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Abstract

Most of qubit systems known to date are isolated paramagnetic centres in magnetically di-
luted samples since their dilution allows to considerably weaken the dipole-dipole inter-qubit
interaction and thus to prevent the decoherence. Here we suggest an alternative approach for
spin qubits which are built on spin S = 1/2 defects in magnetically concentrated strongly cor-
related systems - spin chains. The corresponding qubits are made of spin solitons resulting
from local breaking of transitional symmetry associated with point-defects. We provide the
first evidence for coherence and Rabi oscillations of spin solitons in isotropic Heisenberg chains,
simple antiferromagnetic-Néel or spin-Peierls, proving that they can be manipulated as single
spin S = 1/2. The entanglement of these many-body soliton states over macroscopic distances
along chains gives rise to networks of coupled qubits which could easily be decoupled at will in
extensions of this work.

Keywords: Quantum coherence, EPR, strongly correlated magnet

1 Introduction

Most physical, chemical or biological systems showing quantum oscillations are of relatively
small size: isolated NV-centers in diamond [1], 4f or 3d transition-metal ions (single-spins, 0.1
nm) [2, 3], single molecule magnets [4] (15 spins, 1 nm), or marine algae (5 nm wide proteins)
[5]. Their environmental couplings are necessarily weak in order to reduce damping [6]. In
magnetic systems, decoherence is usually dominated by spin-bath dipole-dipole interactions
[7] and observations of quantum oscillations require qubits dilution. Here, we demonstrate
the feasibility of a new approach for magnetic qubits, called soliton-qubit or sol-qubit [§],
which relies on spin S = 1/2 defects in magnetically concentrated strongly correlated systems
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- spin chains. An increasing number of proposals were made during the last decades showing
theoretically how spin chains may enable the implementation of a quantum computer. Most
of them discuss the possibility of using spin chains as quantum wires to connect distant qubits
registers without resorting to optics [9, 10, 11, 12, 13, 14, 15]. It was concluded that, in spite of
short-ranged spin correlations, most spin-chain models exhibit the long-distance entanglement
[10, 12, 14], thus a spin chain can be used as a communication channel. However, according to
this scheme, to realize a qubit network one needs first to create qubits and then to match them
to the communication channels.

From experimental side, however, the situation is less clear. While there are some exper-
imental indications that the macroscopic entanglement can be achieved in spin systems [15],
almost nothing is known about quantum dynamics of sol-qubits. Moreover, the general experi-
mental situation concerning the coherent dynamics of magnetic cluster, nanomagnets, rings etc
rather indicates that the decoherence time in these objects is very short thus preventing their
use as qubits.

This study of sol-qubits was performed on single-crystals of the so-called antiferromagnetic
quantum spin chains (TMTTF),X, with X = AsFg, PFg, SbFg (Fig. 1). This family of organic
magnets, also called Fabre salts [16], was extensively studied during the last decades and shows
an extremely rich phase diagram [17]. The physical properties of these magnets depend on
the counter anion X of the molecule and are found to be quite sensitive on the presence of
paramagnetic defects (spin-Peierls and superconducting transition). The systems with X =
AsFg and PFg show a gapped dimerized spin-pair singlet ground-state below their spin-Peierls
transitions at Tgp = 13 K and 19 K respectively, whereas the system with X = SbF¢ exhibits
a Néel antiferromagnetic phase below Ty = 7 K.

2 Experimental details

The single crystals of (TMTTF)2X were grown by an electrochemical technique. The crystals
are needle-shaped with typical dimensions: 3x0.5x0.1 mm?®. The samples crystallize in the
triclinic PT space group. The magnetic principal axes ()’ and ¢*) are different from the crys-
tallographic axes [18]. The static magnetic field can be applied in any direction in the b'—c*
plane. For each set of measurements a fresh sample was used.

Continuous Wave (CW) and Pulsed Electron Paramagnetic Resonance experiments were
performed with the three systems using a conventional X-band Bruker spectrometer operating
at about 9.7 GHz between 3 K and 300 K and enabling sample rotations. The crystals were
glued on the sample holder with their a-axis oriented along the microwave field (h,,,,) direction
which is the same as the sample-rotation direction (the static H being applied in the basal b'—c*
plane). The pulsed EPR experiments were performed on (TMTTF)2AsFg and (TMTTF),PFg
single crystals with a microwave field h,,, varying between 0.1 and 1.5 mT. The coherent
signal, resulting from the sharp EPR line observed in CW experiments, was recorded by the
Free Induction Decay method.

3 Results and discussion.
Above 30 K a single Lorentzian-shaped EPR line (main line) is observed, displaying an
anisotropy of g-factor,associated with different orientations of H and a temperature depen-

dence which are typical of uniform quantum Heisenberg spin chains [19]. Below about 30 K a
second EPR line, a very sharp one, appears in the three systems at the same magnetic field
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Figure 1: CW-EPR signal (TMTTF)2SbF¢ recoder for H|| ¢* for temperature between T=30 K
and 15 K. Below T=30 K a very sharp line is superimposed to the signal from the spin chain.
The sharp signal comes from the strongly correlated defects.

as the one associated with the main line. The integrated intensity of this sharp signal is much
smaller than the one of the main line, indicating its defect origin. The figure 1 shows an exemple
of CW EPR signals recorded on (TMTTF)3SbFg from 30 K down to 15 K. In the limit of the
resolution of the X-band spectrometer, the measured resonance field and therefore the g-factor
were identical for both the broad and sharp peaks and did not change significantly for different
molecules. A two-lorentzian fit shows that their linewidths differ by a factor of ten.

The temperature behaviour of EPR intensity of (TMTTF)3SbFg and (TMTTF),AsFg is
given in figure 2. ypsr of the main signal is quiet independent of the temperature for the three
systems. For X=AsFs and PFg compounds, when T" < Ty, the intensity of the main line drops
as expected in spin Peierls system. In The case of (TMTTF)2SbFg, the system enters in the
Néel state at about 7 K and y.s, of the main slightly decrease. We can conclude the main line
is the signal from the Heisenberg spin chain. The signal from the sharp line is more intriguing.
The intensity of the signal is mostly temperature independent. In paramagnetic impurities
the intensity of the signal should follow a Curie law (x ~ 1/T), whereas here the intensity
slightly decrease with temperature denoting a strong correlation to the spin chain. It has been
shown [20] that quantitative measurement of correlated defects in quantum spin chains is not
trivial. However we can estimate the concentration of defects in order of 1072-1073. Although
the nature of the defects remain unclear, we think there are due to stacking faults during the
crystallization process.

The Rabi oscillations measurements on the sharp line is given in figure 3. Each oscillation
is a coherent inversion of the population of the correlated defects. On a contrary to diluted
paramagnetic defects, the Rabi damping is almost independent of the microwave power [8]. In
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Figure 2: Intensity of CW EPR signals of (TMTTF)3;SbFg (left) and (TMTTF)2AsFg (right).
The Black squares and blue circles are intensities the main line and sharp line respectively.
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Figure 3: (left) Rabi oscillation of the strongly correlated defect observed in (TMTTF),PF¢ at
T=3 K.(right) Rabi damping obtained from the fits of Rabi oscillations of the pinned solitons
for temperature below 14 K. Dashed line is a guide for the eyes.

paramagnetic impurities, the Rabi damping can be reduces by decreasing the temperature but
reach a threshold due to inhomogeneity of the microwave [21]. In the pinned soliton qubit, the
Rabi damping keeps decreasing when temperature go down. This behaviour proves that the
dynamic of such correlated defects is dramatically different to paramagnetic impurities and its
strongly correlated nature protects it to the environmental coherence of dipolar and nuclear
spin bath.

The fact that sol-qubits are almost not sensitive to system parameters is worthy of special
consideration. Qubits are actually never identical and in most qubit systems they are coupled
by the magnetic dipole-dipole interaction which is inevitably a major source of decoherence. In
the present case the situation is just opposite: the interactions between qubits eliminate the
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decoherence caused by inhomogeneous distributions of Rabi frequencies. The reason is that we
deal here with an ensemble of S = 1/2 defects (sol-qubits) in a strongly correlated spin-chain
system. In consequence, the dynamics of two sol-qubits even distant from each other is not
independent but controlled by an effective isotropic exchange interaction. We anticipate that
the physical picture developed for the interacting S = 1/2 degrees of freedom in Haldane spin
chains with S = 1 can be applied here [22]. This leads to a kind of narrowing mechanism which
homogenizes the parameter distributions explaining why the coherence of sol-qubits, rather
robust against microwaves, is limited by 275

4 Conclusion

In conclusion, we suggest that S = 1/2 defects in strongly correlated spin-chain systems can be
used for quantum information processing. This is in striking contrast with known spin-qubits
systems where qubits are uncoupled or weakly coupled by an anisotropic interaction leading
to decoherence. By observing long-living Rabi oscillations of sol-qubits in Heisenberg gapped
spin-Peierls systems, we provide first and clear evidence for the coherence of solitons trapped
at defects in spin-chains. Due to an isotropic inter-qubit exchange interaction, the EPR lines
observed are homogeneous and narrowed. This eliminates most of the decoherence mechanisms
associated with disorder i.e. with non-perfectly identical qubits. Remarkably, the important
effect of decoherence by the microwaves which tends to burst out with the number of qubits is
shown to be here negligible.
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