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Starting from the Néel state of a uniaxial antiferromagnetic particle, we show that, due to the tunneling of the Néel vector
between easy directions, the ground state of a sufficiently small particle is a quantum superposition of two equivalent Néel states.
A certain orientation of the Néel vector becomes frozen as the volume of the particle grows, or the dissipation due to the interac-
tion of the Néel vector with microscopic degrees of freedom increases. For the weak dissipation, which is mostly the case, the
crossover from classical to quantum regime occurs at temperature T * ~ (¢,/¢€.)'/?Ty, where ¢, and ¢, are anisotropy and exchange

constants, 7y is the Néel temperature.

Observation of the quantum behaviour of a mac-
roscopic variable has remained a challenging prob-
lem [1] since Schrédinger [2] first discussed it in
1935. To date the only macroscopic systems where
significant progress has been made are supercon-
ductors. Quantum tunneling between two macros-
copically distinct current states, observed in super-
conductors, is in amazing agreement with theoretical
predictions [3]. Recently another field for the study
of the macroscopic quantum tunneling (MQT) has
been suggested [4,5]. It has been shown that in fer-
romagnets, a macroscopically large number of spins,
coupled by a strong exchange interaction, can co-
herently tunnel through the energy barrier created by
magnetic anisotropy. This effect may reveal itself in
the low temperature magnetic relaxation in bulk ma-
terials [5-7], or in quantum tunneling of the mag-
netic moment between easy directions in monodo-
main ferromagnetic particles [4,8]. In this paper we
show that a similar effect exists in antiferromagnetic
particles where it may be much greater than in
ferromagnets.

In a simplest version of the Néel Model, an anti-
ferromagnetic lattice consists of two ferromagnetic
sublattices. Their magnetizations have a fixed length
M,, and, in the absence of the magnetic field, are op-
posite to each other, M,=—M,, so the total mag-
netization is zero [9]. Antiferromagnetic order is
characterized by the Néel vector of a unit length,
1= M“TI M (1)

0
Here we are interested in the quantum tunneling of
I between two opposite orientations, [1)={t > and
| —1>=|%>. Due to this effect a small antiferrom-
agnetic particle must turn to a state with uncertain
orientation of the Néel vector,

1
|0>=ﬁ(|n>—|n>). (2)

As the volume of the particle grows, or the interac-
tion of the Néel vector with microscopic degrees of
freedom increases, a certain orientation of / becomes
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frozen. We believe that a nice mathematical ap-
proach to this problem, presented below, may be of
general interest for the problem of the ground state
of antiferromagnet.

In the absence of the external field and weak
Dzyaloshinsky ferromagnetism *' the Lagrangian of
the uniaxial antiferromagnet is [9]

— | g3t XL i’)z_ g(Q[L)z 1K (n- 2}
L= Jd X|:2y2 (dt 3 \ax, +3K(n-1)" |,
(3)

where y, is the perpendicular susceptibility (with
respect to the equilibrium orientation of / along the
anisotropy axis n), y=e/mc, « and K are exchange
and anisotropy constants correspondingly. For a
small particle / may depend on time but not on co-
ordinates because large spatial derivatives of / are su-
pressed by the exchange interaction. Then repre-
senting / in terms of angles € and ¢ in a spherical
coordinate system (n-I=cos f), we obtain eq. (3)

2 2
2y s@) (%) ; }
L'—V{Zyz[(dl + ar sin*f | — ;K sin“0 ¢ ,
(4)

where V'is the volume of the particle; a constant term,
— 3KV, is added for convenience.

Equilibrium orientations of I are 8=0 and ==
which correspond to the degenerate classical mini-
mum of the energy, F=0. The rate of quantum tran-
sitions between these states is proportional to the path
integral

ij(r)}JDW(r)}exp(%jdzL). (5)

It may be represented as
I'=Aexp(—B/h), (6)

where the imaginary time (r=it) action, B, is de-
duced from the Euclidean action,

2 2
— X d_H g?) in2 ] 1 ) }
I_der{zyz‘:(dT) +<dT sin‘f |+ 3 Ksin“g ¢,
(7)
evaluated along the quasiclassical path {8(1), ¢(1)}

# Small magnetic moments due to non-compensating effects are
discussed in the end of the paper.
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which connects =0 and 8= =. The equations of mo-
tion following from eq. (7) are

d¢ sin?f=const , (8)
dr
2
2 420 _ L(%)] :
;2 drz_[ + »> \dr sin 6 cos 6 . (9)

Consequently, a quasiclassical rotation of I may oc-
cur in any plane ¢=const, and satisfies a sine-Gor-
don equation,

d26

2 P
dz?

=w3sin 26, (10)
where wo=7(K/x, )'/%. There is an exact solution of
this equation,

(1) =2 arctan[exp(wp7)] . (11)

which corresponds to a subbarrier rotation of / from
0=0at 7= —oo to f=T7 at 7= +co. Evaluating / along
this trajectory we obtain for the WKB exponent

Xy
Up

|4 (12)

v &y
]

where ug=7y%/2 is the Bohr magneton. The exact
value of the prefactor in eq. (6) is less significant but
much more difficult to obtain. It has the form
A=wy [(B/%), where f(x) is a slow (not exponen-
tial) dimensionless function of x.

The most essential dependence of the tunneling
rate on the volume comes from the exponent (12).
The latter must be sufficiently small (say B/A<25
as accepted, e.g., in the theory of superparamagne-
tism [10]) to observe the transitions for a reason-
able time. According to eq. (12), for typical num-
bers, x, ~ 1074 K~ 10° erg/cm?, quantum tunneling
may be significant in particles of diameter d< 20 A.
It should not be a problem since antiferromagnetic
particles of that size have been already studied ex-
perimentally [11]. Notice, that such particles still
contain a macroscopically large number of spins,
N~ 103 For particles of much greater size the tun-
neling rate is so small that at zero temperature a cer-
tain orientation of the Néel vector becomes frozen.

At high temperature the rate of transitions be-
tween different orientations of / is dominated by
thermal fluctuations,
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I'=A4"exp(—-U/kgT) , (13)

where U= 1KV is the energy barrier due to magnetic
anisotropy. Quantum transitions dominate at 7'< T'*,
where T* satisfies U/kgT*=B/#. This gives

K

HUp
T*— 1 - 14
kg XL (14)

Fory, ~107% K~ 10% erg/cm?, T* is of the order of
a few Kelvin. In antiferromagnetic materials with
lower anisotropy, quantum effects should reveal
themselves at lower temperature but in particles of
a greater size.

The calculated temperature of the crossover from
thermal to quantum regime in antiferromagnets is by
one or two orders of magnitude greater than in fer-
romagnets. It becomes obvious when 7T* is ex-
pressed in terms of anisotropy and exchange energies
per spin, €, ~ g/ My, €.~ kg T, where Ty is the Néel
temperature. Since magnetic anisotropy is due to rel-
ativistic interactions, the ratio €,/¢. is generally small,
typically of the order of 10~°-10~* in 3d transition
magnetic systems. Taking for estimation [12]
X1 ~ upgMy/ksgTy, we obtain

p 1/2
ree() 5. 05

€

A similar calculation for the tunneling of magneti-
zation through the anisotropy barrier in ferromag-
nets [4,5] gives T*~ (&,/¢€.) T, where &, is the geo-
metrical average for the longitudinal and transversal
anisotropy, €.~ kg7, T, is the Curie temperature. It
shows that quantum fluctuations in antiferromag-
nets are much stronger than in ferromagnets.

Now let us consider the effect of dissipation on the
tunneling rate. The rate of the heat production in an-
tiferromagnets, due to the uniform rotation of /, is
[12]

_%J 3 '2_}'M0 72
Q= % d3x A= > VIz, (16)

where A is a dissipation constant whose value may be
obtained experimentally [13]. According to Leggett
[13] eq. (16) allows one to obtain an effective ac-
tion for the tunneling process, J=/+ I, where

_ Mo ) =i(7)]?
Idis_ 810 VdeJdT W (17)
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is responsible for the interaction of I with micro-
scopic degrees of freedom. Analysis of the extremal
trajectory corresponding to I shows that a good ap-
proximation for the WKB exponent in the presence
of dissipation is B=B,(1+ f), where

o htle ()" "
dn [y K An\e, '

Dissipation is important when £ is large, which pos-
sibly may occur in metals but certainly is not the case
in non-metallic antiferromagnets. Note that strong
dissipation may result in quenching of the Néel state
even in very small particles #2.

In antiferromagnetic particles of random shape,
magnetic moments of sublattices are not totally com-
pensated. For a particle of N spins, N /3 spins are at
the surface. Consequently, the number of non-com-
pensated spins due to statistical fluctuations of the
shape is (N?/3)!/2=N"/3 In a particle of 10° spins
this would produce a magnetic moment of 10ug. The
moment may be greater if a large area of the surface
coincides with a crystallographic plane [11]. Small
magnetic moments, M~ 10~3Nug, may be also gen-
erated by the weak Dzyaloshinsky ferromagnetism.
We believe that there are situations where both ef-
fects are small enough not to affect significantly our
results. At the same time they can be used for the
experimental study of MQT in antiferromagnets. As
the Néel vector tunnels through the barrier, a non-
compensated magnetic moment switches its direc-
tion. One can, therefore, study a low temperature
magnetic relaxation in antiferromagnetic particles
whose magnetic moments were initially oriented by
the magnetic field. In such an experiment MQT
would reveal itself in the temperature independent
relaxation rate below T*,
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for many fruitful discussions, and to John Gillespie
for reading and commenting on the manuscript. One
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# Qualitatively, the effect of dissipation on the ground state of
antiferromagnet has been discussed in terms of MQT in ref.
[14].
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