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DISORDER AND CRITICAL PHENOMENA:

THE α “ 0 COPOLYMER MODEL

QUENTIN BERGER, GIAMBATTISTA GIACOMIN, AND HUBERT LACOIN

Abstract. The generalized copolymer model is a disordered system built on a discrete
renewal process with inter-arrival distribution that decays in a regularly varying fashion
with exponent 1`α > 1. It exhibits a localization transition which can be characterized
in terms of the free energy of the model: the free energy is zero in the delocalized phase
and it is positive in the localized phase. This transition, which is observed when tuning
the mean h of the disorder variable, has been tackled in the physics literature notably via
a renormalization group procedure that goes under the name of strong disorder renor-
malization. We focus on the case α “ 0 – the critical value hcpβq of the parameter h is
exactly known (for every strength β of the disorder) in this case – and we provide precise
estimates on the critical behavior. Our results confirm the strong disorder renormaliza-
tion group prediction that the transition is of infinite order, namely that when hŒ hcpβq
the free energy vanishes faster than any power of h´ hcpβq. But we show that the free
energy vanishes much faster than the physicists’ prediction.

AMS subject classification (2010 MSC): 60K37, 82B27, 82B44, 60K35, 82D60.

Keywords: copolymer model, phase transition, critical phenomena, influence of disorder,
strong disorder renormalization group.

1. Introduction

The effect of disorder on phase transitions and critical phenomena is a key issue to
which a considerable attention has been paid in the physical literature and, more recently,
also in the mathematical one. We refer to [11, 21] for a (necessarily partial) overview of
this vast subject from mathematicians’ perspective. One of the basic questions – do phase
transitions withstand the introduction of impurities, i.e. disorder, and, if it is so, is the
critical behavior the same as the one of the pure model or not? – has been repeatedly at
the center of the attention. On the other hand there are also cases in which the disorder
induces a phase transition that is absent in the pure model (this is for example the case for
the Directed Polymers in Random Environment in dimension three or larger, see e.g. [16]).

In spite of a number of remarkable results – let us cite for instance the works [1, 12] on the
Ising model with random external field – the issue of understanding the critical behavior in
presence of disorder is very delicate and certainly little understood (at times even the issue
of whether there is any transition at all is out of reach or far from obvious: [1, 12] are good
examples of this). The renormalization group (RG) approach proposed by A. B. Harris [24]
turned out to be quite successful from a physics standpoint for a considerable number of
disordered systems. It is helpful for us to take the Harris’ viewpoint at least for exposition
purposes. Harris’ approach demands a model in which: (i) the disorder can be made small
and switched off by tuning a parameter; (ii) the non-disordered (or pure) model displays
a phase transition. Then we can consider tackling the issue in a perturbative way and ask
what is the effect of a small amount of disorder. Following [24], it is customary to say
that the disorder is irrelevant if the action of the RG makes the disorder weaker and we
say that it is relevant if the disorder is enhanced by the transformation. Making a long
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story short, in the first case the phase transition persists and disorder essentially does
not alter the critical behavior (for example: unchanged critical exponent(s)), while in the
second case it is reasonable to expect a different critical behavior and possibly even that
the transition is washed out. Of course this scenario is not the most general and is far from
being mathematically understood. But the notion of relevant disorder clearly identifies
cases in which the nature of the critical behavior is determined by the disorder. In this
sense, possibly going beyond the scope of [24], it is natural to consider that disorder is
relevant also in cases like the one in [1] where the transition is smoothed out, possibly to
the level of washing it out completely (even if this issue is open).

Our work is about a relevant disorder case and aims at determining in a precise way the
nature of the critical phenomenon. In this direction, results have been obtained recently
in the context of localization transitions for random polymers and interfaces, notably
copolymer near selective interface models (copolymer for short) and pinning models. These
models depend on two parameters: β ě 0 that controls the strength of the disorder (if
β “ 0, the model is pure) and h P R which plays in favor, respectively against, localization
if it is larger, respectively smaller than zero. In the limit of infinitely large systems, there
is a critical value hcpβq such that the model is in a localized state if h ą hcpβq and it is
in a delocalized state if h ă hcpβq: in these models the transition can be characterized
in a very simple way in terms of the free energy, namely the free energy is non negative
and localization is equivalent to the positivity of the free energy. This class of models is
particularly interesting because of the numerous applications, but also because several (not
always compatible) predictions have been set forth by physicists. But it seems now that
a certain agreement has grown about the fact that these models fall into the realm of the
(real space) strong disorder RG approach, also known as Ma-Dasgupta RG, from S. K. Ma
and C. Dasgupta who first proposed to abandon the regular procedures (block averaging,
sub-lattice decimation,...), often performed by taking advantage of transforms and working
for example in Fourier space, and focus on the irregular nature of the disorder. This is
implemented by performing a coarse graining starting with sites on which the disorder is
larger. These ideas were substantially developed by D. Fisher [19] who realized that this
procedure can yield exact results, and who set forth the idea that, iterating the strong
disorder RG, one may end up on an infinite disorder fixed point or on a finite disorder
fixed point: exact results are expected in the first case. We retain of this approach that it
predicts for copolymer and pinning models that the transition becomes of infinite order in
the sense that the free energy for hŒ hcpβq vanishes faster than any power of ph´hcpβqq
[25, 28, 29]. A result of this type has been established in [26], for a pinning model based
on the two dimensional free field, hence a 2` 1-dimensional model: it is not clear whether
or not this model can be understood via strong disorder RG approach (this approach has
been almost always applied in cases in which the disorder is one dimensional), but we point
out that the disorder makes the transition of infinite order. For the pinning model based
on higher dimensional free fields [22] – d+1 dimensions with d ě 3 – the result is different,
with a milder smoothing phenomenon. The articles [22, 26] are up to now the only cases
in which the critical exponents in presence of relevant disorder have been determined .

Here we present a third case: a special case of the copolymer model. The copolymer
model has been tackled via the strong disorder RG approach with precise claims [25, 28].
Our results are in agreement with the fact that the transition is of infinite order, but as
we will explain, from a finer perspective this agreement is lost.
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1.1. The α “ 0 copolymer model and the localization transition. We work with
IID disorder tωnun“1,2,... of law P and we use the notation

λpβq :“ logE exppβω1q. (1.1)

We assume that β :“ suptβ P R : λpβq ă 8u P p0,8s, and for the sake of normalization

Erω2
1s “ 1 and Erω1s “ 0 . (1.2)

We consider the discrete probability density Kpnq “ Lpnq{n, n P N :“ t1, 2, . . .u, with
Lp¨q slowly varying at `8 and such that

ř8
n“1Kpnq “ 1. L : p0,8q Ñ p0,8q is slowly

varying [6] if it is measurable and if limxÑ8 Lpcxq{Lpxq “ 1 for every c ą 0: examples are
presented in Definition 1.1 and, without loss of generality for us, we can assume Lp¨q to
be smooth [6, Th. 1.3.3]. P is the law of the two random sequences τ “ tτjuj“0,1,... and
ι “ tιj“1,2,...u with τ and ι independent and

‚ τ is a renewal sequence with τ0 “ 0 and inter-arrival distribution Kp¨q;
‚ ι is a sequence of independent Bernoulli variables of parameter 1{2.

Given pτ, ιq we say, for j “ 1, 2, . . ., that tτj´1 ` 1, . . . , τju is the jth excursion and this
excursion is below the interface (respectively, above the interface) if ιj “ 1 (respectively,
ιj “ 0). Given n “ 0, 1, . . . there exists a unique j “ jpnq such that n P tτj´1 ` 1, . . . , τju:
we then define ∆n “ ιjpnq, so we have also that ∆τj`1 “ ∆τj`1 “ ιj`1. Note that, once
∆ “ t∆nun“1,2,... is introduced, the process pτ, ιq is equivalent to the process pτ,∆q, and
we will mostly prefer to use this second representation.

The partition function and central expression for our analysis is for N P N

ZN,ω :“ E

„

exp

ˆ N
ÿ

n“1

pβωn ´ λpβq ` hq∆n

˙

; N P τ



, (1.3)

and of course this defines a statistical mechanics model. We set also Z0,ω :“ 1. A way
of thinking of it is to consider a directed 1 ` 1 dimensional polymer which touches (and
possibly crosses, but not necessarily) a flat interface – the horizontal axis – that separates
the two half planes that are full of two different solvents. Each monomer carries a charge
βωn´λpβq`h which can be positive or negative and, while the solvent above the interface
does not interact with the monomers, the solvent below the interface favors the positively
charged monomers and penalizes the negatively charged ones. This can be read out of (1.3)
once we stipulate that excursions with ∆ “ 0 , respectively ∆ “ 1, are above, respectively
below, the interface.

Consider now the free energy (density)

fpβ, hq :“ lim
NÑ8

1

N
E logZN,ω . (1.4)

The existence of the limit follows from the super-additivity of tE logZN,ωuN“1,2,..., see [20,
Chapter 4, §4.4]. Moreover since ZN,ω ě ZN,ωpτ1 “ N,∆1 “ 0q “ KpNq{2 one directly
infers that fpβ, hq ě 0. On the other hand, for β ă β̄,

1

N
E logZN,ω ď

1

N
logEZN,ω “

1

N
log E

”

exp
´

h
N
ÿ

n“1

∆n

¯

; N P τ
ı

NÑ8
ÝÑ h1p0,8qphq ,

(1.5)
where the upper bound corresponding to the limit is obvious and for the lower bound it
suffices to restrict to the events τ1 “ N and ι1 “ 0 (for h ď 0) or 1 (for h ą 0). Therefore
(1.5) implies fpβ, hq “ 0 if h ď 0. It is easy to see that fpβ, hq ą 0 for h large, for instance
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by restricting the partition function to τ1 “ N and ι1 “ 1 (we get fpβ, hq ě h ´ λpβq).
This is already enough to claim that there exists a critical point hcpβq, in the sense that
fpβ, ¨q cannot be real analytic at hcpβq, with hcpβq :“ maxth : fpβ, hq “ 0u (note that the
monotonicity of fpβ, ¨q is obvious, as well as the convexity). In fact fpβ, hq ą 0 as soon as
h ą 0 (this follows from the so called rare stretch strategy, see [20, Chapter 6], and it is
also a byproduct of the proof in Section 2) and therefore hcpβq “ 0. As it is explained at
length for example in [14], the transition from zero to positive free energy is, in a precise
sense, a delocalization to localization transition, in particular in terms of path properties
of the system. Here we just focus on the free energy and we note that the two rightmost
terms in (1.5) are the annealed free energy of the model for finite N and for N “ 8. This
is the pure model associated to the (quenched) disordered model we are analyzing, and it
is therefore important to remark that the annealed model has a first order transition, i.e.
the first derivative of the free energy is discontinuous.

1.2. The general copolymer and the pinning model. For the sake of better under-
standing and motivating our results, it is important to consider a larger class of models.
First of all, the notation we use in this work is not customary: the copolymer model in
the literature is typically introduced via the partition function

Zcop
N,ω :“ E

„

exp

ˆ

%
N
ÿ

n“1

pωn ` hqsn

˙

; N P τ



, (1.6)

where sn “ 1 ´ 2∆n P t´1,`1u, % ě 0 and h P R (but h ě 0 without loss of generality).
So the signs sn determine whether the excursions are above or below the interface. The
expression of the partition function in (1.6) is the most natural for the interpretation of
the model [20], but from the technical viewpoint it is very useful to observe that

Zcop
N,ω exp

ˆ

´ %
N
ÿ

n“1

pωn ` hq

˙

:“ E

„

exp

ˆ

´ 2%
N
ÿ

n“1

pωn ` hq∆n

˙

; N P τ



, (1.7)

and the right-hand side is a partition function that defines the same model because it
differs from Zcop

N,ω only by a factor that does not depend on the process pτ, ιq. Moreover

it is evident that the right-hand side of (1.7) and ZN,ω are directly related by a change
of variables. The variables we use, i.e. β and h, separate better the role of the parameter
that mesures the strength of the disorder (% or β) and the other parameter, h, with which
one changes the average value of the charges. Another reason to use (1.7) is for the formal
similarity with

Zpin
N,ω :“ E

„

exp

ˆ N
ÿ

n“1

pβωn ´ λpβq ` hqδn

˙

; N P τ



, (1.8)

where δn is the indicator function that n P τ , that is that there exists j such that n “ τj .

Zpin
N,ω is the partition function of the pinning model that displays a similar localization

transition, with the analogous critical point hpin
c pβq. We refer to [21] for a complete

introduction to the model and to the questions related to it.
For both the copolymer and the pinning models it is natural to consider the general

context of an inter-arrival distribution Kpnq “ Lpnq{n1`α, with α ě 0. The pinning
model exhibits a richer phenomenology than the copolymer model, in the sense that for
the pinning model, disorder is irrelevant for α ă 1{2, and it is relevant for α ą 1{2. A

first illustration of this fact is that when α ă 1{2 we have hpin
c pβq “ 0 (at least for β
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small enough, and for all β ă β̄ in the case α “ 0, considered in [3]), while for α ą 1{2

we have hpin
c pβq ă 0. But a more important point is that the critical behavior of the

pure and disordered models coincide for α ă 1{2 and differ for α ą 1{2 (we refer to [5]
for the state of the art in the marginal case α “ 1{2). We stress that neither the exact

value of hpin
c pβq (see however [15]) nor the critical behavior is known for α ą 1{2, and

the relevant character of the transition is established via a smoothing inequality [23] (see
[13] for a generalization) that implies that the critical behaviors of disordered and pure
systems differ.

On the other hand, for the copolymer model, it is known that disorder is relevant for
every α ě 0: the free energy fp0, hq of the pure model (which coincides with the annealed
model) is simply equal to h1p0,8qphq (first order phase transition), see (1.5), whereas the

free energy of the disordered model verifies fpβ, hq “ O
`

ph´ hcpβqq
2
˘

by the smoothing
inequality [23, 13]. Moreover, we have hcpβq ă 0 – bounds and even sharp bounds for
β Œ 0 are known [4, 7, 8, 10, 9, 32] but the exact value is unknown – except (as we have
already mentioned) for α “ 0 where hcpβq “ 0.

We have reported only the mathematically rigorous results. About non rigorous ap-
proaches we refer to [21, § 6.4] for an overview of some claims made on criticality for
copolymer models. Here we focus on the fact that both pinning and copolymer models
are expected to fall into the universality classes of the strong disorder RG [19, 25, 33]
that predicts that the transition becomes of infinite order if disorder is relevant. Precise
claims in this direction are contained in [25, 28, 29] where a critical behavior of the type
expp´c{ph ´ hcpβqq, c ą 0, is predicted both for the copolymer [28] and pinning models

[29]. For pinning models however, we find also the prediction expp´c{
a

h´ hcpβqq in [31]
and this latter claim reappears in [18], with arguments that are still non rigorous but
with a much richer and more convincing analysis developed for a simplified version of the
pinning model on hierarchical (diamond) lattices.

We present in the next sections results proving that for the α “ 0 copolymer the
transition is of infinite order, and in particular we show that the free energy close to
criticality is much smaller than expp´c{ph´hcpβqqq, in the sense that c should be replaced
by a function that diverges as hŒ hcpβq.

1.3. Main results. We introduce rLpxq :“
ş8

x pLpyq{yq dy: by [6, Prop. 1.5.9a] rLp¨q is

slowly varying and limxÑ8
rLpxq{Lpxq “ 8. The following definition identifies a useful

framework of models:

Definition 1.1. We say that the the decay at infinity of the slowly varying function
function L:

(i) is sub-logarithmic if L satisfies

Lpxq “ p1` op1qq cL{plog xplog log xqυq , (1.9)

(ii) is logarithmic if L satisfies

Lpxq “ p1` op1qq cL{plog xqυ , (1.10)

(iii) is super-logarithmic if L satisfies

Lpxq “ p1` op1qq cL expp´plog xq1{υq , (1.11)
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where in (1.9)-(1.11) x Ñ 8 and the parameters υ ą 1 and cL ą 0 can be chosen arbi-

trarily. These assumptions correspond to asymptotic estimates on the decay of rL:

rLpxq “ p1` op1qq ˆ

$

’

&

’

%

pcL{pυ ´ 1qqplog log xq´υ`1 for sub-logarithmic decay,

pcL{pυ ´ 1qqplog xq´υ`1 for logarithmic decay,

cLυplog xq1´1{υ expp´plog xq1{υq for super-logarithmic decay.

(1.12)

To state the results we introduce for β ă β

q1pβq “ βλ1pβq ´ λpβq and q2pβq :“ λp2βq ´ 2λpβq . (1.13)

Note that both quantities are positive if β ą 0 and that q1pβq ă 8 for β P r0, βq while
q2pβq ă 8 for β P r0, β{2q. On the other hand, q1pβq “ β2{2 ` Opβ3q and q2pβq “
β2 ` Opβ3q for β Œ 0. We start with a general result – i.e. not restricted to the context
of Definition 1.1 – that says in particular that the transition is of infinite order.

Theorem 1.2. Consider a general slowly varying function L satisfying
ř

n Lpnq{n “ 1.

For every β P p0, βq and every b P p0, 1q there exists h0 ą 0 such that for every h P p0, h0q

fpβ, hq ď exp

ˆ

´ b q1pβq
1

h
log

ˆ

rLp1{hq

Lp1{hq

˙˙

. (1.14)

Note that

log

˜

rLpxq

Lpxq

¸

“ p1` op1qq ˆ

#

log log x for sub-logarithmic and logarithmic decay,
`

υ´1
υ

˘

log log x for super-logarithmic decay.

(1.15)
Therefore, in the framework of Definition 1.1, (1.14) can be stated as

fpβ, hq ď exp

ˆ

´ c̄Lq1pβq
1

h
log logp1{hq

˙

, (1.16)

with c̄L a positive constant that depends only on Lp¨q.

Remark 1.3. The upper bound (1.16) holds in much greater, but not in full generality.

In fact, consider the case in which rLpxq “ C exp
`

´
şx
1 ηpuqdu{u

˘

, with C ą 0 and ηp¨q
a positive continuous function vanishing at infinity – it is straightforward to see that the

right-hand side defines a slowly varying function. Since limxÑ8
rLpxq “ 0, we have also

that
ş8

1 ηpuq du{u “ 8. We then have Lpxq “ ´xrL1pxq so we compute

log
rLpxq

Lpxq
“ ´ log ηpxq . (1.17)

Therefore, for (1.16) to hold, it suffices that there exists c ą 0 such that log ηpxq ě
´c log log x for x large (and necessarily c ď 1 otherwise

ş8

1 ηpuqdu{u ă 8). On the other
hand, by choosing ηpxq “ 1{ log logpx` x0q, x0 ą e, we have an example to which we can
apply (1.2), but for which (1.16) fails. For this example, like for many others that we can
write by straightforward generalization, Lp¨q decays even faster than super-logarithmically.

If we restrict to the context of Definition 1.1 we have much sharper results:

Theorem 1.4. Choose Lp¨q as in Definition 1.1 and fix β P p0, βq.
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(i) In the sub-logarithmic case we can choose two positive constants c` and c´ de-
pending only on υ so that there exists h0 such that for h P p0, h0q

exp

ˆ

´ c´ q2pβq
1

h
log logp1{hq

˙

ď fpβ, hq ď exp

ˆ

´ c` q1pβq
1

h
log logp1{hq

˙

. (1.18)

(ii) In the logarithmic case we can choose two positive constants c` and c´ depending
only on υ so that there exists h0 such that for h P p0, h0q

exp

ˆ

´ c´ q1pβq
1

h
logp1{hq

˙

ď fpβ, hq ď exp

ˆ

´ c` q1pβq
1

h
logp1{hq

˙

. (1.19)

(iii) In the super-logarithmic case, for hŒ 0 we have

fpβ, hq “ exp

ˆ

´ p1` op1qq

ˆ

h

q1pβq

˙´υ{pυ´1q˙

. (1.20)

We have not made c˘ explicit in order to keep the statement lighter, but they are very
explicit (even if probably none is optimal): in (1.18) it suffices to choose c´ ą υ ` 1 and
c` ă υ, in (1.19) it suffices to choose c´ ą 5{2 ` υ and c` ă υ ´ 1. Note that the lower
bound in (1.18) becomes empty if β ą β{2, and possibly also for β “ β{2.

Let us also stress that we work here in the framework of Definition 1.1 for simplicity:
some of the expressions simplify thanks to this assumption, but our results can be adapted
to a much wider class of slowly varying function Lp¨q. We can already point out the only
places where Definition 1.1 is used: to obtain (2.15)–(2.19) in Section 2; in Section 3; to
obtain (5.36)–(5.38) in Section 5.

1.4. About our methods, about perspectives and overview of the work. Some
important remarks are in order:

(1) We stress once again the partial agreement with respect to the physical literature.
Theorem 1.2 establishes that the transition is of infinite order, but it is not in agreement
with the works that predict a behavior of the type expp´c{hq, with c a constant. Note that
c is rather a diverging function, and Theorem 1.4 gives more information: the divergence
is only slowly varying for the sub-logarithmic and logarithmic cases, but it behaves as a
power law in the super-logarithmic case.

(2) We note that the result we find go in the opposite direction with respect to the

expp´c{
?
hq behavior of [18, 31]: there is no disagreement between our results and the

claim in [18, 31] because [18, 31] are about pinning models. Nevertheless this is very
intriguing and calls for deeper understanding. With respect to this, we recall that the
strong disorder RG analysis in [19] is inspired and built on the results of McCoy and Wu
[27] on the two dimensional Ising model with columnar disorder. McCoy and Wu predict
an infinite order transition, with a precise form of the singularity that is different from the
exponential type of essential singularity found or predicted for copolymer and pinning.

(3) Our results definitely exploit the fact that the critical point of the quenched system
is explicitly known and, considering also [22, 26], this appears to be for the moment an
unavoidable ingredient. Also in the case of [18] the critical value is exactly known and
this is exploited in the analysis of the model. It would be of course a major progress if
methods could be developed to deal with cases in which the critical point is known only
implicitly. And this appears as a necessary step if one wants to understand the criticality
of the copolymer model for α ą 0 or if one wants to really apprehend the strong disorder
universality class.
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The rest of the paper is devoted to the proofs.

‚ In Section 2, we prove a general lower bound based on revisiting the rare stretch
strategy in the direction of making it sharper. Essentially, we exploit local limit
results instead of rougher integral limit results like in previous works [7] and [20,
Sec. 6.2 and Sec. 5.4]. This covers the lower bounds in (1.19) and (1.20).

‚ In Section 3 we provide the lower bound in (1.18): this requires a new, more en-
tropic strategy with respect to the rare stretch strategy and it is based on applying
the second moment method on a suitably trimmed partition function. Of course
here the difficulty is in finding a suitable subset of the renewal trajectories that
yield a contribution to the partition function that is sufficient to match the upper
bound and that is not too wide so that the second moment can be compared with
the square of the first moment on sufficiently large volumes.

‚ In Section 4 we provide the proof of Theorem 1.2. This is achieved via a penaliza-
tion argument inspired by the analogous bound used for the two dimensional free
field in [26]. The strategy is sketched at the beginning of Section 4.

‚ In Section 5 we provide the proof of the upper bounds in Theorem 1.4. The key
idea here is to pass from a global to a targeted penalization: we avoid penalizing
the charges in regions that are not visited. In practice this requires setting up
an appropriate coarse graining procedure that builds on the basic structure of the
argument in [17]. Therefore, with respect to the case of the two dimensional free
field [26], we are able to upgrade the upper bound penalization procedure to get
to results that are optimal (in a sense that can be read out of Theorem 1.4).

We use the notation Jn,mK :“ rn,ms X Z, for n,m P Z and n ď m.

2. The lower bound: rare stretch strategy

We develop in this section a more quantitative version of the rare stretch strategy
argument in [20, Sec. 6.2 and Sec. 5.4]. This relatively simple argument yields optimal
bounds in the logarithmic and super-logarithmic cases.

Recall the definition of q1pβq in (1.13).

Theorem 2.1. For β P p0, βq we have:

(i) For every b ą 7{2 in the sub-logarithmic case and for every b ą 5{2 ` υ in the
logarithmic case there exists h0 ą 0 such that for every h P p0, h0q

fpβ, hq ě exp

ˆ

´ b q1pβq
logp1{hq

h

˙

; (2.1)

(ii) In the super-logarithmic case, for every b ą 1 there exists h0 ą 0 such that for
every h P p0, h0q

fpβ, hq ě exp

ˆ

´ b

ˆ

q1pβq

h

˙´ υ
υ´1

˙

. (2.2)

The argument is not optimal in the sub-logarithmic case, in particular because in that
setup the entropic cost for having renewal points only at multiples of ` becomes non-
negligible.

Proof. Recall the assumptions on ω, cf. (1.1)-(1.2). A sharp version of the Cramér’s Large
Deviation principle says that for every x P p0, Cq, C :“ limβÕβ̄ λ

1pβq P p0,8s, there exists
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cpxq ą 0 such that for

P
ˆ n
ÿ

j“1

ωj ě nx

˙

nÑ8
„

cpxq

n1{2
exp

`

´ nΣpxq
˘

, (2.3)

where Σpxq :“ supyrxy ´ λpyqs. The value of cpxq is irrelevant for us, but it can be found
in [30, Th. 1 and Th. 6] along with a proof of (2.3).

Now we fix β P p0, βq and we define q :“ λ1pβq: note that q solves the conjugate Legendre
problem λpβq “ supxpβx´ Σpxqq, that is λpβq “ βq ´ Σpqq. Note that q1pβq “ Σpλ1pβqq.
We choose a (sufficiently large) integer ` and for j “ 0, 1, . . . we set

Ej :“

"

ω :
ÿ̀

n“1

ωj``n ě q`

*

, (2.4)

so that t1Ejuj“0,1,... is an IID sequence of Bernoulli random variables of parameter pp`q,
where

pp`q :“ P pE1q P

ˆ

cpqq

2`1{2
exp p´`Σpqqq ,

2cpqq

`1{2
exp p´`Σpqqq

˙

. (2.5)

and the inclusion statement follows from (2.3) for ` greater than a suitably chosen value
that depends on q. Associated with such a sequence we introduce the sequence of IID
geometric random variables tGjuj“1,2,..., Gi P t0, 1, . . .u, that count the number of failures

before the ith success in the Bernoulli sequence t1Eiui“0,1,..., defined recursively as follows

Gj :“ min

"

k “ 0, 1, . . . :
k
ÿ

i“0

1Eipωq “ j

*

´

ˆ j´1
ÿ

m“1

Gm

˙

´ j , (2.6)

where the sum from m “ 1 to j ´ 1 should be read as zero for j “ 1. We call NN pωq
the number of successes up to epoch N , that is NN pωq “

ř

jďN{` 1Ej pωq. Alternatively,

NN pωq “ suptk :
řk
i“1pGk`1q` ď Nu. By the law of large numbers, Pp dωq almost surely

we have

lim
NÑ8

NN pωq

N
“

pp`q

`
. (2.7)

The rare stretch lower bound strategy is based on selecting, once the disorder ω is known,
only the renewal and excursion trajectories pτ,∆q P ΩN,qpωq for which the process stays
above the interface except in the NN pωq successful `-blocks

ΩN,qpωq :“

"

pτ,∆q : tn P J1, NK : ∆n “ 1u “
ď

iďN
`
´1:1Ei pωq“1

Ji`` 1, pi` 1q`K
*

. (2.8)

In order to find a lower bound for P pΩN,qpωqq it is sufficient to consider the strategy
where the renewal only targets the extremities of the intervals Ji`` 1, pi` 1q`K for which
1Eipωq “ 1 plus the last point N , and choses the sign of each excursion adequately. We
invite the reader to look at Figure 1. We obtain thus

log P pΩN,qpωqq ě

NN pωq
ÿ

j“1

log

ˆ

1

2
K pGj`q

˙

1tGiě1u ` NN pωq log

ˆ

1

2
Kp`q

˙

´ 2 logN ,

(2.9)

where the term ´2 logN comes from a rough estimate of the last excursion, which could
be empty and in any case it is not longer than N , hence for large N its contribution
is bounded from below by logpKpNq{3q, and 1{3 is used instead of the probability 1{2
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of being above the interface because Kp¨q is asymptotically equivalent to a decreasing
function but it is not necessarily decreasing (or non increasing), see [6, Th. 1.5.3].

0 ℓ 2ℓ 6ℓ 11ℓ 16ℓN

Figure 1. The system is partitioned into blocks of length ` and the jth block is
successful if the average of the ωj ’s in the block is at least q ą 0: these blocks are marked
by a thick line and we see 5 of them in the example we consider. The variables Gj ’s
recursively count the unsuccessful blocks before a successful one. So for this illustration
case, G1 “ 3, G2 “ 4, G3 “ 0, G4 “ 2, G5 “ 1 and G6 ą 1. The excursions we choose are
indicated by the arrows: they begin and terminate at the extremity of a block, except
possibly the last one which ends in N which is not necessarily a multiple of `. The
excusions below the interface are always of length ` and they correspond to the `-blocks
that are subset of r0, N s. All the other excursions are above.

Therefore using the convention Kp0q :“ 1, we obtain that Pp dωq almost surely

lim inf
NÑ8

1

N
log P pΩN,qpωqq ě

pp`q

`

´

E rlogK pG1`qs ` logKp`q ´ 2 log 2
¯

. (2.10)

In order to estimate the term E rlogK pG1`qs, we consider the variable g1 :“ pp`qG1. By
the Potter bound [6, Th. 1.5.6] for every a ą 0 there exists b ą 0 such that Lpyq{Lpxq ď
eb maxppy{xqa, px{yqaq for every x, y ě 1, so we see that

|logK pG1`q ´ logK p`{pp`qq| “ |logK pg1`{pp`qq ´ logK p`{pp`qq|

ď pb` p1` aq| log g1|q1tg1ą0u ` 2 logp`{pp`qq1tg1“0u ,
(2.11)

and one directly checks that the expectation of the right-hand side in (2.11) is uniformly
bounded in `.

In what follows ε ą 0 is an arbitrarily small constant that may change from line to line.
For ` sufficiently large

lim inf
NÑ8

1

N
log P pΩN,qpωqq ě

pp`q

`

ˆ

log
pp`q

`
` logL

ˆ

`

pp`q

˙

` logLp`q ´ log `´ 2 log 2

˙

ě
pp`q

`

ˆ

´`Σpqq ` logL

ˆ

1

pp`q

˙

´ p5{2` εq log `

˙

,

(2.12)

where the first inequality is obtained by replacing G1 with pp`q´1 by using (2.11). The
second inequality is obtained by using (2.3) and by using again the Potter bound to replace
Lp`{pp`qq with Lp1{pp`qq and to neglect logLp`q. From this estimate we readily obtain that
fpβ, hq is bounded below by

lim inf
NÑ8

1

N
logZN,h

`

ΩN,qpωq
˘

ě `pβq ´ λpβq ` hq lim
NÑ8

N pωq
N

` lim inf
NÑ8

1

N
log P

`

ΩN,qpωq
˘

ě
pp`q

`

´

pβq ´ λpβq ´ Σpqq ` hq `` logLppp`q´1q ´ p5{2` εq log `
¯

ě
pp`q

`

´

h`´ p5{2` εq log `` logLppp`q´1q

¯

“:
pp`q

`
gph, `q , (2.13)
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where in the last line we have used that q is the optimizer of the (conjugate) Legendre
problem and the very last step defines gph, `q.

It is now a matter of going through the three classes of slowly varying functions that
we consider and see how large ` “ `phq has to be chosen in order to guarantee a positive
gph, `phqq gain. In what follows h is chosen small, possibly smaller than a constant that
depends also on ε. Moreover C ą 0 is a constant that in all cases can be easily identified:

– In the super-logarithmic case we have

logL
`

pp`q´1
˘

ě ´p`Σpqq ` plog `q{2` Cq1{υ ě ´p1` εq`1{υΣpqq1{υ , (2.14)

and we readily see that if ` ě p1 ` εqh´υ{pυ´1qΣpqq1{pυ´1q then there exists cpε, υq ą 0
such that gph, `q ě cpε, υqh`. Therefore (2.13) yields

fpβ, hq ě cpε, υqhpp`q ě exp
´

´p1` εqh´υ{pυ´1qΣpλ1pβqqυ{pυ´1q
¯

, (2.15)

where in the last step we have used the explicit expression for q.
– In the logarithmic case

logL
`

pp`q´1
˘

ě ´υ log
`

`Σpqq
˘

´
1

2
υ log log `´ C ě ´p1` εqυ log ` , (2.16)

so that

gph, uq ě h`´ p5{2` v ` εq log ` , (2.17)

and it suffices to choose ` ě p5{2 ` υ ` 2εq logp1{hq{h to have gph, uq ě cpε, υqh`.
Therefore

fpβ, hq ě cpε, υqhpp`q ě exp

ˆ

´p5{2` υ ` εqΣpλ1pβqq
logp1{hq

h

˙

. (2.18)

– Last, in the sub-logarithmic case the computation is the same as in the logarithmic case
because the iterated logarithm in the asymptotic of Lpxq is irrelevant for the purpose of
this computation and Lpxq can be replaced, with an error that can be hidden by ε, by
1{ logpxq, that is the logarithmic case with υ “ 1. Hence the net result is

fpβ, hq ě cpε, υqhpp`q ě exp

ˆ

´p7{2` εqΣpλ1pβqq
logp1{hq

h

˙

. (2.19)

The proof is complete once we recall that Σpλ1pβqq “ βλ1pβq ´ λpβq “ q1pβq. �

3. Improved lower bound in the sub-logarithmic case

Recall the definition (1.13) of q2pβq :“ λp2βq ´ 2λpβq, which is positive for β ą 0 and
finite for β ă β{2.

Theorem 3.1. Assume that Lp¨q satisfies (1.9) and that q2pβq ă 8. Then for every
c ą υ ` 1 there exists h0 ą 0 such that for every h P p0, h0q

fpβ, hq ě exp

ˆ

´c q2pβq
log logp1{hq

h

˙

. (3.1)

Proof. We introduce

k “ kphq :“ c1
log logp1{hq

h
, M :“ exp pc2kq , N “M2plogMq3 and m “

N

M2 logM
,

(3.2)



12 QUENTIN BERGER, GIAMBATTISTA GIACOMIN, AND HUBERT LACOIN

with c1 and c2 positive constants that will be chosen later on. At times we will also do as
if k, M and m were integers. We introduce the event

Gm :“
!

pτ,∆q : τ2i`1 ´ τ2i P rM,M2s and τ2i`2 ´ τ2i`1 P r1, ks for i P J0,m´ 1K,

∆τj`1 “
1´ p´1qj

2
for j P J0, 2mK and τ2m`1 “ N

)

. (3.3)

In words, we focus on the trajectories that make alternatively a long and a short excursion,
and this is repeated a fixed number of times (m) before reaching the point N : long jumps
do not collect any energy (∆ in the excursion is zero), while the short ones do (∆ in the
excursion is one). The last excursion is long, hence it does not collect any energy, but we
stress that it is very long: in fact the 2m excursions that precede the last excursion add up
at most to mpM2`kq “ p1`op1qqN{ logM , and therefore the length of the last excursion
is asymptotically equivalent to the size of the system as h Œ 0. We then consider the
partition function restricted to these trajectories:

rZN,ω :“ ZN,ω pGmq . (3.4)

We have

E logZN,ω “ E
”

logZN,ω; rZN,ω ě
1
2E rZN,ω

ı

` E
”

logZN,ω; rZN,ω ă
1
2E rZN,ω

ı

ě P
´

rZN,ω ě
1
2E rZN,ω

¯

log
´

1
2E rZN,ω

¯

` P
´

rZN,ω ă
1
2E rZN,ω

¯

log
`

KpNq{2
˘

ě
E
“

rZN,ω
‰2

4E
“

p rZN,ωq2
‰

log
´

1
2E rZN,ω

¯

´ 2 logN. (3.5)

where in the first inequality we used ZN,ω ě KpNq{2 (that holds in full generality) and in
the second one we have applied the Paley-Zygmund inequality and we have assumed that

logpp1{2qE rZN,ωq ě 0, that is E rZN,ω ě 2.

To conclude we need to estimate the first two moments of rZN,ω.

First moment estimate. We have

E rZN,ω “ E

„

exp
´

h
m
ÿ

i“1

pτ2i`2 ´ τ2i`1q

¯

; Gm



ě

ˆ

1

2

M2
ÿ

n“M

Kpnq

˙mˆ1

2

k
ÿ

n“1

ehnKpnq

˙mKpNq

3
,

(3.6)

where the inequality comes from the last excursion which is shorter than N (3 is present
instead of 2 because K is monotonic only in an asymptotic sense). It follows from our
sub-logarithmic decay assumption (recall (1.12)) and our choice of parameters (3.2) that
when h tends to zero

M2
ÿ

n“M

Kpnq “ rLpMq ´ rLpM2q “
cL log 2

|log h|υ
p1` op1qq. (3.7)

For the second term instead we split
řk
n“1 e

hnKpnq according to whether n is smaller or
larger than 1{h and we see that the first sum is bounded by e. For the second sum, we
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remark that we have for h sufficiently small

k
ÿ

n“t1{hu

ehnKpnq “ ehk
k´t1{hu
ÿ

j“0

e´hj
Lpk ´ jq

k ´ j

ě ehk
Lpkq

hk
p1´ εq ě

cL| log h|c1´1

c1plog logp1{hqqυ`1
p1´ 2εq . (3.8)

The first inequality can be achieved by considering the sum restricted to j ď
a

k{h (or
anything that tends to infinity faster than 1{h but much slower than k) and observe that,

uniformly for these values of j, we have Lpk´jq
k´j “ p1 ` op1qqLpkqk . The last step is a

consequence of the sub-logarithmic decay assumption and of (3.2). The interested reader
can check that both inequalities correspond to asymptotic equivalences.

It is now sufficient to observe that (3.6)-(3.8) readily imply that for every ε ą 0 we can
find h0 ą 0 so that we have

E rZN,ω ě | log h|c1´υ´1´ε , (3.9)

for every h P p0, h0q. Therefore if
c1 ą υ ` 1 , (3.10)

we have in particular, possibly redefining h0, that E rZN,ω ě 2 (recall that the last step in
(3.5) was made under this assumption).

Second moment estimate. We aim at showing that for hŒ 0

E
“

p rZN,ωq
2
‰

E
“

rZN,ω
‰2 “ 1` op1q , (3.11)

and we start by observing that

E
“

p rZN,ωq
2
‰

E
“

rZN,ω
‰2 “ rEb2

h

„

exp

ˆ

q2pβq
N
ÿ

n“1

∆p1q
n ∆p2q

n

˙

, (3.12)

where q2pβq is given in (1.13) and the measure rPh is defined by

drPh

dP
pτ,∆q :“

1

E
“

rZN,ω
‰

exp

ˆ

h
m
ÿ

i“1

|τ2i ´ τ2i´1|

˙

1Gmpτ,∆q . (3.13)

In order to obtain an upper bound for the right hand side of (3.12), we are going to prove

a bound for the expectation with respect to ∆p1q which is uniform for every realization of
∆p2q in Gm. Let A denote an arbitrary set of the form

A :“
8
ď

i“1

Jai, biK, (3.14)

where a1 ěM and for all i “ 1, 2, . . .

pbi ´ aiq ď k and bi`1 ´ ai ěM. (3.15)

Note that it would be more natural to consider the union to stop at m but it is more
practical for us to consider here an infinite set. To conclude it is sufficient to show that,
uniformly over all possible sets A

rEh

„

exp

ˆ

q2pβq
m
ÿ

i“1

ˇ

ˇJτ2i´1 ` 1, τ2iKXA
ˇ

ˇ

˙

hŒ0
“ 1` op1q . (3.16)



14 QUENTIN BERGER, GIAMBATTISTA GIACOMIN, AND HUBERT LACOIN

Our first step is to replace rPh by a nicer measure under which jumps are independent.

For m P N let pPm
h be a measure on a finite sequence tτiuiPJ0,2mK for which τ0 “ 0, the

increments are independent and for which for every i P J0,m´ 1K

pPm
h pτ2i`1 ´ τ2i “ nq “

Kpnq1nPrM,M2s
řM2

n“M Kpnq
,

pPm
h pτ2i`2 ´ τ2i`1 “ nq “

ehnKpnq1nPr1,ks
řk
n“1 e

knKpnq
.

(3.17)

Analogously we define also the infinite random sequence tτiui“0,1,... and its law is denoted

by pPh. We set

rGm :“
 

τ : τ2i`1 ´ τ2i P rM,M2s and τ2i`2 ´ τ2i`1 P r1, ks for i P J0,m´ 1K
(

. (3.18)

We will commit abuse of notation in using the same notations for random variables and
standard, i.e. non-random, variables.

Lemma 3.2. Let rPm
h be the distribution of tτiuiPJ0,2mK under rPh. Then we have

sup
tτiuiPJ0,2mKP

rGm

drPm
h

dpPm
h

pτ0, τ1, . . . , τ2mq
hŒ0
“ 1` op1q . (3.19)

Proof. pPm
h pτ0, τ1, . . . , τ2mq can be directly expressed from (3.17), but it is helpful to write

it in the more implicit fashion:
śm
i“1Kpτ2i´1 ´ τ2i´2qKpτ2i ´ τ2i´1qe

hpτ2i´τ2i´1q

ř

τ 1P rGm

śm
i“1Kpτ

1
2i´1 ´ τ

1
2i´2qKpτ

1
2i ´ τ

1
2i´1qe

hpτ 12i´τ
1
2i´1q

. (3.20)

On the other hand rPm
h pτ0, τ1, . . . , τ2mq instead is

śm
i“1Kpτ2i´1 ´ τ2i´2qKpτ2i ´ τ2i´1qe

hpτ2i´τ2i´1qKpN ´ τ2iq
ř

τ 1P rGm

śm
i“1Kpτ

1
2i´1 ´ τ

1
2i´2qKpτ

1
2i ´ τ

1
2i´1qe

hpτ 12i´τ
1
2i´1qKpN ´ τ 12iq

, (3.21)

and the denominator of this expression cannot be easily simplified. But for every τ P rGm
we have that N ´ τ2m ě N ´mpM2 ` kq ě Np1´ 2{ logMq. Therefore we have that the
ratio

KpN ´ τ2iq

KpN ´ τ 12iq
“ 1` op1q , (3.22)

for hŒ 0, uniformly in τ and τ 1 in rGm. But the ratio of (3.21) and (3.20) can be bounded
precisely by this ratio and therefore Lemma 3.2 is proven. �

To conclude we are going to show that for A satisfying (3.14) and any j

pEh

„

exp

ˆ

q2pβq

j
ÿ

i“1

ˇ

ˇJτ2i´1 ` 1, τ2iKXA
ˇ

ˇ

˙

ď

ˆ

1` ekq2pβq
Ck log k logM

M

˙j

, (3.23)

for a C ą 0 depending only on Lp¨q. It is in fact straightforward to check that with the
choices made in (3.2) the right-hand side is equal to 1 ` op1q for j “ m (so (3.16) and
therefore (3.11) hold true) if

c2 ą q2pβq . (3.24)
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We prove (3.23) by induction. Let us start with the simpler case j “ 1. We have

pEh

”

exp
´

q2pβq
ˇ

ˇJτ1 ` 1, τ2KXA
ˇ

ˇ

¯ı

ď 1` ekq2pβqpPh

`

Jτ1 ` 1, τ1 ` kKXA ‰ H
˘

. (3.25)

Provided k{M ď 1{2 we have

8
ÿ

i“1

bi
ÿ

n“ai´k

Kpnq1tnPrM,M2su ď

M
ÿ

i“1

bi
ÿ

n“ai´k

c

n
ď c

M
ÿ

i“1

iM`k
ÿ

n“iM´k

1

n
ď

3ck logM

M
. (3.26)

where in the first inequality we used that Kpnq ď cn´1 and that ai ě iM to show that all
terms beyond the M first ones do not participate in the sum. In the second inequality we

used again the fact that ai ě iM and bi ´ ai ď k to bound each sum
řbi
n“ai´k

p1{nq. Now
we observe that

pPh

`

Jτ1 ` 1, τ1 ` kKXA ‰ H
˘

“

ř8
i“1

řbi
n“ai´k

Kpnq1tnPrM,M2su
řM2

n“M Kpnq

ď
4c k log k logM

cL log 2M
“:

Ck log k logM

M
,

(3.27)

where we have used (3.7) – recall that log k “ p1`op1qq| log h| – and the last step defines C.

To prove the induction step, we condition with respect to τ2j . Let us consider

A1 :“ pA´ τ2jq X rM,8q . (3.28)

Using independence of the jumps and the fact that τ2j`1 ´ τ2j ěM ,

pEh

„

exp

ˆ

q2pβq

j
ÿ

i“1

ˇ

ˇJτ2j`1 ` 1, τ2j`2KXA
ˇ

ˇ

˙

ˇ

ˇ

ˇ
tτiuiPJ0,2jK



“ pEh

”

exp
´

q2pβq
ˇ

ˇJτ1 ` 1, τ2KXA1
ˇ

ˇ

¯ı

. (3.29)

Noting that A1 is of the type described in (3.14)-(3.15) we can conclude that

pEh

„

exp

ˆ

q2pβq

j
ÿ

i“1

ˇ

ˇJτ2j`1 ` 1, τ2j`2KXA
ˇ

ˇ

˙

ˇ

ˇ

ˇ
tτiuiPJ0,2jK



ď

ˆ

1` ekq2pβq
Ck log k logM

M

˙

,

(3.30)
which concludes the induction step.

Completion of the proof. Going back to (3.5) and using (3.9) and (3.11), which require c1

and c2 to be chosen according to (3.10) and (3.24), for h sufficiently small we obtain

1

N
E logZN,ω ě

m

N

pc1 ´ υ ´ 1´ εq

5
log logp1{hq ´ 2

logN

N

ě
1

M2 logM
ě h2 exp

ˆ

´c1c2
log logp1{hq

h

˙

, (3.31)

and the proof of Theorem (3.1) is complete. �
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4. Upper bound based on a global change of measure: proof of
Theorem 1.2

Instead of applying Jensen’s inequality directly for E logZN,ω (which yields the usual
annealed bound), we can first split logZN,ω in two terms and obtain

E logZN,ω “ E log pfpωqZN,ωq ´ E log fpωq ď logE rfpωqZN,ωs ´ E log rfpωqs , (4.1)

where f is an arbitrary positive measurable function. We choose to apply the above
inequality for a function f which has the effect of penalizing environments ω which have
small probability but contribute for most of the expectation ErZN,ωs: we select a collection
of events whose probability is small under P, but large under the size-biased measure
rPN p dωq :“

ZN,ω
ErZN,ωs Ppdωq. What helps us in our choice of f is that the size biased measure

has a rather explicit description: it can be obtained starting with P and tilting the law of
the ωn along a randomly chosen renewal trajectory.

We choose to penalize stretches of environment where ω assumes unusually large values.
Let kphq be a large positive integer. The exact value of k is to be fixed at the end of the
proof as the result of an optimization procedure, but let us mention already that we choose
it of the form kphq “ h´1ϕphq, where ϕphq ě 1 is a slowly varying function which tends to
infinity when h goes to zero. For n,m P J0, NK, with m ą n, and b P p0, 1q we introduce
the event

Epn,mq “ Eβpn,mq :“

"

ω :
m
ÿ

j“n`1

ωj ě bλ1pβqpm´ nq

*

. (4.2)

We define the penalizing density

fpωq :“ exp

˜

´ 4h
ÿ

n,mPJ0,NK
năm,m´nąk

pm´ nq1Epn,mqpωq

¸

. (4.3)

To control the first term on the right in (4.1), it is sufficient to notice that by the standard
Chernoff bound, there exists a constant c1pβq (which can be taken as large as the Large

Deviation function Σpbλ1pβqq) such that for every m ě n, P pEpn,mqq ď e´c1pβqpm´nq.
Hence

E log
`

f´1pωq
˘

“ 4h
ÿ

n,mPJ0,NK
năm,m´nąk

pm´ nqP pEpn,mqq ď 4h
N´1
ÿ

n“0

ÿ

ląk

e´c1pβql (4.4)

ď
4hN

c1pβq
expp´c1pβqkq ď N expp´c1pβqkq , (4.5)

where the last inequality requires h ď c1pβq{4. Therefore

lim sup
NÑ8

1

N
E
“

log f´1pωq
‰

ď expp´c1pβqkq . (4.6)

Now we turn to the second term in the right-hand side of (4.1), and prove that
E rfpωqZN,ωs ď 1 for N large, provided that h is sufficiently small and k “ h´1ϕphq
with ϕp¨q chosen in (4.20), so that the upper bound on the free energy is given by (4.6).
We have

E rfpωqZN,ωs “ E

„

E
„

fpωq exp

ˆ

ÿ

nPA

pβωn ´ λpβqq

˙

exp ph|A|q ;N P τ



, (4.7)
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where

A “ ApNq :“
ď

jPJ1,MN K: ιj“1

Jτj´1 ` 1, τjK, (4.8)

and MN is the integer such that τMN
“ N . We have

E
„

fpωq exp

ˆ

ÿ

nPA

pβωn ´ λpβqq

˙

ď E
„ˆ

ź

jPJ1,MN K
ιj“1,τj´τj´1ěk

e
´4hpτj´τj´1q1Epτj ,τj´1q

˙

exp

ˆ

ÿ

nPA

pβωn ´ λpβqq

˙

“ E
„

ź

jPJ1,MN K
ιj“1,τj´τj´1ěk

e
´4hpτj´τj´1q1Epτj ,τj´1q

`
ř

nPJτj´1`1,τjKpβωn´λpβqq


“
ź

jPJ1,MN K
ιj“1,τj´τj´1ěk

Eβ
”

e
´4hpτj´τj´1q1Epτj ,τj´1q

ı

, (4.9)

where in the last line the expectation is taken with respect to the probability measure Pβ
under which all the variables ωn are still IID, but with tilted marginal density

Pβpω1 P duq “ eβu´λpβqPpω1 P duq . (4.10)

Note that the term exp
´

ř

nPJτj´1`1,τjK pβωn ´ λpβqq
¯

is a probability density. In par-

ticular Eβrωns “ λ1pβq ą 0, and Chernoff bounds yields again for every m ě n,

Pβ
`

Epn,mqA
˘

ď e´c2pβqpm´nq , (4.11)

for an adequate choice of c2pβq ą 0 that depends also on b. Hence, for h sufficiently small
(depending on c2pβq), for all m´ n ą k we obtain

Eβ
”

e´4hpm´nq1Epn,mq
ı

“ e´4hpm´nq ` Pβ
`

Epn,mqA
˘

p1´ e´4hpm´nqq

ď e´4hpm´nq ` e´c2pβqpm´nq ď e´2hpm´nq .
(4.12)

Therefore, going back to (4.9), we see that

E
„

fpωq exp

ˆ

ÿ

nPA

pβωn ´ λpβqq

˙

ď
ź

jPJ1,MN K
ιj“1,τj´τj´1ěk

exp
`

´ 2hpτj ´ τj´1q
˘

, (4.13)

and this estimate, inserted into (4.7), is sufficient to transform the reward p`hq into a
penalty p´hq for excursions of length larger than k. We thus obtain

E rfpωqZN,ωs ď
N
ÿ

n“1

ÿ

`PNn:|`|“N

n
ź

j“1

Kp`jq

ˆ

1

2
`

1

2
e
h`jp1t`jďku´1t`jąkuq

˙

“:
N
ÿ

n“1

ÿ

`PNn:|`|“N

n
ź

j“1

Kkp`jq ,

(4.14)

To conclude we need to show that Kkp¨q can be interpreted as the inter-arrival law for
a renewal process – this simply means that

ř8
`“1Kkp`q ď 1 – so that the last term in
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(4.14) is bounded by one because it is the probability that N belongs to the renewal with
inter-arrival law Kkp¨q. We have therefore to establish the non positivity of

2
´

8
ÿ

`“1

Kkp`q ´ 1
¯

“
ÿ

`ďk

Kp`q
´

eh` ´ 1
¯

´
ÿ

`ąk

Kp`q
´

1´ e´h`
¯

. (4.15)

To estimate the second term we recall that we have chosen kh ě 1 so that when k is
sufficiently large we have

ÿ

`ąk

Kp`q
´

1´ e´h`
¯

ě p1´ e´1q
ÿ

`ąk

Kp`q ě
1

2
rLpkq. (4.16)

For the first term, using that ex ´ 1 ď eXx for x P r0, Xs, we remark that
ÿ

`ďk

Kp`q
´

eh` ´ 1
¯

ď ehkh
ÿ

`ďk

Lp`q ď 2ehkhkLpkq , (4.17)

where the last step holds (for h sufficiently small) because
ř

`ďk Lp`q “ p1 ` op1qqkLpkq

for k Ñ 8, see [6, Prop. 1.5.8]. Choosing k “ h´1ϕphq with ϕphq ě 1, we can conclude
that the right hand side of (4.15) is negative if

eϕphqϕphq
4Lph´1ϕphqq

rLph´1ϕphqq
ď 1. (4.18)

Using the Potter bound [6, Th. 1.5.6], we obtain that for h sufficiently small

4Lph´1ϕphqq

rLph´1ϕphqq
ď ϕphq

Lph´1q

rLph´1q
, (4.19)

and thus (4.18) is satisfied for all h sufficiently small if one chooses (with b as in (4.2))

ϕphq “ b log

˜

rLp1{hq

Lp1{hq

¸

. (4.20)

The estimate on the free energy is therefore determined by (4.6): the net result is that for
h ą 0 sufficiently small

fpβ, hq ď exp

ˆ

´Σ
`

bλ1pβq
˘ ϕphq

h

˙

. (4.21)

Since b can be chosen arbitrarily close to one, the proof of Theorem 1.2 is complete. �

5. Improved upper bound: proof of the upper bounds in Theorem 1.4

Choose ε P p0, 1q and, with reference to Definition 1.1, define

Mh :“

$

’

&

’

%

ep1´εqvh
´1 log | log h| sub-logarithmic case

ep1´εqpυ´1qh´1| log h| logarithmic case

ep1´εqh
´v{v´1

super-logarithmic case

(5.1)

The heart of the proof is the next proposition: we prove it after having shown that it
implies the upper bounds we are after. Recall the definition (1.13) of q1pβq.

Proposition 5.1. Choose Lp¨q in the framework of Definition 1.1, and M¨ as in (5.1).
Then, for every β P p0, β̄q, and for every c3 ă q1pβq, there exists h0 ą 0 such that for all
h P p0, h0q

E
“

logZMh{c3
,ω

‰

ď 4 . (5.2)
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Proof of Theorem 1.4 (upper bounds). Proposition 5.1 would directly imply the result if
the sequence tErlogZN,ωsuN“1,2,... were a sub-additive sequence. But this is not the case:
rather, it is super-additive. However, given any b ą 0 and Lp¨q, one can choose two positive
constants c3 and c4 such that the sequence formed by

gN :“ E rlogZN,ωs ` c4 logN ` c5 , (5.3)

is sub-additive for every choice of β P r0, bs and |h| ď b. Therefore fpβ, hq “ limN gN{N “

infN gN{N ď gM{M for any choice of M . Therefore, using (5.2), we have

fpβ, hq 6
4` c4 logMh{c3 ` c5

Mh{c3

, (5.4)

which yields the upper bounds in Theorem 1.4.
The proof that (5.3) forms a sub-additive sequence can be found for example in [20,

Ch. 4, § 4.2], but we recall the argument for completeness. We start from the estimate
that for every N,M P N

E rlogZN`M,ωs ď E rlogZN,ωs ` E rlogZM,ωs ` C log pminpN,Mqq ` C , (5.5)

with C “ Cpb, Lp¨qq ą 0 which can easily be made explicit A proof of (5.5) can be found for
example in [20, proof of (4.16), p. 93]. Without loss of generality we can assume N ěM
and we rewrite (5.5) as

gN`M ´ gN ´ gM ď C logM ` C ` c4 logpN `Mq ´ c4 logN ´ c4 logM ´ c5 , (5.6)

and we are left with showing that the right-hand side is smaller or equal to zero, with
suitable choices of c4 and c5. For this we can use logpN `Mq ď log 2` logN and the fact
that the resulting expression vanishes if we choose c4 “ C and c5 “ p1` log 2qC. �

We now move to the proof of Proposition 5.1 and as a first important step, we prove
the following lemma.

Lemma 5.2. For any constant c3 ă q1pβq, there exist η P p0, 1q and h1 ą 0 such that for

all h P p0, h1q, setting N “ ec3{h, and θ “ 1´ h{c3, we have that for every j P J1, NK

ErZθj,ωs ď e3
qPhpj P τq , (5.7)

where qPh “
qP
pηq
h is the renewal process whose inter-arrival law is defined by

qPhpτ1 “ `q “ qKhp`q :“ Kp`q
´1

2
`

1

2
eh`

`

1
t`ď1{pη2hqu´η 1t`ą1{pη2hqu

˘

¯

, (5.8)

and satisfies (also for h sufficiently small, how small depends on η)

8
ÿ

`“1

qKhp`q ď 1´
1

6
rLp1{hq. (5.9)

Note that this already proves that

ErlogZN,ωs ď θ´1 logErZθN,ωs ď 3θ´1 ď 4 (5.10)

for N “ Nh :“ ec3{h, which in turn implies the upper bound, analogous to (5.4)

fpβ, hq ď
4` c4 logNh ` c5

Nh
ď e´c

1
3{h . (5.11)

However, this bound alone is worse than the one achieved in Theorem 1.2.
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Proof. The method we use to prove this statement presents some similarity with the proof
of Theorem 1.2 (Section 4): in particular it relies on the same notion of penalizing density.
However, we need a different choice for fpωq in order to run computation of non-integer
moments.

We fix η ą 0, we choose k :“ pηhq´1 (so that N “ e´c3ηk), and we work as if 1{η and k
were integers in the following. We define for u P N (compare with (4.2))

Ekpuq :“

" ku
ÿ

i“kpu´1q`1

ωi ě p1´ ηqλ
1pβqk

*

(5.12)

(we simply write Ek for Ekp1q), and also

fpωq “

tN{ku
ź

u“1

e
´

1`4η
η

1Ekpuqpωq . (5.13)

By using Hölder inequality, we get that for θ P p0, 1q

ErpZj,ωqθs “ E
“

fpωq´θpfpωqZj,ωq
θ
‰

ď E
“

fpωq´
θ

1´θ
‰1´θE

“

fpωqZj,ω
‰θ
. (5.14)

For the first term, a simple computation gives

E
“

fpωq´θ{p1´θq
‰1´θ

“ E
”

e
1`4η
η

θ
1´θ

1Ek
ıp1´θqtN{ku

ď

´

1` e
1`4η
ηp1´θqP

`

Ek
˘

¯N
. (5.15)

From the standard Chernoff bound, for any c3 ă q1pβq, we can fix η small, so that for all

k large enough, we have PpEkq ď e´p1`5ηqc3k. Here we use 1 ´ θ “ h{c3 and k “ pηhq´1,
to obtain that

e
1`4η
ηp1´θqP

`

Ek
˘

ď e´c3ηk “ N´1 , (5.16)

and hence that

E
“

fpωq´θ{p1´θq
‰1´θ

ď
`

1`N´1
˘N
ď e . (5.17)

To estimate the second term in (5.14), we observe that

E
“

fpωqZj,ω
‰

“ E

„

eh|A|1tjPτuE
”

fpωq exp
´

ÿ

nPA

βωn ´ λpβq
¯ı



, (5.18)

where A “ Apjq is defined by (4.8). If we set

IA “
 

v P J1, tN{kuK : Jkpv ´ 1q ` 1, kvK Ă A
(

, (5.19)

by proceeding like in (4.9) we obtain that

E
”

fpωq exp
´

ÿ

nPA

βωn ´ λpβq
¯ı

ď E
”

ź

uPIA

e
´

1`4η
η

1Ekpuqe
ř

nPA βωn´λpβq
ı

ď

´

e
´

1`4η
η ` Pβ

`

pEkqA
˘

¯|IA|
, (5.20)

where Pβ is the tilted probability defined in (4.10). As we have Eβrωns “ λ1pβq, by the

law of large number, PβppEkqAq gets arbitrarily small if k is chosen large (that is if h is
small). Hence for h sufficiently small we obtain that

E
”

fpωq exp
´

ÿ

nPA

βωn ´ λpβq
¯ı

ď e
´

1`3η
η
|IA| ď exp

ˆ

´

ˆ

1` 3η

η

˙ˆ

p1{ηq ´ 1

1{η

˙

Wk

k

˙

,

(5.21)
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where (recall that Mj is defined by τMj “ j if j P τ)

Wk “ Wkpτ, ιq :“
ÿ

iďMj : ιi“1

pτi ´ τi´1q1tτi´τi´1ěk{ηu , (5.22)

is the sum of the lengths of the excursions below the interface that are of length k{η or
more. Note that in (5.21) we have used that an excursion of length k{η or more covers
at least p1{ηq ´ 1 consecutive J1, kK blocks. We therefore get from (5.18) and our choice
k “ pηhq´1 that provided that η is small,

E
“

fpωqZj,ω
‰

ď E
”

eh
`

|A|´p1`ηqWk

˘

1tjPτu

ı

“

j
ÿ

q“1

ÿ

p`1,...,`qqPNq :
řq
i“1 `i“N

q
ź

i“1

Kp`iq
´1

2
`

1

2
eh`ip1t`iăk{ηu´η 1t`iěk{ηuq

¯

“ qPh

`

j P τ
˘

, (5.23)

with qPh defined by (5.8). Going back to (5.14), and collecting (5.17)-(5.23), we end up
with

ErpZj,ωqθs ď e qPhpj P τq
θ ď e qPhpj P τq

θ´1
qPhpj P τq . (5.24)

Then, we simply notice that qPhpj P τq ě
1
2Kpjq ě N´2 for all j ď N (provided that N is

large), so that qPhpj P τq
θ´1 ď N2plogNq´1

“ e2. This concludes the proof of (5.7).
It remains only to prove (5.9). We have

2

˜

8
ÿ

`“1

qKhp`q ´ 1

¸

“
ÿ

`ďk{η

peh` ´ 1qKp`q ´
ÿ

`ąk{η

p1´ e´ηh`qKp`q

ď e1{η2h
ÿ

`ďk{η

`Kp`q ´
1

2

ÿ

`ąk{η

Kp`q

ď 2e1{η2hkLpkq ´
2

5
rLpkq ď ´

1

3
rLpkq .

(5.25)

For the first inequality, we used that that ex ´ 1 ď e1{η2x for all 0 ď x ď 1{η2 (recall

hk “ 1{η), and that e´ηh` ď e´1{η ď 1{2 in the second term. The second inequality holds

provided that k is large enough, and the last one because hk “ 1{η and rLpkq{Lpkq diverges
to infinity as k Ñ8. This completes the proof of Lemma 5.2. �

Proof of Proposition 5.1. Let N “ ec3{h and θ “ 1´ h{c3, as in Lemma 5.2.
We prove that for all 1 ď m ď M :“ Mh{c3 we have ErpZmqθs ď e3, which gives the

conclusion like in (5.10). To that end as in [17] we write for any m ě N

Zm,ω “
m
ÿ

n“N

N´1
ÿ

j“1

Zm´n,ωKpn´ jqZj,Tm´jω, (5.26)

so that, using translation invariance, we have

E
“

pZm,ω
˘θ‰

ď

m
ÿ

n“N

N´1
ÿ

j“0

E
“

pZm´n,ωq
θ
‰

Kpn´ jqθE
“

pZj,ωq
θ
‰

. (5.27)
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We prove below that, for M “Mh{c3 with Mh defined as in (5.1), we have

ρ :“
M
ÿ

n“N

N´1
ÿ

j“0

Kpn´ jqθE
“

pZj,ωq
θ
‰

ď 1. (5.28)

Then, since from (5.27) we have

E
“

pZm,ω
˘θ‰

ď ρ max
iPJ0,m´NK

E
“

pZi,ωq
θ
‰

, (5.29)

an easy induction gives that for any N ď m ďMh{c3 we have

ErpZm,ω
˘θ
s ď max

iPJ0,NK
E
“

pZi,ωq
θ
‰

ď e3 , (5.30)

the last inequality coming from Lemma 5.2.

To prove (5.28) we also use Lemma 5.2: we assume that N is even for simplicity and
we write

ρ

e3
ď

M
ÿ

n“N

N{2´1
ÿ

j“0

Kpn´ jqθ qPhpj P τq `
M
ÿ

n“N

N´1
ÿ

j“N{2

Kpn´ jqθ qPhpj P τq “: A`B , (5.31)

and we estimate separately the two terms. We will show that, with our choice for Mh in
(5.1), both terms can be made arbitrarily small for hŒ 0.

As far as A is concerned, we observe that, since we have qPhpτ1 “ 8q ě rLp1{hq{6, as

noted in (5.9), we obtain
ř8
j“1

qPhpj P τq ď 7{rLp1{hq for h sufficiently small. Hence, since

Kp¨q is regularly varying with exponent ´1, for N large enough we have

A ď 3
7

rLp1{hq

M
ÿ

n“N

Kpnqθ “
21

rLp1{hq

M
ÿ

n“N

Lpnq1´h{c3

n1´h{c3
. (5.32)

Using the fact that Lpnq{n is regularly varying (or the explicit value of L in the framework
of Definition 1.1), we have for all N and M sufficiently large

M
ÿ

n“N

Lpnq1´h{c3

n1´h{c3
ď 2

ż M

N

Lpxq1´h{c3

x1´h{c3
dx . (5.33)

Then, we define ψp¨q by:

ψpuq “ p1´ εq ˆ

$

’

&

’

%

υ log log u in the sub-logarithmic case,

pυ ´ 1q log u in the logarithmic case,

u1{pυ´1q in the super-logarithmic case,

(5.34)

so that M “ exppc3ψpc3{hq{hq. Using the change of variable x “ e
c3
h
y, we have

ż M

N

Lpxq1´h{c3

x1´h{c3
dx “

c3

h

ż ψph{c3q

1
L
´

e
c3
h
y
¯1´h{c3

exppyq dy . (5.35)

It is now a matter of direct evaluation of this last expression, with the help of Definition 1.1.

(i) In the sub-logarithmic case, replacing L in the integral by its asymptotic equivalent,
we obtain the following upper bound for the the r.h.s. of (5.35), valid for h sufficiently
small

2cLc3

h

ż p1´εqυ log logpc3{hq

1

h

c3y

`

logpc3{hq
˘´υ

ey dy ď 4cL
plogpc3{hqq

´ευ

log logpc3{hq
. (5.36)
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We have used, for a “ 1, the inequality
şx
1 e

zz´a dz ď 2exx´a valid for x sufficiently large.

We conclude that A is small by comparing the last term with rLp1{hq (cf. (1.12)).

(ii) The same computation yields a similar upper-bound in the logarithmic case:

2cLc3

h

ż p1´εqpυ´1q logpc3{hq

1

´c3y

h

¯´υ
ey dy

ď 4cLc
1´υ
3 hυ´1

ˆ

h

c3

˙´p1´εqpυ´1q cε,υ
logpc3{hq

ď c1L,ε
hεpυ´1q

logp1{hq
(5.37)

where cε,υ, c
1
L,ε ą 0, and one can check again that the last term is much smaller than

rLp1{hq for small values of h.

(iii) We are left with the super-logarithmic case. Using that 1 ´ h{c3 ě 1{2 for h
sufficiently small, we obtain the following upper bound

2cLc3

h

ż p1´εqpc3{hq1{pυ´1q

1
exp

´

´
1

2

´c3y

h

¯1{υ
` y

¯

dy

ď
2cLc3

h

´c3

h

¯1{pυ´1q
exp

´

´ cυ

´c3

h

¯1{pυ´1q ¯

ď exp
´

´
cυ
2

´c3

h

¯1{pυ´1q ¯

. (5.38)

In the first step we set cυ :“ p2υqυ{p1´υqpυ ´ 1q, and used the fact that the argument of

the exponential, for y in the integration range, is maximal at y “ p2υqυ{p1´υqpc3{hq
1{pυ´1q.

The second inequality is valid for h sufficiently small. We conclude by observing that the

last term is again of a smaller order than rLp1{hq in that case.

Therefore, in view of (5.32), (5.33) and (5.36)–(5.38), A can made arbitrarily small, in
particular smaller smaller than e´3{2, in all cases. Let us show that the same holds true
also for B. We will make use of the following Green function estimate.

Lemma 5.3. There exists C “ Cpηq ą 0 such that

qPhpn P τq ď C
Kpnq

`

rLp1{hq
˘2 , (5.39)

for every n (in particular for n ě exppc3{hq).

Proof. The proof is derived from the following inequality: there is a constant c ą 0
(independent of h), such that for all n ě k ě 1

qPhpτk “ nq ď ckqPh

`

τ1 ă 8
˘k
Kpnq . (5.40)

Then, summing over k gives the identity, since we have qPh

`

τ1 ă 8
˘

ď 1´ c{rLp1{hq, and
ř8
k“0 kp1´ xq

k “ 1{x2.
The proof of (5.40) follows from that of [2, Theorem 1.1-Equation (1.11)] : one simply

has to notice that Lemma 2.1 in [2] is valid under the assumption that Ppτ1 “ jq ď cLpjq{j
(the constant here depends on η but not on h), and then all the computations of Section 2.2
in [2] can be applied and yield (5.40). This completes the proof of Lemma 5.3. �

Thanks to Lemma 5.3, and by using that Lp¨q is a slowly varying function, we obtain

that for N large enough we have qPhpj P τq ď 3CN´1LpNq{rLp1{hq2 uniformly for N{2 ď
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j ď N ´ 1. By considering the definition (5.31) of B, we obtain

B ď
3CLpNq

N rLp1{hq2

M
ÿ

n“N

N´1
ÿ

j“N{2

Kpn´ jqθ . (5.41)

Then we control

M
ÿ

n“N

N´1
ÿ

j“N{2

Kpn´ jqθ ď

N{2
ÿ

t“1

tKptqθ `
N

2

M
ÿ

t“N{2

Kptqθ ď N
M
ÿ

t“N{2

Kptqθ , (5.42)

where in the last inequality we used the fact that from slowly varying properties

N{2
ÿ

t“1

tKptqθ ď CN2´θLpNqθ “ CeNLpNqθ , (5.43)

which is negligible with respect to the second sum (we used the definition of θ to get that

N p1´θq “ e). We end up with

B ď
3CLpNq

rLp1{hq
ˆ

1

rLp1{hq

M
ÿ

n“N{2

Kpnqθ . (5.44)

Since we have already proven that the right-hand side in (5.32) vanishes as h becomes

small, to prove that also B vanishes in the same limit it suffices to show that LpNq{rLp1{hq
is bounded for h small. By recalling that N “ exppc3{hq, it is straightforward to see that in
the cases we consider, cf. Definition 1.1, such a ratio vanishes as h goes to zero. Therefore
also B is under control and ρ ď 1 when h is smaller than a well chosen constant. This
completes the proof of Proposition 5.1. �
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