
HAL Id: hal-01659776
https://hal.science/hal-01659776

Submitted on 8 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Micro-services Deployment in a Safer Way:
a Static Analysis and Automated Rewriting Approach

Benjamin Benni, Sébastien Mosser, Philippe Collet, Michel Riveill

To cite this version:
Benjamin Benni, Sébastien Mosser, Philippe Collet, Michel Riveill. Supporting Micro-services Deploy-
ment in a Safer Way: a Static Analysis and Automated Rewriting Approach. Symposium on applied
Computing, Apr 2018, Pau, France. �10.1145/3167132.3167314�. �hal-01659776�

https://hal.science/hal-01659776
https://hal.archives-ouvertes.fr

Supporting Micro-services Deployment in a Safer Way: a Static
Analysis and Automated Rewriting Approach

Benjamin Benni

Université Côte d’Azur, CNRS, I3S

Nice, France

benni@i3s.unice.fr

Sébastien Mosser

Université Côte d’Azur, CNRS, I3S

Nice, France

mosser@i3s.unice.fr

Philippe Collet

Université Côte d’Azur, CNRS, I3S

Nice, France

collet@i3s.unice.fr

Michel Riveill

Université Côte d’Azur, CNRS, I3S

Nice, France

riveill@i3s.unice.fr

ABSTRACT
The SOA ecosystem has drastically evolved since its childhood in

the early 2000s. From monolithic services, micro–services now co-

operate together in ultra-large scale systems. In this context, there

is a tremendous need to deploy frequently new services, or new

version of existing services. Container–based technologies (e.g.,
Docker) emerged recently to tool such deployments, promoting a

black-box reuse mechanism to support off-the-shelf deployments.

Unfortunately, from the service deployment point of view, such

form of black-box reuse prevent to ensure what is really shipped

inside the container with the service to deploy. In this paper, we

propose a formalism to model and statically analyze service de-

ployment artifacts based on state of the art deployment platforms.

The static analysis mechanism leverages the hierarchy of deploy-

ment descriptors to verify a given deployment, as well as rewrite

it to automatically fix common errors. The approach is validated

through the automation of the guidelines provided by the user com-

munity associated to the reference Docker engine, and the analysis

of 20,000 real deployment descriptors (hosted on GitHub).

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity; Feature interaction; Reusability;

KEYWORDS
Microservice, static analysis, container, Docker

ACM Reference Format:
Benjamin Benni, Sébastien Mosser, Philippe Collet, and Michel Riveill. 2018.

Supporting Micro-services Deployment in a Safer Way: a Static Analysis

and Automated Rewriting Approach. In Proceedings of ACM SAC Conference,
Pau,France, April 9-13, 2018 (SAC’18), 10 pages.
https://doi.org/10.1145/3167132.3167314

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SAC’18, April 9-13, 2018, Pau,France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00

https://doi.org/10.1145/3167132.3167314

1 INTRODUCTION
The Service-Oriented Programming (SOP) paradigm has recently

evolved to the definition of microservices that cooperate together

in a scalable way. Monolithic deployments used until then do not

comply with the needs associated with such ecosystem [19]. As

part of the microservice paradigm comes the idea of quickly prop-

agating a change from development to production [2], according

to a DevOps approach. Development and Operations are no longer

separated in the service lifecycle, and a change in a given service

can be automatically propagated to production servers through an

automated delivery pipeline. In this context, it is up to the service

developer to carefully describe how amicroservice will be delivered,

using dedicated technologies.

Among these technologies, the adoption of the container ap-

proach is tremendously increasing [8]. Containers ensure that a

given microservice will run the same regardless of its environment,

easing the repeatability of build, test, deployment and runtime ex-

ecutions [4, 16]. Containers are faster at runtime and boot-time,

lighter than virtual machines, and scale better [9, 17, 20, 25]. In the

container field, the Docker engine quickly became the reference

platform for builds and deployments of micro-services [23]. It is

important to note that the work described in this paper is not tied to

Docker, as the defined formal model is technology agnostic. How-

ever, for the sake of concision, we decided to mainly focus on the

industrial standard as illustration for the challenges and validation

case study.

Building a non-trivial container image is a difficult process. De-

scribing an image is an imperative process, where a service deploy-
ment descriptor is written (e.g., a dockerfile in the Docker ecosystem)

to describe as shell commands how the microservice is installed

and configured inside the container. Following an off-the-shelf ap-

proach, a container is defined on top of others (reused as black

boxes). However, this implementation is not compliant with the

open/closed principle, as it is open for extensions (a descriptor

extends another one), but not closed for modifications (a descrip-

tor does not provide a clear interface about its contents, making

reuse hazardous). By hiding the contents of an image as a black-

box, deployment instruction can conflict with the hidden one, e.g.,
overriding executables, duplicating installation of the same piece of

software in alternative versions, or shadowing executables. It leads

to erroneous deployments, detected at runtime. Moreover, the tech-

nologies supporting microservice deployment evolve constantly,

https://doi.org/10.1145/3167132.3167314
https://doi.org/10.1145/3167132.3167314

SAC’18, April 9-13, 2018, Pau,France B. Benni et al.

to make it more efficient or scalable. This evolution can drasti-

cally change the way the deployment engine is implemented, and

abstraction leaks can occur (i.e., an internal technological choice

inside the deployment engine the final user must take into account

when writing a service descriptor). It is up to the service developer

to stay up to date with ever-changing guidelines that implements

fixes to abstraction leaks.

This low level of abstraction make the process of describing

containers tedious and unsafe for service developers. In this pa-

per, we propose a static analysis approach that support the
safe development of service deployment descriptor by ser-
vice designers. The originality of the approach is (i) to define a

sound formal model that is independent of a dedicated container

technology and (ii) to support the definition of an evolving set of

checking or rewriting rules while detecting conflict that can occur

when applying such rules. The approach is validated on a real-life

dataset of 24, 357 deployment descriptors hosted on the GitHub

open source platform.

2 BACKGROUND & CHALLENGES
In this section, we discuss how containers are supporting microser-

vice deployment, through the prism of the Docker platform, the de
facto industrial standard available since 2013. Our contribution can

be applied to any container-based system that relies on commands

(e.g., LXC [21], rkt [6], Docker [23], Vagrant [13]).

We assume a service developer named Alice, implementing a

given microservice, e.g., a product catalog. Using the container

approach, Alice will wrap her service inside a turnkey image. This

image is built according to a service deployment descriptor (e.g., a
dockerfile in the Docker ecosystem), i.e., a script that installs inside
the image all the necessary software stack for the product catalog

to run (e.g., software dependencies, configuration file, tools). Then,

the descriptor is compiled into an image, which can be pushed to

an image repository, making it available to others. In the Docker

ecosystem, the public repository is named the DockerHub, and
contained in September 2017 more than 500, 000 public images. At

the operational level, the images are automatically downloaded

from a repository (public or private) and started inside a container.

A container can be seen as a light virtual machine, relying on

operating system mechanisms at the kernel level to ensure isolation

with other containers running on the very same machine.

1 FROM alpine:latest

2 MAINTAINER Alice <alice@awesome -services.cc>

3 RUN apt -get update

4 RUN apt -get install nodejs npm

5 RUN npm install express mongoose

6 WORKDIR ./catalogue -service

7 ADD config.json *.js .

8 CMD [" nodejs "]

Listing 1: Product catalogue descriptor

To create an image, Alice creates a descriptor (List. 1), where

she assembles setup instructions for her product catalog. She starts

by installing all the software stack needed by her service, e.g., the
NodeJS software stack and the associated dependency manager

NPM (l.3-4). She also installs the javascript packages needed by her

service, i.e., express for the service exposition and mongoose to

connect to a MongoDB database. Then, she moves to a directory

named catalogue-service, add a configuration file located on

her filesystem and the javascript source code into this directory,

and finally starts the nodejs environement to host her service. It

is a good practice to publish the descriptor associated to a given

image on the repository, and tools exist to decompile an image and

retrieve the essential instructions used to build it
1
.

An important line to notice is the first one, where Alice states

that her image is built on top of the alpine:latest image. This

allows her to not worry about the details of how to setup an op-

erating system inside her container, by simply reusing the Alpine

(a lightweight linux distribution, weighting 8Mb and known to

start quickly) image available on the repository. This black-box

reuse mechanism is the key of any deployment technology, allow-

ing one to reuse off-the-shelf elements. In Docker, the hierarchy

is recursive, until reaching the scratch root image. We describe in

List. 2 an example of the hierarchy associated to the Jenkins con-
tinuous integration service official image, involving a descriptor

and 4 successive ancestors. The complete hierarchy is available on

the companion webpage
2
of this paper.

1 # Descriptor: debian:jessie

2 FROM scratch

3 ...

4 CMD ["bash"]

5

6 # Descriptor: buildpack -deps:jessie -curl

7 FROM debian:jessie

8 RUN apt -get install curl wget ...

9

10 # Descriptor: buildpack -deps:jessie -scm

11 FROM debian:jessie

12 RUN apt -get install bzr git ...

13

14 # Descriptor: openjdk:8-jdk

15 FROM buildpack -deps:jessie -scm

16 RUN apt -get install bzip2 ...

17

18 # Descriptor: jenkins:latest

19 FROM openjdk:8-jdk

20 RUN apt -get install git curl ...

21 ...

22 CMD ["/usr/local/bin/jenkins.sh"]

Listing 2: Dockerfiles hierarchy example

1 FROM jenkins:latest

2 ...

3 RUN apt -get install npm bzip2 =1.0.1

4 ...

5 CMD [" nodejs "]

Listing 3: Service deployment descriptor (bad) reuse

The mechanisms under the container approach triggers the fol-

lowing two challenges with respect to microservices deployment.

Following evolving guidelines (C1). The container approach was

recently adopted by the industry (e.g., Docker started in 2013, even

if the container underlying technology exists in the linux kernel

since 2008). This effervescent context makes features available in

1
https://hub.docker.com/r/centurylinklabs/dockerfile-from-image/.

2
https://github.com/ttben/dockerconflict/blob/master/README.md.

https://hub.docker.com/r/centurylinklabs/dockerfile-from-image/
https://github.com/ttben/dockerconflict/blob/master/README.md

Supporting Micro-services Deployment in a Safer Way SAC’18, April 9-13, 2018, Pau,France

tools added at the same rate obsolete ones are removed, and suffer

from abstractions leaks. For example, the descriptor described in

List. 1 violates a Docker guideline: the update command is not

executed in the same RUN as the installation one (see Sec. 4.3 for

details). This guideline, among others, (i) is the visible side of an
internal flaw of the engine, (ii) must be followed until now, but (iii)
might be removed in future version.

Safer black-box reuse (C2). The strength of image reusing is also

a strong weakness of the container approach. Following the open/-

closed principle, an image is “open for extension”", and “closed for
modification”. But as the interface of the image is not defined and

only considered as a black box with no clear interface contract,

when reusing an image, Alice has no idea of the contents of the

reused image. It is then possible for Alice to override elements ex-

isting in the source image, without knowing it. These errors cannot

be detected at build time for an image (e.g., installing a piece of

software in a conflicting version, like the bzip2 package install in

List. 3 that conflicts with the one installed in List. 2, l.16), and

triggers errors when running the deployed services.

3 MODELING DESCRIPTORS
This section describes the formalism defined to model container

descriptors and support (i) the static analysis of a given descriptor

and (ii) the rewriting of a descriptor to fix common errors when

possible. Considering the diversity of existing containers platform,

this model must be technology agnostic. We will show in Sec. 4 how

to instantiate the instruction concept to fit the Docker platform.

3.1 Formal Model
A service deployment descriptor is implemented as a sequence

of shell commands, so in our formalism a descriptor d ∈ D as

a totally ordered set of setup instructions (e.g., running a shell

command, copying a configuration file, denoted as ix ∈ I). To
model the relationship that may exist between two descriptors (e.g.,
a dockerfile extends another one, a shell script loads another one
with the source command), we define a function named parent
that returns for a given descriptor its parent, or the root descriptor

(denoted as ∅) if no parent exists for this descriptor (Eq.1). This

enables to define a normalized version of a deployment descriptor

d , noted d , which contains all instructions in order from d to the

top of the parent hierarchy (Eq.2).

This model is simple, but expressive enough to support the defi-

nition of checkers and rewriting rules. For a given service deploy-

ment platform, it needs to be instantiated at the instruction level,

i.e., which kind of setup instructions are available for this very

platform.

d ∈ D = [i1, . . . , in] ∈ I
n
<

parent : D → D

d 7→ d ′ : d loads d ′
(1)

; : D × D → D

(d1,d2) 7→ d12 : Let d1 = [i1, . . . , in],

d2 = [i ′
1
, . . . , i ′m],

d12 = d1;d2 = [i1, in , i
′
1
, i ′m]

∧ parent (d2) = d1

∧ parent (d12) = parent (d1)
−
: D → D

d 7→ d =

parent (d) = ∅ ⇒ d

parent (d) , ∅ ⇒ parent (d);d

(2)

3.2 Checking rules: Φ
The intention of a checking rule (or checker) is to statically identify

an error that exists in a given deployment descriptor. A checker is

formally defined as a function φ taking as input a descriptor and

returning a boolean stating whether the defect is detected. Thus,

for a given platform or a given company, one can model the set of

guidelines relevant for her context as a set of rules to be checked

(rules = {φ1, . . . ,φn }). This is classic when defining a linter (a static
analyzer), where users can define their own set of rules. Considering

the composition operator defined previously, the strength of the

proposed approach is to support the application of a checking rule

to the normalized version of the deployment descriptor, allowing

one to identify an error that comes from an interaction between

the current deployment instructions and the one inherited from the

parental hierarchy (Eq.3). In addition to being technology-specific,

state of the art deployment linters do not provide a way to leverage

this composition, and only provides a static analysis of the current

descriptor.

φi : D → B ∈ Φ

violation? : D × Φn → B

(d, {φ1, . . . ,φn }) 7→
n∨
i=1

φi (d)

(3)

3.3 Automated Rewriting rules: R
Checkers support the identification of errors that can be automati-

cally detected. It is then up to the writer of the service deployment

descriptor to fix it. However, for some errors, it is possible to rewrite

the descriptor to fix it in an automated way. For example, to reduce

deployment artifact size, reducing the number of instructions in a

descriptor helps (this is inherent to the container technology, where

each instruction adds an overhead to the final size). One can write

a rule detecting instructions that can be merged together. It is then

possible to automatically compute how the descriptor should be

rewritten. Unfortunately, rules can overlap and conflict in their

decisions. For example, to augment modularity and reuse poten-

tial of a service deployment descriptor, keeping the instructions as

separated as possible is a good practice. This clearly overlaps with

the previous intention of reducing artifacts size. In the context of

ever-changing guidelines associated to containers, it is important

to automatically detect such conflicts.

SAC’18, April 9-13, 2018, Pau,France B. Benni et al.

To address this issue, we consider here a rewriting rule ρ ∈
R as a function taking as input a descriptor d , and producing as

output a patch to apply to the descriptor (i.e., a delta) to make it

compliant with the guideline, and denoted as δ ∈ ∆. The obtained
δ models how the descriptor must be modified (by changing the

instruction sequence) to achieve the rewriting [18]. By reasoning

on the set of deltas {δ1, . . . ,δn } obtained when multiple rules must

be applied, one can automatically identify conflicts. Considering

the previous example of instruction squashing versus modularity,

one can identify a conflict as the two rules would produce δs that
would concurrently modify the same instructions in different ways.

Inspired by Stickel’s work [24], a δ is defined as a set of substitution

pairs (i → i ′) ∈ Σ. Applying such a substitution to a descriptor

d means to produce a new descriptor d ′ where i ′ replace i in the

ordered set of instructions. To remove an instruction means to

substitute it by void (i → ∅), and to introduce a new one at the

beginning of a sequence means to substitute void by this instruction

(∅ → i ′). To identify conflicts between modifications, we look for

concurrent substitutions that might alter the very same instruction.

do : D × Σ→ D

(d,σ) 7→ d ′ : Let d = [. . . , in , i, im , . . .],

σ = (i → i ′)

d ′ = [. . . , in , i
′, im , . . .]

do+ : D × ∆→ D

(d,δ) 7→

δ = ∅ ⇒ d

δ = {σ } ∪ δ ′ ⇒ do+ (do(d,σ),δ ′)

conflict? : ∆→ B

δ 7→ Let (i,a,b) ∈ I3, i , ∅,

∃(i → a) ∈ δ , (i → b) ∈ δ ,a , b , ∅

(4)

Considering this representation of δs that support conflict detec-
tion and the functional representation of rewriters described in the

previous paragraph, optimizing a given descriptor d by applying

several rewriting rules ρi means to compute all the δs associated
to the given rules, verifying the absence of conf lict and then ap-

plying it. Like the checking mechanism, the rewriting mechanism

rw benefits from the composition operator and it considers the

complete hierarchy, being applied to the normalized version d ′ of
the descriptor d .

ρi : D → ∆ ∈ R

rw : D × Rn → D |Error

(d, rules) 7→ d ′ : Let δ =
⋃

ρ ∈rules

ρ (d),

d ′ =

conflict? (δ) ⇒ Error

¬conflict? (δ) ⇒ do+ (d,δ)

(5)

4 APPLICATION: THE DOCKER CASE
In this section, we refine the formal model presented in the previ-

ous section to fit the Docker container platform, i.e., refining the
available instructions and implementing checkers and rewriters

associated to this service deployment environment. Among the

guidelines defined by the Docker best practices reference, we focus

here on three rules from a qualitative point of view, to show how

the formal framework can be applied. A quantitative evaluation is

performed in Sec. 5.

To refine the formal model and adapt it to the Docker platform

(defining Id ⊂ I), we need to define what instructions are available

for the rules to work with. The complete model is available on the

companion webpage, as well as the associated parser that compiles

a dockerfile into an instance of the model. We focus here only of

the kind of commands necessary to illustrate the checking and

rewriting rules described in this section. We consider an instruction

as a kind (e.g., RUN, CMD), and a totally ordered set of arguments

passed to the command. One can access to the kind of an instruction

using a function named kind , and to the arguments using a function

named arдs . A special kind MULTI-RUN is used to model the RUN
instructions containing multiple shell commands (separated by

ampersands).

4.1 Checker: Overriding Services
Let us consider here the service deployment descriptor described

in List. 3. From the writer point of view, to build a continuous

delivery pipeline, we reuse the latest Jenkins official image and

simply add an homemade bridge service (implemented as a nodejs
artifact) to interconnect the Jenkins instance with some internal

tools. Unfortunately, starting our bridge service (List. 3, line 6) will

override the CMD command that exists inside the Jenkins container

we are reusing (List. 2, line 22). As a consequence, only our bridge

service is started, and considering the blackbox reuse mechanism

advocated by Docker, there is no way for the descriptor writer to

know why the Jenkins instance does not start. It is up to the user to

break the black-box approach by hand and crawl the official Docker

store to analyze the root cause of the error by going through the

hidden hierarchy.

We are defining here a checker instead of a rewriter, and it is up to

the user to decide which service to start
3
. Given a descriptor d , the

checker φos looks inside the descriptor d for a pair of deployment

instruction (i, i ′) starting two different services.

φos : D → B ∈ Φ

d 7→ ∃(i, i ′) ∈ d2, i < i ′

∧ kind (i) = kind (i ′) = CMD

(6)

4.2 Rewriter: Reducing Number of Layers
We discussed earlier the issue of optimizing an image size by re-

ducing the number of instructions used to build it (Sec. 3). This is a

use case for the rewriting mechanism, through the implementation

of a set of rules that identify useless instructions and rewrite the

service deployment descriptor adequately. The rewriter looks for

equivalent instructions (considering a given equivalence relation ≡)

3
Under some assumptions, one can imagine generating a script that starts the conflict-

ing services simultaneously and rewrite the conflicting commands. But this is not true

in the general case, as for example some services might use the same network port.

Supporting Micro-services Deployment in a Safer Way SAC’18, April 9-13, 2018, Pau,France

inside a given descriptor, keep one and delete the others.

ρ≡ : D → ∆ ∈ R

d 7→ δ : Let Is = {i : i ∈ d,∃i ′ ∈ d, i ≡ i ′},

δ =

Is = ∅ ⇒ ∅

Is = {i} ∪ Is′ ⇒ {(i ′ → ∅) : i ′ ∈ Is′}

(7)

The difficulty here is to define the equivalence class that exists

among setup instructions. As shell commands have side effects by

design, even two consecutive invocations of the very same instruc-

tion might not be equivalent. For example, (i) creating a directory
named dir, (ii) moving to another location and (iii) creating an-

other directory named dir. The two instructions used to create the
directory cannot be merged into one. However, the download of

the same file from the web (e.g., an application server using the

wget tool) can be detected and unified (Eq.8).

≡dl : Id × Id → B

(i, i ′) 7→ kind (i) = kind (i ′) = RUN

∧ wget ∈ arдs (i) ∧ wget ∈ arдs (i ′)

∧ ∃url ∈ URL,

url ∈ arдs (i) ∧ url ∈ arдs (i ′)

(8)

Another way of reducing an image size is to merge instructions

that can be merged together, even if their arguments differ. This is

classical with package management tools, such as NPM in javascript

or APT at the linux operating system level. In List. 4, the first de-

scriptor uses three instructions to install three javascript packages

used by the service, where the second descriptor using a single

instruction to install the packages. This is particularly important

as the writer can be unaware of the fact that some packages were

installed in a parent deployment descriptor, leading to multiple

downloads in addition to overweighted service container image.

1 ## Multiple RUNs to install several NPM packages

2 RUN npm install soap

3 RUN npm install json -schema -mapper

4 RUN npm install xml2js

5

6 ## Merged instruction

7 RUN npm install json -schema -mapper soap xml2js

Listing 4: Merging instructions arguments

To achieve such rewriting, we define the ρpack rule that catches

all the instructions i ∈ Is using the expected package manager (here

npm, but apt, opam, yum and other package managers follow the

same principle), and (i) creates a merged instructionm that installs

all packages, (ii) substitutes the first instruction for the merged one

(Rewritten), while (iii) removing the previously existing instruc-

tions (Removed).

install? : Id → B

i 7→ kind (i) = RUN ∧ npm ∈ arдs (i)

∧ install ∈ arдs (i)

ρpack : D → ∆ ∈ R

d 7→ δ : Let Is = {i : i ∈ d, install?(i)},

δ =

Is = ∅ ⇒ ∅

Is = {i} ∪ Is′ ⇒ Rewritten

Removed = {(i ′ → ∅) : i ′ ∈ Is′}

packaдes =
⋃
i ∈Is

arдs (i)\{npm, install}

m = run({npm, install} ∪ packaдes)

Rewritten = {(i →m)} ∪ Removed

(9)

4.3 Checker & Rewriter: Layer Caching
From the point of view of the service deployment descriptor, execut-

ing two instructions containing one command should be equivalent

to executing a single instruction containing the previous command.

However, due to an internal optimization made by the Docker en-

gine called layer caching4, this is not the case. The prototypical

example of such an error is the usage of the apt-get package mech-

anisms to install the software stack supporting the service to deploy.

It is classical to first update the package source before installing
the pieces of software needed to deploy a given service (see List. 5).

1 ## Multiple RUNs with single command

2 RUN apt -get update

3 RUN apt -get install nginx nodejs

4

5 ## Single RUN with multiple commands

6 RUN apt -get update \

7 && apt -get install nginx nodejs

Listing 5: Multiple & Single RUN instructions

If a dockerfile containing an apt-get update command has

already been executed on the computer, the engine will use the

associated layer instead of running the update again, leading the

apt-get install instruction to work with outdated packages. We

show in this section how the situation can be detected using a

checker, and how it can be rewritten automatically. This illustrates

the expressiveness of both checking and rewriting rules, showing

how the two principles apply to the same use case. We first define

two functions apti and aptu to identify the instructions involved

in this section (Eq.10).

apti ? : Id → B

i 7→ kind (i) = RUN ∧ apt-get ∈ arдs (i)

∧ install ∈ arдs (i)

aptu? : Id → B

i 7→ kind (i) = RUN ∧ apt-get ∈ arдs (i)

∧ update ∈ arдs (i)

(10)

4
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

#run.

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#run
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#run

SAC’18, April 9-13, 2018, Pau,France B. Benni et al.

Checker implementation. The checker implementation is straight-

forward. In a given descriptor d , we look for two instructions (u, i)
that update the package manager and install a package, these two

instructions being different in the descriptor.

φдap : D → B ∈ Φ

d 7→ ∃(u, i) ∈ d2,u , i ∧ apti ?(i) ∧ aptu?(u)
(11)

Rewriter implementation. As merging update and install instruc-

tions follows a principle similar to the one described in the previous

section, we assume a merge function denoted as µ, taking as input

the set of instructions I∗d to merge, and producing as output the

expected multi-run instruction Id . We capture all the update and

install instructions (respectively Us and Is), and substitute an up-

date one for a multiple run that contains the packages installation

right after the update (Rewritten and Remove).

µ : I∗d → Id

ρдap : D → ∆ ∈ R

d 7→ δ : Let Is = {i : i ∈ d,apti ?(i)},

Us = {u : u ∈ d,aptu?(u)},

δ =

Us = ∅ ⇒ ∅

Us = {u} ∪ Us′ ⇒ Rewritten

Removed = {(i → ∅) : i ∈ Is ∪ Us′}

Rewritten = {(u → µ (Is ∪ Us))} ∪ Removed

(12)

4.4 Conflict detection
We consider here (i) the rewriters defined in the previous sections to
support layer caching and image weight reduction (the latter adapted
to work with apt instead of npm) and (ii) the deployment descriptor

given in List. 6, and denoted as dc .

• ∆pack = ρpack (dc). The rewriter catches the two installa-

tion instructions i2 and i3, creates a merged one denoted

as i23 that installs the two packages, substitutes i2 for the
merged instruction and removes i3.
• ∆дap = ρдap (dc). The rewriter catches the three instruc-

tions, and merges them in a multi-run instruction denoted

as i123. The update instruction is substituted for i123, and the
others are removed.

• ∆ = ∆pack ∪∆дap . The conflict detection function is applied

on the union set containing all the expected substitutions.

When triggered, it identifies a conflict on i2, as the first rule
wants to remove it when the second one would substitute

with something else.

∃(i2, ∅, i23) ∈ I
3, (i2 → ∅) ∈ ∆ ∧ (i2 → i23) ∈ ∆

1 ...

2 RUN apt -get update #i1

3 ...

4 RUN apt -get install nginx #i2

5 ...

6 RUN apt -get install nodejs #i3

7 ...

Listing 6: Descriptor triggering a conflict: dc

∆pack = {(i2 → i23), (i3 → ∅)}

∆дap = {(i1 → i123), (i2 → ∅), (i3 → ∅)}

∆ = {(i1 → i123), (i2 → ∅), (i2 → i23), (i3 → ∅)}

(13)

5 QUANTITATIVE VALIDATION
In this section we validate that (i) our proposition can handle a real-

world use-case in an acceptable amount of time, (ii) analyzing the
composition of dockerfiles generates a reasonnable overhead (iii)
there is a substantial gain obtained in detecting guideline violations

when taking the whole hierarchy into account instead of isolated

deployment descriptors.

To do so, we built a dataset of dockerfiles available on GitHub,

the community code-versioning reference platform. We collected

an initial set of 24, 357 deployment descriptors. Details about this

collection, the composition, and the building of the dataset are

available in the companion webpage. Over these dockerfiles, 5.8%
(1, 412) were considered as trivial (i.e., having less than 3 instruc-

tions
5
) and were removed from the dataset. The remaining 22, 945

dockerfiles regroup 178, 088 instructions and represent our experi-

mental dataset, denoted DS . The normalized version of our dataset,

denoted DS , is made of also 22, 945 dockerfiles but due to extension

mechanism, it regroups 285, 142 instructions.

Isolated dockerfiles of DS contain between 3 and 202 instruc-

tions with 7.76 instructions per dockerfile on average; normalized

dockerfiles of DS have between 3 and 202 instructions, with 14.37

on average. The smallest sizes are the same since it is our lower-

threshold for trivial dockerfile. The highest size is a single dockerfile
that is bigger than every normalized dockerfiles. The most inter-

esting metric here is that dockerfiles double in size on average.

Normalized dockerfiles of DS have between 0 and 6 parent docker-
files with 1.45 level of parents on average. These numbers show

the scale our approach must reach to address real life deployment

descriptors.

From the guidelines in the official Docker webpages
6
, we iden-

tified and implemented 15 of them as they are both highly used

by the community and general enough to be relevant for a wide

number of dockerfiles.

5.1 Analyzing Atomic Descriptors
The remaining 22, 945 dockerfiles in DS regroup 178, 088 instruc-

tions. In this dataset, no parent-child relationship exists and each

dockerfile is analyzed as an isolated descriptor.

Isolated dockerfiles contain between 3 and 202 instructions with

7.76 instructions per dockerfile on average. We first applied each

guideline on our experimental dataset to show the impact of our

contribution on the build-execution time.We underline the fact that,

in this case, each dockerfile is considered as isolated from others,

and no parent-child relationship is taken into account. The output

of this experiment can be considered as the raw execution time of

our analyzer on thousands of unrelated files.

5
A parent reference and a single command.

6
https://docs.docker.com/engine/reference/builder/, https://docs.docker.com/engine/

userguide/eng-image/dockerfile_best-practices/.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

Supporting Micro-services Deployment in a Safer Way SAC’18, April 9-13, 2018, Pau,France

Isolated

Normalized

0 2000 4000 6000
Time

M
od

e

Task

apply guidelines
normalization
parse dataset

Figure 1: Exec. time of applying every guideline on DS in
isolated mode.

Measures were made with the JMH
7
framework in its 1.5.2 ver-

sion and targeting Java 8 code. Each measure is made 10 times, after

a warm-up phase of the JVM used to reduce measure errors and

garbage collection interferences. We ran this benchmark on a vir-

tual machine running CentosOS 7 operating system, with one Intel

Xeon E5-2637v2 3,5GHz of 4 cores, and 4 GB/1600MHz of RAM.

The benchmark code, as well as more details on the experimental

protocol can be found in the companion webpage.

Fig. 1 displays the execution times running our 15 official guide-

lines over the 22, 945 dockerfiles, both in isolation and with the

normalized set we discuss in the next section. In isolated mode

the analyzer takes around 4 seconds to get through our dataset

and yield conflicts. This execution time must be compared to the

amount of time needed to list, load and parse those dockerfiles (2, 5
seconds on average). We consider that this time is perfectly compat-

ible with a real-life build-chain of nowadays software companies

(e.g., continuous deployment pipeline).

5.2 Analyzing Normalized Descriptors
To show the value of our contribution and our normalized operator,

we need to automatically build hierarchies of dockerfiles, but there
is no pre-established or accessible parent-child relationship with

these files. This could have been automatically possible if (i) a
dockerfile was a named artefact, and (ii) a named dockerfile could
be accessible via an API, which is actually not the case.

As our dataset was built without targeting any specific user,

dockerfile, embedded framework or official dockerfile, we analyzed
it and sorted dockerfiles by the most used parents. We then handle

aliases since the very same parent-dockerfile can be extended by

child-dockerfiles using different names. Fig. 2 depicts the evolution

of the percentage of the dataset which would have a parent/child

relation established if the parent was known. The resulting curve

is not surprising since a lot of dockerfiles extends the same set of

dockerfiles (i.e., the official ones).

Since dockerfiles have to be manually retrieved, we decided to

cover 50% of our dataset with an established parent/child relation-

ship. To do so, we manually retrieved the 40 most extended dock-
erfiles, from common repositories (e.g., DockerHub, DockerStore).
As a result, we have 11, 527 dockerfiles with a known parent. We

believe that this coverage is relevant enough to serve our purpose

and that manually grabbing more dockerfiles will not change our
conclusions.

Execution time. We ran the same guidelines as in Sec. 5.1 on the

whole dataset, this time using the normalized operator. We can

apply this operator even if no parent/child relationship has been

7
http://openjdk.java.net/projects/code-tools/jmh/.

20

40

60

80

100

Nb. of Dockerfiles

C
um

ul
at

iv
e

F
re

qu
en

cy

40 1000 2000 3000 4000 5000

10

20

30

40

50

60

70

80

90

100

Figure 2: Perc. of dataset with parent/child relationship es-
tablished when the parent dockerfile is known

established
8
. Therefore we applied our guidelines on the normalized

version of all the dockerfiles, some having parents, some not.

The upper part of Fig. 1 displays the execution times running

the 15 official guidelines, this time over DS . Our analyzer took
around 6.5 seconds to analyze our experimental dataset and yield

conflicts, which contains 2, 5 seconds of file loading. We consider

that this time is also perfectly compatible with a real-life pipeline

of nowadays companies. We also note that, since dockerfiles have
between 0 and 6 parent dockerfiles with 1.45 level of parents on

average, and that they have between 3 and 202 instructions with

7.76 instructions per dockerfile on average, our contribution fits

well the relative constrained complexity of our targeted problem.

Guideline violation. Fig. 3 shows how many dockerfiles are de-
tected as violation of a given guideline. We note that guidelines

G3,G4,G5,G9,G10 andG11 are violated the same amount of times,

which is very low. This is due to the fact that (i) those errors are
rarely made and (ii) are more likely to be made by beginners (i.e.,
at the bottom of the hierarchy). We also note that the 9 remaining

guidelines are more violated when applying the normalized opera-

tor. This difference corresponds to guidelines violation that cannot
be detected without taking the normalized descriptor into account,

as our approach does.

Fig. 4 shows how many commands are detected as violating a

given guideline in isolated and normalized modes (using a logarith-

mic scale). We note that patterns from Fig. 3 are found in this figure.

This gives insights about how many times a dockerfile violates a
given guideline and therefore that a high-level dockerfile has a given
flaw. For instance, guideline #2 is violated by a very small amount

of instructions, which impacts a lot of dockerfiles. This means that

fixing a small amount of instructions may fix a lot of dockerfiles.

5.3 Conflict detection
Some guidelines are going to conflict with each other, by construc-

tion (e.g., updating before installing, and adding specific arguments

to at − дet command). Half of the extracted guidelines target RUN
commands, hence are more likely to be conflicting. An interference

matrix of conflicting guidelines can then be built.

8
as described in Eq.2: parent (d) = ∅ ⇒ d .

http://openjdk.java.net/projects/code-tools/jmh/

SAC’18, April 9-13, 2018, Pau,France B. Benni et al.

Guideline ID

N
b.

 o
f d

oc
ke

rf
ile

s

0
50

00
10

00
0

15
00

0

1 2 3 4 5 6 7 8 9 10 12 14

Figure 3: Number of dockerfiles violating a given guideline

Guideline ID

N
b.

 o
f c

om
m

an
ds

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1 2 3 4 5 6 7 8 9 10 12 14

Figure 4: Number of instructions violating a given guideline

Table 1 shows the number of dockerfiles that present potential
conflicts for each guideline pair. We represent only the upper right

part of the matrix, as it is symmetric by construction. There is a

potential conflict when two guidelines are violated on the same

dockerfile d and target the same kind k of commands. For example,

8, 492 dockerfiles violates guideline 6 and guideline 7, whereas only

124 dockerfiles violated guideline 1 and guideline 5. Two issues

can occur on a single dockerfile but on different instructions and

therefore create no new conflict, but this information is not available

on Table 1.

Table 2 shows the number of instructions that are really con-

flicting, i.e., conflicts occurring on the same instructions of the

same dockerfile and producing different results. We note that some

guidelines pairs (e.g., G1 and G15) are violated on many dockerfiles
(1816) but that only 671 instructions are really in conflict; whereas

others (e.g., G6 and G7) are violated on around 8, 500 dockerfiles,
and that more that 20, 000 instructions are really conflicting. This

result shows that these guidelines are often violated together, on

Gi, j 1 5 6 7 13 14 15

1 – 124 2, 212 2, 901 1, 731 2, 810 1, 816

5 – – 524 685 176 436 629

6 – – – 8, 492 2, 110 6, 331 6, 531

7 – – – – 2, 601 8, 690 10, 223

13 – – – – – 2, 351 1, 861

14 – – – – – – 5, 965

15 – – – – – – –

Table 1: Dockerfiles containing guidelines violation pairs

Gi, j 1 5 6 7 13 14 15

1 – 15 1, 795 5, 445 4, 100 3, 509 671

5 – – 9 360 12 174 314

6 – – – 20, 094 1, 211 9, 155 14, 655

7 – – – – 5, 239 19, 474 50, 256

13 – – – – – 1, 815 1, 211

14 – – – – – – 8, 680

15 – – – – – – –

Table 2: Instructions containing guidelines violation pairs
(i.e., real conflicts)

a lot of instructions, exposing an understanding problem of the

platform by the service designers.

5.4 Rewriting
Finally, we applied two rewriting rules on our normalized dataset to

show the benefit of an automated analysis and automated rewriting

of service descriptors. We remember that DS is made of 22, 945

dockerfiles, grouping 285, 142 instructions. Among DS , 10, 711 dock-
erfiles (46.68%), grouping 21, 686 RUN instructions (7.60%), install

packages via the apt manager. These instructions represent 26.84%

of the 80, 799 RUN instructions of our dataset, confirming that

installing packages with apt-get is a pretty common operation.

Layer caching. We implemented the rule defined in Sec. 4.3. We

found that 19, 309 instructions violate this guideline. This means

that close to 89% of the analyzed descriptors install software with-

out properly updating their dependencies first. These 19, 309 flawed

commands are spread over 8, 496 dockerfiles, which represent 79.32%
of the descriptors using this package manager, and 37.02% of DS .
This means that 3 out of 4 dockerfiles that installs software using
apt are introducing a flaw that leads to outdated dependencies. It

represents more than a third of our entire experimental dataset

emphasizing how dangerous this abstraction leak is. Thanks to our

automatic rewriting system, all these errors have been automati-

cally detected and fixed by appending the proper arguments into

the body of the targeted instructions.

Reducing number of layers. As we said in Sec. 4.2, the weight

of the final artifact is bound to its number of instructions, i.e., the
less instructions are in the dockerfile, the lighter the artifact and
vice-versa. By running the described rewriting rule on our dataset,

we found that 79, 045 RUN instructions can be automatically deleted,

lightening the weight of concerned dockerfiles and of their children.

Supporting Micro-services Deployment in a Safer Way SAC’18, April 9-13, 2018, Pau,France

Thismeans that 97.83% of theRUN commands of our dataset (which

contains 80, 799 RUN instructions in total) can be safely deleted,

lightening the size of artifacts. This is due to the fact that developers

assume a 1 − 1 mapping between commands executed on a classic

shell and what happens inside a dockerfile at build time, pictured

in List. 4. Again, thanks to our automatic rewriting system, all

these RUN have been automatically detected and merged together

by merging their instructions.

6 RELATEDWORK
The distributed system community faces the challenge of deploy-

ing multi-tenant pieces of software since decades. Automated ap-

proaches have been proposed to support the scripting (using both

declarative [10] or imperative [7] descriptors) of distributed de-

ployments, for example using dedicated architecture deployment

languages [11]. These academic approaches were complemented

by industrial implementations during the rise of the cloud era, with

systems such as Chef [15] or Puppet [1], to orchestrate different

sequences of shell commands to support distributed deployment.

These systems also propose a black-box reuse mechanism that can

lead to guideline violation or optimization issue. Our work com-

plements state of the art practices by allowing one to statically

analyze a docker image descriptor and its hierarchy, leading to a

safer deployment of micro-services applications.

Static analyzers of dockerfile are available [14, 22] but focus on
vulnerabilities detection only ; comparing with open databases con-

tent. Several prototypes address the difficulty of writing a dockerfile
by providing domain-specific languages (DSLs [12]) dedicated to

this task, written in OCaml
9
, Javascript

10
, or Go languages. Using

these languages enables the static analysis of a given descriptor,

and the safe generation of a valid dockerfile.
Rocker

11
is a tool that adds features to ease the writing of dock-

erfiles. It provides a higher-level language to avoid many mistakes

made when writing docker descriptors. Even if it does not pro-

vide reasoning on dockerfiles, it shows how difficult the process of

writing a dockerfile can be.

The community-linter system
12

supports the analysis of a

given dockerfile with respect to the referenced best practices listed

by the Docker company. However, contrary to our contribution,

these approaches do not support the analysis of the whole hierar-

chy associated to the dockerfile, are focused on syntactical errors

only (e.g., missing or extra symbol in command body), and are not

capable of conflicts detection.

An anti-pattern is a literary form that describes a commonly

occurring solution to a problem that generates decidedly nega-

tive consequences [5]. An anti-pattern describes a general form,

symptoms describing how to recognize the general form, its conse-

quences, and a refactored solution describing how to change the

anti-pattern into a healthier situation [5]. An anti-pattern can be

modeled as rule that checks itself against a model and proposes,

if applied, a refactoring. Therefore, the rules described in this pa-

per can be considered as anti-pattern detections for micro-services

deployment descriptors.

9
https://github.com/avsm/ocaml-dockerfile.

10
https://www.npmjs.com/package/dockerfile-generator.

11
https://github.com/grammarly/rocker.

12
http://hadolint.lukasmartinelli.ch/.

7 CONCLUSIONS & PERSPECTIVES
In this paper, we illustrated how crucial the deployment descriptor

are in the micro-service development community, and the asso-

ciated challenges for service designers. We identified two crucial

challenges in this context: (i) how to support an everchanging set of

guidelines when writing descriptors (C1) and (ii) how to deal with

issues introduced by the black-box reuse mechanism associated to

containers (C2). To address the latter challenge, we defined a formal

model in a technology independent way, reifying a composition

operator that leverages the image reusing mechanisms to build

normalized descriptors. To address the former one, we described

how the framework can be instantiated to fit the Docker platform

specificities. Moreover, a conflict detection mechanism defined at

the formal level using first order logic supports the detection of

overlapping rules, addressing both challenges. We evaluated this

contribution on a set of more than 20, 000 real deployment descrip-

tors, showing the benefits of the normalized approach to identify

hidden errors in designers’ descriptors.

To pursue this work, we plan to address two limitations en-

countered by this contribution. The first limitation comes with the

substitution mechanism: even if it seems to us simple to understand

and use, its expressiveness is limited and makes the implementation

of complex rewriting rules tedious. We plan to extend it by moving

from logical terms substitutions to a graph algebra, and reason on

more precise operations. Another lead to address this perspective

is to rely on the Praxis approach [3] to reason on descriptor modi-

fications rather than on substitutions. The second perspective to

address is the definition of a traceability model associated with

service descriptors. For now, the approach works at the normalized

descriptor level, for checking and rewriting, and consider it as a

whole. Scattering the rewriting to several descriptors, as well as

identifying the root causes of the rules violations or conflicts will

help the maintenance of the service descriptor hierarchy. Finally,

from a service engineering point of view, measuring the impact of

the other tools associated with containers to support micro-service

scaling is an interesting field which is not addressed by the scientific

literature.

REFERENCES
[1] Syed Ali. 2015. Configuration Management with Puppet. Apress, Berkeley, CA,

109–135. https://doi.org/10.1007/978-1-4842-0511-2_5

[2] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices

architecture enables DevOps: migration to a cloud-native architecture. IEEE
Software 33, 3 (2016), 42–52.

[3] Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. 2008. Detecting

model inconsistency through operation-based model construction. In 30th Inter-
national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn (Eds.). ACM,

511–520. https://doi.org/10.1145/1368088.1368158

[4] Carl Boettiger. 2015. An Introduction to Docker for Reproducible Research.

SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 71–79. https://doi.org/10.1145/2723872.
2723882

[5] W. Brown, Malveau R., H. McCormick III, and T. Mowbray. (1998). Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley and Sons.
Robert Ipsen, 157. http://ff.tu-sofia.bg/~bogi/France/SoftEng/books/Wiley%

20-%20AntiPatterns,%20Refactoring%20Software,%20Architectures,%20and%

20Projects%20in%20Crisis.pdf

[6] CoreOS. 2017. RKT - A security-minded, standards-based container engine.

https://coreos.com/rkt/. (2017).

[7] G. Deng, D. C. Schmidt, and A. Gokhale. 2008. CaDAnCE: A Criticality-Aware

Deployment and Configuration Engine. In 2008 11th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC). 317–
321. https://doi.org/10.1109/ISORC.2008.58

https://github.com/avsm/ocaml-dockerfile
https://www.npmjs.com/package/dockerfile-generator
https://github.com/grammarly/rocker
http://hadolint.lukasmartinelli.ch/
https://doi.org/10.1007/978-1-4842-0511-2_5
https://doi.org/10.1145/1368088.1368158
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
http://ff.tu-sofia.bg/~bogi/France/SoftEng/books/Wiley%20-%20AntiPatterns,%20Refactoring%20Software,%20Architectures,%20and%20Projects%20in%20Crisis.pdf
http://ff.tu-sofia.bg/~bogi/France/SoftEng/books/Wiley%20-%20AntiPatterns,%20Refactoring%20Software,%20Architectures,%20and%20Projects%20in%20Crisis.pdf
http://ff.tu-sofia.bg/~bogi/France/SoftEng/books/Wiley%20-%20AntiPatterns,%20Refactoring%20Software,%20Architectures,%20and%20Projects%20in%20Crisis.pdf
https://coreos.com/rkt/
https://doi.org/10.1109/ISORC.2008.58

SAC’18, April 9-13, 2018, Pau,France B. Benni et al.

[8] DevOps.com and ClusterHQ. 2016. Container market adoption - Survey 2016.

https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf. (jun

2016).

[9] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. 2015. An updated performance

comparison of virtual machines and Linux containers. In Performance Analysis of
Systems and Software (ISPASS), 2015 IEEE International Symposium on. 171–172.
https://doi.org/10.1109/ISPASS.2015.7095802

[10] Nicolas Ferry, Hui Song, Alessandro Rossini, Franck Chauvel, and Arnor Solberg.

2014. CloudMF: Applying MDE to Tame the Complexity of Managing Multi-

cloud Applications. In Proceedings of the 7th IEEE/ACM International Conference
on Utility and Cloud Computing, UCC 2014, London, United Kingdom, December
8-11, 2014. IEEE Computer Society, 269–277. https://doi.org/10.1109/UCC.2014.36

[11] Areski Flissi, Jérémy Dubus, Nicolas Dolet, and Philippe Merle. 2008. Deploying

on the Grid with DeployWare. In 8th IEEE International Symposium on Clus-
ter Computing and the Grid (CCGrid 2008), 19-22 May 2008, Lyon, France. IEEE
Computer Society, 177–184. https://doi.org/10.1109/CCGRID.2008.59

[12] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley

Professional.

[13] HashiCorp. 2017. Vagrant - DEVELOPMENT ENVIRONMENTS MADE EASY.

https://www.vagrantup.com/. (2017).

[14] Oscar Henriksson. 2017. Static Vulnerability Analysis of Docker Images. http:

//www.diva-portal.se/smash/get/diva2:1118087/FULLTEXT02.pdf. (2017).

[15] Matthias Marschall. 2013. Chef Infrastructure Automation Cookbook. Packt

Publishing.

[16] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux J. 2014, 239, Article 2 (March 2014).

http://dl.acm.org/citation.cfm?id=2600239.2600241

[17] R. Morabito, J. KjÃďllman, and M. Komu. 2015. Hypervisors vs. Lightweight

Virtualization: A Performance Comparison. In Cloud Engineering (IC2E), 2015
IEEE International Conference on. 386–393. https://doi.org/10.1109/IC2E.2015.74

[18] Sébastien Mosser, Mireille Blay-Fornarino, and Laurence Duchien. 2012. A

Commutative Model Composition Operator to Support Software Adaptation.

In Modelling Foundations and Applications - 8th European Conference, ECMFA
2012, Kgs. Lyngby, Denmark, July 2-5, 2012. Proceedings (Lecture Notes in Com-
puter Science), Antonio Vallecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Har-

ald Störrle, and Dimitrios S. Kolovos (Eds.), Vol. 7349. Springer, 4–19. https:

//doi.org/10.1007/978-3-642-31491-9_3

[19] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. 2016.

Microservice Architecture: Aligning Principles, Practices, and Culture. " O’Reilly
Media, Inc.".

[20] René Peinl, Florian Holzschuher, and Florian Pfitzer. 2016. Docker Cluster Man-

agement for the Cloud - Survey Results and Own Solution. Journal of Grid
Computing 14, 2 (2016), 265–282. https://doi.org/10.1007/s10723-016-9366-y

[21] Rami Rosen. 2014. Linux containers and the future cloud. Linux J 2014, 240

(2014).

[22] Gareth Rushgrove. 2015. Over 30High Priority Security Vulnerabilities. https:

//banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf. (jun

2015).

[23] Gareth Rushgrove. 2016. DockerCon16 - The Dockerfile Explosion and the Need

for Higher Level Tools by Gareth Rushgrove. https://goo.gl/86XPrq. (jun 2016).

[24] Mark E. Stickel. 1981. A Unification Algorithm for Associative-Commutative

Functions. J. ACM 28, 3 (July 1981), 423–434. https://doi.org/10.1145/322261.

322262

[25] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. De

Rose. 2013. Performance Evaluation of Container-Based Virtualization for High

Performance Computing Environments. In 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. 233–240. https:
//doi.org/10.1109/PDP.2013.41

https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/UCC.2014.36
https://doi.org/10.1109/CCGRID.2008.59
https://www.vagrantup.com/
http://www.diva-portal.se/smash/get/diva2:1118087/FULLTEXT02.pdf
http://www.diva-portal.se/smash/get/diva2:1118087/FULLTEXT02.pdf
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1007/978-3-642-31491-9_3
https://doi.org/10.1007/978-3-642-31491-9_3
https://doi.org/10.1007/s10723-016-9366-y
https://banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf
https://banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf
https://goo.gl/86XPrq
https://doi.org/10.1145/322261.322262
https://doi.org/10.1145/322261.322262
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1109/PDP.2013.41

	Abstract
	1 Introduction
	2 Background & Challenges
	3 Modeling Descriptors
	3.1 Formal Model
	3.2 Checking rules:
	3.3 Automated Rewriting rules: R

	4 Application: the Docker case
	4.1 Checker: Overriding Services
	4.2 Rewriter: Reducing Number of Layers
	4.3 Checker & Rewriter: Layer Caching
	4.4 Conflict detection

	5 Quantitative Validation
	5.1 Analyzing Atomic Descriptors
	5.2 Analyzing Normalized Descriptors
	5.3 Conflict detection
	5.4 Rewriting

	6 Related Work
	7 Conclusions & Perspectives
	References

