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ABSTRACT
Time series are commonly used to store temporal data, e.g., sen-
sor measurements. However, when it comes to complex analytics
and learning tasks, these measurements have to be combined with
structural context data. Temporal graphs, connecting multiple time-
series, have proven to be very suitable to organize such data and
ultimately empower analytic algorithms. Computationally intensive
tasks often need to be distributed and parallelized among different
workers. For tasks that cannot be split into independent parts, sev-
eral workers have to concurrently read and update these shared
temporal graphs. This leads to inconsistency risks, especially in
the case of frequent updates. Distributed locks can mitigate these
risks but come with a very high-performance cost. In this paper,
we present a lock-free approach allowing to concurrently modify
temporal graphs. Our approach is based on a composition opera-
tor able to do online reconciliation of concurrent modifications of
temporal graphs. We evaluate the efficiency and scalability of our
approach compared to lock-based approaches.
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1 INTRODUCTION
Technologies, such as the Internet of Things (IoT), drive our busi-
nesses to amore andmore digital era. Considering the context of the
IoT (or the so-called Industry 4.0), a large amount of data is collected
as streams, e.g., measured by sensors. These data streams have the
potential to profoundly support operational decision-making, cou-
pled to data analytics and learning algorithms. Temporal graphs
have proven to be very suitable to organize and structure such
data streams to empower complex analytic algorithms [9, 10, 13].
Nonetheless, analytic algorithms on large-scale graphs are usually
computationally expensive. This calls for distributing and paralleliz-
ing the processing across several machines [16]. If the analysis task
cannot be easily divided into independent parallel subtasks (as for
example supposed by the MapReduce paradigm [6]), it is necessary
that several workers read and update the graph concurrently. Infras-
tructure monitoring and control systems are a common example
where analytics often cannot be easily split into independent par-
allel subtasks [11]. Inconsistency risks are a natural consequence,
especially if data changes frequently. While this risk can theoret-
ically be mitigated using distributed locks, this strongly affects
performance, considering large data streams. An alternative is to
use version-aware mechanisms to reconcile the graph, based on
the order of modifications. In this context, it is important to distin-
guish between the domain time and the logical time. The domain
time defines the temporal validity of the represented information.
For instance, this time could define the moment a value has been
measured by a sensor, producing a value associated usually with a
timestamp. Whereas the logical time is defined by Fidge et al., [8]
as the partial ordering of events by their causal relationships. This
is sometimes also referred to as a version [23]. Coming back to
our temporal graph, this can be interpreted as the timestamp as-
sociated to the insertion of the data into the graph structure. It is
important to notice that both times are independent: data can be
inserted after it was measured, for example due to latency. It is
crucial that the timeline—in terms of domain time—is respected
in case of concurrent modifications. To sum up, temporal graphs
have an inconsistency risk on the domain timeline when it comes
to merging concurrent modifications.

Therefore, in this paper, we present a novel composition op-
erator • able to reconcile concurrent modifications of temporal
graph structures while preserving the domain timeline. Our ap-
proach is designed to work online on data streams produced by
concurrent workers. This allows to distribute the processing of
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temporal graphs in a lock-free manner, i.e., to read and write on a
shared temporal graph, over several machines in parallel, without
the need for distributed locks. We detail the implementation of
our approach, e.g., how we handle several updates of the temporal
graph per network call using inlining. We demonstrate, based on
a theoretical study, the effectiveness of this operator to conserve
consistency on temporal graphs while facing complex concurrent
modifications. We implemented our approach into the open source
graph processing framework GreyCat1 and compare it in terms of
efficiency and scalability with a classical implementation based on
distributed locks.

The remainder of this paper is as follows. In Section 2 we moti-
vate our work and present the challenges faced by our approach.
Section 3 formalizes our proposed composition operator and Sec-
tion 4 presents details of its implementation. We evaluate our ap-
proach in Section 5. Related work is discussed in Section 6 before
the paper concludes in 7.

2 MOTIVATION & CHALLENGES
Graphs are suitable to represent complex data and relationships.
A time-evolving graph connects multiple nodes where each node
can be interpreted as a time series. Well-known examples of time-
evolving graphs are social media networks and transportation
routes [18]. While most of the literature approaches use some sort
of snapshots or a combination of full snapshots and deltas [9, 13],
some incorporate time as a first-class property into the graph rep-
resentation [10], i.e., making each node an independent time series.

It is no surprise that much work in the area of data analytics
and machine learning focuses on large-scale graph representa-
tion and processing. In order to solve complex analytic tasks in a
timely manner, the processing of large-scale graphs needs to be
parallelized across several concurrent units of execution (processes
or threads). Some well-known graph-processing frameworks like
Pregel [18] and Giraph2 use a BSP-inspired [28] model, others, like
GraphLab [17], rely on a shared memory abstraction together with
a locking strategy to parallelize the processing of complex analytic
tasks. Although the latter is a more flexible programming model,
which enables a broader range of analytic algorithms, as well as
better support for distribution, locking often comes with severe
performance bottlenecks. This is especially problematic consider-
ing rapidly changing temporal graphs, which we are focusing on
in this paper.

More specifically, in this paper we address the following chal-
lenge:howcan severalworkers concurrently process a shared
temporal graph, which rapidly changes over time, without
using distributed locks, while keeping consistency? There-
fore, in the next section we will first formalize our proposed lock-
free composition operator before we detail it’s implementation and
evaluation in Section 4 and 5 respectively.

3 DISTRIBUTED TEMPORAL GRAPHS
A temporal graph [10] is an efficient data structure for storing the
history of many data that frequently change over time. It can be
regarded as a pair (N ,E) where N is a finite set of nodes and E

1https://github.com/datathings/greycat
2http://giraph.apache.org/

is a finite set of edges that model relations between nodes. Each
node represents the evolution of a data structure over time. In other
words, it records the history of the attribute values of the data
structure. New data structures (and thus nodes) can also appear at
any time. Similarly, the edges represent relations between nodes
that may or may not exist at a given time. Henceforth, we use
a slight abuse of language and call “node” both a node and the
data structure it represents. We also assume that a node n has an
identifying name, written name (n).

Any given node n is associated with attributes that are named
and typed. Let An be the set of attributes of n. For an attribute
a ∈ An , we denote its type (i.e., the set of values it can take) by
τ (a). We consider primitive types (e.g., boolean, character, number),
composite types and arrays. At any time t where n exists, each of
its attributes may hold a value νa,t of its type, i.e., νa,t ∈ τ (a). Let
T be a totally ordered time index. The values of the attributes of n
at a time point t ∈ T forms the state of n at this time. Given that n
records all its states, it can be regarded as a function n : An → T →
∪ai ∈Aτ (ai ) : n(a, t ) = νa,t , with νa,t ∈ τ (a). This function can be
partial as, e.g., it is not defined for time points where the node does
not exist.

The definition of an edge e ∈ E is very similar, as the set of
named relations R between nodes can be seen as time-evolving
boolean attributes, that is, one can see an edge as a function e :
N × N × R → T → B such that e (n,n′, r , t ) holds if and only if the
relation r from n to n′ exists at time t . For that reason, in the rest
of this paper we focus only on nodes and assume that temporal
graphs have no edge, without loss of generality.

The time index being potentially infinite or even uncountable,
it is infeasible to record the whole history of a given node n, i.e.,
its state for all time points. Therefore, in practice we use a dis-
crete representation named timeline, which consists of a finite sub-
set of time-indexed states. We call an element of this set a state
chunk (or chunk for short). A chunk thus defines a snapshot of
the node at a given time point t ; in other words, it is a function
cn,t : An → ∪ai ∈Anτ (ai ) : cn,t (a) = νa,t . From a timeline, the
history of the node is approximated by considering that its state
changes only at time points corresponding to a chunk [10]. Formally,
let {cn,t1 . . . cn,tk } be the timeline of node n such that ti < ti+1 for
all i . Then the complete history of n can be retrieved from the
timeline as follows:

n(a, t ) =



⊥, t < t1
cn,ti−1 (a), ti−1 ≤ t < ti
cn,tk (a), t ≥ tk .

The evolution of continuous numeric values can also be better ap-
proximated by computing linear regressions [19] while still main-
taining a finite representation. Nevertheless, these kinds of repre-
sentations reduce the on-the-fly manipulation of temporal graphs
to the computation of chunks and their recording in a storage back-
end. It also paves the way for distributing the computation and
the storage amongst multiple workers. However, in this case each
worker has only a partial view of the graph, which can be prob-
lematic, e.g., if a given node history is scattered across multiple
workers. This raises the question of how to consistently compose
back a node history from multiple sources. If two workers make
redundant computations (e.g., if two sensors capture the same data
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to improve accuracy), it is also essential to merge the results of
these computations in a consistent way.

3.1 On the Composition of Temporal Graphs
Let us first study what it means to compose two temporal graphs
regardless of their actual representation. Given the execution con-
text of this operator (i.e., merging data held by multiple workers),
the composition operator should ideally satisfy the following three
properties:

Idempotence. Composing a temporal graph with itself should
not corrupt it in any way. It allows a worker to freely perform a syn-
chronisation even if the origin of the temporal graph to synchronize
with is unknown.

Commutativity. The commutativity of the composition oper-
ator allows the synchronization process between workers to be
order-independent. This requires logical time information to be
present in t1 and t2 to ensure commutative reconciliation.

Associativity. By being associative, the composition operator
supports multiple workers working together and exchanging data
in an asynchronous way.

We now give an intuition of how composition should work.
We know that temporal graphs capture data values that change
over time. By composing two temporal graphs, one should get a
new temporal graph containing more information than the two
individual graphs taken separately. By more information, we mean
not only that every information stored in the separate graphs should
also appear in their composition, but also that the composition
should provide more accurate data about a node whose related
information is scattered across the two graphs. This leads us to three
requirements for our composition operator. First, a node contained
in only one graph is also part of the composition. Second, if both
graphs contain information about the same node3 on different time
points, their composition contains all these information. Third, if
the graphs contain (possibly contradictory) information about the
same node on the same time point, their composition contains a
composed version of this information.

Remember that we consider temporal graphs as sets of nodes
without edges. Formally, the composition of two temporal graphs
N1 and N2 yields the smallest set N1 •N2 satisfying, for all n1 ∈ N1
and n2 ∈ N2:

name (n1) < N2 ⇒ n1 ∈ (N1 • N2) (1)
name (n2) < N1 ⇒ n2 ∈ (N1 • N2) (2)

name (n1) = name (n2) ⇒ n1 ⊕ n2 ∈ (N1 • N2) (3)

where name (n) ∈ N is equivalent to ∃n′ ∈ N : name (n) =
name (n′), and ⊕ is the node composition operator. The compo-
sition of two identically-named nodes by ⊕ yields a new node with
the same name and defined as follows for any attribute a:

n1 ⊕ n2 (a) =



n1 (a), n2 (a) =⊥
n2 (a), n1 (a) =⊥
µ (n1 (a),n2 (a)), otherwise.

(4)

That is, if values of a are contained in only one node then the
composition keeps these values. Otherwise, the values known in

3We use an abuse of language: by “same node”, we actually mean nodes with the same
name, although these can be different functions.

the two nodes are merged together by the merging operator µ. The
definition of µ is critical and case specific. Indeed, it follows from
Equations 1 to 4 that the composition operator • is idempotent,
commutative, and associative if and only if the merging operator µ
also is, respectively.

Note that these definitions do not impede the merging operator
to modify the value of a at a given time point t when only one
temporal graph has a defined value for a at time t . In other words,
it may not hold that

n2 (a, t ) =⊥⇒ n1 (a, t ) = (µ (n1 (a),n2 (a)) (t ). (5)

Attributes with discrete values will satisfy this property. However,
it may not be the case, e.g., when the history of continuous values
is approximated by polynomial functions [19]. Indeed, the composi-
tion of two functions over successive time frames may yield a new
function that defines different values for the concerned attributes.
If Equation 5 holds, the merging operator µ can be written as:

µ (n1 (a),n2 (a)) (t ) =



n1 (a, t ), n2 (a, t ) =⊥
n2 (a, t ), n1 (a, t ) =⊥
φ (n1 (a, t ),n2 (a, t )), otherwise

for a given attribute a and a time point t . Again, the case where two
nodes contain colliding information is delegated to a new merging
operator φ and the idempotence, commutativity and associativity
of • and µ will be that of φ.

The properties of • thus strongly rely on how the attributes are
merged. Concretely, this raises the question of choosing a strategy
to merge data gathered by multiple workers at the same time for
the same attributes. For numeric values, a common way consists in
computing the average, i.e., φ (n1 (a, t ),n2 (a, t )) = 0.5 ∗ (n1 (a, t ) +
n2 (a, t )). The average operator guarantees idempotence and com-
mutativity, but is not associative. This implies that the result of
synchronizing more than two workers is order-dependent. A prac-
tical solution to this issue is to generalize φ to any number of nodes,
and to perform the synchronization for all workers at the same time.
An alternative is the max operator, which is idempotent, commuta-
tive and associative. The case of boolean values is not problematic
since conjunction and disjunction are idempotent, commutative and
associative. However, moving from propositional to multi-valued
logics (e.g., to represent uncertainty and imperfect information)
may break these properties. For complex types (e.g., strings, com-
posite structure, arrays), an even more careful attention must be
given [21]. Nevertheless, if φ breaks these properties, our defini-
tion allows one to pinpoint which attributes and time points are
problematic and negotiate a mediation strategy with the workers
(e.g., via a master server).

3.2 Chunk-Based Representation
We mentioned at the beginning of Section 3 that a timeline, i.e., a
set of chunks, is a practical discrete representation for uncountable
numbers of values in temporal graphs. Having given the theoretical
foundations for composing temporal graphs, we now define con-
crete composition operators over timelines that can lead to efficient
implementations.

Given that timelines are sets, we naturally consider set union
as the composition operator. Let C1 = {cn,t1 . . . cn,tk } and C2 =
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{c ′n,t ′1
. . . cn,t ′j } be two timelines over node n. Consider first the

case where they have no contradictory information, that is, ∄(n, t ) :
cn,t ∈ C1 ∧ c ′n,t ∈ C2. Then, the composition of C1 and C2 is a new
timeline given by C1 ∪C2. Note that this is not equivalent to the
union of the temporal graphs thatC1 andC2 represent. Indeed, since
the value of a in n at time t is given by the left-closest chunk in the
time-ordered sequence, say cn,t ′ , this value can change by inserting
a new chunk cn,t ∗ such that t ′ < t∗ ≤ t . This is actually a particular
implementation of φ that selects the chunk whose time occurrence
is left-closest to t . This implementation guarantees commutativity
and associativity, since the selection of the chunk is independent
of their insertion order.

Let us now consider the case of merging chunks related to the
same node and time point. This can happen, e.g., when workers
redundantly capture the same data at the same time, or when pre-
dictive workers infer the same data using different algorithms. In
the composed timeline, we need to merge these chunks into a single
one in order to preserve the conciseness of the representation. Let
c1 and c2 be the chunks to merge. On the one hand, if c1 = c2, then
the merge operator returns an identical chunk. On the other hand,
if the attributes associated to c1 and c2 differ, the merged chunk
must satisfy the following requirements: (i) the attributes valued
in c1 that are not valued in c2 are in c (and vice-versa); and (ii) the
attributes valued in both chunks have a value in c that results from
the application of the merge operator φ. Therefore, the properties
of timeline composition in this case depend on the definition of φ,
just as previously discussed for temporal graphs.

4 IMPLEMENTATION & PROTOCOL
In this section, we detail our implementation of a lock-free dis-
tributed temporal graph data structure, based on the formal defi-
nition of the merge operator •, described in Section 3. For the rest
of this paper, we refer to this lock-free distributed temporal graph
data structure short as TGraph. First, in Section 4.1, we present
the architecture of TGraph. Then, in Section 4.2, we detail how a
TGraph can be distributed in a client/server environment. Finally, in
Section 4.3 and 4.4 respectively, we explain how our implemented
protocol can reorder concurrent updates and optimize the network
usage.

4.1 Memory Architecture
The contribution of this paper targets temporal graphs that can be
efficiently shared and used concurrently among different processes.
Unlike other approaches that follow a fork-and-join paradigm, our
workers can arbitrarily read and update any part of the temporal
graph. Nonetheless, we ensure global consistency at the momen-
tum changes are saved (i.e., committed) using our proposed merge
operator (cf., Section 4.2 and 4.3 for more details).

In our implementation, every worker hosts an instance of the
TGraph as depicted in Figure 1. This includes a graph API to create,
update, delete and modify nodes of the graph and their associ-
ated attributes. Our graph API is currently available for Java and
JavaScript. Temporal graphs are then mapped to an underlying
memory structure, which decomposes the temporal graphs into a
sequence of chunks (e.g., as proposed in [10]), following the seman-
tics defined in Section 3. Implementation details of this mapping
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Figure 1: TGraph memory architecture

are out of the scope of this paper and omitted here due to space
limitations.

The memory architecture of our TGraph implementation is or-
ganized as a heap structure that organizes fragments of a temporal
graph. These fragments correspond to the chunks. The memory
heap zone is divided into a number of columns, where each column
stores all chunks belonging to one node. Each column thus hierar-
chically organizes the temporal evolution of a node. In other words,
a column encodes the timeline of one node and each chunk stores
a slice of a node. It is important to note that in our implementation
chunks themselves are hierarchical, i.e., a chunk can contain an-
other chunk and so on. This inlining strategy is discussed in more
detail in Section 4.4. This means that, for instance, a chunk can
hierarchically contain all attribute values of a node from a time tn
to a time tm . Similar to the organization of red black trees [19], our
columns are balanced to ensure the following property: if a chunk
cn,tp is the parent of chunk cn,ti , then tp < ti .

Memory chunks are designed to be loaded and saved indepen-
dently. We use chunks also as our “unit of transportation” for net-
work communication. In our current implementation we use a
WebSocket channel for this. It is important to note that the previ-
ously defined merge operator (cf., Section 3) is also used to merge
a remote chunk with its local version in the local heap. Using such
merge, a central server can act as a referee for chunk versions. In
addition, we use a classic cache layer to enhance performance. This
cache hosts a fixed number of binary representations of chunks in
order to reduce unnecessary network communication.

In this section, we discussed how the memory architecture of a
TGraph looks on a single machine/process. In the next section, we
describe how our TGraph implementation can be distributed over
several machines/processes and how the interaction between these
works.

4.2 Distribution
Our current TGraph implementation supports distribution in form
of a client/server architecture, as depicted in Figure 2. Every client
and server maintains its own TGraph instance, where each instance
corresponds to the architecture shown in Figure 1. Our implemen-
tation supports several servers, which are synchronized using the
RAFT [22] consensus algorithm. It is important to note that only the
synchronization of the servers is done with a consensus algorithm,
merging concurrent modifications from several clients on a server
is, as discussed in Section 3, lock-free. The server is also responsi-
ble for persisting the chunks of a TGraph to disk. In our current
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Figure 2: Distribution of a TGraph in a client/server archi-
tecture

implementation, we use RocksDB4 for persisting our TGraph to
disk. We save/load each chunk of the TGraph as a key/value pair.

4.3 Reconciling Concurrent Modifications
To be able to reconcile the order of concurrent modifications, we
use a strategy based on double hashes of the content of the changed
chunk. Basically, we hash the content of a chunk before it gets
changed and after. Then, we send both hashes together with the
changed chunk from a client to the server. This allows the server
to reconcile the order of concurrent modifications and to detect po-
tential conflicts by comparing the origin hashes (before the change)
with the hash of the chunk on the server. Then, the chunks are
merged according to the semantics defined in Section 3. Figure 3
exemplifies how this works with two clients and one server. First, a
client c1 requests, i.e., loads, a chunk o1 from the server s . While c1
uses this chunk, another client, c2 loads the same chunk o1 from the
server s . Now, c1 and c2 are both modifying chunk o1 concurrently
and sending their changes to s . If o′1 denotes the chunk changed by
c1, o′′1 the chunk changed by c2, and h(x ) the hash function, then c1
sends together with the changed chunk o′1 the hashes (h(o1),h(o

′
1))

and c2 sends together with the chunk o′′1 the hashes (h(o1),h(o′′1 )).
Regardless of o′1 or o

′′
1 reaches the server s first, by comparing the

origin hashes of the changes with the hash of the chunk on the
server s , the merge can be executed, respecting the priority rules
defined in Section 3.

While this double hash strategy works well in client/server ar-
chitectures, it cannot be directly applied to other architectures, like
peer-to-peer. This is because we only keep two hashes, which is
sufficient to do the merge of n concurrent modifications on one
server (or potentiallym servers synchronized with a consensus al-
gorithm) but it is not sufficient to reconcile the order of concurrent
modifications along several peers. For peer-to-peer architectures, it
would be necessary to keep x hashes, i.e., a path of all changes x .

4http://rocksdb.org/

c1:Client s:Server
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c2:Client

save o1’, (h(o1),h(o1’)) 

request o1

send o1

send o1

save o1’’, (h(o1),h(o1’’))

Figure 3: Reconciling the order of concurrent modifications
in TGraph using double hashes

4.4 Inlining
As discussed in Section 4.1, we use chunks as the main unit for
sending data over the network. However, often the size of a (low
level) chunk is not optimal in terms of network throughput. Indeed,
we found that chunks tend to be too small in many cases (although
they occasionally can also be too big). We found by experience that
a “good” size for a chunk to be transferred over the network is in
the order of magnitude of around 100 KBs per chunk. Therefore,
as briefly mentioned in Section 4.1, we implement a hierarchical
inlining strategy to embed—or inline—a chunk into another one.
Given a hierarchy of chunks, we speak of uplifting when a chunk
from one level is inlined into a chunk of the level directly above
it, and vice versa of splitting, when a chunk from a higher level is
divided into two consecutive chunk levels. Uplifting and splitting
make the implementation of our proposed merge operator slightly
more complicated. In fact, the server needs to potentially rebuild and
reorganize the hierarchy in order to merge concurrently modified
chunks.

5 EVALUATION
In this section, we experimentally evaluate the efficiency of our
proposed merge operator. As consistency is guaranteed by defini-
tion (cf., Section 3), we put the emphasis of this evaluation on the
performance. We benchmark updates using our proposed merge
operator against implementations relying on distributed locks or
consensus algorithms. The following Section 5.1 first details the
experimental setup. Then, Section 5.2 presents and discusses the
experimental results. Finally, in Section 5.3 we discuss threats to
validity.

5.1 Experimental setup
We integrated ourmerge operator into the network synchronization
layer of the temporal graph framework: GreyCat. In addition, we
extended this synchronization layer with two additional protocols

http://rocksdb.org/
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that implement a per-node lock mechanism to ensure consistency.
In a first alternative implementation, we rely on the Atomix frame-
work5 to leverage a state-of-art consensus protocol: Raft. Using
Raft and the distributed lock of Atomix, we enforce temporal con-
sistency by acquiring a lock before any temporal modification of a
node. Thus, other graph peers are blocked until we release the lock
on this particular node. Raft ensures a strong consensus, allowing
to synchronize chunks without relying on additional mechanisms.
In a second alternative implementation, we implement a centralized
lock mechanism using Java’s atomic primitives on a central server.
This second alternative implementation is built for client/server ar-
chitectures, as described in Section 4.2. While being slightly weaker
in terms of consistency compared to consensus algorithms, this
implementation reuses the WebSocket protocol of GreyCat. This
ensures a fair comparison with our proposed merge operator, which
is integrated into the same low-level synchronization protocol.

We evaluate the three alternative implementations in terms of
updates of a temporal graph. These updates simply change an
attributed field of different nodes. We performed 1.000.000 of these
updates, synchronized (to the server) every 1.000 modifications.
The Raft and centralized lock-based implementations require a
network call at every node update, while our merge operator only
communicates for the synchronization points over the network,
i.e., every 1.000 elements. Updates are done on different physical
computers. Client and server are deployed on a Java VirtualMachine
8 on two identical MacBook i7 computers, using SSDs and a Gigabit
network. Persistence, i.e., file system accesses and disk storage, is
managed by RocksDB.6 Finally, we ran the Raft experiment twice,
once with 2 and once with 7 peers to evaluate the scalability of this
solution. The evaluation of the centralized lock and of our proposed
merge operator are only executed in a client/server mode, because
they are by construction not impacted by the number of peers.

5.2 Performance Results
Every experiment is exectued five times. We first measured the
elapsed time for every synchronization batch, i.e., every 1,000 up-
dates. Then, in a second step, we calculated the throughput per
second from these values – for every step between 0 and 1,000,000
updates. The results (in operations per second) are depicted in
Figure 4, using a logarithmic scale due to the big difference. We
obtained the following average values: (1) lock-free merge oper-
ator=23,635 op/s, (2) central server lock=687 op/s, (3) Raft with
2 peers=512 op/s, and (4) Raft with 7 peers=43 op/s). Our lock-
free merge operator offers a significantly bigger throughput: above
20,000 op/s in average and never less than 4,000 op/s. The cen-
tral server lock solution is slower by a significant factor but still
performs much better than a Raft-based implementation. We can
also notice that Raft is, without surprise, significantly impacted by
the number of peers involved in the update of the temporal graph.
As a result, performance drops to less than 50 op/s with the Raft
consensus and 7 peers. Using a Box-and-Whisker chart, we can
also see that the performance is less stable for the lock-free merge
operator as the minimum and maximum varies—up to a factor of 10.

5http://atomix.io/atomix/
6http://rocksdb.org/

This can be explained by the fact that chunks need to be in mem-
ory while being updated and merged. Since we use an LRU-cache
implementation, if a chunk is already in memory, this accelerates
the merge operation significantly. On the other hand, chunks have
to be loaded from disk. These performance variations can thus be
explained by the statistical effect of the cache.

5.3 Threats to validity
The major threat to validity of this validation is the quality of
the implementation of the Raft protocol and its inclusion into the
GreyCat framework. Indeed, due to the numerous network calls
that have to be performed to obtain a consensus, any issue in the
protocol would have a major impact on the results. To mitigate
such risk, we implemented the central server lock strategy, which
uses the exact same WebSocket protocol than our lock-free merge
operator implementation, but with mechanism closer to Raft. Using
these three implementations, we highly mitigate the risk of a bias.
Finally, garbage collector times and disk speed are also threats to
validity. To mitigate these, we initially executed the experiments
and monitored these effects to ensure that none of these factors
impacts more than 5% of final results.

6 RELATEDWORK
A lot of work has been done in the area of structured data merg-
ing for XML files. Different approaches for three-way merging of
XML documents together with sets of merge rules are proposed
in [15, 26]. While most of these techniques are built for human-
authored documents that are naturally structured as ordered trees,
Abdessalem et al., [1] proposes semi-structured document integra-
tion as probabilistic trees. Al-Ekram et al., [3] propose with diffX an
alternative to three-way merging - diffX is an algorithm to detect
changes in multi-version XML documents. These approaches have
in common that they are designed to find changes in only 2 XML
documents, where each document is usually represented as one
big tree data structure, which negatively impacts the performance.
This is quite different from our use cases, where potentially a large
number of workers concurrently modify a shared data structure.
Moreover, in the case of comparing XML documents, while perfor-
mance is still important, it is not a dominating and critical factor,
like it is the case in on our scenarios.

The work of Blanc et al., [4, 5] goes into a similar direction.
They discuss interoperability of different modelling services and
propose an architecture as well as a prototype to connect these
different services together. In this context, when it comes tomerging
information from the different services, they face similar problems
and propose similar solutions as for collaboratively working on
XML documents.

Distributed transactions, as for example discussed in [2, 20, 27],
are another way to handle concurrent modifications of shared data.
Strict distributed transactions provide ACID properties and there-
fore rely on locking mechanisms, which are problematic in the
context of frequent small changes, as in our case. Similarly, compen-
sating transactions [14] and lock-free distributed transactions [7]
rely on some sort of snapshot isolation, which again is problematic
when it comes to frequent small changes, which are performed
concurrently.
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Figure 4: Box-and-Whisker chart representing the obtained update throughput using our proposed lock-free merge, a cen-
tral server lock, and a Raft consensus with 2 and 7 peers. Results are given in operations per second, from 0 to 30,000 in a
logarithmic scale.

An interesting concept is so-called conflict-free replicated data
types (CRDT) [24, 25]. The main idea of CRDTs is that updates do
not require synchronisation and that CRDT replicas provably con-
verge to a correct common state. Most work in this direction focuses
on collaborative document editing. An exception is ChainVoxel, a
CRDT for collaborative editing of 3D Models proposed by Imae
and Hayashibara [12]. While CRDTs are very interesting when it
comes to collaborative and concurrent modifications of a shared
data type, in many real-world applications, designing data types
which provably converge to a correct common state, is practically
impossible.

7 CONCLUSIONS & PERSPECTIVES
Computationally expensive tasks often need to be distributed among
several workers. For problems that cannot be split into indepen-
dent parts, these workers have to concurrently read and update a
shared data structure. Complex data analytics and machine learn-
ing algorithms often rely on temporal graph data structures for
this purpose. However, concurrently modifying a shared tempo-
ral graph entails severe consistency risks, especially when these
changes happen at a fast pace. Distributed locks or consensus algo-
rithms mitigate such consistency risks but often at an important
performance penalty. Therefore, in this paper, we proposed a lock-
free approach, relying on a merge operator to concurrently modify
a shared temporal graph. We formalized this operator • and de-
tailed its implementation into the open source graph processing
framework GreyCat. Based on this implementation, we showed that
this approach outperforms implementations relying on distributed
locks or consensus algorithms. Currently, our approach of logically
reordering concurrent updates targets client/server architectures.
In future work, we plan to extend the proposed double hashing
protocol to a vector-based one in order to enable peer-to-peer ar-
chitectures without central servers. Also, this merge operator will

be extended to manage specific node attributes such as tensors,
which are used as a multidimensional storage for machine learning
algorithms. Furthermore, despite we focused in our work on tem-
poral graphs, we believe that this approach can be generalized for
transactional systems.
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