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Neurophilosophy of Number
Hourya Benis Sinaceur

Institut d’Histoire et de Philosophie des Sciences et des Techniques

ABSTRACT
Neurosciences and cognitive sciences provide us with myriad
empirical findings that shed light on hypothesised primitive
numerical processes in the brain and in the mind. Yet, the
hypotheses on which the experiments are based, and hence the
results, depend strongly on sophisticated abstract models used to
describe and explain neural data or cognitive representations that
supposedly are the empirical roots of primary arithmetical activity.
I will question the foundational role of such models. I will even
cast doubt upon the search for a general and unified
philosophical foundation of an empirical science. First, it seems to
me hard to draw a global and coherent view from the
innumerable and piecemeal neuropsychological experiments and
their variable, and sometimes uneasily compatible or fully
divergent interpretations. Secondly, I think that the aim of
empirical research is to describe dynamical processes, establishing
correlations between different sets of data, without meaning to fix
an origin or to point to a cause, let alone to a ground. From the
very scientific and philosophical point of view it is essential to
distinguish between explanations, which provide correlations or,
at best, causal mechanisms, and grounding, which involves a
claim to some form of determinism.

1. Introduction

Gottlob Frege’s question in the first sentence of the introduction to The Foundations of
Arithmetic is: ‘What the number one is, or what the symbol 1 means?’ (Frege [1884]
1953, xiii).

Frege’s answer to this question is that numbers are objects and assert something about a
concept. In the process of getting this answer, Frege does not allow himself to draw on
sensations, mental pictures or acts, consciousness, historical development, natural selec-
tion, etc. Let me recall some of Frege’s prerequisites:

No, sensations are absolutely no concern of arithmetic. No more are mental pictures…All
these phases of consciousness are characteristically fluctuating and indefinite, in strong con-
trast to the definiteness and fixity of the concepts and objects of mathematics.

Psychology should not imagine that it can contribute anything whatever to the foundation of
arithmetic.

© 2017 Open Society Foundation
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Never let us take a description of the origin of an idea [Vorstellung] for a definition, or an
account of the mental and physical conditions on which we become conscious of a prop-
osition for a proof of it.… [We] reckon twice two as four regardless of the fact that our
idea of number is a product of evolution and has a history behind it.

[Defining numbers psychologically] in terms of the nature of human mind,…makes every-
thing subjective,… and does away with truth. (Frege [1884] 1953, xvii, xviii, xviii, xix)

Today, the first question is ‘how?’ and the tools used for answering it give the key for
answering the what-question. Indeed, from the point of view of neurosciences and cogni-
tive1 sciences the question is: ‘How do we extract numbers from our perceiving the sur-
rounding world?’. And the goals and means of the investigation are totally opposed to
Frege’s views, since the answers to the question are based on the process of natural selec-
tion, the neurobiological architecture of the brain and the psychological operations of the
mind. Therefore the nature of numbers is understood in a way that straightforwardly con-
flicts with Frege’s conception.

Actually, the philosophical perspective of cognitive sciences is definitely empiricist. But,
at the same time, most cognitive scientists believe in the existence of universal structures of
cognition engraved in the functional architecture of the brain. Contrary to Jean Piaget’s
constructivism, according to which people gradually construct knowledge and form
meaning based upon their experiences and experiential learning, most cognitive scientists
endorse the hypothesis of quasi-innate mechanisms of perception and conception; there-
fore, they advocate a strongly rationalistic nativism.2 The Darwinian empiricism of neuro-
and cognitive sciences is a naturalised rationalism.

Noam Chomsky, the analytic philosopher and father of modern linguistics, was one of
the founders of cognitive sciences. His idea of the universal grammar as a mostly innate
body of knowledge possessed by language users played a big role in the decline of the asso-
ciationist view of behaviourism, also of Locke’s and Skinner’s view of the mind as a tabula
rasa and of language as learned skill, and of Piaget’s constructivism. Chomsky promoted
nativism, according to which specific skills and abilities are innate and hard-wired into the
brain at birth.

As a philosopher of mathematics, I am fascinated by the discoveries of neurosciences
and cognitive sciences about numbers and calculation. I have gathered much material
on the subject and I will try to present a synthetic view of the results and ideas I got
from it. I do not want to give a large space to a detailed description of the so many exper-
iments that have been performed. My aim is to focus on the conceptual and philosophical
background of those experiments and I will rather ask some questions about the under-
lying views, which seem to me open to discussion. In particular I will bring to light the
petitio principii, which is most times involved in neuropsychological arguments. Moreover
I will cast doubt on the primary aim to give foundations to our most elementary concepts
and operations of arithmetic. (For a more detailed study see Benis Sinaceur 2014b, 2016.
Yet my philosophical views are more elaborate in the present article.)

2. Experiments

Neurosciences and cognitive sciences provide us with myriad empirical findings that shed
light on hypothesised primitive numerical processes in the brain and in the mind. Actu-
ally, neurophysiological and cognitive experiments have remodelled our knowledge of the
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cerebral and psychological components of our ability to estimate, compare and calculate
quantities and solve elementary arithmetical problems.

Roughly there are three main types of empirical tests.

(1) Functional neuroimaging, especially functional magnetic resonance imaging (fMRI),
allows visualising which regions of the brain are activated when a subject performs
certain arithmetical tasks. Maps of neural circuits in activation can be correlated
with specific arithmetical activities. However, fMRI allows relatively poor temporal
resolution: it may not pick up transient pattern of brain activity.

(2) Electroencephalograhy (EEG) scans measure electric activity in the brain through elec-
trodes on the scalp; they can pick up quick changes in brain activity but have poor
spatial resolution, as only areas at the surface of the brain can be accurately measured.

(3) Experimental psychology aims at detecting the mental operations or representations
of animals, infants or adults through their observable behaviour when they are asked
to perform some arithmetical task. Inferences are made from what is actually observed
to what is putatively executed by the mind or represented in the mind. Cognitive
sciences reject also the idea that only public events (behaviours of individuals) can
be objectively studied and that therefore private events, such as emotions, feelings
and thoughts, should be ignored.

Those three main methodologies are combined with many others, such as the ‘viola-
tion-of-expectation looking-time methodology’, ethnological data, tests on brain-
damaged patients, methods of computer science, artificial intelligence, linguistics, anthro-
pology, philosophy, etc. The goal is to give accounts of the operations of the mind. Two
main global approaches are endorsed. On the one hand, computational scientists
(Hilary Putnam, Jerry Fodor, Zenon Pylyshyn) assume the hypothesis that the mind oper-
ates by performing purely formal operations on symbols, like a computing machine. They
assimilate the brain to an information-processing system with representational structures
so that the mind is the result of the programme that the brain runs. Thinking is a form of
computing. In Fodor’s original views, the computational theory of mind is also related to
the ‘language of thought’ (the mentalese), which allows the mind to process more complex
representations with the help of semantics (Fodor 1975). Pylyshyn also assumes the men-
talese hypothesis (Fodor and Pylyshyn 1988).

On the other hand, connectionists (such as Jeffrey Elman) incorporate dynamical
systems theory and model mental phenomena as emergent processes of neural intercon-
nected networks. They replace theoretical appeals to syntactic rules of inference and sen-
tence-like cognitive representations with appeals to the parallel processing of diffuse
patterns of neural activity. They believe that brain processing is non-symbolic and they
invoke neither the ontological category of representations nor the language of thought.
As a version of this approach there is Lawrence W. Barsalou’s theory of perceptual
symbol systems (Barsalou 1999), which bases symbolic functionality on simulation and
dynamic systems. Connectionism and computationalism need not be at odds: many
researchers argue that they are fully compatible and some think that the connectionist
architecture embodies the way in which organic brains implement the symbol manipu-
lation system. Actually, both models assume the immanence of arithmetical calculus in
nervous activity and mental functions: studies show that individual neurons utilise a
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wealth of nonlinear mechanisms to transform synaptic input into output firing, and that
these mechanisms enable the neurons and the neuronal networks to perform a range of
arithmetic operations on signals encoded in a variety of different ways (Dehaene and
Cohen 1997; Nieder 2005; Silver 2010; Dehaene 2011, 247–254). As a consequence of
the immanence assumption, neuroscientists develop a harsh criticism against behaviour-
ism and constructivism.

Indeed, the cognitive trend rules out the basic premise of behaviourism, which is that
the study of behaviour should be a natural science, such as chemistry or physics, without
any reference to hypothetical inner states of organisms. On the contrary, most cognitive
researchers assume as fundamental hypothesis the sui generis reality of the mental, and
combine the naturalistic testing of the behaviour with the (indirect) study of the represen-
tational structures of the mind, that is to say the study of how information is represented
and transformed in the mind in faculties such as perception, memory, attention, emotion,
language and reasoning. The emphasis on information processing entails that the hall-
mark of psychological theory is no longer observable behaviour, but rather the recording
and modelling of mental states. Marcus Giaquinto rightly points out that cognitive scien-
tists defend a form of mentalism. He objects that

The big problem for any version of mentalism is that only finitely many brain states have
actually been realised; hence, there are only finitely many mental entities, whether innately
given or produced by intellectual activity or a combination of the two. (Giaquinto 2015, 20)

A way out might be that although the brain and the mind do not store the infinity of
numbers, they have available small numbers and the process generating any number.

The cognitive trend dissents also from Piaget’s constructivism. Piaget denied young
children innate numerical abilities. He identified assimilation and accommodation as
mechanisms by which information from the environment and ideas from the individual
interact and result in internalised structures developed by learners. According to Piaget
[1953] 1973), the number concept is progressively constructed through a logico-math-
ematical synthesis of operations such as classification, ordering, recollection of discrete
quantities. Piaget distinguishes four stages of cognitive development:

. Sensorimotor stage (babies who are 0–2 years old);

. Preoperative stage (2–6 years);

. Operative stage (6–10 years): ability for concrete arithmetical operations;

. Abstract stage (10–16 years): ability for abstract calculating.

But new methods of experimenting, which were not available to Piaget, show that very
young babies recognise that something has changed in a small collection when an object
has been removed or added (see e.g. the section, ‘Piaget’s Errors’, in Dehaene 2011, 33–
36).3 One of the basic methods consists in considering looking times as a source of data
concerning infants’ perception and representation of events and objects that unfold
before them. Infants look longer at new, non-expected, improbable or impossible events
than at ordinary ones.4 Elizabeth S. Spelke states that, contrary to Piaget’s belief, infants
know right from birth some fragments of arithmetic comparable to the animal knowledge
of number. Elementary additions and subtractions are available very early (Wynn 1992).
Babies have also what she called an arithmetical ‘core cognition’. Spelke writes:

4 H. BENIS SINACEUR

D
ow

nl
oa

de
d 

by
 [

B
en

is
 S

in
ac

eu
r 

H
ou

ry
a]

 a
t 0

0:
23

 1
5 

N
ov

em
be

r 
20

17
 



Adults have a core conception of objects, and it is the very conception with which infants are
born. Development brings us new conceptions, some of them quite general, but these new
conceptions do not displace the core cognition. New conceptions of objects grow on the per-
iphery of a set of notions that are innate, that are present throughout life, and that do not
change. (Spelke 1983, 29; cf. Carey 2009, 40)

Moreover babies’ knowledge acquisition is much more flexible than supposed by Piaget.
Scientists have given evidence of neural plasticity and of neural reuse as fundamental
organisational principles of the brain: neural circuits established for one purpose can be
exploited, recycled, redeployed during evolution or normal development, and can be
put to different uses, often without losing their original functions (Anderson 2010; Ander-
son and Penner-Wilger 2013).

3. Theoretical Project

What is the theoretical aim of all those biological, neurophysiological and psychological
studies?

To answer this question I will reproduce the claims made by two leading scientists, Sta-
nislas Dehaene and Susan Carey, who represent major trends in the vast field of brain and
mind research:

I hope that empirical findings might shed light on ancient philosophical disputes that ques-
tion the very nature of mathematics. (Dehaene 2011, ix–x)

My goal here is to demonstrate that the disciplines of cognitive science now have the empiri-
cal and theoretical tools to turn age-old philosophical dilemmas into relatively straightfor-
ward scientific problems. (Carey 2009, 4)

Carey’s and Dehaene’s aim seems to be similar,mutatis mutandis, to Hilbert’s programme
to solve philosophical and epistemological questions about the foundations or the nature
of mathematics by mathematical tools (Hilbert 1918). Indeed, Carey’s and Dehaene’s basic
goal is to answer philosophical and epistemological questions through empirical testing
and mathematical techniques for recording and analysing data produced by testing. Actu-
ally, mathematics seems to be viewed by neuroscientists and cognitive researchers not only
as an investigation and analysis tool, but also as a very right expression of biological and
psychological data. But conversely biology and psychology are supposed to give empirical
grounding for thinking and calculating. Searching for neural/cognitive foundations for
mathematical, and more generally for conceptual capacities, is the theoretical project sup-
porting all kinds of experiments.

I will briefly report on Dehaene’s and Carey’s enterprises, as they differ on some impor-
tant points.My aim is to examine the conceptual and philosophical assumptions underlying
the general picture or theory they provide for describing the presumed neural or cognitive,
material or symbolic, actual foundations for our elementary arithmetical abilities.

4. Stanislas Dehaene’s Analysis

4.1. Dehaene’s ‘Number Sense’

On the one hand, Dehaene maintains that there are biological bases that really explain or
materially cause early arithmetical capacity. He thinks that the structure of the brain is ‘the

INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE 5

D
ow

nl
oa

de
d 

by
 [

B
en

is
 S

in
ac

eu
r 

H
ou

ry
a]

 a
t 0

0:
23

 1
5 

N
ov

em
be

r 
20

17
 



single source’ of elementary arithmetical knowledge (Dehaene 2011, xvii). According to
him, numbers are engraved in the architecture of our brains as an outcome of a slower
evolution governed by the principles of natural selection. On the other hand, Dehaene
thinks that arithmetic reasoning captures objective properties of the world, which the
brain, animal or human, must represent in order to act effectively in it. Interaction
between brain and environment produces what I call a ‘post-established’ and scalable
harmony, since it is a result of evolution and selection (Darwinism).

Thus, the organism’s adaptive reactions to the environment have presumably shaped a
sixth sense, the ‘number sense’, which provides animals and humans with a sensory per-
ception of the ‘numerosity’ of the objects in a group or a collection. The idea of and the
term ‘number sense’ originated from Tobias Dantzig’s book, Number: The Language of
Science (Dantzig 1954), and they became very popular through Dehaene’s work.

Numerosity is not yet number. It is the approximate quantity of the items in a group of
things. According to Dehaene, the number sense gives humans the intuition of number
through the native competence for processing approximate quantities. For instance,
babies and animals are not able to distinguish 48 from 50 objects; only words and
symbols can separate arbitrary close quantities. But apprehending the numerosity is inde-
pendent of language and symbols. It is a dimension of direct sensory perception: babies and
animals perceive the difference between not too big and not too close quantities, for
instance between 8 things and 16 things or between 16 and 40 (Wynn 1998; Butterworth
1999; Xu and Spelke 2000). Dehaene thinks that computing the numerosity of objects in a
set ‘is probably no more difficult than perceiving their colours or their positions’ (Dehaene
2011, 12). In short, numerosity is a natural and primitive datum, whereas the number is a
cultural concept.

It is generally admitted that the intraparietal sulcus of the brain houses the circuitry that
is fundamentally involved in estimation and comparison of numerosities (Simon et al.
2002; Nieder and Miller 2003, 2004; Roitman, Brannon, and Platt 2007, 2012; Dehaene
2011, chapters 7 and 8). The inferior parietal lobe, the frontal lobe and regions involved
in language processing are active in calculation tasks. Dehaene and his colleagues
suggest that these two parietal structures play complementary roles and they argue for a
down-top continuity between the primary unconscious intuition of numerosities and
the progressive verbal and symbolic construction of numbers.

I will set out briefly the main characteristics of the ‘number sense’.

(1) The number sense is a fuzzy vision, which extracts numerosity of collections of objects
in a direct, immediate, non-linguistic and non-symbolic way: that is the ‘subitizing’
ability. Thanks to perceptual vision of events and objects of the world, we intuitively
understand what cardinal numbers mean, that is to say we grasp without any calcu-
lation how big is the numerical size of objects and events: animals and babies discrimi-
nate between two different quantities (between one dot and two dots on a screen) and
they choose spontaneously the larger of two numerical quantities of crackers or candies.

Having a specific intuition of numerosities does not imply that numerosity is inde-
pendent of the architecture of the brain or of the basic structures of cognition. Intuition
means the learned agreement between the brain and the world, thanks to which we get
an immediate and approximate understanding of magnitudes. ‘Some mathematical
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objects now seem very intuitive only because their structure is well adapted to our brain
architecture’ (Dehaene 2011, xxi; this means clearly a post-established harmony).

(2) The number sense handles continuous estimates and it judges magnitudes approxi-
mately. Animals, chimpanzees for instance, and babies do not possess a discrete rep-
resentation of numbers. Animals have a ‘fundamental inability to represent numbers
4, 5 and 6 in a discrete and individualized format’ (Dehaene 2011, 19, 45); they have
only an approximate and continuous representation of numbers. Newborns have a
discrete representation only of small numerosities; they can actually readily dis-
tinguish one object from three, but rarely two from three, and never two objects
from four objects, four from six or eight from twelve (Xu and Spelke 2000). By con-
trast, ‘with the approximation system, we have an immediate intuition about the con-
tinuity of numbers’ (Dehaene 2011, 258). Number is also represented as continuous
mental magnitudes by nonhuman animals, human infants and adult humans.

(3) The number sense grasps the cardinal aspect long before the natural ordering of
numbers. Before the age of about 15 months ‘babies can recognize one, two, or
three objects and even know that 1 plus 1 makes 2, without necessarily realizing
that three is larger than two, or that two is larger than one’ (Brannon 2002;
Dehaene 2011, 51)—this assumption is not generally shared, in particular not by
Carey and her colleagues.5

(4) The number sense grasps an abstract property of objects or events in the world,
namely their size of magnitude, in a quasi-sensory way.

(5) The number sense needs the help of words and symbols to go beyond estimation and
approximation, and to handle discrete quantities and exact number calculations
(Dehaene and Cohen 1991). The number sense is neither the ability to count nor
to do proper calculations, but the ability to recognise quantitative changes in a
phenomenon, an event, or a collection.

In a nutshell, we perceive numerosities and we create (symbolic) numbers: ‘The
number sense that we inherit from our evolutionary history plays the role of a germ favor-
ing the emergence of more advanced mathematical abilities’ (Dehaene 2011, 29).

Note that the term ‘abstract’ is paradoxically used in the case of the intuitive grasping of
the approximate cardinality of a collection of events or objects as well as in the case of sym-
bolic exact calculation. Actually Dehaene uses ‘abstract’ with a variable meaning. For the
sake of clarification let me distinguish at least four meanings.

First, ‘abstract’ means ‘amodal’: the representation of numerosity is not specifically tied
with vision, audition, or touch (Church and Meck 1984; Dehaene 2011, 39–41, 50).6

Many experiments show that infants can match through one-to-one correspondence the
number of sounds they hear with the number of dots they simultaneously watch (Spelke
1983; Starkey, Spelke, and Gelman 1983, 1990; Wynn 1996; Feigenson and Spelke 1998;
Lécuyer 2002; Izard et al. 2009; Dehaene 2011, 39–41). The same representation of
number ‘three’ seems to fire in babies’brain,whether they see three dots or hear three sounds.

Secondly, ‘abstract’means ‘independent’ of the form of presentation (puppets, dots, small
cars or Arabic numerals) and from size, shape and colour. Four-and-a-half-month-old
infants are not surprised by changes in object appearance in the course of arithmetical oper-
ations. If two puppets are first presented, infants are not surprised if the puppets are replaced
by two balls; they are also not much disturbed by changes in object identity. Yet their attention

INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE 7

D
ow

nl
oa

de
d 

by
 [

B
en

is
 S

in
ac

eu
r 

H
ou

ry
a]

 a
t 0

0:
23

 1
5 

N
ov

em
be

r 
20

17
 



is aroused when only one puppet is to be seen, that is, when numerical identity changes
(Izard, Dehaene-Lambertz, and Dehaene 2008; Dehaene 2011, 44). But how to be sure
that such changes are really perceived as quantitative changes and not only as changes in
the global shape of the totality of objects showed? There is no unique and uniform answer
to this question. On the base of some tests, Dehaene thinks that babies are capable of noticing
the change of number regardless of the variability of other parameters in the display of two
versus three items, small or large, aligned or not, black or red, etc. (Dehaene 2011, 38–39).

Thirdly, subitising the size of a group of objects is grasping the numerical aspect of the
group regardless of the material size, material identity, shape, colour, etc. of the individual
objects and regardless of thematerial quantity present in the totality of objects. Chimpan-
zees and infants choose the biggest total number of small chunks of chocolate rather than
the smaller number of larger chunks (Feigenson, Carey, and Hauser 2002).7 Therefore one
might think that they really perceive numerical identity as a specific abstract property
(Lourenco and Longo 2010).

Fourthly, ‘abstract’ refers to a symbolic representation, such as I, II, III, etc. or 1, 2, 3,
etc. With such symbols we leave the domain of intuitive and approximate, possibly verbal,
estimation of quantity for a symbolic and discrete representation of numbers, coding exact
quantities (Izard, Pica, et al. 2008. On mathematical abstraction see Benis Sinaceur 2014a).

According to Dehaene, subitisation corresponds to the activity of the Analogical (or
Approximation) Number System (ANS), which exists in the animal and human brain.
Dehaene writes indeed:

Subitizing in human adults, like numerosity discrimination in babies and animals, depends
on circuits of our visual system that are dedicated to localizing and tracking objects in space.
The occipitoparietal areas of the brain contain neuronal ensembles that rapidly extract, in
parallel across the visual field, the location of surrounding objects. (Dehaene 2011, 57)

According to Dehaene (and many others) there is an essential link between quantitative
and spatial representations, which is rooted in the brain’s organisation (Carey and Xu
2001; Walsh 2003; Hubbard et al. 2005; De Hevia and Spelke 2010; Chinello et al. 2013;
Spelke et al. 2014). Let me quote only one passage:

Many behavioural and patient studies have shown that numerical–spatial interactions run far
deeper than simply cultural constructions, and, instead, influence behaviour at several levels.
By combining two previously independent lines of research, neuroimaging studies of numeri-
cal cognition in humans, and physiological studies of spatial cognition inmonkeys, we propose
that these numerical–spatial interactions arise from common parietal circuits for attention to
external space and internal representations of numbers. (Hubbard et al. 2005, 435)

The spatial-numerical association of response codes (SNARC) implies that the core seman-
tic representation of numerical quantity can be linked with a mental number line (MNL), a
quasi-spatial representation in the brain onwhichnumbers are organised by their proximity
(Dehaene, Bossini, and Giraux 1993; Gallistel and Gelman 2000, 2005; Dehaene 2001, 3).8

The supposed MNL is continuous, analogical and oriented left-to-right just like the direc-
tion of writing—at least in Western languages; it is localised bilaterally in the intraparietal
sulcus of the human brain and is ordered logarithmically (Dehaene and Changeux 1993;
Dehaene 2011, 64–66).9 Subitising is submitted to a distance effect and to a magnitude
effect: we more easily distinguish distant numerosities, such as 80 and 100, than closer
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ones, such as 80 and 81; for an equal distance we discriminate less easily two large numer-
osities, such as 80 and 100, than two small ones, such as 8 and 16.

It seems that we have inherited a core analogical representation of quantity, ‘analogical’
as opposed to ‘digital’ (Platt and Johnson 1971; Carey 2009, 118–137; Dehaene 2011, 61–
64, 218–220). According to Dehaene, even the availability of precise number symbols does
not obliterate the continuous representation of quantities. Summarising his point of view,
Dehaene writes:

My hypothesis is that the number sense qualifies as a biologically determined category of
knowledge. I propose that the foundations of arithmetic lie in our ability to mentally rep-
resent and manipulate numerosities on a mental ‘number line’, an analogical representation
of number; and that this representation has a long evolutionary history and a specific cerebral
substrate. Numbers appear one of the fundamental dimensions according to which our
nervous system parses the external world. Just as we cannot avoid seeing objects in color
(an attribute entirely made up by circuits in our occipital cortex) and at definite locations
in space (a representation reconstructed by occipito-parietal neuronal projection pathways),
in the same way numerical quantities are imposed on us effortlessly through the specialized
circuits of our parietal lobe. The structure of our brain defines the categories according to
which we apprehend the world through mathematics. (Dehaene 2011, 245; emphasis added)

4.2. Criticism of Dehaene’s Point of View

(a) Rafael Núñez argues that the number line, although ubiquitous in the modern world,
is not universally spontaneous, but rather seems to be learned through—and continu-
ally reinforced by—specific cultural practices. Let me quote Núñez verbatim:

The number line as well as the mental representation that it entails emerges outside of
natural selection proper requiring the mediation of high-order non-numerical cognitive
mechanisms such as fictive motion, conceptual mappings (e.g. conceptual metaphor),
and external representational media. (Núñez 2011, 652)

If, as experts say, Babylonians conceptualized number essentially as an adjectival prop-
erty of a collection or of a measured object [i.e. not as itself an object], we cannot con-
clude on the basis of YBC 7289 that Old Babylonians operated with a fundamental
number-to-line mapping. (Núñez 2011, 655; emphasis added)

Indeed, we learn from the history of mathematics that there was no number line in old
Babylonian tablets, no mapping between real numbers and a real geometric line in
René Descartes’s La Géométrie (1637), the book in which geometrical problems
were systematically resolved through solving algebraic equations. Actually, it was
JohnWallis who introduced, for the first time, the concept of number line in his Trea-
tise of Algebra (1685).

(b) Dehaene assumes a kind of homology between the physical world and the form and
content of our perception of the world. In particular the MNL is apparently based on
the same system used to represent physical space. Actually, Dehaene bases on the con-
tinuity of many physical phenomena, including the flow of sensory information and
the transmission of nerve impulses, the priority of:

. A continuous, fuzzy and global perception of numerosities over a discrete and seg-
mented apprehension of isolated unities;
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. The cardinal aspect of number over its ordinal and serial aspect;

. The geometrical continuum over the algebraic definition of real numbers.

Using a geometrical model of the continuum for describing neural facts and putative
primary cognitive acts or mechanisms might be a heuristic device. But taking this
model as yielding a universal genetic foundation poses a double problem. First, the
clear and explicit notion of mathematical continuity is relatively recent (not before the
seventeenth century and differential calculus), and the concept of numerical continuity
even newer (nineteenth century with Georg Cantor, Richard Dedekind, Charles Méray,
Karl Weierstrass). Secondly, how to think the link between a certainly fruitful model M
and the bare reality, if ever we could have access to the ‘bare reality’? The answer is not
simple, but clearly one has to keep a critical distance between the model M and the
reality whose some—probably not all—aspects are simulated by M.

There are three more questions to which no definite answer seems to be available.

. To which extent can a highly sophisticated numerical model open the route to the origin
of the human numerical ability? (Of course, I do not question the fruitfulness and legiti-
macy of such a model in case of analysing our current ability.)

. Why should we analyse interactions between the brain/mind and the environment in
terms of origin and deterministic causality? Why not just in terms of dynamical/dialec-
tical interactions between the two poles without fixing the origin or cause in one of
them?10

. Does a model provide a foundation? Or does it just improve our understanding and
suggest new means for educational programmes?

The responses are varied, nuanced, and not immune to global, tacit or explicit, philo-
sophical views. Anyway, one should keep in mind that correlation between neural circuits
and arithmetical understanding or doing is correlation; it does not necessarily mean that
the neural activity is the very first origin or cause for perceiving or understanding the
numerical aspect of things and events. Neural maps do not, per se, justify the materialist
and deterministic reductionism of Dehaene and Changeux (1993). I must point out in
passing that, in defending an opinion that is diametrically opposed to Frege’s point of
view, neuroscientists share with Frege the aspiration for a foundation, just replacing defi-
nition and proof by origin and cause. The paradoxical alliance of empiricism with foun-
dationalism warrants at least a critical examination, if not a justification.

Last but not least: the use of words and concepts, such as ‘meaning’, ‘intuition’, ‘format’,
‘content’, ‘abstract’, ‘concrete’, etc., is rather fuzzy in Dehaene’s writings. The distinction
made between ‘numerosity’ and ‘number’ is pretty often blurred. Even the sense of the
adjective ‘continuous’, which plays a so central role in the views displayed, is not carefully
fixed. Should one understand by ‘continuous’ and ‘continuity’ the common coarse con-
cepts or more theoretical concepts? And if it is question of mathematical concepts,
should one not distinguish between geometrical and numerical continuity? Moreover,
since it is taken as primitive and immediate, the idea of ‘numerical identity’ is used
without being subjected to a conceptually more meticulous inquiry. After all, what
counts as the numerical identity of a plurality of objects? If we have to discriminate
numerosity and number, grasping quickly the numerosity of a plurality does not lead

10 H. BENIS SINACEUR
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directly (not without mediating conceptualisation) to a sharp notion of numerical identity:
it is why it is hard to discriminate at a glance between 80 and 81. Therefore it is not fully
consistent to say that in grasping the numerosity of some plurality we grasp intuitively its
numerical identity: numerosity denotes a non-accurate quantitative size, not numerical
identity proper. In a word, quantity is not number.

5. Susan Carey’s Analysis

Carey aims at giving the cognitive, rather than the neural, foundations of concepts includ-
ing numerical concepts and she argues for an alternative model to the ANS model. The
specific difficulty in cognitive experiment is that what the observed persons or animals
do is not a perfect indicator of what they know or understand.

Let me first summarise Carey’s global view in a few words.

(1) Carey defends a kind of psychological essentialism, assuming Susan Gelman’s view
(Gelman and Wellman 1991; Gelman 2003, 2004; Carey 2009, 22), according to
which children and adults construe classes of entities, particularly biological cat-
egories, in essentialist terms, that is, as if category members had an immutable under-
lying essence, which gives them their identity and can be used to predict unobserved
similarities between them. Experiments show that essentialism is an early cognitive
bias: children have an early tendency to search for hidden permanent features
beyond the obvious. Yet, essentialism is philosophically highly questionable, and it
is even criticised from within by some cognitive scientists as being a move away
from Darwinism (Palmer and Donahoe 1992; Palmer 2002).

(2) Carey defends also a version of what is labelled the ‘theory-theory’ of concepts
(Gopnik 2003). She thinks indeed that children naturally attempt to construct theories
to explain their observations, and learn through a process of theory revision closely
resembling the way scientists propose and revise theories: they get less and less
naïve theories by making a series of personal conceptual revolutions. In particular,
Carey assumes Spelke’s view that infants have a naïve physical theory of the objects
and events they watch.11 However, she distinguishes between naïve theories and
core cognition, pointing out that ‘the output of the core cognition systems is part
of the input to theory building’ (Carey 2009, 24).

5.1. Concept and Content

Carey rightly makes fundamental distinctions between object and concept, and between
format and content. Let me quickly describe how she understands ‘concept’ and
‘content’ and their relations to objects (Carey 2009, 3–25). I will turn below to her distinc-
tion between content and format.

(1) Concepts are mental representations, ‘just a subset of the entire stock of a person’s
mental representations, which naturally includes sensory representations and percep-
tual representations’.
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(2) Representations are states of the nervous system having content, that is, referring to
concrete, abstract, or fictional entities, or to events, or to properties.

(3) The content of a concept is what it contributes to the meaning of a proposition in
which it figures: content and meaning are taken as synonymous.

(4) Conceptual content is determined by:
a. causal mechanisms connecting a mental representation to the world; there is a

causal link between a real world object or event and the mental representation
of this object or event, and

b. computational processes in the mind that determine how the representation
functions in thought.

(5) There are two kinds of conceptual representations: those embedded in systems of core
cognition and those embedded in explicit knowledge systems. Carey’s conception is
based on Ned Block’s vision of a dual factor theory of the determinants of conceptual
theory (Carey 2009, 514–523).

(6) Young infants’ representations of objects are conceptual in the double sense that their
content cannot be stated in terms of sense data, and that they play an inferential role.

(7) The new representational resources emerge in development, which involves impor-
tant discontinuities, which are conceptual changes.

(8) The bootstrapping strategy underlies the construction of new representational
resources that are more complex and more powerful than their input and this
without external supply.

5.2. Core Cognition: Two Systems

Contrary to the opinion that there is only one non-verbal system for representing number
(Gallistel and Gelman 1978), Carey distinguishes two systems of core cognition with
numerical content (Feigenson, Carey, and Spelke 2002; Xu 2003; Feigenson 2005; Hyde
and Spelke 2009, 2011):12

Core system 1: analogical representation of number, which is grosso modo Dehaene’s
‘number sense’. According to Carey, this system functions only, or preferentially, for large
sets of items. However, some experiments (Starr, Libertus, and Brannon 2013; Coubart
et al. 2014) seem to support the idea that the ANS can represent any number, large or small.

Core system 2: parallel individuation and object tracking, which is preferred for rep-
resentation of small sets (Feigenson and Carey 2003; Carey 2009, chs. 3–4).13

Already in the two systems of core cognition object representations are conceptual and are
created by innate perceptual input analysers, and the two operate throughout the life span.

The distinction between content and format14 plays here a crucial role, permitting to
reconcile the continuum of physical phenomena with the discrete character of perception
and thought. According to Carey, the format of the parallel individuation is iconic, then
analogical, but the content is discrete. Actually, when a small group of objects (one, two,
three, or at most four objects) is presented, we extract representations of discrete individ-
uals from the continuous sensorial input:

Sensory input is continuous. The array of light on the retina is not segregated into individual
objects. Yet distinct individuals are provided by visual cognition as input into many other per-
ceptual and cognitive processes. It is individuals we categorize into kinds; it is individuals we

12 H. BENIS SINACEUR
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reach for; it is individuals we enumerate; it is individuals among which we represent spatial
relations such as ‘behind’ and ‘inside’; and it is individuals that enter into our representations
of causal interactions and events. (Carey 2009, 70; cf. Carey and Xu 2001, 179–180)

In short, we spontaneously digitalise continuous phenomena into discrete entities.

5.3. Parallel Individuation and Object Tracking

Parallel individuation consists in creating in the non-verbal working memory an image of
the object presented. This image is called ‘visual index’ or ‘object-file’. Pylyshyn’s visual
index is treated as an element of the physiological structure of vision, whereas Carey’s
object-file is a mental image. By contrast with visual indexes in which only attention
plays a role,15 object-files and objet tracking take into account time and space parameters
and the role of working memory.

Carey’s object-file is a mental representation; it may be an image-like representation (a
picture, which need not be a duplication), for instance the image of an apple for a real
apple, or it may be a symbol, for instance □□ or •• for two apples. When you add one
apple more, the representation becomes □□□ or •••, etc. Thus for each world-object a
mental file is opened and tagged. There is a size limit on the number of objects that
may be simultaneously attended to and represented in working memory: the number of
files that can be simultaneously tracked is limited to three or four.

The object-file has an iconic, analogical, format: it does not involve sentence-like
symbol structures, whereas the content is constituted by a very small number of discrete
elements. Parallel individuation is associated with a mechanism of tracing numerical iden-
tity over time and space: infants use evidence of spatio-temporal discontinuity as a basis
for individuating objects, and they distinguish one object seen on different presentations
from two numerically distinct objects: young (10-month-old) infants prefer spatio-tem-
poral information over property/kind information, which appears later at about the age
of 12 months (Xu, Carey, and Welch 1999).16

Contrary to Piaget, Carey maintains that a child need not have achieved full sensorimo-
tor development to create representations of enduring objects without having direct per-
ceptual access to them (‘out of sight’ is not ‘out of mind’). The spatio-temporal continuity
involved in object permanence is the output of an innate capacity. And contrary to Quine,
Carey thinks that psychological tests show that infants need not to construct explicit quan-
tificational devices of language in order to create representations that distinguish between
the same one and a different one. Further, Carey argues that representation of object
cannot be reduced to sensorimotor or perceptual primitives, that core cognition has
rich integrated conceptual content, and that representations from distinct core cognition
systems interact in central inferential processes (Carey 2009, ch. 3):

I agree with [Renée Baillargeon, Randy Gallistel, Rochel Gelman, Alan Leslie, and Elisabeth
Spelke] that the cognition of humans, like that of animals, begins with highly structured
innate mechanisms designed to build representations with specific content. (Carey 2009, 67)

Being the output of innate input analysers and having iconic format, object-files are per-
ceptual representations, but they are also conceptual representations non reducible to per-
ceptual primitives. Before trying a critical analysis of the notion of object-files I will first
summarise the depiction of it available in Carey’s work.

INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE 13

D
ow

nl
oa

de
d 

by
 [

B
en

is
 S

in
ac

eu
r 

H
ou

ry
a]

 a
t 0

0:
23

 1
5 

N
ov

em
be

r 
20

17
 



5.4. Six Characteristics of the Representation via Object-files

Representation via object-files has the following characteristics:

(1) The representation via object-files, although limited to small groups, is precise.
(2) Object-files are based on principles of individuation and numerical identity: only enti-

ties with clearly articulated properties of physical bodies can be represented—‘phys-
ical bodies’ means bounded, separable, three-dimensional, moving in a continuous
spatio-temporal path bodies.

(3) Objects are represented as solid entities in spatio-temporal and causal relations to
each other (physicalism). Let me quote:

Most general is the sortal bounded physical object itself, for which spatio-temporal properties
provide the criteria for individuation and identity. More specific sortals, such as dog or car,
rely on additional types of properties to provide criteria for individuation and identity. We
conjecture that young infants might represent only the general sortal, object and construct
more specific sortals later (the Object-first Hypothesis). This is closely related to Bower’s
1974 conjecture that infants use spatio-temporal information to trace identity before they
use property information. (Xu and Carey 1996, 111; emphasis in original)

(4) A file may be empty, and it may code an object without necessarily ascribing features
to it or describing its properties: an object is not a bundle of features (essentialism).

(5) Opening a new file provides a mechanism for adding an item to an array of items, an
operation which might be the ‘wild’ precursor of the successor function, the latter
being understood later on: unlike Dehaene, Carey seems to give priority to the
ordinal aspect of numbers over their cardinal aspect.

(6) Object-files involve the one-to-one correspondence: one file for each object. They
might be also the primary root of apprehending, in small sets, the equinumerosity
of different groups of objects (i.e. the cardinal aspect) as well as the numerical order.

In the object-file model there is no explicit, no direct representation of number (Feigen-
son, Carey, and Hauser 2002; Carey 2009; Piazza et al. 2011): the image of one object is
first an object-image, the image of two objects is first the image of distinct, separated
and individuated objects. The symbols □□, ••• or □□□ are primarily not symbols
for numbers, not even for analogue magnitudes; they are symbols for individuals. They
are in fact ‘individual-files’, this last expression being also more convenient in the case
of events or sounds. As the title of an article by Feigenson and Halberda (2004) states,
‘infants chunk objects arrays into sets of individuals’.

However, there is an implicit numerical content, that is to say a numerical content
that is inferred from the direct representation, for there is one symbol for each individual.
Feigenson (2005) showed that infants are sensitive to number in a simple habituation
task, as long as the individuals in the set are not identical to each other; heterogeneity
of properties draws attention to distinct individuals. By contrast homogeneous
properties facilitate computations of cumulative continuous variables from represen-
tations of small sets of individuals: in some settings of Feigenson’s cracker choice exper-
iments, babies prefer a larger cracker over two smaller ones, each one-fourth the size of the
larger one, but they are at chance if each of the smaller ones is one-half the size of the
larger one. Thus, in certain cases, it seems that cumulative values of continuous variables

14 H. BENIS SINACEUR
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(such as total surface area or total volume) are more salient than the number of objects
in the set (Feigenson, Carey, and Hauser 2002; Feigenson, Carey, and Spelke 2002).
This result contradicts the above-mentioned result stating that babies and animals
prefer a bigger number of small chunks with a total quantity X than a smaller number
of bigger chunks with a total quantity Y > X. Cordes and Brannon (2008, 2009, 2011)
argue for a third interpretation: infants attend to both extent and number equally in
the small numerosities (<4) and prefer number over extent in case of large numerosities
(> 3 items).

The bewildering variety of tested reactions shows how big the role of the
experiment settings is and how difficult it is to draw definite conclusions from the
testing outputs.

5.5. Criticism of the Object-files Model

Sets of mental file-objects are clearly thought by analogy with sets of marks such as •, ••,
••• or I, II, III, etc. Carey uses even the set-theoretical representation {i, j, k}, when the files
are stored in long-term memory as prototypes for small quantities. The underlying model
of object-files is clearly set-theoretical.17 Like the analogical number model, which is based
on a visual conception of geometrical continuity, the object-file model also begs the ques-
tion of the origin of our primary arithmetical representations and abilities by using the set-
theoretical framework, which is now commonly employed for axiomatizing abstract arith-
metical concepts and constructions.

Marks such as I, II, III, etc. refer indeed to the numerical aspect as instantiated by sets of
symbols such as □, □□, □□□, or •, ••, •••. But unlike object-files, such marks do not
point to particular objects. There is a gap between the empirical root of object-indexes and
the abstract meaning of—even small—cardinal numbers. Pylyshyn and Carey are bridging
the gap by stressing, in different ways, the symbolic nature of the visual indexes/individual
files for perceived objects.

Pylyshyn argues for a physically structured vision and for dissociation between visual
and cognitive functions in the brain. He thinks that the visual system, as such, embodies
natural constraints, what means that, insensitive to knowledge and processes of rational
inference, vision is, nevertheless, solving visual problems mostly the way they need to
be solved for the purposes of survival (Pylyshyn 1999, 2002).18

Carey thinks that concepts are, as mental symbols, ‘encapsulated’ in vision and that
core cognition representations have a conceptual non-linguistic content (Carey 2009, 27,
67; 2011, 114).19 Also some form of conceptual activity is present in sensorial vision
right from birth. Carey criticises Quine’s linguistic determinism, arguing that core cogni-
tion is supporting language learning rather than resulting from it. In particular, she main-
tains that there is a ‘set-based quantification system’, which is ‘part of the machinery
children bring to the task of language learning, either as part of the language-acquisition
device or as part of general representational capacities’ (Carey 2009, 261). Relying on
spatio-temporal information babies represent object as such long before they master the
quantificational devices of natural language. Moreover, at about age of 12 months, then
before language-acquisition, infants categorise objects on the basis of global kind, and
kind representations are differentiated from representations of similarity based on percep-
tual properties.20
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5.6. Beyond Core Cognition: Natural Numbers

How do we perform the inference from a perceived object to the thought of one object and
from mental object-files representing real objects to the cardinal and the ordinal aspect of
number?

There is patently a gap (a ‘discontinuity’ in Carey’s language) between the resources of
core cognition and the cultural construction of natural numbers. Can one bridge it? How?
Carey thinks that it happens through bootstrapping (Neurath’s and Quine’s concept).
Bootstrapping is a self-sustaining process that is supposed to allow the passage from
empirical data to conceptual constructions without external input.

Carey thinks that bootstrapping is useless for constructing the concept of individual
object from perceptual primitives, because this concept is part of the core cognition.
But Carey (2009, ch. 8) proposes to flesh the bootstrapping metaphor by assuming that
parallel individuation (which involves computations that embody the +1 operation),
together with set-based quantification—the union of both two being then called ‘enriched
parallel individuation’—underlie the construction of the numeral list representation of
number. According to such a solution of the gap, Gelman and Gallistel’s counting prin-
ciples (Gelman and Gallistel 1978) do not result from core cognition alone but from a con-
ceptual construction anchored in core cognition (Lecorre and Carey 2005, 2008).
However, there is no consensus on Carey’s interpretations.21

5.7. Perceiving an Object qua Object and Perceiving One Object as One Object

(1) It is not really clear that a core cognition system of representation of objects has
implicit representations of numbers. Experts of the structure of the visual sense as
an information processor (e.g. Pylyshyn) maintain that perceiving entities as
objects requires only coordination between perceptual memory and perceptual antici-
pation. Speaking of the structure of vision does not mean that an early form of con-
ceptualisation is embedded in that structure. Pylyshyn endorses David Marr’s theory
of ‘early vision’, according to which there is dissociation between visual and cognitive
functions in the brain. According to Pylyshyn the visual index is certainly a symbol
but certainly not a concept. We may have iconic representations of objects but no
iconic representation of object is the concept of object (see also Gauker 2011). Pyly-
shyn writes:

We pick out and individuate primitive visual objects as a precursor to focusing attention
on them and encoding their properties. Such visual indexes play an important role in
attaching symbols to things and they also play a role in allowing visual images to
inherit spatial properties of perceived space. (Pylyshyn 2002, vii; emphasis added)

Also spatio-temporal parameters and numerical categorisation do not come into play
in vision of objects qua objects, what means that perceiving an object qua object is not
perceiving an object as physical object and that perceiving one object qua object pre-
cedes the perception of one object as one object.

(2) Tyler Burge criticises harshly Carey’s view on the basis of his own theory of percep-
tion, which combats all intellectualist interpretations. He argues:

16 H. BENIS SINACEUR
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It is a mistake to require of a system that has object representations that it have quanti-
ficational devices, or representations of criteria for numerical identity, or specifications of
continuity under loss of perceptual contact (using that ‘vocabulary’). Nor need object per-
ception represent particulars as persisting, or as independent of an observer, or as unper-
ceived, in order to perceptually represent something as an object or body. A perception of
objects need not represent persistence, observers, perceptual contact, or independence
from observers. Such requirements confuse principles according to which perception
operates with representations that occur in perceptual object representation.… Percep-
tual representations include object (body) perceptions. There is substantial evidence
that perceptual body representations occur in the visual systems of many mammals
and some birds. Anticipations of continuities that are relevant to perceiving entities as
bodies are associated with very early vision. The anticipations are not matters of con-
ception or prediction. (Burge 2011; emphasis in original)

For scientists like Marr, Pylyshyn, and Burge the physiological structure of vision pro-
vides the perception of particular objects qua objects, without any kind of specification
(numerical, geometrical, temporal, etc.).

Then, I would say that as for the origins of the concept of number we are happy neither
with the MNL nor with a set-theoretical mental image of objects and neither with a pro-
tophysics of spatio-temporal bodies of the real world nor with their associated mental
iconic representation as object-files, and naturally not with the alone resources of
natural languages. Describing empirical data (given by fMRI or EEG or sets of responses
in the frame of experimental settings) through scientific models tells something about how
we understand the empirical data rather than about the crude data themselves or about the
grounding role of the abstract models. Models are models, that is, fruitful tools for explor-
ing and understanding reality; they are neither the reality itself nor its duplicate.

6. Conclusions

I hope that I have shed some light on the following points.

(1) The experiments about mathematical cognition involve theoretical preconceptions of
the nature of mathematical objects and of the basis of our arithmetical abilities. In par-
ticular there is a petitio principii, it seems to me, in interpreting data of testing how
animals, infants or adults understand and carry out very elementary arithmetical
operations in terms of modern and sophisticated mathematical models. Geometric,
set-theoretical, metaphorical, computational, connectionist, etc. models are valuable
means of understanding. They need not be thought as means of disclosing the foun-
dations of arithmetic.

(2) Scientists want to replace philosophical questioning by scientific methods of investi-
gation. In the same time they cannot but refer to philosophical concepts and para-
digms. They include fragments of established philosophical theories (most times
Kant, Quine, Fodor) in the framing of empirical data and that goes often along
with an unwitting distortion of those theories in order to make them suitable for
the intended interpretations of the empirical experiments. For instance, in the
project of a ‘Kantian research programme’ on space, time and number proposed by
Dehaene and Brannon (2010), one can fear a misuse of Kant’s transcendental
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schematism. Indeed, in Kant’s theory of knowledge the scheme is neither an image
nor a representation, it is the rule or the a priori condition that makes possible the
representation. It is also the link between categories (i.e. pure concepts of the under-
standing) and the phenomenal appearance of objects in general. The mental represen-
tation, which has a temporary pictorial or symbolic content, is to be carefully
distinguished from the Kantian formal, fix and universal rule that produces images.
Let me quote Kant’s own explanations:

The schema is to be distinguished from an image. Thus, if I place five points in a row,
•••••, this is an image of the number five. On the contrary, if I only think a number in
general, which could be five or a hundred, this thinking is more the representation of
a method for representing a multitude (e.g. a thousand) in accordance with a certain
concept than the image itself, which in this case I could survey and compare with the
concept only with difficulty. Now this representation of a general procedure of the
imagination for providing a concept with its image is what I call the schema for this
concept. (Kant [1781–1787] 1956, A140–141/B179–180; emphasis added)

What can remain from Kant’s conception of the a priori pure intuitions when the
main goal is to address questions ‘empirically, with a combination of behavioural,
neuroimaging and neurophysiological methods in animals, preverbal infants, children
and adults’ (Dehaene and Brannon 2010, 518)? And thinking that ‘nature founded the
bases of arithmetic on the most fundamental laws of physics’ (Dehaene 2011, 48) or
that ‘in the course of their evolution, humans and many other animal species might
have internalized basic codes and operations that are isomorphic to the physical and
arithmetic laws that govern the interaction of objects in the external world’ (Dehaene
and Brannon 2010, 517; emphasis added) is it not the exact opposite of Kant’s central
view of the transcendental apperception? Indeed, in Kant’s view pure concepts of the
understanding are subjective and a priori conditions of perceiving the external diver-
sity as a lawful world of phenomena, and ‘nature direct[s] itself according to our sub-
jective ground of apperception, indeed in regard to its lawfulness even depend[s] on
this’ (Kant [1781–1787] 1956, A114).

It is not prohibited to try to naturalise Kant’s subjectivist conception by reducing
the transcendental to an empirical level, but one should be aware of the reduction and
of its consequences.

(3) Most cognitive scientists, if not all, believe that they can really give the or a firm
ground to the objective arithmetical processes and to our arithmetical abilities and
acts. However in empirical sciences, such as physics, biology, psychology, neuro-
sciences, sociology, etc., the right aim is at grasping and describing dynamical pro-
cesses and at establishing correlations between different types of data, without
necessary appeal to causes or to grounds, let alone to a single ground. The philosophi-
cal idea of foundation was flourishing in the twentieth century. Mathematicians with
different leanings (Frege, Russell, Dedekind, Hilbert, Brouwer, Poincaré, Weyl) strove
to bring to light the essence or the foundation of numbers. But the foundational aim
does not match well with the spirit and methods of empirical sciences. In contempor-
ary philosophy itself the idea of foundation is not always welcome. Notably Wittgen-
stein argues for the irrelevance of the foundational outlook in his Remarks on the
Foundations of Mathematics. He promotes instead semantic analysis and language
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games. More generally, one may consider that the force of a science lies much more in
its internal dynamism than in its foundational claims about knowledge.

(4) It seems hard to draw a global and coherent philosophical view from the huge number
of the fragmented, variable, and sometimes uneasily compatible or fully divergent
results obtained by experimentation. For instance, Wynn’s addition and subtraction
experiment (Wynn 1992) is not always replicable (see Wakeley, Rivera, and Langer
2000). Experimental findings depend on the hypotheses one puts to the test, on the
designs and material conditions of the test, on the complexity of stimuli, on the
age, cultural and socioeconomic condition of the observed subject, on the models
used to organise and represent a set of data, and on the explicit or tacit philosophical
assumptions one has in mind. Moreover, one and the same experimental result may
be interpreted in different ways. The theoretic meaning of experimental results is not
something intrinsically obvious.

It is fair to say that many scientists do not deny the speculative character of their
hypotheses and interpretations, e.g. Spelke:

Like any other branch of science, the study of cognitive development is not an exercise in
logic resulting in irrefutable conclusion. Hypotheses can be rejected or supported by evi-
dence but can never be proven correct. Because there are an infinite number of alterna-
tive interpretations of any finding in any area of science, empirical progress requires that
scientists select and evaluate interpretations in accord with evidence, not in accord with
a priori preferences for some interpretations over others. (Spelke 1998, 190–191)

Yet I think it is hard to totally avoid a priori preferences or bias and to describe
empirical observations free from imposed theoretical interpretations. Most time, jus-
tifications are partial and they are never totally indisputable. In spite of that, cognitive
scientists do not hesitate to extrapolate from partial experimental data general
interpretations involving philosophical previews about the presumed roots or
grounds of primary arithmetical activity. I can understand the need to unify
various data in a general framework. But I deem it would be wise to question the
idea of ground and to make a distinction between scientific explanations, be they
the prior result of experiments or of some mathematical expression and treatment
of experiments, on the one hand, and ground on the other hand. An explanation is
not exclusive and it is revisable, while grounding corresponds to the ambition to
give an ultimate explanation. An explanation connects B to A through a causal mech-
anism or simply through a correlation, while grounding involves or suggests a consti-
tutive form of determination of B by A, and, consequently, opens the door for a more
or less strong determinism. Substantiating this and some other differences between
explanation and grounding is worth further work.22

Notes

1. ‘Cognitive’means pertaining to the action or process of knowing and is used for ‘any kind of
mental operation or structure that can be studied in precise terms’ (Lakoff and Johnson 1999,
11). So it should not be confused with the narrow concept used in some traditions of analytic
philosophy, where ‘cognitive’ refers only to formal rules and truth conditional semantics.

2. Nativism is sometimes contested, for instance in Stewart (1993), Elman et al. (1996), Palmer
(2000), and Lécuyer and Durand (2012).

3. In particular, contrary to Piaget’s theory, ‘out of sight’ is not ‘out of mind’.
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4. Renée Baillargeon and Elizabeth Spelke introduced the ‘violation-of-expectation looking-
time methodology’ in the mid-1980s. Samples of experiments using this methodology are
given in Carey (2009, 40–48).

5. It has been alternatively suggested that the approximate number system supports also the
understanding of ordinal relation (for instance McCrink and Birdsall 2015, 263).

6. Alternatively, Barsalou (1999, 2008) and Campbell (2015) argue that elementary arithmetic is
not based on amodal representations and they emphasize embodied cognitive processes.

7. Dehaene (2011, 49) mentions another experiment: watching a picture with two forks, one
fork broken into two pieces, a 3- or 4-year-old child counts the broken fork twice and
says that the total number of forks equals three.

8. For a discussion of technical aspects see Harvey et al. (2013) and Campbell (2015).
9. However some experiments show that the SNARC is linked with the ordinal position in a

sequence rather than with the cardinal aspect of things. An alternative to Dehaene’s
interpretation is given in van Dijck et al. (2015).

10. Brian C. Goodwin defended a non-reductionist structural view and criticized the excesses of
Neo-Darwinism: see in particular Goodwin (1993, 1994).

11. Spelke (1983, 1985, 1990, 1993): ‘Infants divide perceptual arrays into units that move as con-
nected wholes, that move separately from one another, that tend to maintain their size and
shape over motion, and that tend to act upon each other only on contact.’

12. Dehaene adopted the two-systems view: Feigenson, Dehaene, and Spelke (2004), Revkin et al.
(2008).

13. The model of object-files was proposed in Treisman, Kahneman, and Burkell (1983), Kahne-
mann, Treisman, and Gibbs (1992), Pylyshyn and Storm (1998), and Pylyshyn (2003a).

14. This distinction appeared first in Pylyshyn (2003b).
15. ‘Focal attention is typically directed to objects rather than to places and therefore the earliest

stages of vision are concerned with individuating objects and that when visual properties are
encoded they are encoded as properties of individual objects’ (Pylyshyn 2003a, 4, 13; emphasis
in the original).

16. By contrast, according to Pylyshyn object tracking is engraved in the visual architecture;
therefore the spatio-temporal parameters of the object do not come into play.

17. It has been argued that set representations are required for acquisition of the number
concept: Halberda and Feigenson (2008). Thus the set-theoretical model is supposed to
mirror the real development of children; though this model was invented in the nineteenth
century by Bernard Bolzano, Richard Dedekind, and Georg Cantor, it was taught very
recently. As Hodes (2008) notes, cognitive scientists are ‘overly quick to ascribe the posses-
sion of certain concepts to children (and of set-theoretic concepts to non-mathematicians)’.

18. See also Burge (2011), 125: ‘There is substantial evidence that perceptual body represen-
tations occur in the visual systems of many mammals and some birds. Anticipations of con-
tinuities that are relevant to perceiving entities as bodies are associated with very early vision.
The anticipations are not matters of conception or prediction’.

19. See also Barsalou (1999, 2008) for support of the view that categorization is grounded in the
sensorimotor regions of the brain, and Lakoff and Johnson (1999) for an argument that
abstract concepts are grounded metaphorically in embodied and situated knowledge.

20. For alternative views see e.g. Weiskopf (2008): percept and concept are not ontologically but
functionally distinct, and Weiskopf (2009): concepts are not a single, uniform kind of
psychological entity, but are constituted by multiple representational kinds, with the particu-
lar kind of concept used on an occasion being determined by properties of the context.

21. According to Barsalou’s ‘grounded cognition’, cognition does not reside in a separate seman-
tic memory system; it shares mechanisms with the brain’s modal systems for perception,
action and introspection (Barsalou 2008). By contrast, Núñez argues that numbers are not
hard-wired. According to him, the leap to number concepts proper relies, in part, on two
embodied, domain-general cognitive mechanisms: conceptual metaphor and fictive
motion. Conceptual metaphor is both a particular inference-preserving cross-domain
mapping, and the cognitive mechanism that enables such mapping. Fictive motion is a
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cognitive mechanism through which we unconsciously and effortlessly conceptualize static
entities in dynamic terms (Lakoff and Núñez 2000; Núñez 2009; Núñez and Marghetis
2015). See also Harnad (1987), Neisser (1987), Medin (1989); Rips, Bloomfield, and
Asmuth (2008).

22. Actually, a big amount of logical and metaphysical contemporary reflections is devoted to
examining the relations between explanation and grounding. See for instance Correia and
Schnieder (2012). Taking into account such current research would help to make philosophi-
cal interpretations of scientific experiments more cautious.
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