE lfp(J) satisfying the above condition may be obtained by taking the inverse image under r of a locally finite partition of R into subintervals with length ~ E.

ld. Results of Part 2

The preceding approximation property leads, in Part 2 of this paper, to a definition and study of the concept of a weak solution of the sweeping process by C, when C is a multifunction with closed convex values in H and finite retraction. vVith every P E lfp(J) is associated as above the local-step multifunction Cp; quite naturally, in view of the mechanical image presented in Section la, some local-step function up: I~ His considered as the (weak) solution of the sweeping process by C p for the initial value a E C(t 0 ). By definition, up takes on each member Ii of P the constant value ui inductively determined by u 0 =a, (1.13) (1.14) (i.e., ui+I is the nearest point to ui in the nonempty closed convex set Ci+l = Cp(li+ 1 )). Now observe that the set lfp(.l) is directed by the following partial order. One writes P-< P' if the partition P' is a refinement of P (i.e., every member of P' is contained in a member of P). This makes of the family (up), P E lfp(J), of mappings I ---* H a net. Proposition 2a states that, under the assumptions made above, this net converges uniformly on I. The limit u constitutes by definition the weak solution of the sweeping process by C for the initial value a E C(t 0 ). The subsequent Sections of Part 2 are devoted to studying the properties of such weak solutions. Proposition 2b states that the flow of the weak solutions of the sweeping process by Cis nonexpansive; as we have recalled before, the same is a familiar feature when (locally absolutely continuous) solutions of (1.4) are considered. Proposition 3b states that u(t) E C(t) for every t E I and that the variation var(u; s, t) of u over every compact subinterval [s, t] of I is majorized by ret(C; s, t); hence, if the real function r is continuous, resp. locally absolutely continuous, resp. Lipschitz with ratio k, so is u with regard to the norm of H. Local absolute continuity, for a function u with values in a reflexive Banach space is known [START_REF] Komura | Nonlinear semi-groups in Hilbert space[END_REF] to imply the existence of the strong derivative dufdt for almost every t E I; in fact it will be established at the end of the paper that in this case of a locally absolutely continuous r, the weak solution is actually strong, i.e., it satisfies (1.2).

At the discontinuity points of r, the function u may itself possess discontinuities; precise jump relations, from the left and from the right, are established in Sections 2d and 2e.

The differential condition (1.2) is of local character; the object of Section 2f, devoted to restrictions and piecings, is to exhibit the same character for weak solutions.

The physical applicability of the theory requires the stability of the solution with regard to the possible alterations of the data. Proposition 2g makes precise this stability by formulating a rnajoration of I u -u' I, where u and u' are weak solutions corresponding to two different multifunctions C and C, and different initial values. This inequality shall play an essential part when the sweeping process is inserted as a component in some more complicated mathematical problems arising from mechanics.

As stressed in Section la, the sweeping process, in its strong formulation~ is invariant under nondecreasing change of variables. Section 2i establishes that the same holds for weak solutions.

From the computational standpoint, a natural way of approximately solving (1.1), (1.2) would consist in time dz'scretizations. One chooses a sequence t 0 <

f 1 < • .. < ti < .. • of points of I; the quotient (u(ti+l) -u(ti))(ti+ 1 -ti)-1 is
taken as an approximant of the derivative dufdt at the point ti+ 1 .

Substituting it in ( 1.2) yields an inductive relation of the implicit type

By the elementary convex analysis, this is equivalent to Starting from u.(t 0 ) =a the sequence u(ti) is determined inductively. It may be said that, instead of being continuously swept by the moving set C, the moving point u is left at rest except that, at the chosen instants t i , it catches up with this set instantly, by the shortest way, hence the name the ,:atching-up algorithm we propose to give to this computation procedure. Section 2j makes precise the connection between this algorithm and the construction of the local-step functions up. A majorization of I Up -u I has been established in Section 2h;

it applies in particular to the catching-up algorithm and proves its convergence. Actually the catching-up algorithm works properly in the case where the function r is right continuous, a situation which receives a special emphasis in Part 3 of this paper.

le. Results of Part 3

In view of Proposition 2c the weak solutions of the sweeping process are mappings from I into H with bounded variation over every compact subinterval of I. To such a mapping u classically corresponds an H-valued vector measure du, which we call its differential measure. The purpose of this last part of the paper is to investigate whether this concept of differential yields a characterization of the considered solution by a condition of the same form as ( 1.2). In fact, in the locally absolutely continuous case, the derivative du/dt is nothing but the density of the vector measure du relative to the Lebesgue measure dt of I, and we stressed in Section I a that the considered changes of variables amounted to remove the privilege of the Lebesgue measure. Unfortunately, to the difference with the conventional continuous case, the differential measure of a discontinuous function u with bounded variation does not determine the function up to an additive constant. It turns out that the special case where the retraction function r is right continuous, implying right continuity for all the weak solutions of the sweeping process, provides the correct framework. In that case, Propositions 3a and 3b state that the weak solution u agreeing with the initial condition u(t 0 ) = a E C(t 0 ) is the only right-continuous function, with locally bounded variation, agreeing with this initial condition, and possessing the following property: There exists (nonuniquely) a nonnegative real measure d~-t on I and a function u' E 2[ 0 c( d~-t, H) such that du = u' dp, and that

-u'(t) E 8if;(t, u(t))
for every t in I.

Actually dr may be taken as d~-t and, finally, Proposition 3c states as a corollary that, if r is locally absolutely continuous, the weak solutions of the sweeping process are effectively strong, i.e., they satisfy (1.2).

WEAK SOLUTIONS 2a. Definition and Existence

Recall that the real interval I is always supposed to contain its ongtn t 0 ; using the notations defined in Sections lc and ld, one has; PROPOSITION (2a). Let C be a multifunction defined on I •tvith closed convex values in the Hilbert space H and finite 'retractio11; let a E C(t 0 ) (this implies C(t 0 ) =ft 0 , thus C(t) =I= 0 for every t E I since the ret1•action is finite) . fiJTith every P E lfp(J) described as in (1.8), let us associate the local-step multifunction Cp defined by (1.10). To Cp corresponds the local-step function up: I---?-H inducti'vely constructed by means of (1.13) and (1.14). Then the net of the functions (up), P E lfp(I), converges uniformly on I. DEFINITION. The limit u in the above Proposition is called the weak solution of the s~weeping process for the multifunction ( 01' moving set) C and the initial value a.

'Ve shall base the proof on two lemmas.

LEMlVlA 1(2a). Let r denote a closed convex nonempty subset of H; denot•ing by 8(x, F) and 8( y, F) the distances from tzvo arbitrary points x, y to this set, one has

l x -proj(y, F)[ 2 -[ x -y 1 2 ~ 28(x, T) 8(y, T). (2.1)
Proof This might be deduced from Lemma 2g below; more directly, by putting x' = proj(x, T) andy' = proj(y, T), the left member of this inequality becomes

(y -y' I 2~t -)' -y') = 2(y -y' I x -x') + 2(y -)/ \ x' -J/ ) -I y -y' \ 2 ,
where ( I ) represents the scalar product in H. The first term on the right is less than or equal to 28(x, F) o(y, F) and, as x' E F, the second term is ~ 0 by virtue of a classical characterization of proj(y, F).

LEMMA 2(2a). Let Ii be one of the intervals composing P, with O'figin t i (non- necessarily belonging to it). Let P' E lfp(J) be a refinement of P; denote by Up and Up' the local-step functions respectively corresponding -in the same way as abo•De to Cp and Cp' and to arbitrary initial values. Denote by ] 1 , ] 2 , ... , indexed according to thei1' succession in R, the intervals of P' which are contained in I i . In the e?:ent of I ;, not being the last inteTval of P, these £nter' vals necessarily form a finite sequence ] 1 , ] 2 , ••• , f m; in that case denote by fm+I the inter•val of P' following fm . With these notations, whichever are the real numbers ai E ] 1 and T iE I i U Jm.+ l such that ai ~ 'Ti , one has 

I xi -Ym 1 2 - I xi -Y1 1 2 ~ 2 L S(xi, Di+I) S(yi , Di+I). (2.4) j=l
In the event m = I interpret the right member as zero. The definitions of C P and Cp' imply that Ci+l and Dra+l are the same set (namely, C(ti+l) if ti+1 E Ii+l and C+(ti+ 1 ) if ti+l f/3 Ji+I)• As the projection on this convex set is a nonexpanding mapping, one has I xi+l -Ym+I 1 2 ~ I xi -Ym 1 2 • It follows that the left member of (2.2) is less than or equal to the right member of (2.4). Recall the expression given in (1.9) for the retraction of a local-step multifunction; since xi belongs to Ci = D 1 , one has, for every j = 1, 2, ... , m-I, Therefore the right member of (2.4) is less than or equal to the expressions m-1

2pi L e(DJ , D;+ 1 ) < 2pl.

j = l
This proves (2.2) in the considered case.

(2.5)

It remains to adapt this proof to the case ri E It"; then call P-the value ofj such that ri E ] 1 (no matter if Ii happens to be the last interval of P and the sequence ( ] 1 ) infinite). Add member to member the inequalities of the form (2.3), with j = 1, 2, ... , fL -1. On the left this yields the first member of (2.2) and on the right the same result as in (2.4), except for replacing m by !'-; again this right member is majorized by the right member of (2.5).

Proof of the Proposition. Due to H being complete, we are to establish that, for every e > 0, there exists P E lfp(J) such that, for every P' and P" greater than P in the directed set lfp(J) (i.e., refinements of P), the corresponding functions Up' and Up" , agreeing with the initial value a, verify for every

t E I I Up'(t) -Up"(t)i < E.
Let f3 be a strictly positive number and let Yo, y 1 )'''' Yn , ... be an infinite sequence of strictly positive numbers such that L;=o Y-r~ = +oo and z::=o (y11) 

for 0 < i < v: fori= v:
Then, adding member to member the inequalities of the form (2.2)

for i = 0, 1, ... , v yields v I Up(t) -Up'(t)l 2 -I up(t 0 ) -Up'(t 0 )1 2 ~ 8 L (7Ji) 2 • (2.7) i =O
Since up(t 0 ) = up-(t 0 ) =a and in view of (2.6) this reduces to \ up(t) -Zlp'(t) j ::;; (8ft) 1 1 2 • As the same is true for any other P" E lfp(J) greater than P, one finally has ] up'(t) -up"(t)l ~ (32[3)11 2 for every t E I. Since f3 may be chosen arbitrarily small this establishes the Cauchy property.

From the above proof one might easily derive an upper bound of the error committed when Up is considered as an approximant of the weak solution u;

a better majoration will be found in Section 2h. Proof. If u and u' correspond to initial values a and a', these functions are, respectively, the limits, for P E lpf(J), of the local-step functions Up and u'p constructed from these initial values. As the successive values of up and u' P are obtained by performing a sequence of projections on the closed convex sets cl) c2 , ... , the nonexpansion property of such projections implies that, for s ~ t, one has I up(s) -u'p(s) ! ~ jup(t) -u'p(t)!. Take the limits of both members of this inequality for P E lfp(J). 2c. Variation PROPOSITION 2c. Let u be a weak solution of the sweeping process by C on the interval I; then \It Ef:

2b. Nonexpans£on

u(t) E C(t), V[s, t] C 1: var(u; s, t) ~ ret(C; s, t) = r(t) -r(s).
Proof. The construction of Up makes that up(t) E Cp(t), thus 8(up(t), C(t)) < e(Cp(t), C(t)).

(2.8)

(2.9)

The approximation property expressed by (1.11) implies that the second member has the limit zero for P ranging in the directed set lfp(J); hence (2.8) holds, since C( t) is closed.

On the other hand, if a and T, with u < r, respectively, belong to two adjacent intervals of P, the constructive law (1.14) clearly implies (2.10) For arbitrary u and T, with a < T, the same is found true by adding the similar inequalities corresponding to intermediate points. Taking the limits for P E lfp(J) of both members of (2.1 0) yields, in view of ( 1.12),

I u(u)-u(T)I ~ ret(C; a, T).
Then (2.9) follows from the definition of var(u; s, t).

As an immediate consequence of (2.9) one has:

CoROLLARY 2c. If the real funct£on t r+ r(t) = ret(C; t 0 , t) is continuous, resp. locally absolutely continuous, resp. Lipschitz with ratio k, such is, relative to the norm of H, every weak solution u of the sweeping process by C.

Recall that the local absolute continuity of u, a function with values in a reflexive Banach space, implies that the strong derivative dufdt exists for almost every t E I. In that situation, (2. 9) entails, for almost every t E I,

1 dufdt I ~ I drfdt \.
(2.11)

In the language of kinematics it n1ay be said that the speed of the moving point u is majorized by the retraction speed of the moving set C. Observe on the other hand that the local absolute continuity of r is equivalent to the following. For every compact subinterval ( (2.12)

(2.13)

Proof. Inequality (2.12) immediately results from (2.9). For the proof of (2.13), observe that the subset g; of lfp(J), consisting of partitions in which figures an interval reduced to the singleton {t 1 }, is terminal in this directed set. Thus u may be considered as the limit of the net (up), P E ~. If P E f?/J, the definition of C p makes that C p(t 1 ) = C(t 1 ) and the construction of th€ local-step function Up implies As the convergence of the net (up), P E f!JJ, to u is uniform with regard to t, the following commutation of limits holds Then (2.13) results from the mapping x 1---+ proj(x, C(t 1 )) being continuous.

Remark. Inequality (2.12) shows that the continuity of r from the left at t 1 implies the same for u. On the other hand it is easily found [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF] that the left continuity of r is equivalent to lim e(C(t), C(t 1 )) = 0, t'f'tl which in turn amounts to the following: For every w, a neighborhood of zero in H, there exists 1J > 0 such that Clearly this property holds in particular when the multifunction C is upper semicontinuous from the left at t 1 , in the classical sense that, for every open set Q containing C(t 1 ), there exists 'fJ > 0 such that

t 1 -1J < t < t 2 ~ C(t) C Q.
Statements involving in the same connection the limit set C-(t 1 ) may be found in [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF]Sect. 4e].

2e. Limit from the Right

Let t 1 E I, suppose it is not the greatest element of I; as before, the limit of r from the right at the point t 1 is denoted by r+(t 1 ). Using again inequality (2.9) and the completeness of H, one concludes to the existence of u+(t 1 ), the limit of u from the right at the point t 1 • PROPOSITION 2e. With these notations [ u+(t 1 ) -u(t 1 )1 ~ r+(t 1 ) -r(t 1 ), u+(t 1 ) = proj(u(t 1 ), C+(t 1 )).

(2.14)

(2.

15)

Proof Inequality (2.14) results immediately from (2.9). As in the preceding section, call&' the terminal subset of lpf(J) consisting of partitions which include the singleton {t 1 }. For P E & one has since the interval of P following {t 1 } is necessarily open at the left. As the convergence of the net( Up), P E fJJ, is uniform relative to t, the left member converges to u+(t 1 ); then (2.15) results from the continuity of x t->-proj(x, C+(t 1 )).

Remark 1. Using [19, Proposition 4d] and elementary inequalities of Hilbert space geometry, it may be proved that the right 1nember of (2.15) equals limttt 1 proj(u(t 1 ), C(t)).

Remark 2. Inequality (2.14) shows that the continuity from the right for r implies the same for u. On the other hand [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF]Proposition 4c] this right con- tinuity of r at the point t 1 is equivalent to t 0 lim e(C(t 1 ), C(t)) = 0, t.Ltl which in turn is equivalent to C( t 1 ) C C+( t 1 ).

2£. Restriction and Piecing

The purpose of this section is to display the local character of the concept of a weak solution.

PROPOSITION 2f. Let u: I-+ H be a weak solution of the sweeping process by C. Let I', contain£ng its origin t 0 ', be a subinterval of I. Then the 1'est-riction u \ 1 ' is a weak solution of the sweeping process by C \I' .

Proof. Take a partition P 0 E lfp(I) whose I' is a member; in lfp(I) the set~ of the refinements of P 0 is terminal; hence tt is the limit of the net (up), P E [1JJ.

Every P' E lfp(I') is the trace on I' of at least one P E 9; we shall write P' = tr P defining thereby an order preserving surjective mapping of the directed set .9 onto the directed set lfp(I'). According to Section 2a, the definition of u': I'---+ H, the solution of the sweeping process by C 1 1 ' , for an initial value a' E C(t 0 ') equal to u(t 0 '), rests on the construction of local-step functions taking this value at the origin t 0 ' of I', each of them corresponding to an element P' of lfp(I'). If P' = tr P, let us denote by u' P this local-step function; clearly u' may as well be defined as the limit of the net (u' p), P E f!IJ. The restriction up It' is a local-step function on I', constant on the same intervals as u' P: both local-step functions are constructed inductively by successive projections on the same closed convex sets. As such projections are nonexpanding one has Vt EI': with u' p(t 0 ') = u(t 0 ') by hypothesis. The right member has the limit zero by the definition of u; this proves u' = u \ 1 ' • COROLLARY. Let 1 0 , 1 1 , ••. , I.i , ... be a locally finite partition of I into intetvals containing their respective origins t 0 , t 1 , ••. , t i , . . . and let u: I --+ H satisfy the condit£ons:

(i) For e:l'ery i the restriction of u to li is a solution of the sweeping process by the restriction of C _to this interval (fori > 0 this implies the existence of u-(ti)).

(ii) Fori> 0

Then u is a weak solution of the S'lveeping processfm• Con].

In fact there is at most one u: I~ H satisfying these conditions. Now, by virtue of the above proposition and of Proposition 2d, the solution of the sweeping process by Con I, with the initial value u(t 0 ), actually satisfies then1.

To this corollary may be reduced immediately the case of a cover of I by a sequence of overlapping intervals: A function I ~ H whose restriction to each of these intervals is a weak solution of the corresponding sweeping process is also a weak solution of the sweeping process with regard to the whole of I.

2g. Alteration of the Data

The following proposition enables us to estimate to what extent some uncertainty about the multifunction C and the initial value a affects the corresponding weak solution of the sweeping process.

PROPOSITION 2g. Let C and C' be two multzfunctions from I into H, with closed conve."iJ values and finite retractions; let u and u' be some respective weak solutions of the sweeping process; let p,(t) be a majorant of the Hausd01jf distance h(C(O), C'(O)) for {) E [t 0 , t]. Then, for every t in I,

I u(t)-u'(t)l 2 -I u(t 0 ) -u'(t 0 )1 2 ~ 2p(t)(ret(C; t 0 , t) + ret(C'; t 0 , t)).
(2.16) ' ;y e establish first: LEMMA. Let C+ and C+' be two nonempty closed con'l'eX subsets of H; let u_ and u_' be two points of H; put u+ = proj(u_ , C+) and u/ = proj(u_', C+'). The1t Apply this withy = u_' -u+', then write the same after exchanging primed and non primed letters; adding these two inequalities member to member yields Twice the left member is easily found to majorize the left member of (2.17).

On the other hand the elementary techniques of convex analysis (see, e.g., [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF]Sect. 2c]) yield for every y E H such that Y+(y) and y+'(y) are finite, which finally entails inequality (2.17).

Proof of the Proposition. The functions u and u' are the respective lin1its of nets (up), P E lfp(J), and (u'p), P E lfp(l). Let Ii and Ji+l denote two consecutive intervals of P; by the definition of Up one has and similarly for primed letters; then the lemma yields an inequality of the form (2.17). Let m be the value of i such that t Eli; by adding member to member the inequalities obtained in this way for i = 0, 1, ... , m -1, one gets Here f.Lp(t) denotes a majorant of e(Cr(O), C'p(B)) and e(C'p(B), Cp(O)) for e E [to) t]. In view of Cp and C'p being defined by (1.10), elementary properties of limit sets show that the number p,(t) of the proposition may stand for 11-p(t).

AsP ranges over lfp(J), it remains to take the limits of the respective nets and observe that var(up; t 0 , t) ~ ret(Cp; t 0 , t) ~ ret(C; t 0 , t) by virtue of (2.9) and (1.12), with similar inequalities for primed letters.

2h. Upper Bound of l Up-u l

The following proposition provides a majoration of the error committed when the local-step function up in Proposition 2a is used as an approximant of the weak solution u. The proof will display ~ typical application of Proposition 2g. PROPOSITION 2h. Let t be fixed in I; let 1 0 , 1 1 , ••. , Iv be the members of th~ partition P which CO'l)er the interval [t 0 , t]. Let p denote a majorant of the oscillation of the function rover every one of these intervals (i.e., a majorant of the retraction of C over any subintervJal of any one of them). Then

I up(t) -u(t)i ~ 2( p ret(C; t 0 , t))ll 2 • (2.

18)

Proof. Denote by B(p) the closed ball in H centered at the origin, with radius p. Let us define a multifunction , ~ D(,) with closed convex values as follows. Call Ji the member of P containing,; denote by ri the "inceptive value" of the function r in Ii, i.e., ri = r(ti) if the origin ti of Ii belongs to this interval and r i = r+(ti) if not; then put Clearly, if tiE Ii one has D(ti) = C(ti); if ti ¢: Ii, by writing, for every

x E H, o(x, C(T)) ~ o(x, D( T)) + e

(D( T), C(T)) and observing that e(D(r), C(T)) = r(T)-r+(ti) one concludes D+(ti) = C-t-(ti)•

On the other hand, the mult1function D is nondecreasing over each of the intervals li. In fact let a and -r be in /i with a ~ rand let x E D(a); then

8(x, C(r)) ~ S(x, C(a)) + e(C(a), C(,))

~ r(a) -ri + r(r) -r(a) = r(T) -ri,

which entails .t E D( r ).
From D being nondecreasing over each of the intervals Ii it first results that its retraction over any subinterval of them is zero; thus ret(D; t 0 , t) equals the sum of jumps corresponding to the values I, 2, ... , v of i, equal respectively, to e(D-(ti), D(ti)) if tiE Ii and to e(D(ti), D+(ti)) if ti ¢ Ii (19, Sect. 4d and 4e ]. Now, if ti E Ii one has D( ti) = C( ti) and by the ''triangle inequality" for the ecart e, the definition of D entails that the first term on the right is majorized by r-(ti)r i _ 1 ; the second term equals r(ti)-r-(ti) [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF]Sect. 4e]; so the considered jump is majorized by r(ti)r i -l . In the case ti ¢ li one has D+(ti) = C+(ti), therefore where the right member equals r+(ti)r i -l . Adding all the jumps, one finally obtains ret(D; t 0 , t) ~ ret(C; t 0 , t).

Thus D has a finite retraction; denote by v: I~ H the weak solution of the sweeping process by D, with initial value v(t 0 ) = u(t 0 ). As D is nondecreasing over each of the intervals Ii , the function v is constant over each of them. In Proof. The definition of the retraction immediately yields that, if s' ~ t' in I', if s = 1r(s') and t = 1r(t'), one has ret(C'; s', t') = ret(C; s, t). With the notations of Section 2a, the solution u: I ~ H of the sweeping process by C corresponding to some initial value a E C(t 0 ) = C'(t 0 ') is the limit of the net (up):. P E lfp(J). The inverse images under 7T of the intervals constituting P are subintervals of I' constituting a locally finite partition P' of I'. Since 7T is continuous, both an interval Ii E P and its inverse image 1/ E P' contain or do not contain their respective origins ti and t/; furthermore C'+(t/) = C+(7r(t/)).

Thus the local-step multifunction C~, associated in our usual way with the multifunction C' and with the partition P' equals Cp o-rr. The local-step function u~.: I'----+ H corresponding to C~, and the initial value a is defined inductively by Up'(I;+ 1 ) = proj(up'(I/), Cp'(J;+ 1 )); then u~, = Up o 7T. Consequently, the limit of u~, for P ranging over the directed set lfp(J) equals u o 7T. Observe that, if 7T is not strictly increasing, P' does not range over the whole of lfp(l'); however, Proposition 2h entails that the limit of Up' is the solution u' of the sweeping process by C'. In fact if p is a tnajorant of the retraction of C over any subinterval of ( E P, it is also a majorant of the retraction of C' over any subinterval of 1/ E P', the inverse image under rr.

Remark. For the study in the same connection of some discontinuous change of variable, see [START_REF] Moreau | Factorisation d'un processus de rafle discontinu, datzs[END_REF].

2j. The Catching-up Algorithm

The definition of u as the limit of a net has proved convenient for the subsequent theoretical study. But,• since the considered functions take their values in a metric space, one could as well construct u as the (uniform) lin1it of a sequence of local-step functions.

From the standpoint of computation, the situation would be the following.

The interval I shall be replaced by some compact subinterval [t 0 , t 0 + T]. If the retraction function r is known (or any real function more rapidly increasing than it), the inverse image of a finite partition of the interval [0, r(t 0 + T)] into subintervals of length ~ p yields a finite partition P of [t 0 , t 0 + T] into sub- intervals satisfying the conditions of Proposition 2h. Thus the corresponding step-function Up approximates u with a controlled error. A drawback is the possible presence in P of some interval Ii which would not contain its origin ti; then the .value up(li) is defined by projection on the limit set C+(ti) which is not directly given. This difficulty is partially overcome by observing ( cf. Section 2e, Remark) that for every x E H proj(x, C+(ti)) = lim proj(x, C(t)).

tJ.ti

This difficulty is avoided when the function r is continuous from the right, a case which will be specially emphasized in Part 3. Then, if one starts from a partition of [0, r(t 0 + T)] into intervals containing their origins, such are also their inverse images under r.

The simplest situation is that of a continuous function r, thus uniformly continuous on the compact interval [t 0 , t 0 + 11• This yields that, for every € > 0, there exists "fJ > 0 such that, taking as P a finite partition of [t 0 , t 0 + T] into intervals of the form [t.i, ti+ 1 [, the error I Up -u I is uniformly majorized by E as soon as all the ti+I -ti are majorized by "fJ• The construction of such a up properly constitutes the catching up algorithm introduced in Section 1 d.

3. RIGHT-CoNTINuous AND STRONG SoLUTIONS 3a. Solutions in the Sense of Different£alll-1easures \Ve shall say that a ~apping u of the real interval/ into the Hilbert (or Banach) space H has a locally bounded variation if it has a bounded variation over every compact subinterval of I; notation u E lbv(/, H) .

To every u E lbv(J, H) classically corresponds an H-valued measure on I denoted by du; we shall call it the dijfere11tial measure of u. With the notations previously used for the left and dght limits, a characteristic property of this vector measure is that, for every [s, t] C I, one has Jrs.tl du = u+(t) -u-(s).

Consequently, the measure du determines, up to an additive constant, the two functions t 1-+ u+(t) and t ~-+ u-(t), but, in general, the very value of u at a possible point of discontinuity remains independent of du.

In all the following, the considered functions will be supposed right continuous; if such is u Vt El: (3.3) The function t f-.+ !I u 1 (t)u 2 (t)1 2 belongs to lbv(J, R) and, as it is right continuous, its increment from the point s E I to the point t > s equals the integral of its differential measure on the interval ]s, t]. N3 a result of [21,22] this real measure is majorized by the measure ( u 1 -

u(t) = u(t 0 ) + J du. ]t 0 , t] (3.
u 2 I u 1 'p. 1 ' -u 2 ' p. 2 ' ) dp.
which, in view of ( 3. 3), is nonpositive.

Elen1entary counterexamples show that this conclusion does not hold in the absence of right continuity. Observe that, because of the refinements used in constructing the sequence of partitions Pn, it may happen thatr(t;'__ 1 ) = r(tin). For everyn EN, let us construct a mapping un: I---->-H by defining its restriction to each interval [t~1 , t/''[ as follows:

(1) If r(t~1) = r(tt), un is given a constant value on the interval, namely.

(3.7)

Vt E [t"! t.'n[ • un(t) = [r(tt)-r(t)] x~1 + [r(t)-r(t~_1)] xin . ( 3 .S) 1.-l ' ~ • r(t,t) -r(tf_ 1 ) (3) Finally, for t = t~n) = t 0 + T, u(t 0 + T) = x:(n) •
Comparing adjacent intervals, one observes that the expressions of u( t) written in (3.7) or (3.8) are also valid for t = t{ 1 •; hence, for every t and t' in [t7_

1 , tin], n( ') n( ) r(t') -r(t) ( n n ) u t -u t = r(t.n) _ r(t~ ) xi -xi-l • t ~-1
Thus, in view of (3.6) (1) if •r(tt) = r(t~_ 1 ) one takes u'n = 0 on the interval;

(2) otherwise u'n has the constant value

n n w ] n n] 'n( ) Xi - Xi-1 vt E ti-l , ti : u t = ( ) ( . -l) ; r t.n -r t'! 1. 't (3) in addition u'n(t 0 ) = 0. (3.10) 
Let us prove this lemma by checking that the measures Jun and u'nar yield the same integral over any subinterval of I. By unions or differences, one is reduced to the two cases: A similar expression holds for ( un( t) I h), proving that for every t E I, the sequence un(t) converges to u(t) weakly in H.

(tin) = r(tf_ 1 ); otherwise J, d n r-('r) -r+(u) ( n n ) u - Ji.' X' 1 [ -r(t n) -r(t!~ ) i -• '2'-1 ' a,T i z-1 which equals J 1 a.T[ u'n
Coming back to the partitions Pn , one observes that Proposition 2h applies to the step-functions constructed on the sequences xt: this sequence of step- functions converges strongly and uniformly to the weak solution of the sweeping process admitting a as initial value. And by inequality (3.9) and the property (i) of P. 11 such is also the case for the sequence un; thus the function u, as constructed in (3.11 ), is identical with the considered weak solution of the sweeping process and the convergence of the sequence un is actually st1•ong and uniform on I.

Let us put now a notation: For every n EN and every t E ]t 0 , t 0 + T], there exists i such that t E ]tf_ 1 , tin]; the corresponding value of tt will be denoted by rn(t); in addition let us put rn(t 0 ) = t 0 • Then: This is trivial if t = t 0 ; if Tn( t) = tin, i > 0, one has on the other hand, (3.5) is equivalent to (3.13) (3.14) thus the expression (3.10) of u'n(t) entails (3.12) if r(tt 1 ) < 1'(tt); otherwise (3.12) trivially holds as u'n(t) is zero.

\Ve are now the complete the proof of the proposition, by establishing that u complies with Definition 3a, with dJ-t = dr. Actually u', the density of the vector measure du relative to the real measure dr, has just been obtained as an element ofL 2 (dr, H); in the following we shall precisely understand u' as some representa-• tion of this element, i.e., a function everywhere defined on I. By passing to the limit in inequality (3.9), one gets a majoration of the vector measure du allowing for u' to take all its values in the unit ball of 11. Then the elementary expression of the ecart e(C(t), C(Tn(t))) in terms of the respective support functions of the considered sets [START_REF] Lvioreau | Multiapplications a retraction finie[END_REF]Sect. 2c], already used in Section 2g of this paper, yields (3.15) On the other hand, (3.9) implies thus (3.16) By the strong convergence of un(t), one has lim (u(t) -un(t) [ u'n(t)) = 0. n-7oo (3.17) As r is right continuous and in view of the requirement (ii) observed in constructing the partitions p n Let us make use now of Mazur's trick in the I-Iilbert space L 2 (dr, H); there exists in this space a sequence (v'm), mEN, which strongly converges to u' and such that each of the v'm has the form v'm = '\' cx-mu'i By changing for zero the value that u' takes at every point of w, one finally concludes, for every t E I y(t, -u'(t)) + (u(t) I u'(t)) ~ 0.

As u( t) E C( t), this is equivalent to u' verifying (3.2).

3c. Strong Solutions

We conclude this paper by coming back to the strong formulation of Section Ia. It will be supposed that the retraction function r is locally absolutely continuous on I (i.e., absolutely continuous on every compact subinterval of I). Elementary this is found equivalent to the following: For every compact subinterval K of I and every e > 0, there exists ' TJ > 0 such that, if Jcri , Ti[ denotes a finite fatnily of nonoverlapping subintervals of K, one has the implication vVe shall express this by saying that the multifunction C has a locally absolutely continuous retraction on I. Such is a fortiori the case if C has a locally absolutely continuous variati'.on in the sense of Hausdorff distance. Usual examples of multifunctions satisfying this condition and obtained as intersections of two others can be found in [START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF][START_REF] Moreau | Intersection of moving convex sets in a normed space[END_REF] 
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 2 .2) with Pi = sup{ret(Cp' ; 8, 8'): [8, 8'] C Ji}• Proof. First let us establish (2.2) in the event Ti E f m+l . Denote by X ;. and ci' respectively, the constant values of Up and Cp on the interval Ii; denote by YJ and D 1 the constant values of Up' and Cp' on the interval ] 1 • The definition of up' implies hence, by inequality (2.1 ), By making j = 1, 2, ... , m -1 and adding, one obtains m-1

PROPOSITION 2b .

 2b If u and u' are two weak solutions of the sweeping process by the same moving convex set C, the real function t ~ I u(t)u'(t) l is nonincreasing.

l

  u+-u+' 1 2 -1 u_ -u_' p~ ~ 21 u+-u_j e(C/, C+) + 2 I u/ -u_' ! e(C+, C/). (2.17) In fact, if ~+ and Y+, respectively, denote the indicator function and the support function of c+' the above definition of u+ is classically equivalent to U_ -U+ E 8~+(u+), itself equivalent to U+ E 8y+(u_ -u+), i.e., Vy E H:

  view of the jump conditions found in Sections 2d and 2e, one concludes that v is nothing else than Up. It remains to apply proposition 2g with C' = D; as the Hausdorff distance h(C(T), D(r)) for T Eli equals r(T)-ri, this distance is majorized by p.2i. Change of VariablePROPOSITION 2i. Let 7T denote a nondecreasing surjective (thus continuous) mapping from an interval I', containing its origin t 0 ', onto an interval I (thus, containing its origin t 0 ). Let C: I->-H be a multifunction with closed convex values and finite retraction. Then the multifunction C' = Co 7T: I'--->-H (i.e., C'(t') = C(7T(t')) far every t' E I') has a finite retraction. A function u': I'~ His a weak solution of the sweeping process by C' if and only if it admits a factorization u' = u o 1r, where u: I~ His a weak solution of the sweeping p1•ocess by C.

  3b. Existence TheoremPROPOSITION 3b. If the retraction function r is right continuous, every W(?ak solution u of the sweeping process (rig lzt continuous £n view of Proposition 2e) is also a solut-ion in the sense of differential measures; the measures dr may be taken as the measw•e diL of Definition 3a.

  v( n ), of points of H by xi n = proj(xY-1 , C(tt)).

  Case of an open subinterval ]a, T[ of]t~_ 1 , t/<t]. Denoting as before by •zr and v+ the left and right limits of a function v~ one has JJa.~-r dv = v-('r) -v-!-(a:). Thus the expected equality is trivial if r

LEMMA 2 .

 2 For every t E I,(3.12) 

  or equivalently, denoting by y(t, •) the support function of C(t), u-n(-rn(t)) E C(-rn(t)), y( rn(t), -u' 11 (t)) + (un( -rn(t)) \ u'n(t)) = 0.

( 3 . 18 )

 318 Putting together(3.14),(3.15),(3.16), (3.17) one obtains, for every t in I, lim sup [y(t, -u'n(t)) + (u(t) I u n(t))] ~ 0.

C I the multifunction is said to have a finite retraction on I; let us make this assumption for all the following. Equivalently there exists a nondecreasing real function r defined on I up to an additive constant

  by considering all the finite sequences ( ri) of the form s = r 0 ::( • • • ::( r n = t and taking the

	supremum of:L;=l e(C(ri_ 1 ), C(rt")) one defines the retraction of the multifunction
	Cover the interval [s, t]; notation ret(C; s, t). This is zero if and only if the
	multifunction r r-->-cl C(r) is nondecreasing everywhere in [s, t]. Obviously the
	variation, similarly defined by means of the Hausdorff distance, majorizes
	ret( C; s, t).
	If ret( C; s, t) is finite for every [s, t] ,
	such that for every s ::( t
	ret(C; s, t) = r(t) -r(s).

Let t r-+ C( t) denote a multifunction defined on a real interval I, whose values are subsets of (E, o). Let [s, t] C I;

  8), \Ve shall 505/26/3-3 denote by C p the local-step multifunction taking on each member Ii of P the constant value determined as follows:

		if tiE Ji, if ti ¢= Ii .	(1.10)
	Using (1.7) and (1.9) some approximation property may be established (19,
	Proposition 5.c]: Suppose the oscillation of the function rover every member of P
	is ~ E; then	
	VtEJ:	e(Cp(t), C(t)) ~ e,
	V[s, t] C J:	ret(Cp; s, t) ~ ret(C; s, t) + e
	(if s = t 0 the term E in (1.12) may be d1•opped).

  The semiopen intervals Yo(, (Yo , Yo + Yl(, ... , fo Yn' 'fo Yn , ... form a partition of R+ . As the function r: t r-+ ret( C; t 0 , t) is nondecreasing the inverse images of these intervals by r are subintervals of I (of any sort; some of them possibly empty or reduced to singletons), and among these inverse images, those which are nonempty constitute a locally finite partition of I; such we specify from now on the partition P: 1 0 ,1 1 ,1 2 , •.• considered in the foregoing.By this construction of P, the oscillations of the real function r over the intervals / 0 , 1 1 , 1 2 , ... are, respectively, majorized by some nun1bers YJo, 71 1 , Tj 2 , ... forming a (possibly finite) subsequence of the sequence (Yn); thus(2.6) The retraction of C over any subinterval of I i is majorized by TJi; in view of( 1.12) this implies that the retraction of C p' over such a subinterval of 1 1 is majorized by 21]i; thus inequality (2.2) holds, with Pi replaced by 2' Y/i .Let t E I; there exists v such that t E Iv . Fi..x the a i and r i involved in Lemma 2

	(0, according to the rules	[	k	k+l	J
	fori= 0:				

2 <

f3.

  s, t] of I and every E > 0, there exists 1J > 0 such that if ]ui, Ti[ is a finite family of nonoverlapping sub-

	intervals of [s, t], one has the implication
	2d. Limit from the Left

Let t 1 E I, strictly greater than t 0 . As the real function 1' is nondecreasing, it possesses for t t t 1 a finite limit denoted by r-(t 1 ). Then, from inequality (2.9) one concludes that every weak solution t 1--+ u(t) of the sweeping process presents the Cauchy property for t t t 1 , implying the existe:o.ce of PROPOSITION 2d. Jf!ith the above notations I u(tl) -u-(tl)l ~ r(tl)r-(ti), u(t 1 ) = proj(u-(t 1 ), C(t 1 )).

1 )

 1 DEFINITION 3a. The function u E lbv(J, H) is called a solution of the sweeping process in the sense of differential measures •if there exists (nonuniquely) a nonnegative real measure df.L on I and a function u' E -Yioc( df.L, H) such that du = An equivalent definition would consist in requiring u' to satisfy (3.2), except possibly on smne df1'-negligible set, but adding the specification that u(t) E C(t) for every t. In fact the set oif;(t, x) is nonempty if and only if x E C(t).The following proposition entails the uniqueness of such a solution u, right continuous and agreeing with some initial condition u(t 0 ) = a. If u 1 and u 2 are t•ight continuous and solutions of the szveeping process in the above sense, the real function t f-.+ I Zl-t(t)u 2 (t)1 is noninaeasing on I. . The definition involves the existence of nonnegative real measures dp.m, m = 1, 2, and functions U.m' E .!ef 0 c(afLm, H) satisfying(3.2). Relative to dp. = af.L 1 + df.L 2 , the measure dp.rn possesses a density fLm' E fflrx:,(dp., R) with nonnegative values; thus dum = u.m' 1'-ra' dfL. As, for every t E I, the values of the multifunction 8if;(t, •) are conical subsets of H, the monotonicity of this multi-

	u' dfL and that	
	-u'(t) E Bif;(t, u(t))	(3.2)
	for every t in I.	
	Prooffunction yields	

PROPOSITION 3a.

  , if t ~ t', , this also holds for every t ~ t' in I. This inequality entails that un, like the real function r, is right continuous, with bounded variation. The vector measure dun equals u'ndr, where u'n denotes the step ..

	! u 71 (t') -un(t)! ~ r(t') -r(t)	(3.9)
	andJ by additionfunction, •with values in the unit ball of H, const-ructed as follows~ on each inter•cal
	of the form ]t7_ 1 , t/~]:	

LEMMA 1.

  dr in view of the constant value of u'n over the interval ]tf_l' tt]. of an inter'l.tal consisting in the sing let on t l• For 0 < i Finally, fori = 0, the right-continuity of rand un yields J dun = J u'n dr = 0. observe now that the functions u'n, taking their values in the unit ball of H, define elements of the closed ball with radius (r(t 0 + T)) 1 /2 in the Hilbert space L 2 ( dr, H). This balls is weakly sequentially compact, so that a subsequence may be extracted which converges in the weak topology of L 2 ( ar, H). Suppose a _ change of indices such that this subsequence is identified with u'n itself and denote by u' its •weak limit. Define u: I-+ H by u(t) = u 0 + i u' dr.

	(3.11)
	Case Jto.tJ

~ v( n) one has which trivially vanishes if r(t/t) = r{t~1); otherwise, in view of (3.8), one finds while equality follows from the definition of u'n. {to} {to} Let us This is a right-continuous function, with bounded variation, and u' dr is its differential measure. The product of any element h of H by the characteristic function XJt 0

.t] of the interval ]t 0 , t] yields an element of L 2 (dr, H). Denoting by < •, •) the scalar product in this space we have (u(t) I h) = (u 0 I h) + (u', Xlt 0 ,t]h).

  where ]( m) is a finite set of integers ~ m and the cx;m are nonnegative real numbers such thatL cx/n = I.By(3.20) the v'm are defined as functions on I and the strong convergence in L 2 (dr, H) implies that, possibly after replacing them by some subsequence, one has the strong convergence of v'm(t) to u'(t) for every t outside of some drnegligible subset cu of I. The convexity of the function .-c ~ y(t,x) + (u(t) I x)

	L.t }EJ(rn)	]	'	(3.20)
	jt;J(m)			

establishes that

y(t, -v'm(t)) + (u(t) I v'm(t)) ~ L cx/n[y(t, -u'i(t)) + (u(t) I u'i(t))]; jt;J(m.)

therefore, in view of

(3.19) 

lim sup [y(t, -v'm(t)) + (u(t) I v'm(t))] ~ 0. 7/Z-H:t;J Now the lower semicontinuity of y yields, for every t ¢: w, y(t, -u'(t)) + (u(t) l u'(t)) ~ lim inf [y(t, -v'm(t)) + (u(t) I v'm(t))]. m-H:t;)

  . Rapproaching Propositions 2a, 2c, 3b, one obtains: PROPOSITION 3c. If the multifunction C: I~ H with closed convex •valuts has a locally absolutely continuous retraction, for every a E C(t 0 ) there exists a unique mapping u: I ~ H, locally absolutely contimwus, such that zt( t 0 ) = a and that -(dufdt) E 81/J(t, u(r))

	(3.21)

for almost every t in I.

In fact, if dt denotes the Lebesgue measure of I, there exists .Y E ~f00 (dt, R)

with nonnegative values such that clr = i' dt. By Proposition 3b, du = u'dr, with u' E Jl' 00 (dr, H) satisfying (3.2); now u't E !t'f 0 c(dt, H) is the density of the vector measure du with regard to the Lebesgue measure dt, i.e., this function equals the strong derivative dufdt for almost every tin I. As o,P is a cone (3.2) implies (3.21 ).

Proof. •using a covering argument one may reduce the proof to the case where I is a compact interval [t 0 , t 0 + T].

Let (En) be an infinite sequence of strictly positive real numbers, converging to zero. As the real function r is nondecreasing, the hypothesis equivalently means that it is u.s. c.; thus the inverse image under r of any interval of the form [p, +oo[ is a closed (possibly empty) subinterval of I. By taking the inverse images of intervals of the form [pin, P7+ 1 [, with P7+ 1 -p/ 2 ~ En, and proceeding if necessary to subsequent refinements one constructs an infinite sequence (P.n) of finite partitions of I into subintervals of the form (we shall write tin = t 0 fori = 0 and tin = t 0 + T fori= v(n)) possessing the properties:

(i) the oscillation of r on each of the intervals constituting P n is ~ En;

For each n EN, let us define inductively a finite sequence (x/ 1 ), i = 0, 1, ... ,