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Evolution Problem Associated with 
a Moving Convex Set in a Hilbert Space 

}EAX jACQUES ~IOREA~ 

Institut de Mathbnatiques, Universite des Sciences et Techniques du l.anguedoc, 
34060 1\fontpellier, Cedex. France 

I. ll\:TRODUCTION 

1 a. St1·ong Formulation 

The following problem artses from the theory of elastoplastic mechanical 
systems [ 14. 1 7]. 

Let H be a real Hilbert space; Jet I be an interval of R containing its origin t0 

but not necessarily bounded nor closed on the right. One gives a multifunction 
(i.e., a set-valued mapping) t ~.--.,... C(t) from I into H , such that the sets C(t) are 
nonempty closed and convex. When the language of kinematics is used, tis inter­
preted as the time and C is called a moving set. Denote by x ~ ~(t, x) the 
indicator function of C(t) (i.e., tf;(t, x) = 0 if x E C(t) and -1-oo otherwise). 

Given a E C(t0), the problem is that o_f finding a (single-valued) mapping u.: I-~ l!, 
absolutely continuous on every compact subinterval of I, such that 

u(t0 ) = a (1.1) 

and that, for almost every t in I, 

--duidt E o~(t, u(t)}. (1.2) 

Recall that the set 8~(t, x), the subdifferential of the convex function x ~~ ~(t, x) 
at the point x, equals the closed convex cone formed by the elements of H which 
arc, in a classical sense, outward normal to the convex set C(t) at the point x. This 
cone is cq1pty if and only x ¢ C(t); when x E C(t) it contains at least the zero of H 
and may reduce to that single clement (for instance, if x is internal to C(t)). 

'rhe evolution process ddmed by condition ( 1.2) may be depicted in a mechan­
ica1language, especially clear if C(t) possesses a nonempty interior~ The moving 
point t r+ u(t) remains at rest as long as it happens to lie in this interior.; when 
caught up with by the boundary of the moving set, it can only proceed in an 
inward normal direction, as if pushed by this boundary, so as to go on belonging 
to C(t). 
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Because of this image, we shall !efer to a function u satisfying (1.1) and (1.2) 
as a solution of the sweeping process by the moving set C, for the initial value a. 

Another vivid mechanical interpretation holds when the space H has the 
dimension 2. In that case let us picture the product H X R a~ the physical three­
dimensional space, with R corresponding to a vertical axis oriented downward. 
Imagine the set G = {(x, t) E H X R: x E C(t)} as a solid cavity, supposed to 
have a smooth boundary, and the curve y = {(x, t) E H x R: x = u(t)}, i.e., 
the graph of the unknown function u, as a tiny stationary waterstream falling 
down the cavity. Condition.(1.2) is equivalent to the statements: (i) any arc of 
this stream which happens to be loose from the cavity wall is rectilinear and 
vertical; (ii) when water is running over the wall, it describes a line orthogonal to 
the level curves of the wall surface, i.e., a line of steepest descent; this agrees with 
hydrodynamics under the simplifying assumption that inertia may be neglected 
comparatively to friction and gravity; (iii) the minus sign in (1.2) precisely 
expresses that such a flow in contact with the wall may take place only on a part 
of this wall exposed upward; if it crosses the rim of a possible overhang, water 
will get loose from the surface and fall vertically down as formulated in (i). 

The preceding are two examples of mechanical problems with unilateral 
requirements. As a matter of fact the convexity of the set C(t) appears in these 
two examples as a mere mathematical convenience. On the contrary, in the more 
sophisticated problems arising from the dynamics of mechanical systems with 
perfect unilateral constraints [12, 13] and whose mathematical treatment is 
closely related to the study of (1.2), convexity is involved in an essential way; 
such is also the case in the application to plasticity [17] which constitutes our 
main motivation. 

Condition (1.2) is a special case of 

- dujdt E ocp(t, u(t)), (1.3) 

where rp(t, ·): H--+ ]-oo, + ex:>] denotes, for each t, a convex, l.s~c. function; 
this itself is a special case of 

-dujdt E A(t, u(t)), (1.4) 

where A(t, ·)is, for eacht, a multifunction H ~ H, maximal monotone in the sense 
of Minty. By elementary calculation, the monotonicity of A implies that for 
every two locally absolutely continuous solutions u1 and u2 of (1.4), the real 
function t ~ I ul(t)- Uz(t)i is nonincreasing (in all the paper we shall denote by 
I I the norm in H}; thus at most one of such solutions can agree with some initial 
condition. At the time the author delivered hist first multigraph · seminar 
report on the subject [15, 16], evolution "equations, (1.3) or (1.4) Were only 
studied under stringent assumptions, involving that the''domain'' dorrf A(t, ·) = 

{x E H: A(t, x) =1= 0} was independent oft. The case where A does not depend 
on t amounts to the generation of semigroups of nonlinear contractions in H 
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(5, 8, 11]. Concerning (1.2), on the contrary, nothing remains to study if the set 
dom ot{;(t, ·) = C(t) is constant. Thus one of the motives for a thorough inves­
tigation of (1.2) is that it displays, so to speak in a pure state, the difficulties raised 
by an evolutive domain. 

Another specific feature of (1.2) is that the right member is a conical subset 
of H, i.e., it is invariant under the multiplication by positive real numbers; one 
easily checks (21] that every monotone multifunction possessing this property is 
actually contained in some Bif;, thus equal to cif; if it is maximal monotone. The 
main consequence of the right member being a cone is the invariance of (1.2) 
under absolutely continuous increasing changes of v-ariable. In the language of 
mechanics this expresses that the chain of the successive positions of the n1oving 
point u are associated with the chain of the successive configurations of the 
moving set C in a way which does not depend on the timing. This more generally 
is a typical feature of the quasi-static evolution of elastoplactic systems. in the 
study of which (1.2) plays a key part. Mathematically, performing such changes 
of timing amounts to remove the pr£vilege of the Lebesgue measure. In fact the last 
section of this paper shows how the replacernent of the Lebesgue measure by 
nonnegative real measures, possibly possessing son1e atoms, provides the natural 
extension of the formulation ( 1.2) to discontinuous motions, a case of mechanical 
importance. 

l\1ost of the work devoted to Eqs. (1.3) or (1.4) rests on the technique of 
Yosida regularization. In the special case of (1.2} this technique an1ounts to 
replacing if; by some penalty function of the set C(t); when (1.2) figures as an 
intermediate step in the solution of some elastoplastic problem, Y osida technique 
finally results in the consideration of some viscosity which may be physically 
meaningful; concerning this aspect, the reader will refer to [17], where an 
unfamiliar extension of Y osida regularization is also developed: By making the 
Y osida coefficient vary abruptly with time, one may establish in the same line 
the convergence of an algorithm of time discretization. 

No use of regularization is made in the present paper; some evolved technique 
of tin1e discretization is developed instead which provides deeper results. The 
efficiency of this method may be ascribed to the fact that it relies on the ordering 
of the successive configurations of C( t) rather than on the proper timing and also 
that the essentially unilateral character of the process is taken into account. 

Concerning the evolution problems of the general form (1.3) or (1.4) the reader 
may refer to (1, 2, 9, 10]. 

On the other hand a stochastic version of (1.2) is studied in [6, 7]. 
Some nonclassical concepts have to be summarized before we state the results 

of the present paper. 

1 b Retraction of a JJfultifunction 

The existence of a locally absolutely continuous solution of (1.1), (1.2) 
obviously requires a certain regularity of the given multifunction t ~ C(t). 
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In the first approach [15], the author assumed that this multifunction was 
locally absolutely continuous in the sense of the Hausdmff distance between 
subsets of H. This is actually a requirement of useless strength; if, on some 
interval [t1, t1 + E], the multifunction Cis nondecreasing, or even if t f-+ V n C(t) 
is so, where V denotes some neighborhood of a point x1 E C(t1), visibly the 
constant function t ~ u(t) = x1 is a solution of (1.2) on this interval. Some 
regularity for the motion of the set C is needed only when this set retracts, 
effectively sweeping the point u. 

This induces to some unilateral rating for the displacement of sets. For two 
subsets A, B of an arbitrary metric space (E, o) let us consider the dissymmetric 
ecart 

e(A, B) = sup inf o(a, b), (1.5) 
aeA beB 

where the supremum and the infimum are relative to the ordering of [0, + oo]; 
this entails, for instance, e( 0, B) = 0. Clearly e(A, B) = 0 if and only if A is 
contained in cl B, the closure of B. The Hausdorff "distance" h(A, B) equals 
the maximum of e(A, B) and e(B, A). 

For any three subsets of (E, o), one proves that the corresponding values of e 

verify the ''triangle inequality''. Let t r-+ C( t) denote a multifunction defined 
on a real interval I, whose values are subsets of (E, o). Let [s, t] C I; by considering 
all the finite sequences ( ri) of the form s = r0 ::( • • • ::( r n = t and taking the 
supremum of:L;=l e(C(ri_1), C(rt")) one defines the retraction of the multifunction 
Cover the interval [s, t]; notation ret(C; s, t). This is zero if and only if the 
multifunction r r-->- cl C(r) is nondecreasing everywhere in [s, t]. Obviously the 
variation, similarly defined by means of the Hausdorff distance, majorizes 
ret( C; s, t). 

If ret( C; s, t) is finite for every [s, t] C I the multifunction is said to have a 
finite retraction on I; let us make this assumption for all the following. Equivalently 
there exists a nondecreasing real function r defined on I up to an additive constant, 
such that for every s ::( t 

ret(C; s, t) = r(t) - r(s). 

In all the paper, I is supposed to possess an origirr t 0 co.L ined in it and we 
shall specify r, the 1·etractionjunction of C, as r(t) = ret(C; t 0 ) '· 

The reader will refer to [19] for the general study of this mccpt; we only 
quote here the fact to be used in the sequel. 

For every s ::( tin I one has 

e(C(s), C(t)) ~ r(t) - r(s). (1.6) 

As this is finite, we conclude by making s = t0 that the assumi on C(t0) =F 0 

implies C( t) =I= 0 for every t in I. 
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From r being finite it also ensues [19, Proposition 4.a) that when T tends to t 
from the right, the multifunction T I-> C( r) possesses a limit in the classical sense 
that the two sets 

lim inf C(T) = {x E E: lin18(.~, C(T)) = 0}, 
TJ.t 'O.j. t 

lim sup C(T) = {x E E: 0 is a cluster value of the function 
-;.J.t 

T :--+ 8(x, C(T)) forT t t} 

are equal to a closed, possibly en1pty, subset of E which will be denoted by C-:-(t). 
Actually the assumptions made in this paper, i.e., (E, 8) is a Hilbert space and 

the sets C(t) are closed convex and nonempty, entail [19, Propositions 4.b and 
4.d] that C+(t) is nonempty convex, and that 

e(C(t), C+(t)) = lim e(C(t), C(T)) = r +(t) - r(t) 
TU 

( 1.7) 

where r+(t) stands for limrF r(T). 

lc. Local-Step Functions and Local-Step Multifunctions 

Vve still suppose that the interval I posse~ses an origin t0 and contains it. Let us 
denote by lfp(I) the set of the elements P described as follows: P is a partition 
of I into a family of subintervals of any sort (some of them possibly reduced to 
single points) such that every compact subset of I is covered by finitely many 
members of this partition; such a partition may be called locally finite. Then P 
is a countable or finite family of intervals which will be indexed in concordance 
with their succession in I, namely, 

P: Io 'Il , ... , I i , .... (1.8) 

The origin of / 0 is t0 , the origin of I, necessarily contained in it; call ti the origin 
of Ii , nonnecessarily belonging to .this interv<1l. 

A function (resp. multifunction) defined on I is said to be local-step if it is 
constant on each member of some P E lfp(J). If F is such a multifunction 
of I into a metric space, the retraction of F over a compact subinterval [s) t] 
of I is easily constructed: call ] 0 , ] 1 , ... , fm, indexed according to their succes­
sion, those of the intersections (s, t] n I i which are nonempty: for each j = 
0, 1, ... , m, choose a3 E ] 1; then 

m 

ret(F; s, t) = L e(F(ai_1), F(aj)). 
i=l 

(1 .9) 

Starting now from the multifunction C into the Hilbert spaceH, considered 
in the preceding section, and from P E lfp(I) as described in ( 1.8), \Ve shall 

505/26/3-3 
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denote by C p the local-step multifunction taking on each member Ii of P the 
constant value determined as follows: 

if tiE Ji, 
if ti ¢= Ii . 

(1.10) 

Using (1.7) and (1.9) some approximation property may be established (19, 
Proposition 5.c]: Suppose the oscillation of the function rover every member of P 
is ~ E; then 

VtEJ: e(Cp(t), C(t)) ~ e, 

V[s, t] C J: ret(Cp; s, t) ~ ret(C; s, t) + e 

(if s = t0 the term E in (1.12) may be d1·opped). 

(1.11) 

(1.12) 

Clearly, since the function r is nondecreasing, aPE lfp(J) satisfying the above 
condition may be obtained by taking the inverse image under r of a locally finite 
partition of R into subintervals with length ~ E. 

ld. Results of Part 2 

The preceding approximation property leads, in Part 2 of this paper, to a 
definition and study of the concept of a weak solution of the sweeping process 
by C, when C is a multifunction with closed convex values in H and finite 
retraction. vVith every P E lfp(J) is associated as above the local-step multi­
function Cp; quite naturally, in view of the mechanical image presented in 
Section la, some local-step function up: I~ His considered as the (weak) solu­
tion of the sweeping process by C p for the initial value a E C(t0). By definition, 
up takes on each member Ii of P the constant value ui inductively determined by 

u0 =a, (1.13) 

(1.14) 

(i.e., ui+I is the nearest point to ui in the nonempty closed convex set Ci+l = 
Cp(li+1)). Now observe that the set lfp(.l) is directed by the following partial order. 
One writes P-< P' if the partition P' is a refinement of P (i.e., every member of P' 
is contained in a member of P). This makes of the family (up), P E lfp(J), of 
mappings I ---* H a net. Proposition 2a states that, under the assumptions made 
above, this net converges uniformly on I. The limit u constitutes by definition 
the weak solution of the sweeping process by C for the initial value a E C(t0). 

The subsequent Sections of Part 2 are devoted to studying the properties of 
such weak solutions. Proposition 2b states that the flow of the weak solutions of 
the sweeping process by Cis nonexpansive; as we have recalled before, the same is 
a familiar feature when (locally absolutely continuous) solutions of (1.4) are 
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considered. Proposition 3b states that u(t) E C(t) for every t E I and that the 
variation var(u; s, t) of u over every compact subinterval [s, t] of I is majorized 
by ret(C; s, t); hence, if the real function r is continuous, resp. locally absolutely 
continuous, resp. Lipschitz with ratio k, so is u with regard to the norm of H. 
Local absolute continuity, for a function u with values in a reflexive Banach space 
is known [11] to imply the existence of the strong derivative dufdt for almost 
every t E I; in fact it will be established at the end of the paper that in this case 
of a locally absolutely continuous r, the weak solution is actually strong, i.e., it 
satisfies (1.2). 

At the discontinuity points of r, the function u may itself possess discontinuities; 
precise jump relations, from the left and from the right, are established in 
Sections 2d and 2e. 

The differential condition (1.2) is of local character; the object of Section 2f, 
devoted to restrictions and piecings, is to exhibit the same character for weak 
solutions. 

The physical applicability of the theory requires the stability of the solution 
with regard to the possible alterations of the data. Proposition 2g makes precise 
this stability by formulating a rnajoration of I u - u' I, where u and u' are weak 
solutions corresponding to two different multifunctions C and C, and different 
initial values. This inequality shall play an essential part when the sweeping 
process is inserted as a component in some more complicated mathematical 
problems arising from mechanics. 

As stressed in Section la, the sweeping process, in its strong formulation~ is 
invariant under nondecreasing change of variables. Section 2i establishes that 
the same holds for weak solutions. 

From the computational standpoint, a natural way of approximately solving 
(1.1), (1.2) would consist in time dz'scretizations. One chooses a sequence t0 < 
f 1 < · .. < ti < .. · of points of I; the quotient (u(ti+l) - u(ti))(ti+1 - ti)-1 is 
taken as an approximant of the derivative dufdt at the point ti+1 . Substituting 
it in ( 1.2) yields an inductive relation of the implicit type 

By the elementary convex analysis, this is equivalent to 

Starting from u.(t0) =a the sequence u(ti) is determined inductively. It may be 
said that, instead of being continuously swept by the moving set C, the moving 
point u is left at rest except that, at the chosen instants t i , it catches up with this 
set instantly, by the shortest way, hence the name the ,:atching-up algorithm 
we propose to give to this computation procedure. Section 2j makes precise the 
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connection between this algorithm and the construction of the local-step 
functions up. A majorization of I Up - u I has been established in Section 2h; 
it applies in particular to the catching-up algorithm and proves its convergence. 

Actually the catching-up algorithm works properly in the case where the 
function r is right continuous, a situation which receives a special emphasis in 
Part 3 of this paper. 

le. Results of Part 3 

In view of Proposition 2c the weak solutions of the sweeping process are 
mappings from I into H with bounded variation over every compact subinterval 
of I. To such a mapping u classically corresponds an H-valued vector measure 
du, which we call its differential measure. The purpose of this last part of the 
paper is to investigate whether this concept of differential yields a characteriza­
tion of the considered solution by a condition of the same form as ( 1.2). In fact, 
in the locally absolutely continuous case, the derivative du/dt is nothing but the 
density of the vector measure du relative to the Lebesgue measure dt of I, and 
we stressed in Section I a that the considered changes of variables amounted 
to remove the privilege of the Lebesgue measure. Unfortunately, to the difference 
with the conventional continuous case, the differential measure of a discontinuous 
function u with bounded variation does not determine the function up to an 
additive constant. It turns out that the special case where the retraction function r 
is right continuous, implying right continuity for all the weak solutions of the 
sweeping process, provides the correct framework. In that case, Propositions 3a 
and 3b state that the weak solution u agreeing with the initial condition u(t0) = 
a E C(t0) is the only right-continuous function, with locally bounded variation, 
agreeing with this initial condition, and possessing the following property: There 
exists (nonuniquely) a nonnegative real measure d~-t on I and a function u' E 

2[0 c( d~-t, H) such that du = u' dp, and that 

- u'(t) E 8if;(t, u(t)) 

for every t in I. 
Actually dr may be taken as d~-t and, finally, Proposition 3c states as a corollary 

that, if r is locally absolutely continuous, the weak solutions of the sweeping 
process are effectively strong, i.e., they satisfy (1.2). 

2. WEAK SOLUTIONS 

2a. Definition and Existence 

Recall that the real interval I is always supposed to contain its ongtn t0 ; 

using the notations defined in Sections lc and ld, one has; 
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PROPOSITION (2a). Let C be a multifunction defined on I ·tvith closed convex 
values in the Hilbert space H and finite 'retractio11; let a E C(t0) (this implies 
C(t0) =ft 0 , thus C(t) =I= 0 for every t E I since the ret1·action is finite) . fiJTith 
every P E lfp(J) described as in (1.8), let us associate the local-step multifunction Cp 
defined by (1.10). To Cp corresponds the local-step function up: I---?- H inducti'vely 
constructed by means of (1.13) and (1.14). Then the net of the functions (up), 
P E lfp(I), converges uniformly on I. 

DEFINITION. The limit u in the above Proposition is called the weak solution of 
the s~weeping process for the multifunction ( 01' moving set) C and the initial value a. 

'Ve shall base the proof on two lemmas. 

LEMlVlA 1(2a). Let r denote a closed convex nonempty subset of H; denot·ing 
by 8(x, F) and 8( y, F) the distances from tzvo arbitrary points x, y to this set, one has 

l x - proj(y, F)[2 - [ x - y 12 ~ 28(x, T) 8(y, T). (2.1) 

Proof This might be deduced from Lemma 2g below; more directly, by 
putting x' = proj(x, T) andy' = proj(y, T), the left member of this inequality 
becomes 

(y - y' I 2~t - )' - y') = 2(y - y' I x - x') + 2(y - )/ \ x' - J/ ) - I y - y' \2 , 

where ( I ) represents the scalar product in H. The first term on the right is less 
than or equal to 28(x, F) o(y, F) and, as x' E F, the second term is ~ 0 by 
virtue of a classical characterization of proj(y, F). 

LEMMA 2(2a). Let Ii be one of the intervals composing P, with O'figin t i (non­
necessarily belonging to it). Let P' E lfp(J) be a refinement of P; denote by Up and Up' 

the local-step functions respectively corresponding -in the same way as abo•De to Cp 
and Cp' and to arbitrary initial values. Denote by ] 1 , ] 2 , ... , indexed according to 
thei1' succession in R, the intervals of P' which are contained in I i . In the e?:ent of I ;, 
not being the last inteTval of P, these £nter'vals necessarily form a finite sequence 
] 1 , ] 2 , ••• , f m; in that case denote by fm+I the inter·val of P' following fm . With 
these notations, whichever are the real numbers ai E ] 1 and T iE I i U Jm.+ l such that 
ai ~ 'Ti , one has 

(2.2) 

with 

Pi = sup{ret(Cp' ; 8, 8'): [8, 8'] C Ji}· 

Proof. First let us establish (2.2) in the event Ti E f m+l . Denote by X ;. and 
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ci' respectively, the constant values of Up and Cp on the interval Ii; denote by YJ 
and D1 the constant values of Up' and Cp' on the interval ]1 • The definition of 
up' implies 

hence, by inequality (2.1 ), 

By making j = 1, 2, ... , m - 1 and adding, one obtains 

m-1 

I xi - Ym 1
2 

- I xi - Y1 1
2 ~ 2 L S(xi, Di+I) S(yi , Di+I). (2.4) 

j=l 

In the event m = I interpret the right member as zero. The definitions of C P 

and Cp' imply that Ci+l and Dra+l are the same set (namely, C(ti+l) if ti+1 E Ii+l 

and C+(ti+1) if ti+l f/3 Ji+I)· As the projection on this convex set is a nonexpanding 
mapping, one has I xi+l - Ym+I 1

2 ~ I xi - Ym 1
2• It follows that the left member 

of (2.2) is less than or equal to the right member of (2.4). Recall the expression 
given in (1.9) for the retraction of a local-step multifunction; since xi belongs 
to Ci = D1 , one has, for every j = 1, 2, ... , m- I, 

Therefore the right member of (2.4) is less than or equal to the expressions 

m-1 

2pi L e(DJ , D;+1) < 2pl. 
j = l 

This proves (2.2) in the considered case. 

(2.5) 

It remains to adapt this proof to the case ri E It"; then call P- the value ofj such 
that ri E ] 1 (no matter if Ii happens to be the last interval of P and the sequence 
(]1) infinite). Add member to member the inequalities of the form (2.3), with 
j = 1, 2, ... , fL - 1. On the left this yields the first member of (2.2) and on the 
right the same result as in (2.4), except for replacing m by !'-; again this right 
member is majorized by the right member of (2.5). 

Proof of the Proposition. Due to H being complete, we are to establish that, 
for every e > 0, there exists P E lfp(J) such that, for every P' and P" greater 
than P in the directed set lfp(J) (i.e., refinements of P), the corresponding 
functions Up' and Up" , agreeing with the initial value a, verify for every t E I 

I Up'(t) - Up"(t)i < E. 
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Let f3 be a strictly positive number and let Yo, y 1 )'''' Yn , ... be an infinite 
sequence of strictly positive numbers such that L;=o Y-r~ = +oo and z::=o (y11)2 < 
f3. The semiopen intervals 

[ 

k k+l J 
(0, Yo(, (Yo , Yo + Yl(, ... , fo Yn' 'fo Yn , ... 

form a partition of R+ . As the function r: t r-+ ret( C; t0 , t) is nondecreasing 
the inverse images of these intervals by r are subintervals of I (of any sort; some 
of them possibly empty or reduced to singletons), and among these inverse 
images, those which are nonempty constitute a locally finite partition of I; such 
we specify from now on the partition P: 10 ,11 ,12 , •.• considered in the foregoing. 

By this construction of P, the oscillations of the real function r over the intervals 
/ 0 , 11 , 12 , ... are, respectively, majorized by some nun1bers YJo, 711 , Tj2 , ... forming 
a (possibly finite) subsequence of the sequence (Yn); thus 

(2.6) 

The retraction of C over any subinterval of I i is majorized by TJi; in view of 
( 1.12) this implies that the retraction of C p' over such a subinterval of 11 is 
majorized by 21]i; thus inequality (2.2) holds, with Pi replaced by 2'Y/i . 

Let t E I; there exists v such that t E Iv . Fi..x the a i and r i involved in Lemma 2 
according to the rules 

fori= 0: 

for 0 < i < v: 

fori= v: 

Then, adding member to member the inequalities of the form (2.2) for i = 
0, 1, ... , v yields 

v 

I Up(t) - Up'(t)l2 
- I up(t0) - Up'(t0)12 ~ 8 L (7Ji)2 • (2.7) 

i =O 

Since up(t0) = up-(t0) =a and in view of (2.6) this reduces to \ up(t) - Zlp'(t) j ::;; 
(8ft)112

• As the same is true for any other P" E lfp(J) greater than P, one finally 
has ] up'(t) - up"(t)l ~ (32[3)112 for every t E I. Since f3 may be chosen arbitrarily 
small this establishes the Cauchy property. 

From the above proof one might easily derive an upper bound of the error 
committed when Up is considered as an approximant of the weak solution u; 
a better majoration will be found in Section 2h. 

2b. Nonexpans£on 

PROPOSITION 2b. If u and u' are two weak solutions of the sweeping process by 

the same moving convex set C, the real function t ~ I u(t) - u'(t) l is nonincreasing. 
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Proof. If u and u' correspond to initial values a and a', these functions are, 
respectively, the limits, for P E lpf(J), of the local-step functions Up and u'p 

constructed from these initial values. As the successive values of up and u' P are 

obtained by performing a sequence of projections on the closed convex sets 

cl) c2 , ... , the nonexpansion property of such projections implies that, for 

s ~ t, one has I up(s) - u'p(s)! ~ jup(t) - u'p(t)!. Take the limits of both 
members of this inequality for P E lfp(J). 

2c. Variation 

PROPOSITION 2c. Let u be a weak solution of the sweeping process by C on the 

interval I; then 

\It Ef: u(t) E C(t), 

V[s, t] C 1: var(u; s, t) ~ ret(C; s, t) = r(t) - r(s). 

Proof. The construction of Up makes that up(t) E Cp(t), thus 

8(up(t), C(t)) < e(Cp(t), C(t)). 

(2.8) 

(2.9) 

The approximation property expressed by (1.11) implies that the second 

member has the limit zero for P ranging in the directed set lfp(J); hence (2.8) 

holds, since C( t) is closed. 
On the other hand, if a and T, with u < r, respectively, belong to two adjacent 

intervals of P, the constructive law (1.14) clearly implies 

(2.10) 

For arbitrary u and T, with a < T, the same is found true by adding the similar 
inequalities corresponding to intermediate points. Taking the limits for P E lfp(J) 
of both members of (2.1 0) yields, in view of ( 1.12), 

I u(u)- u(T)I ~ ret(C; a, T). 

Then (2.9) follows from the definition of var(u; s, t). 
As an immediate consequence of (2.9) one has: 

CoROLLARY 2c. If the real funct£on t r+ r(t) = ret(C; t0 , t) is continuous, 

resp. locally absolutely continuous, resp. Lipschitz with ratio k, such is, relative to 

the norm of H, every weak solution u of the sweeping process by C. 

Recall that the local absolute continuity of u, a function with values in a 
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reflexive Banach space, implies that the strong derivative dufdt exists for almost 
every t E I. In that situation, (2. 9) entails, for almost every t E I, 

1 dufdt I ~ I drfdt \. (2.11) 

In the language of kinematics it n1ay be said that the speed of the moving point u 

is majorized by the retraction speed of the moving set C. 
Observe on the other hand that the local absolute continuity of r is equivalent 

to the following. For every compact subinterval (s, t] of I and every E > 0, 
there exists 1J > 0 such that if ]ui, Ti[ is a finite family of nonoverlapping sub­
intervals of [s, t], one has the implication 

2d. Limit from the Left 

Let t1 E I, strictly greater than t0 . As the real function 1' is nondecreasing, 
it possesses for t t t1 a finite limit denoted by r-(t1). Then, from inequality (2.9) 
one concludes that every weak solution t 1--+ u(t) of the sweeping process presents 
the Cauchy property for t t t1 , implying the existe:o.ce of 

PROPOSITION 2d. Jf!ith the above notations 

I u(tl) - u-(tl)l ~ r(tl) - r-(ti), 

u(t1) = proj(u-(t1), C(t1)). 

(2.12) 

(2.13) 

Proof. Inequality (2.12) immediately results from (2.9). For the proof of 
(2.13), observe that the subset g; of lfp(J), consisting of partitions in which 
figures an interval reduced to the singleton {t1}, is terminal in this directed set. 
Thus u may be considered as the limit of the net (up), P E ~. If P E f?/J, the 
definition of C p makes that C p(t1) = C(t1) and the construction of th€ local-step 
function Up implies 

As the convergence of the net (up), P E f!JJ, to u is uniform with regard to t, the 
following commutation of limits holds 

Then (2.13) results from the mapping x 1---+ proj(x, C(t1)) being continuous. 

13



Remark. Inequality (2.12) shows that the continuity of r from the left at t1 

implies the same for u. On the other hand it is easily found [19] that the left 
continuity of r is equivalent to 

lim e(C(t), C(t1)) = 0, 
t'f'tl 

which in turn amounts to the following: For every w, a neighborhood of zero in 
H, there exists 1J > 0 such that 

Clearly this property holds in particular when the multifunction C is upper 
semicontinuous from the left at t1 , in the classical sense that, for every open set Q 

containing C(t1), there exists 'fJ > 0 such that 

t1 - 1J < t < t2 ~ C(t) C Q. 

Statements involving in the same connection the limit set C-(t1) may be found 
in [19, Sect. 4e]. 

2e. Limit from the Right 

Let t1 E I, suppose it is not the greatest element of I; as before, the limit of r 
from the right at the point t1 is denoted by r+(t1). Using again inequality (2.9) 
and the completeness of H, one concludes to the existence of u+(t1), the limit of u 
from the right at the point t1 • 

PROPOSITION 2e. With these notations 

[ u+(t1) - u(t1)1 ~ r+(t1) - r(t1), 

u+(t1) = proj(u(t1), C+(t1)). 

(2.14) 

(2.15) 

Proof Inequality (2.14) results immediately from (2.9). As in the preceding 
section, call&' the terminal subset of lpf(J) consisting of partitions which include 
the singleton {t1}. For P E & one has 

since the interval of P following {t1} is necessarily open at the left. As the con­
vergence of the net( Up), P E fJJ, is uniform relative to t, the left member converges 
to u+(t1); then (2.15) results from the continuity of x t->- proj(x, C+(t1)). 

Remark 1. Using [19, Proposition 4d] and elementary inequalities of Hilbert 
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space geometry, it may be proved that the right 1nember of (2.15) equals 
limttt

1 
proj(u(t1), C(t)). 

Remark 2. Inequality (2.14) shows that the continuity from the right for r 
implies the same for u. On the other hand [19, Proposition 4c] this right con­
tinuity of r at the point t1 is equivalent to t 0 

lim e(C(t1), C(t)) = 0, 
t.Ltl 

which in turn is equivalent to C( t1) C C+( t1). 

2£. Restriction and Piecing 

The purpose of this section is to display the local character of the concept of 
a weak solution. 

PROPOSITION 2f. Let u: I-+ H be a weak solution of the sweeping process by C. 
Let I', contain£ng its origin t 0', be a subinterval of I. Then the 1'est-riction u \1' 

is a weak solution of the sweeping process by C \I' . 

Proof. Take a partition P0 E lfp(I) whose I' is a member; in lfp(I) the set~ 
of the refinements of P0 is terminal; hence tt is the limit of the net (up), P E [1JJ. 

Every P' E lfp(I') is the trace on I' of at least one P E 9; we shall write P' = tr P 
defining thereby an order preserving surjective mapping of the directed set .9 
onto the directed set lfp(I'). According to Section 2a, the definition of u': 
I'---+ H, the solution of the sweeping process by C 11', for an initial value 
a' E C(t0') equal to u(t0'), rests on the construction of local-step functions taking 
this value at the origin t0' of I', each of them corresponding to an element P' of 
lfp(I'). If P' = tr P, let us denote by u' P this local-step function; clearly u' may 
as well be defined as the limit of the net (u' p), P E f!IJ. The restriction up It' is a 
local-step function on I', constant on the same intervals as u' P: both local-step 
functions are constructed inductively by successive projections on the same 
closed convex sets. As such projections are nonexpanding one has 

Vt EI': 

with u' p(t0') = u(t0') by hypothesis. The right member has the limit zero by 
the definition of u; this proves u' = u \1' • 

COROLLARY. Let 10 , 11 , ••. , I.i , ... be a locally finite partition of I into intetvals 
containing their respective origins t 0 , t1 , ••. , t i , . . . and let u: I --+ H satisfy the 
condit£ons: 
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(i) For e:l'ery i the restriction of u to li is a solution of the sweeping process 
by the restriction of C _to this interval (fori > 0 this implies the existence of u-(ti)). 

(ii) Fori> 0 

Then u is a weak solution of the S'lveeping processfm· Con]. 

In fact there is at most one u: I~ H satisfying these conditions. Now, by 
virtue of the above proposition and of Proposition 2d, the solution of the sweeping 
process by Con I, with the initial value u(t0), actually satisfies then1. 

To this corollary may be reduced immediately the case of a cover of I by a 
sequence of overlapping intervals: A function I ~ H whose restriction to each 
of these intervals is a weak solution of the corresponding sweeping process is also 
a weak solution of the sweeping process with regard to the whole of I. 

2g. Alteration of the Data 

The following proposition enables us to estimate to what extent some un­
certainty about the multifunction C and the initial value a affects the corre­
sponding weak solution of the sweeping process. 

PROPOSITION 2g. Let C and C' be two multzfunctions from I into H, with 
closed conve."iJ values and finite retractions; let u and u' be some respective weak 
solutions of the sweeping process; let p,(t) be a majorant of the Hausd01jf distance 
h(C(O), C'(O)) for {) E [t0 , t]. Then, for every t in I, 

I u(t)- u'(t)l2
- I u(t0)- u'(t0)1 2 

~ 2p(t)(ret(C; t0 , t) + ret(C'; t0 , t)). (2.16) 

';y e establish first: 

LEMMA. Let C+ and C+' be two nonempty closed con'l'eX subsets of H; let u_ 
and u_' be two points of H; put u+ = proj(u_ , C+) and u/ = proj(u_', C+'). The1t 

l u+- u+' 12 - 1 u_ - u_' p~ 

~ 21 u+- u_j e(C/, C+) + 2 I u/ - u_' ! e(C+, C/). (2.17) 

In fact, if ~+ and Y+, respectively, denote the indicator function and the 
support function of c+' the above definition of u+ is classically equivalent to 
U_ - U+ E 8~+(u+), itself equivalent to U+ E 8y+(u_ - u+), i.e., 

Vy E H: 
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Apply this withy = u_' - u+', then write the same after exchanging primed and 
non primed letters; adding these two inequalities member to member yields 

Twice the left member is easily found to majorize the left member of (2.17). 
On the other hand the elementary techniques of convex analysis (see, e.g., 
[19, Sect. 2c]) yield for every y E H such that Y+(y) and y+'(y) are finite, 

which finally entails inequality (2.17). 

Proof of the Proposition. The functions u and u' are the respective lin1its of 
nets (up), P E lfp(J), and (u'p), P E lfp(l). Let Ii and Ji+l denote two consecutive 
intervals of P; by the definition of Up one has 

and similarly for primed letters; then the lemma yields an inequality of the form 
(2.17). Let m be the value of i such that t Eli; by adding member to member 
the inequalities obtained in this way for i = 0, 1, ... , m - 1, one gets 

Here f.Lp(t) denotes a majorant of e(Cr(O), C'p(B)) and e(C'p(B), Cp(O)) for 
e E [to) t]. In view of Cp and C'p being defined by (1.10), elementary properties 
of limit sets show that the number p,(t) of the proposition may stand for 11-p(t). 
AsP ranges over lfp(J), it remains to take the limits of the respective nets and 
observe that 

var(up; t0 , t) ~ ret(Cp; t0 , t) ~ ret(C; t0 , t) 

by virtue of (2.9) and (1.12), with similar inequalities for primed letters. 

2h. Upper Bound of l Up- u l 

The following proposition provides a majoration of the error committed when 
the local-step function up in Proposition 2a is used as an approximant of the weak 
solution u. The proof will display ~ typical application of Proposition 2g. 

PROPOSITION 2h. Let t be fixed in I; let 10 , 11 , ••. , Iv be the members of th~ 
partition P which CO'l)er the interval [t0 , t]. Let p denote a majorant of the oscillation 
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of the function rover every one of these intervals (i.e., a majorant of the retraction 
of C over any subintervJal of any one of them). Then 

I up(t) - u(t)i ~ 2( p ret(C; t0 , t))ll2• (2.18) 

Proof. Denote by B(p) the closed ball in H centered at the origin, with 
radius p. Let us define a multifunction , ~ D(,) with closed convex values as 
follows. Call Ji the member of P containing,; denote by ri the "inceptive value" 
of the function r in Ii, i.e., ri = r(ti) if the origin ti of Ii belongs to this interval 
and r i = r+(ti) if not; then put 

Clearly, if tiE Ii one has D(ti) = C(ti); if ti ¢: Ii, by writing, for every x E H, 

o(x, C(T)) ~ o(x, D( T)) + e(D( T), C(T)) 

and observing that e(D(r), C(T)) = r(T)- r+(ti) one concludes D+(ti) = C-t-(ti)· 
On the other hand, the mult1function D is nondecreasing over each of the 

intervals li. In fact let a and -r be in /i with a ~ rand let x E D(a); then 

8(x, C(r)) ~ S(x, C(a)) + e(C(a), C(,)) 

~ r(a) - ri + r(r) - r(a) = r(T) - ri, 

which entails .t E D( r ). 
From D being nondecreasing over each of the intervals Ii it first results that 

its retraction over any subinterval of them is zero; thus ret(D; t0 , t) equals the 
sum of jumps corresponding to the values I, 2, ... , v of i, equal respectively, to 
e(D-(ti), D(ti)) if tiE Ii and to e(D(ti), D+(ti)) if ti ¢ Ii (19, Sect. 4d and 4e ]. Now, 
if ti E Ii one has D( ti) = C( ti) and by the ''triangle inequality" for the ecart e, 

the definition of D entails that the first term on the right is majorized by r- (ti) -
r i _ 1 ; the second term equals r(ti)- r-(ti) [19, Sect. 4e]; so the considered jump 
is majorized by r(ti) - r i -l. In the case ti ¢ li one has D+(ti) = C+(ti), therefore 

where the right member equals r+(ti) - r i - l. 

Adding all the jumps, one finally obtains 

ret(D; t0 , t) ~ ret(C; t0 , t). 
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Thus D has a finite retraction; denote by v: I~ H the weak solution of the 
sweeping process by D, with initial value v(t0) = u(t0). As D is nondecreasing 
over each of the intervals Ii , the function v is constant over each of them. In 
view of the jump conditions found in Sections 2d and 2e, one concludes that v 
is nothing else than Up. It remains to apply proposition 2g with C' = D; as the 
Hausdorff distance h(C(T), D(r)) for T Eli equals r(T)- ri, this distance is 

majorized by p. 

2i. Change of Variable 

PROPOSITION 2i. Let 7T denote a nondecreasing surjective (thus continuous) 
mapping from an interval I', containing its origin t0', onto an interval I (thus, 
containing its origin t0). Let C: I->- H be a multifunction with closed convex values 
and finite retraction. Then the multifunction C' = Co 7T: I'--->- H (i.e., C'(t') = 

C(7T(t')) far every t' E I') has a finite retraction. A function u': I'~ His a weak 
solution of the sweeping process by C' if and only if it admits a factorization u' = 
u o 1r, where u: I~ His a weak solution of the sweeping p1·ocess by C. 

Proof. The definition of the retraction immediately yields that, if s' ~ t' 
in I', if s = 1r(s') and t = 1r(t'), one has ret(C'; s', t') = ret(C; s, t). With the 
notations of Section 2a, the solution u: I ~ H of the sweeping process by C 
corresponding to some initial value a E C(t0) = C'(t0') is the limit of the net (up):. 
P E lfp(J). The inverse images under 7T of the intervals constituting P are 
subintervals of I' constituting a locally finite partition P' of I'. Since 7T is continu­
ous, both an interval Ii E P and its inverse image 1/ E P' contain or do not 
contain their respective origins ti and t/; furthermore C'+(t/) = C+(7r(t/)). 
Thus the local-step multifunction C~, associated in our usual way with the 
multifunction C' and with the partition P' equals Cp o-rr. The local-step function 
u~.: I'----+ H corresponding to C~, and the initial value a is defined inductively by 

Up'(I;+1) = proj(up'(I/), Cp'(J;+1)); 

then u~, = Up o 7T. Consequently, the limit of u~, for P ranging over the directed 
set lfp(J) equals u o 7T. Observe that, if 7T is not strictly increasing, P' does not 
range over the whole of lfp(l'); however, Proposition 2h entails that the limit of 
Up' is the solution u' of the sweeping process by C'. In fact if p is a tnajorant of 
the retraction of C over any subinterval of ( E P, it is also a majorant of the 
retraction of C' over any subinterval of 1/ E P', the inverse image under rr. 

Remark. For the study in the same connection of some discontinuous change 
of variable, see [18]. 

2j. The Catching-up Algorithm 

The definition of u as the limit of a net has proved convenient for the sub­
sequent theoretical study. But, · since the considered functions take their values 
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in a metric space, one could as well construct u as the (uniform) lin1it of a sequence 
of local-step functions. 

From the standpoint of computation, the situation would be the following. 
The interval I shall be replaced by some compact subinterval [t0 , t0 + T]. If 

the retraction function r is known (or any real function more rapidly increasing 

than it), the inverse image of a finite partition of the interval [0, r(t0 + T)] into 
subintervals of length ~ p yields a finite partition P of [t0 , t0 + T] into sub­

intervals satisfying the conditions of Proposition 2h. Thus the corresponding 

step-function Up approximates u with a controlled error. 

A drawback is the possible presence in P of some interval Ii which would 

not contain its origin ti; then the .value up(li) is defined by projection on the 

limit set C+(ti) which is not directly given. This difficulty is partially overcome 

by observing ( cf. Section 2e, Remark) that for every x E H 

proj(x, C+(ti)) = lim proj(x, C(t)). 
tJ.ti 

This difficulty is avoided when the function r is continuous from the right, 

a case which will be specially emphasized in Part 3. Then, if one starts from 

a partition of [0, r(t0 + T)] into intervals containing their origins, such are also 
their inverse images under r. 

The simplest situation is that of a continuous function r, thus uniformly 

continuous on the compact interval [t0 , t0 + 11· This yields that, for every € > 0, 
there exists "fJ > 0 such that, taking as P a finite partition of [t0 , t0 + T] into 

intervals of the form [t.i, ti+1[, the error I Up - u I is uniformly majorized by E 

as soon as all the ti+I - ti are majorized by "fJ· The construction of such a up 

properly constitutes the catching up algorithm introduced in Section 1 d. 

3. RIGHT-CoNTINuous AND STRONG SoLUTIONS 

3a. Solutions in the Sense of Different£alll-1easures 

\Ve shall say that a ~apping u of the real interval/ into the Hilbert (or Banach) 
space H has a locally bounded variation if it has a bounded variation over every 
compact subinterval of I; notation u E lbv(/, H). 

To every u E lbv(J, H) classically corresponds an H-valued measure on I 

denoted by du; we shall call it the dijfere11tial measure of u. With the notations 
previously used for the left and dght limits, a characteristic property of this 

vector measure is that, for every [s, t] C I, one has Jrs.tl du = u+(t) - u- (s). 

Consequently, the measure du determines, up to an additive constant, the two 
functions t 1-+ u+(t) and t ~-+ u- (t), but, in general, the very value of u at a 
possible point of discontinuity remains independent of du. 
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In all the following, the considered functions will be supposed right continuous; 

if such is u 

Vt El: u(t) = u(t0) + J du. 
]t0, t] 

(3.1) 

DEFINITION 3a. The function u E lbv(J, H) is called a solution of the sweeping 
process in the sense of differential measures ·if there exists (nonuniquely) a non­
negative real measure df.L on I and a function u' E -Yioc( df.L, H) such that du = 

u' dfL and that 

-u'(t) E Bif;(t, u(t)) (3.2) 

for every t in I. 
An equivalent definition would consist in requiring u' to satisfy (3.2), except 

possibly on smne df1'-negligible set, but adding the specification that u(t) E C(t) 
for every t. In fact the set oif;(t, x) is nonempty if and only if x E C(t). 

The following proposition entails the uniqueness of such a solution u, right 
continuous and agreeing with some initial condition u(t0) = a. 

PROPOSITION 3a. If u1 and u2 are t·ight continuous and solutions of the szveeping 
process in the above sense, the real function t f-.+ I Zl-t(t) - u2(t)1 is noninaeasing on I. 

Proof. The definition involves the existence of nonnegative real measures 
dp.m, m = 1, 2, and functions U.m' E .!ef0 c(afLm, H) satisfying (3.2). Relative to 

dp. = af.L1 + df.L2 , the measure dp.rn possesses a density fLm' E fflrx:,(dp., R) with 
nonnegative values; thus dum = u.m' 1'-ra' dfL. As, for every t E I, the values of the 
multifunction 8if;(t, ·) are conical subsets of H, the monotonicity of this multi­
function yields 

(3.3) 

The function t f-.+ !I u1(t) - u2(t)12 belongs to lbv(J, R) and, as it is right 
continuous, its increment from the point s E I to the point t > s equals the 
integral of its differential measure on the interval ]s, t]. N3 a result of [21, 22] 
this real measure is majorized by the measure ( u1 - u2 I u1'p.1' - u2' p.2' ) dp. 
which, in view of ( 3. 3), is nonpositive. 

Elen1entary counterexamples show that this conclusion does not hold in the 
absence of right continuity. 

3b. Existence Theorem 

PROPOSITION 3b. If the retraction function r is right continuous, every W(?ak 
solution u of the sweeping process (rig lzt continuous £n view of Proposition 2e) is also 
a solut-ion in the sense of differential measures; the measures dr may be taken as the 
measw·e diL of Definition 3a. 
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Proof. ·using a covering argument one may reduce the proof to the case 
where I is a compact interval [t0 , t0 + T]. 

Let (En) be an infinite sequence of strictly positive real numbers, converging 
to zero. As the real function r is nondecreasing, the hypothesis equivalently 
means that it is u.s. c.; thus the inverse image under r of any interval of the form 
[p, +oo[ is a closed (possibly empty) subinterval of I. By taking the inverse 
images of intervals of the form [pin, P7+1[, with P7+1 - p/2 ~ En, and proceeding 
if necessary to subsequent refinements one constructs an infinite sequence (P.n) 
of finite partitions of I into subintervals of the form 

(we shall write tin = t0 fori = 0 and tin = t0 + T fori= v(n)) possessing the 
properties: 

(i) the oscillation of r on each of the intervals constituting P n is ~ En; 

(ii) litnn-+c.o max{t/2 
- t:_1: i = I, 2, ... , v(n)} = 0. 

For each n EN, let us define inductively a finite sequence (x/1
), i = 0, 1, ... , 

v( n ), of points of H by 

xi n = proj(xY-1 , C(tt)). 

This implies 

(3.4) 

(3.5) 

Observe that, because of the refinements used in constructing the sequence of 
partitions Pn, it may happen thatr(t;'__1) = r(tin). For everyn EN, let us construct 
a mapping un: I---->- H by defining its restriction to each interval [t~1 , t/''[ 
as follows: 

(1) If r(t~1) = r(tt), un is given a constant value on the interval, namely. 

(3.7) 

Vt E [t"! t.'n[ • un(t) = [r(tt)- r(t)] x~1 + [r(t)- r(t~_1)] xin . (3.S) 
1.-l ' ~ • r(t,t) - r(tf_

1
) 

(3) Finally, for t = t~n) = t 0 + T, 

u(t0 + T) = x:(n) • 
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Comparing adjacent intervals, one observes that the expressions of u( t) written 
in (3.7) or (3.8) are also valid for t = t{1

·; hence, for every t and t' in [t7_1 , tin], 

n( ') n( ) r(t') - r(t) ( n n ) 
u t - u t = r(t.n) _ r(t~ ) xi - xi-l • 

t ~-1 

Thus, in view of (3.6), if t ~ t', 

! u71(t') - un(t)! ~ r(t') - r(t) (3.9) 

andJ by addition, this also holds for every t ~ t' in I. This inequality entails 
that un, like the real function r, is right continuous, with bounded variation. 

LEMMA 1. The vector measure dun equals u'ndr, where u'n denotes the step .. 
function, ·with values in the unit ball of H, const-ructed as follows~ on each inter·cal 
of the form ]t7_1 , t/~]: 

(1) if ·r(tt) = r(t~_1) one takes u'n = 0 on the interval; 

(2) otherwise u'n has the constant value 

n n 
w ] n n] 'n( ) Xi - Xi-1 vt E ti-l , ti : u t = ( ) ( . -l) ; r t.n - r t'! 

1. 't 

(3) in addition u'n(t0) = 0. 

(3.10) 

Let us prove this lemma by checking that the measures Jun and u'nar yield the 
same integral over any subinterval of I. By unions or differences, one is reduced 
to the two cases: 

Case of an open subinterval ]a, T[ of]t~_1 , t/<t]. Denoting as before by ·zr and 
v+ the left and right limits of a function v~ one has JJa.~-r dv = v-('r) - v-!-(a:). 
Thus the expected equality is trivial if r(tin) = r(tf_1); otherwise 

J, d n r-('r) - r+(u) ( n n ) u - Ji.' X' 
1 [ - r(t n) - r(t!~ ) i - • '2'-1 ' 
a,T i z-1 

which equals J1a.T[ u'n dr in view of the constant value of u'n over the interval 
]tf_l' tt]. 

Case of an inter'l.tal consisting in the sing let on t l· For 0 < i ~ v( n) one has 

which trivially vanishes if r(t/t) = r{t~1); otherwise, in view of (3.8), one finds 
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while 

equality follows from the definition of u'n. 
Finally, fori = 0, the right-continuity of rand un yields 

J dun = J u'n dr = 0. 
{to} {to} 

Let us observe now that the functions u'n, taking their values in the unit ball 
of H, define elements of the closed ball with radius (r(t0 + T))1/2 in the Hilbert 
space L 2( dr, H). This balls is weakly sequentially compact, so that a subsequence 
may be extracted which converges in the weak topology of L 2( ar, H). Suppose 
a _change of indices such that this subsequence is identified with u'n itself and 
denote by u' its ·weak limit. Define u: I-+ H by 

u(t) = u0 + i u' dr. 
Jto.tJ 

(3.11) 

This is a right-continuous function, with bounded variation, and u' dr is its differential 
measure. The product of any element h of H by the characteristic function 
XJt

0
.t] of the interval ]t0 , t] yields an element of L 2(dr, H). Denoting by < ·, ·) 

the scalar product in this space we have 

(u(t) I h) = (u0 I h) + (u', Xlt0,t]h). 

A similar expression holds for ( un( t) I h), proving that for every t E I, the 
sequence un(t) converges to u(t) weakly in H. 

Coming back to the partitions Pn , one observes that Proposition 2h applies 
to the step-functions constructed on the sequences xt: this sequence of step­
functions converges strongly and uniformly to the weak solution of the sweeping 
process admitting a as initial value. And by inequality (3.9) and the property (i) 
of P.11 such is also the case for the sequence un; thus the function u, as constructed 
in (3.11 ), is identical with the considered weak solution of the sweeping process 
and the convergence of the sequence un is actually st1·ong and uniform on I. 

Let us put now a notation: For every n EN and every t E ]t0 , t0 + T], there 
exists i such that t E ]tf_1 , tin]; the corresponding value of tt will be denoted 
by rn(t); in addition let us put rn(t0) = t0 • Then: 

LEMMA 2. For every t E I, 

(3.12) 
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or equivalently, denoting by y(t, ·) the support function of C(t), 

u-n(-rn(t)) E C(-rn(t)), 

y( rn(t), -u'11(t)) + (un( -rn(t)) \ u'n(t)) = 0. 

This is trivial if t = t0 ; if Tn( t) = tin, i > 0, one has 

on the other hand, (3.5) is equivalent to 

(3.13) 

(3.14) 

thus the expression (3.10) of u'n(t) entails (3.12) if r(tt1) < 1'(tt); otherwise 
(3.12) trivially holds as u'n(t) is zero. 

\Ve are now the complete the proof of the proposition, by establishing that u 
complies with Definition 3a, with dJ-t = dr. Actually u', the density of the vector 
measure du relative to the real measure dr, has just been obtained as an element 
ofL2(dr, H); in the following we shall precisely understand u' as some representa-· 
tion of this element, i.e., a function everywhere defined on I. By passing to the 
limit in inequality (3.9), one gets a majoration of the vector measure du allowing 
for u' to take all its values in the unit ball of 11. Then the elementary expression 
of the ecart e(C(t), C(Tn(t))) in terms of the respective support functions of the 
considered sets [19, Sect. 2c], already used in Section 2g of this paper, yields 

(3.15) 

On the other hand, (3.9) implies 

thus 

(3.16) 

By the strong convergence of un(t), one has 

lim (u(t) - un(t) [ u'n(t)) = 0. 
n-7oo 

(3.17) 

As r is right continuous and in view of the requirement (ii) observed in con­
structing the partitions p n 

(3.18) 
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Putting together (3.14), (3.15), (3.16), (3.17) one obtains, for every t in I, 

lim sup [y(t, -u'n(t)) + (u(t) I u n(t))] ~ 0. 
n-7w 

(3.19) 

Let us make use now of Mazur's trick in the I-Iilbert space L2(dr, H); there 
exists in this space a sequence (v'm), mEN, which strongly converges to u' and 
such that each of the v'm has the form 

v'm = '\' cx-mu'i 
L.t ] ' (3.20) 

}EJ(rn) 

where ]( m) is a finite set of integers ~ m and the cx;m are nonnegative real 
numbers such that 

L cx/n = I. 
jt;J(m) 

By (3.20) the v'm are defined as functions on I and the strong convergence in 
L2(dr, H) implies that, possibly after replacing them by some subsequence, one 
has the strong convergence of v'm(t) to u'(t) for every t outside of some dr­
negligible subset cu of I. The convexity of the function .-c ~ y(t, - x) + (u(t) I x) 
establishes that 

y(t, -v'm(t)) + (u(t) I v'm(t)) ~ L cx/n[y(t, -u'i(t)) + (u(t) I u'i(t))]; 
jt;J(m.) 

therefore, in view of (3.19) 

lim sup [y(t, -v'm(t)) + (u(t) I v'm(t))] ~ 0. 
7/Z-H:t;J 

Now the lower semicontinuity of y yields, for every t ¢: w, 

y(t, -u'(t)) + (u(t) l u'(t)) ~ lim inf [y(t, -v'm(t)) + (u(t) I v'm(t))]. 
m-H:t;) 

By changing for zero the value that u' takes at every point of w, one finally 
concludes, for every t E I 

y(t, -u'(t)) + (u(t) I u'(t)) ~ 0. 

As u( t) E C( t), this is equivalent to u' verifying (3.2). 

3c. Strong Solutions 

We conclude this paper by coming back to the strong formulation of Section Ia. 
It will be supposed that the retraction function r is locally absolutely continuous 

on I (i.e., absolutely continuous on every compact subinterval of I). Elementary 
this is found equivalent to the following: For every compact subinterval K of I 
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and every e > 0, there exists 'TJ > 0 such that, if Jcri , Ti[ denotes a finite fatnily 
of nonoverlapping subintervals of K, one has the implication 

vVe shall express this by saying that the multifunction C has a locally absolutely 
continuous retraction on I. Such is a fortiori the case if C has a locally absolutely 
continuous variati'.on in the sense of Hausdorff distance. Usual examples of 
multifunctions satisfying this condition and obtained as intersections of two others 
can be found in (17, 20]. 

Rapproaching Propositions 2a, 2c, 3b, one obtains: 

PROPOSITION 3c. If the multifunction C: I~ H with closed convex ·valuts 
has a locally absolutely continuous retraction, for every a E C(t0) there exists a 
unique mapping u: I ~ H, locally absolutely contimwus, such that zt( t0) = a and 
that 

-(dufdt) E 81/J(t, u(r)) (3.21) 

for almost every t in I. 

In fact, if dt denotes the Lebesgue measure of I, there exists .Y E ~f00(dt, R) 
with nonnegative values such that clr = i' dt. By Proposition 3b, du = u'dr, 
with u' E Jl'00(dr, H) satisfying (3.2); now u't E !t'f0 c(dt, H) is the density of the 
vector measure du with regard to the Lebesgue measure dt, i.e., this function 
equals the strong derivative dufdt for almost every tin I. As o,P is a cone (3.2) 
implies (3.21 ). 
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