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Testing for univariate Gaussian mixture in practice∗

Didier Chauveau†, Bernard Garel‡, Sabine Mercier§

November 30, 2017

We consider univariate Gaussian mixtures theory and applications, and particularly the prob-
lem of testing the null hypothesis of homogeneity (one component) against two components.
Several approaches have been proposed in the literature during the last decades. We focus on
two different techniques, one based on the Likelihood-Ratio Test, and another one based on esti-
mation of the parameters of the mixture grounded on some specific adaptation of the well-known
EM algorithm often called the EM-test. We aim to provide useful comparisons between different
techniques, together with guidelines for practitioners in order to enable them to use theoretical
advances for analysing actual data of realistic sample sizes. We finally illustrate these methods in
an application to real data corresponding to the number of days between two events concerning
ovarian response and lambing for ewes.

AMS 1991 subject classification: Primary 62F03; 62E20. Secondary 62F05.

Key words and phrases: Mixture models; likelihood ratio test; EM tests; Gaussian process.

1 Introduction

The aim of always producing the better model for our data can partly explain the present craze
for probability distributions which can be written as a mixture. However there exist other
important reasons which justify the increasing use of these models. Mixture models are able to
help in many circumstances. Indeed, whenever a population is constituted ofK homogeneous sub
populations, a K-component mixture can be proposed as an attractive model for this population.
Recently published books are entirely devoted to mixture of distributions. In particular, the
books by Everitt and Hand (1981), Titterington et al. (1985), McLachlan and Basford (1988),
Lindsay (1995), McLachlan and Krishnan (1997), McLachlan and Peel (2000), Böhning (2000),
Frühwirth-Schnatter (2006), Schlattmann (2009) contributed to an already rich bibliography and
became international references. We also have to stress that from the theoretical point of view,
analysis of mixture involves many mathematical topics such as stochastic processes, asymptotic
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distribution, estimation and maximization for non regular models, Bayesian analysis and so on.
Among the many problems raised by mixture we find the non-identifiability of parameters, the
degeneracy of the Fisher information matrix around particular points or the non-differentiability
with respect to another parametrization. Then it is not surprising that we obtain non-standard
asymptotic distributions for testing problems.

Beginnings of mixture models go back to the 19th century mainly with the contributions by
A. Quetelet, L.A. Bertillon, S. Newcomb and K. Pearson. Behind the writings of Quetelet (1846)
we find the idea that a normal distribution can be generated by a great number of other normal
distributions. Analysing the heights of 9002 conscripts, Bertillon (1874) and Bertillon (1876)
noted that the graphical representation of these heights gave two modes which constituted a
surprise. Then he claimed that this phenomenon was due to the presence of two distinct ethnic
groups. The Figure he presented seems to be the first graphical representation leading to the
assumption of a normal mixture. Newcomb (1882) and Newcomb (1886) addressed the problem
of outliers in astronomical data. He observed that the tails of the distribution were fatter than
the normal ones. He explained this non-normality by the combination of data with different
scales and so, invented the contaminated normal distribution. Pearson (1894) analysed data
that the zoologist Walter F. Weldon submitted to him, in particular crab forehead sizes. In his
1894 paper he graphically showed the evidence of a mixture. For him, to adjust a mixture of
normal is equivalent to carve a skewed curve into two normal distributions. A way of doing
so is to estimate five parameters from the five first moments. This is feasible because seeing
that a mixture is a convex combination of densities, its moments are convex combination of the
moments of these densities. Then Pearson found its famous ninth degree equation, a negative
root of which is necessary to solve the problem. Pearson’s contribution is generally thought of as
the starting point of the analysis of mixtures. Then, during quite a while, the research on mixture
models concentrated around improvements of this method of moments. Charlier (1906), Charlier
and Wicksell (1924), Cohen (1967) and Holgersson & Jorner streamlined Pearson’s claculations.

When the two variances are assumed equal, the problem consists in finding the negative root
of a cubic. This problem was addressed by Pearson (1894), Charlier and Wicksell (1924), Rao
(1948) and Cohen (1967). When the two means are assumed equal, the problem is still simpler
and Gottschalk (1948), Cohen (1967), Gridgeman (1970) brought their contribution to it.

These contributions are related to the problem of estimation in mixture model. Another very
important issue is the determination of the number of components of the mixture. Graphical pro-
cedures have been developed. Simple examination of the histogram can bring some information.
A more elaborated method has been proposed by Bhattacharya (1967). The method starts from
two statements. First the logarithm of a normal density is a concave quadratic in the variable,
so that its derivative is linear with negative slope. Then, when there is a lot of data and the
grouping imposed by the histogram is quite fine, the histogram heights are proportional to the
density. Thus, a plot of first differences of the logarithms of the histogram frequencies should dis-
play a sequence of negatively sloped linear plots, one corresponding to each components. Roeder
(1994) elaborated another type of graphical technic.

This concern has also been treated as a testing problem: a set of tests of k components
against k + 1 components, for instance using the likelihood ratio. After Wilks (1938), Chernoff
(1954) gave the asymptotic distribution of the likelihood ratio test in the case of a regular model.
Above, we gave a few reasons why mixtures do not belong to regular models. A few researchers
began to privilege likelihood ratio for determining the number of components of a mixture and
particularly the problem of testing H0 : homogeneity (k = 0), against a two-component mixture.



Testing univariate Gaussian mixtures 3

Then conjectures and simulation results about the distribution of this likelihood ratio have been
published.

Wolfe (1971) suggested that (n−1−m)λn/n is approximately distributed as a χ2
2m, where n

is the sample size, λn is the usual likelihood ratio test statistic (LRTS) and m is the number of
parameters which are different for the two components of the mixture. This gives a χ2

2 distribution
for a univariate normal mixture with equal variance and a χ2

4 distribution for a normal mixture
with different means and different variances.

In the case of univariate normal mixture with unknown but common variance, see Model
9 (M9) below, McLachlan (1987) and Thode et al. (1988) suggested that for n ≤ 1000 the
distribution of λn is close to a χ2

2, the latter having a less heavy tail. In the case of a normal
mixture with different means and different variances, see Model 8 (M8) below, McLachlan (1987)
found that a χ2

6 fits well for a sample size n = 100.

Hall and Stewart (1985) suggested using the restriction

min
1≤i,j≤2

(σi/σj) ≥ c ≥ 0

and Feng and McCulloch (1996) used min(σ21, σ
2
2) ≥ c′ ≥ 0. For n = 100, they found a distribution

between a χ2
4 and a χ2

5 when c′ = 10−6 and between a χ2
5 and a χ2

6 when c′ = 10−10.

The preceding results, which are given without other restrictions on the parameters, rely
on Monte Carlo simulations and concern essentially finite sample distributions. Indeed without
assuming a bounded parameter the distribution tends to infinity in probability when n goes to
infinity.

If we now consider asymptotic results, a first stage has been undertaken by Redner (1981). He
proved that if W denotes a fixed neighbourhood of the set Γ corresponding to H0 in the global
parameter space, associated to the global model (1), then the probability that the maximum
likelihood estimator (MLE) is found in W tends to one when n goes to infinity. Redner calls it
convergence of the MLE in the topology of the quotient space obtained by collapsing Γ into a
single point; see Ghosh and Sen (1985).

The first correct expression of the asymptotic distribution was given by Ghosh and Sen (1985)
for a general mixture model with two components:

f(x;π, µ1, µ2) = (1− π)g(x, µ1) + πg(x, µ2), (1)

where π ∈ [0, 1] is the component weight and µ1 (resp. µ2) is the parameter of the first (resp. the
second) component; π, µ1 and µ2 are unknown. The component density g in this model is general,
assuming some regularity. First they need the assumption that the mixture parameters µ1 and µ2
belong to a bounded interval. Indeed, Hartigan (1985) proved that a statistic close to the LRTS
for testing homogeneity against a Gaussian mixture of the means converges towards infinity in
probability when n tends to infinity if the range of the unknown mean is unbounded. Bickel
and Chernoff (1993) revisited this problem and showed that if the parameter set is unbounded,
Hartigan’s statistic approaches infinity with order log logn. Note that the equivalence between
Hartigan’s statistic and the LRTS, when H0 is reduced to a single scalar parameter, has been
proved not before quite recently by Liu and Shao (2003).

Ghosh and Sen also imposed a separation condition on the parameters of the mixture mainly
in order to restore identifiability and to get an answer. They have assumed that |µ2 − µ1| ≥
c0 > 0. Therefore, under this constraint, H0 is described by π = 0 or π = 1. Removing this



Testing univariate Gaussian mixtures 4

separation condition presented a real challenge and many statisticians offered a solution, for
instance, Dacunha-Castelle and Gassiat (1997), Lemdani and Pons (1999), Liu and Shao (2003),
Garel (2005). Garel (2001), Chen and Chen (2001), Garel and Goussanou (2002), Liu and
Shao (2004) addressed specific mixtures in the Gaussian case. The LR approach has also being
studied in a recent preprint (Maciejowska, 2013): the author proposes new hypothesis to test
the homogeneity against two-component mixture model which allow to avoid the problem of
identifiability.

When the parameter upon which relies the mixture is multivariate, the asymptotic distribu-
tion of the likelihood ratio is related to a Gaussian random field and the computation of percentile
points becomes tricky or impossible. For instance, for a Gaussian mixture with unknown means
and variances, the asymptotic distribution is a bivariate random field and, even in this case, it
is not possible to get exact percentiles. That is why other tests or methods have been proposed
in order to assess the number of components.

For a two-component mixture model, Chen et al. (2001), Chen et al. (2004) modified the LRTS
and derived its limiting distribution. They used a penalized likelihood, with a penalty depending
on the mixture proportion π. Li et al. (2009) proposed then an EM-test for homogeneity, that
Chen and Li (2009) mentioned in the case of two normal mixture models. Li and Chen (2010)
extend that to higher order (number of components) models, in situations where the distribution
parameter is scalar (such as for Poisson or exponential mixtures). They test precisely a m0-
component mixture under the null hypothesis, vs. a mixture of order m > m0. They claim for
the limiting distribution under the null a mixture of δ0, χ2(1), . . . , χ2(m0). Chen and Li (2011)
propose a refined method for computing a tuning parameter in the penalty used in previous
papers on this EM-test approach. Chen et al. (2012) then proposed an EM-test for testing the
null hypothesis of some arbitrary fixed order under a finite mixture model.

Since these tests are intended to provide answers to end users, and since they require some
sort of heavy computations, the availability of public codes is important. Several versions of these
EM-tests have been made publicly available in the recent MixtureInf package (Li et al., 2016)
for the R statistical software (R Core Team, 2016). Two successive versions of this package have
been proposed, a first version (1.0-1) in 2015 and the most recent update (version 1.1, March
2016). In this current version, the function emtest.norm is dedicated to the test of the order
of a normal mixture model. The linked references are precisely Chen and Li (2009), that was
limited to the homogeneous null model vs. a two-component mixture, and Chen et al. (2012)
which generalize this EM-test approach to a mixture of arbitrary order under the null hypothesis.

In this paper, we investigate some of these methods from the practitioner point of view, i.e.
practical applicability and power that can be expected. We focus on two different techniques, the
LRT and the EM-test based on the EM algorithm. We aim to provide useful comparisons between
these techniques in several (more or less general) Gaussian mixture models, and guidelines for
practitioners in order to enable them to use these methods for analysing actual data of realistic
sample sizes. We have also developed numerical procedures for the EM approach for some of the
models that are not available in the MixtureInf package, such as Model 2 and 9 (M2 and M9) in
Table 1.

Table 1 describes the models studied from the perspective of testing homogeneity vs. mixture
in the literature, where the labels are borrowed from previous literature. The models we actually
investigate in this paper are in boldface.

On the computational side, since there exists (up to our knowledge) no public codes for the
LRT approach, we develop numerical procedures that will be publicly available in an upcoming
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Table 1: Description of the models studied from the perspective of testing homogeneity vs.
mixture in the literature (models investigated in this paper are in boldface).

Models H0 H1

1- Contaminated
Models
(M1) g(α0) (1− π)g(α0) + πg(α)

α ∈ A ⊂ R
(M2) N (0, 1) (1− π)N (0, 1) + πN (µ, 1)

µ ∈ A ⊂ R
(M3) N (0, 1) (1− π)N (0, 1) + πN (0, σ2)

σ2 ∈ [a,A] ⊂]0, 2[
(M4) N (0, 1) (1− π1 − π2)N (0, 1)+

π1N (µ1, 1) + π2N (µ2, 1)
2- One population

against two
(M5) f(x, α) (1− π)f(x, α1) + πf(x, α2)

α ∈ A ⊂ R
(M6) N (µ, 1) (1− π)N (µ1, 1) + πN (µ2, 1)

µ ∈ A ⊂ R
(7) N (0, σ2) (1− π)N (0, σ2

1) + πN (0, σ2
2)

σ2
2 < 2σ2

1

(M8) N (µ, σ2) (1− π)N (µ1, σ
2
1) + πN (µ2, σ

2
2)

3- Presence of a
structural parameter

(M9) N (µ, σ2) (1− π)N (µ1, σ
2) + πN (µ2, σ

2)
σ2 unknown

(M10) N (µ, σ2) (1− π)N (µ, σ2
1) + πN (µ, σ2

2)
µ unknown

version of the mixtools package (Benaglia et al., 2009) for the R statistical software (R Core
Team, 2016). We compare these LRT codes with some of the codes proposed in the MixtureInf
package (Li et al., 2016) (see above).

The rest of the paper is organized as follows: Sections 2 to 5 are dedicated to analyses for
models (M2), (M6), (M8) and (M9) respectively. Section 6 presents some applications based on
actual data collected for a research project from the French National Institute for Agricultural
Research (INRA)1: we study the so-called “ram effect” on data corresponding to number of days
between two events concerning ovarian response and lambing for ewes of several kinds. For such
data, a mixture is sometimes suspected for biological reasons, but with not great evidence coming
from the empirical distribution. The Discussion section 7 summarizes the results and derive some
practical suggestions for the end users.

1Projet de Recherche d’Intérêt Régional DURAREP2.
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2 Model 2

This simplest model is the standard normal N (0, 1) contaminated by a normal distribution
shifted by a mean µ,

H0 : N (0, 1) vs. H1 : (1− π)N (0, 1) + πN (µ, 1). (2)

This model is obviously rather artificial from a practical point of view. We start our study with it
since it is the first time, up to our knowledge, that the actual quantiles for finite (realistic) sample
size n are compared to the asymptotic quantiles obtained by Garel (2001). The Likelihood Ratio
Test statistic (LRT) proposed by Garel (2001), Theorem 2.1, is

λn = sup
µ∈[−a,a]\{0}

T 2
n(µ) I{Tn(µ)≥0} (3)

where

Tn(µ) =
1√

n(eµ2 − 1)

n∑
i=1

[
e(Xiµ−µ2/2) − 1

]
, µ 6= 0,

and

lim
µ→0

T 2
n(µ) = nX̄2, X̄ =

1

n

n∑
i=1

Xi.

Our purpose in this section is to compute Monte-Carlo quantiles of this test statistic for
realistic n (and up to “asymptotic” sample sizes), and evaluate the asymptotic behaviour w.r.t.
the theoretical results. This allows us to evaluate the power of this LR-Test using these Monte-
Carlo or asymptotic quantiles. Finally, we are comparing it with an EM-test we derived using
the methodology in Chen and Li (2009). Note that this particular model has not been handled
by these authors.

2.1 Model 2 Monte-Carlo simulation for quantiles

2.1.1 Quantiles for the LR Test

For computing the statistic, we have to define a suitable compact [−a, a]. Following Garel (2001),
we first tried values a ∈ {1, 2.5, 5}. The test statistic λn is easy to compute, the supremum over
µ ∈ [−a, a] \ {0} being obtained by discretizing the interval in k = 100 or k = 200 steps. Fig. 1
shows some typical behaviour of µ 7→ T 2

n(µ)I{Tn(µ)≥0}, for which we choose a = 2.5 that allows to
see the global behaviour of the statistic. In particular the discontinuity in 0 where the statistic
jumps to its opposite value is visible.

Fig. 2 shows the comparison between asymptotic, previously published quantiles, and Monte-
Carlo quantiles computed from a large-scale experiment with 10, 000 replications, and several
sample sizes from n = 100 up to n = 100, 000. This experiment shows that the convergence is
rather slow, but happened for a = 1, whereas the usage of the asymptotic quantile is questionable
in cases where a = 2.5 or larger is used. This study hence suggests to use the Monte-Carlo
quantiles in practice for any realistic (hence small) n. This very slow convergence is somehow
in accordance with the rate in log(log n) claimed by other authors as, eg, Bickel and Chernoff
(1993). Note that using a > 2.5 is not realistic in practice since, for contamination mean µ so
distant from 0, the mixture structure becomes visible just looking at an histogram of the data.
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Figure 1: Some typical behaviours of µ 7→ T 2
n(µ)I{Tn(µ)≥0} for µ ∈ [−2.5,+2.5] and simulated

samples of size n = 1000 under H0 for (M2). The red dot is the limiting behaviour T 2
n(0), when

Tn(0) ≥ 0.
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Figure 2: (M2): Empirical quantiles for λn based on 10,000 Monte-Carlo replications vs. Asymp-
totic theoretical values from Garel (2013) (dotted lines) for three levels (90%, 95% et 99%)
and two compact sets with a = 1 (left) and a = 2.5 (right). The x axis is in log scale, for
100 ≤ n ≤ 100, 000.
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2.1.2 Quantiles for the EM-test

We present here the quantiles calculated from Monte-Carlo simulation for the statistic EM (k)
n of

the EM-test proposed in Chen and Li (2009). (M2) corresponds to Exemple 2 in Li et al. (2009)
but it seems that they do not provide the asymptotic distribution. We did not find a definition
and implementation of the EM-test for this model in the package MixtureInf (Li et al., 2016)
proposed by these authors, so we defined our implementation. These quantiles are computed
from experiments with 10,000 replications of size n. Each experiment have been computed three
times to evaluate the accuracy of the number of replications.

We choose K = 3 for the number of iterations in the EM algorithm and (0.1, 0.3, 0.5) for
initial values for π as proposed in, e.g., Chen and Li (2009). The maximization of the initial step
is done using the R function optimize() for this simple case. We use the penalization proposed
in Chen and Li (2009), p(π) = log(1− |1− π|). Our results are in Table 2.

Table 2: Mean (and standard deviations) of the quantiles of the statistic EM (K)
n for different

probabilities and different values of n.

n/α 90% 95% 99%
100 2.81 (5.97 10−2) 3.97 (1.77 10−2) 6.6 (8.78 10−2)
200 2.75 (5.8 10−2) 3.94 (8.71 10−2) 6.89 (22.8 10−2)
500 2.75 (3.47 10−2) 3.93 (3.98 10−2) 6.75 (7.22 10−2)
1000 2.68 (0.47 10−2) 3.83 (1.90 10−2) 6.48 (17.6 10−2)
5000 2.73 (4.63 10−2) 3.90 (10 10−2) 6.56 (17.6 10−2)
104 2.71 (0.54 10−2) 3.87 (2.30 10−2) 6.65 (10.3 10−2)
χ2(1) 2.71 3.84 6.63

From our Monte-Carlo experiment, a χ2(1) limit distribution for the EM-test statistic EM (K)
n

for (M2) seems valid, even though the convergence appears to be very slow.

2.2 Model 2 power evaluation

We have simulated under H1 the mixture:

X ∼ (1− π)N (0, 1) + πN (µ, 1), (4)

with parameters µ = 0.7 and π = 0.3, already used in (Garel, 2001). These settings result in a
severely overlapping mixture, as illustrated in Fig. 3. Our motivation for choosing such a non-
obvious mixture model is based on the idea that, if a simple histogram of the data already reveals
a multi-modal distribution, then the test itself is not needed. Fig. 4 shows that the estimated
power of the LRT for model (4) is very good, even for small sample sizes, considering the difficulty
of this severely overlapping mixture. However, one should be aware that this good behaviour
is also a consequence of the simplicity of the model, with very few unknown parameters and a
completely known distribution under H0. Our implementation of the EM-test for M2 shows a
comparable power.
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Fig.2, for a = 1 (left) and a = 2.5 (right), 10, 000 replications. EM-test (left): for n = 100, 200
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3 Model 6

This model corresponds to a location mixture with same and known variance, set to 1 without
loss of generality.

(M6) H0 : N (µ0, 1) vs. H1 : (1− π)N (µ1, 1) + πN (µ2, 1).

A LRT statistic has been proposed for this model in Garel (2001). Its formulation is in its
principle similar to λn for (M2), Equation (3), and we refer to Garel (2001) for its detailed



Testing univariate Gaussian mixtures 10

definition, that also includes a definition of Tn(µ). The behavior of this statistic has been studied
only asymptotically (n =∞). The drawback of this approach is that the definition of the statistic
includes the knowledge of the true value of µ0 under H0, that makes sense asymptotically but
causes problem in practice for actual data, where the mean have to be estimated from other
“reference” data corresponding to the null hypothesis H0, prior to use the test. Figure 5 shows
some typical behaviour of µ 7→ T 2

n(µ)I{Tn(µ)≥0} for a = 2.5 and µ0 = 0. As for (M2), we
have compared the asymptotic quantiles of the LRT statistic with actual quantiles obtained by
a Monte-Carlo experiment. In the asymptotic framework (µ0 known), Fig. 6 shows the slow
convergence of the actual quantiles toward the asymptotic ones.

An EM-test for (M6) is provided in Li et al. (2009), since it is a special case of their general
result for a scalar parameter θ, and a general density f satisfying regularity assumptions. Their
theorem 2 says that the limiting distribution (in n) of the test statistic EM (K)

n for any K is

EM (K)
n → 0.5 δ0 + 0.5χ2(1).

This EM-test has been implemented in the package MixtureInf (Li et al., 2016), in the two versions
we tested. Note that the code was provided by the function emtest.norm in their first version,
and has been renamed emtest.norm0 in the last available version we tried (2016). We have
checked numerically that the statistic actually converges to the claimed distribution for realistic
sample sizes. However, we noticed that the discrete part 0.5 δ0 comes in their code from the fact
that any negative value of the statistic are simply replaced by 0, which is a procedure not in
accordance with the theory, and for which we have no explanations. All the experiments showed
here have been done with the last package version 1.0-1.
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Carlo replications, assuming µ0 known, compared with asymptotic values from Garel (2001),
with supremum over [0, a] and a = 1. The n axis is in log scale.

3.1 Model 6 power evaluation

As mentioned above, we have used the function emtest.norm0() from the last available update
of the R package MixtureInf that implements the EM test for (M6) in our Monte-Carlo simulation
for power evaluation, with the same model under H1 as for M2, equation (4), and same sample
sizes and test levels. We have also compared these results with a similar experiment using the
LRT approach and test statistic from Garel (2001), but remembering that this statistic for (M6)
requires the knowledge of the true value of µ under H0. The results in Fig. 7, left, shows that
the power here is weaker than the LRT in (M6) (Fig. 7, right) and the LRT in (M2) studied
previously. However, remember that the comparison with the power of the LRT test in (M6)
is questionable, since for the EM test the model have to estimate µ under the null hypothesis,
whether it is provided in the LRT asymptotic form. Our advise is then that the LRT is a better
option if the mean under homogeneity (H0) is known from previous experiments, expert prior
information, or as a standard from some area of expertise. Note that the comparison with the
LRT in (M2) is also not meaningful since (M2) is an even simpler model with all parameters
known under H0. Note that the different number of replications between the LRT and the
EM-test is only motivated by the computing time required for the latter.

4 Model 8

This model is actually the general one, in particular more general than (M9) that will be con-
sidered later, since all the parameters are unknown and unconstrained under both H0 and H1.

H0 : X ∼ N (µ, σ2) vs. H1 : X ∼ λN (µ1, σ
2
1) + (1− λ)N (µ2, σ

2
2),
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Figure 7: Monte-Carlo estimation of the power for (M6), parameters as in equation (4). Left:
EM-test from Li et al. (2009), using 2000 replications; Right: LRT approach as in Garel (2001)
using quantile obtained by Monte-Carlo, but using the asymptotic definition of the statistic, i.e.
µ0 known; 10,000 replications.

i.e. the test for H0 : “Gaussian distribution” vs. H1 : “Two-component Gaussian mixture”. For
this model, the LRT-based strategy only proposed a test statistic as a conjecture (Garel, 2001).
Chen and Li (2009) Section 3 handles this model with the EM-test, and claim that the limiting
distribution is χ2(2). The code for the EM-test in (M8) is provided by the function emtest.norm
in the last available update of the R package MixtureInf (Li et al., 2016). This code also handles
these authors recent extensions to higher order tests, namely a mixture with m0 components for
the null hypothesis versus a mixture with m > m0 components, see Chen et al. (2012).

We have experimented this EM-test strategy under H0 first. The announced limiting distri-
bution of the Mn statistic as a χ2(2) is partially verified in practice, in the sense that, under
H0 : N (0, 1), we always observed a small percentage (between 3% and 5%) of negative values. If
we remove these negative values, then the empirical distribution is reasonably fitted by a χ2(2).

We have also evaluated the power of the EM-test for (M8) using a Monte-Carlo experiment as
before, for the same mixture model as in (M2) and (M6), i.e. with parameters as in equation (4).
The results are rather disappointing, in comparison with, e.g., (M6), even if the statistical
problem is obviously more difficult here. Figure 8, left, shows the empirical power using the
same settings as before. It is clear that our model with means 0 and 0.7 is too difficult for this
test to capture the (severely overlapping) mixture structure. Actually, the EM-test power here
is approximately equal to its level.

We have thus conducted a second experiment, where the power is estimated when the mean
of the second component increases, i.e. the mixture becomes more and more easy to detect, for
the same range of sample sizes. Results are displayed in Figure 8 (right).

Note that we ran the same experiment initially with the previous version (1.0) of the MixtureInf
package, which returns results similar to Fig. 8 (Left) for our model under H1, and slightly worse
than Fig. 8 (Right) when estimating the power as a function of the increasing µ2. For instance
in the case where n = 100, and for the most obvious mixture with µ2 = 3, the power of the
previous version was about 50% instead of the 80% showed here, for a level 1%.

Our advice to users for this general model is that a good power can only be obtained for
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Figure 8: Monte-Carlo estimation of the power for (M8) based on 2000 replications: Left, pa-
rameters as in equation (4), using the EM test from Chen Li & Marriot (2009) and Chen et al.
(2012) referred to in the MixtureInf package. Right: Power as a function of the mean µ2 of the
second component.

“separated enough” models. Fig. 9 illustrates for instance the type of true and empirical distri-
butions one can expect, to achieve a power ≥ 90% with a sample of size n = 300. It shows in
particular that in this case the empirical distribution can be at least severely skewed, and often
even bimodal, so that H0 is not reasonable: the decision criterion provided by the test seems
thus limited in practice.
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Figure 9: Mixture (M8) under H1 for µ2 = 2.5, and two examples for samples of size n = 300.

In view of our results for the power of the EM-test in the case of a homogeneous null model,
and since this model has been extended in Chen et al. (2012) and in the MixtureInf package
(Li et al., 2016), to higher order models i.e. for H0 : m0-component mixture vs. H1 : m > m0-
component mixture, we tried to re-run some of the experiments provided in Chen et al. (2012),
Section 4 (simulation study). We reproduced the experiments given by these authors in their
Table 4, bottom panel, corresponding to H0 : m0 = 2 vs. four instances of H1 : m = 4, and their
Table 6, bottom panel, corresponding to H0 : m0 = 3 vs. four instances of H1 : m = 5. Results
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are summarized in our Table 3. We estimate the powers based on 5000 replications (instead
of 1000 in Chen et al. (2012)), to achieve more precise estimates. The results are sometimes
surprising in comparison to the original estimates, without a clear explanation.

Table 3: Powers of EM test at the 5% level for two models (M8) and four alternatives for each,
compared with results from Chen et al. (2012) showed in (·) for the EM-test with 3 iterations;
estimates based on 5000 replications.

H1 n = 200 n = 400

m0 = 2 vs. m = 4 1 16.2 (20.0) 43.9 (44.1)
(Table 4) 2 33.2 (33.5) 67.6 (70.2)

3 99.1 (40.5) 100 (60.2)
4 100 (100) 100 (100)

m0 = 3 vs. m = 5 1 13.0 (10.4) 25.9 (28.4)
(Table 6) 2 41.8 (40.7) 79.7 (84.6)

3 42.7 (44.8) 78.6 (83)
4 80.1 (82.3) 99.2 (99.5)

5 Model 9

This model is as before a mixture on the mean, variance unknown but common (sometimes called
the structural parameter). It is thus a generalization of (M6), but less general than M8.

H0 : N (µ0, σ
2) vs. H1 : (1− π)N (µ1, σ

2) + πN (µ2, σ
2). (5)

A LRT statistic is available for this model in Garel (2001) section 3.3, but it is again asymp-
totic in the sense that the statistic includes the knowledge of both the mean µ0 under H0 (as for
M6) and of the structural parameter σ2. We thus do not investigate its behaviour in practice
here.

This model is also studied in Chen and Li (2009), Section 2, where the EM-test limiting
distribution is given by their Theorem 2: for any fixed number of iterations K of the EM
algorithm using a penalized log-likelihood,

P(EM (K)
n ≤ x)→ F (x−∆)[0.5 + 0.5F (x)] as n→∞,

where F (·) is the cdf of the χ2(1) distribution, and ∆ is a negative but fixed constant that
depends only on the penalty p(π) and the πj ’s chosen in the initialization procedure (Chen and
Li, 2009). This distribution has its support in (∆,∞) and

P(EM (K)
n ≤ 0)→ 0.5F (−∆) for ∆ < 0.

In particular with the settings from Chen and Li (2009),

p(π) = log(1− |1− 2π|), ∆ = 2 max
π∈{0.1,...,0.4}

(p(π)− p(0.5)) ≈ −0.446,

so that it gives P(EM
(K)
n ≤ 0) ≈ 0.248.
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We did not find any implementation of the EM-test in this case in the MixtureInf package,
even though the algorithm and the associated penalty functions (for p(π) and p(σ)) are fully
described in Chen and Li (2009) section 2. Hence we develop our implementation of this EM-
test to compare it with (M8). We were unable to clearly validate the asymptotic distribution
under H0, essentially because we observed a higher estimated value for P(EM

(K)
n ≤ 0), even for

large samples up to n = 2000. Our estimated type I error (Table 4) also did not exactly match
the simulations provided by Chen and Li (2009) Table 1. We finally also apply the EM-test for
(M9) with the same settings already used for (M8), as in Fig.8 (right). Results are in Fig.10 and
show a slightly better power, which is expected since the model is simpler, but again good power
is associated to somehow “easy to detect” mixtures.

Table 4: Estimated type I error for sample size n = 200, K = 3 and π ∈ {0.1, 0.2, 0.3, 0.4, 0.5};
20,000 replications.

Level 10% 5% 1%
Estimates 7.81 4.16 0.99
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Figure 10: Monte-Carlo estimation of the power of the EM-test for (M9) based on our imple-
mentation and 2000 replications, as a function of the mean µ2 of the second component.

A note about CPU time and computing efficiency: our code of the EM-test for (M9) uses
C calls for computing the E-step, borrowed from the mixtools package (Benaglia et al., 2009).
We noticed that for the Monte-Carlo simulations used in power estimations showed in Figures 8
(right) and 10, our code is approximately 30 times faster than the EM-test for (M8) provided by
the MixtureInf package.

6 An application to real data

To illustrate the application of some of the previous models, quantiles and power to actual data
of moderate sample sizes, we have applied it to data collected for a research project from the
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French National Institute for Agricultural Research (INRA)2. Briefly, these quantitative data
correspond to the number of days between two events concerning ovarian response and lambing
for ewes of several kinds (races), coming from actual farms or experimental situations, and years.
The purpose is the study of the so-called “ram effect” (or male effect). A mixture is sometimes
suspected for the distributions of these datasets, and the empirical distributions are not always
giving evidence of it. Hence the test for homogeneity comes as a natural technique to asses
mixture or homogeneous population. The conclusions of the tests have important consequences
for the biological application.

We focus here on a dataset of n = 660 observations for a selected race (Romane), location
(Sapinière) and year (2009). Fig. 11 shows the empirical distribution of the data, which does not
look very well bell-shaped, but is not obviously bimodal in the sense expected from the biological
context (a mode around 150 days and another mode about 6 days later). We have first added to
this plot a single normal fit (i.e., assuming homogeneity), and a two component Gaussian mixture
fit. All the mixture model fits in the figures were done using the normalmixEM() function of the
Benaglia et al. (2009) mixtools package for the R statistical software R Core Team (2016). The
initialization of the EM algorithm is data-driven there, based on an initial k-means clustering of
the data.

Sapinière 2009 data
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Figure 11: Homogeneous and 2-components mixture fits for the data Romane Sapinière 2009.

(M6) can reasonably be applied to these data, assuming equal variance among the compo-
nents, and hence standardizing the data to bring it back to variance 1 as in (M6) set-up (both
for LRT and EM-test approaches). The EM-test returns a p-value of 1.3% signifying rejection of
homogeneity. The LRT approach implies, as detailed in Section 3, the knowledge of the mean µ0
under H0. The current practice is to estimate this mean from the data, even though this is not
theoretically valid since the plug-in of this estimate adds some noise to the statistic’s asymptotic
distribution. As explained in Section 3 and illustrated in Fig. 6, it is preferable to use the Monte-
Carlo quantiles instead of the less conservative asymptotic quantiles. Doing this here returns the
results in Table 5.

2Projet de Recherche d’Intérêt Régional DURAREP2.
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Table 5: Results for the LRT and EM-test using (M6), Monte-Carlo quantiles and plug-in esti-
mate of µ0 computed on the standardized data.

Method 90% 95% 99% Ln p-value
LRT, a = 1 2.38 3.83 7.78 10.82 < 0.01
LRT, a = 2.5 2.86 4.66 11.63 14.71 < 0.01

EM-test 0.013

The LRT concludes rejection (i.e. existence of a mixture) even at level 1%, thus in ac-
cordance with the EM-test under the same (M6) set-up. A study of the detailed plot of
µ 7→ T 2

n(µ)I{Tn(µ)≥0} as in Fig. 5 for these data shows a behaviour similar to Fig. 5 top-right
panel, so that increasing a does not change the result. The exact p-value, clearly smaller than
1%, has not been computed here, but this could be done using the Monte-Carlo experiment
presented in Section 3.

(M8) can also be used straightforwardly in this case, but only (among the various ap-
proaches we have detailed) using the EM-test approach. Note that applying the EM-test using
emtest.norm2() on this dataset with the pre-2016 version of the MixtureInf package return a neg-
ative value for the statistic, and consequently a p-value of 1, not satisfactory in practice in view
of the empirical distribution. The updated version (2016) returns a p-value of 5.10−9 indicating
clear rejection, in accordance with the results based on (M6) given in Table 5.

7 Discussion

7.1 A brief summary of our results and observations

M2 Results on the LRT statistic distribution is available (Garel, 2001). The comparison be-
tween the non asymptotic quantiles vs. the asymptotic ones shows the good power even for a
severely overlapping and non obvious mixture. To our knowledge, there is no EM-test available
in the literature. Our derivation of an EM-test theory and implementation indicates a limiting
distribution under the null hypothesis

EM (K)
n → χ2(1),

and power similar to the results from the LRT test. Note that the convergence to the χ2(1)
distribution seems rather very slow.

M6 The LRT approach for (M6) gives an asymptotic results on the statistic distribution, but
the expression of the test statistic includes the value of the true µ0 under H0. Quantiles and
power are evaluated in our work, in this set-up. For the EM-test approach, Li et al. (2009)
Theorem 2, propose the following limit distribution

EM (K)
n → 0.5 δ0 + 0.5χ2(1).

Note that a code is available in the MixtureInf package. We however noticed that values corre-
sponding to the discrete part δ0 are forced in the code, where negative values for EM (K)

n are
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checked and simply replaces by 0. This is also the case for the last 2016 MixtureInf package
update. The limit distribution under H0 is recovered from our Monte-Carlo investigation, except
the convergence to the weight 0.5 even for large n. We observe that the power in this model is
weaker than the LRT. Our advise is then that the LRT is a better option if the mean under ho-
mogeneity (H0) is known from previous experiments, expert prior information, or as a standard
from some area of expertise.

M8 In that model, a conjecture is proposed for the statistic distribution but it has not been
investigated. In Chen and Li (2009) Section 3, a limiting distribution is given for the EM-test
statistic

EM (K)
n → χ2(2).

Code for this case is available in the MixtureInf package. We tested it and observed negative
values for EM (K)

n in the previous package version (1.0-1), that gave obviously wrong results
(p-value of 1 i.e. no rejection even for obvious mixtures like, e.g., the Old Faithful geyser waiting
time data). The last MixtureInf package version (1.1 updated in March 2016) successfully corrects
that problem. Following our investigations, the message we deliver to potential users is that the
power can be rather weak for datasets from non-obvious mixture, i.e. non obviously bimodal (or
multi-modal) empirical distributions. (M8) clearly deserves more study on actual datasets.

M9 Results on the LRT are available but as for M6, only asymptotically in the sense that
the computation of the test statistic requires the knowledge of both the mean µ0 under H0 and
the structural parameter σ2. It is thus not investigated here. The EM-test has been studied in
Chen and Li (2009) section 2 and their Theorem 2 gives an asymptotic behaviour of the cdf of
the statistic test EM (K)

n . As there is no code available online, up to our knowledge, we develop
our own code considering the algorithm proposed in Chen and Li (2009). We did not recover
the asymptotic distribution under H0 claimed by the author; in particular, we noticed a higher
estimated value for P (EM

(K)
n ≤ 0) and slightly different estimated type I errors. Using a similar

setting used for M8, we noticed that good power is reached for obvious mixtures.

7.2 Conclusion

This paper brought a new insight towards the problem of testing the number of components of
a mixture. We compare two approaches, one based on the Likelihood-Ratio Test, and the other
on the EM-test; guidelines for practionners are summarized in the previous subsection, and an
illustration of both apporaches using different models is proposed. Classical results obtained in
the frame of Likelihood Ratio Test (Ghosh and Sen (1985), Garel (2001)) rely on the true value
of the parameters under H0. But this value is unknown and may be difficult to estimate in a
general framework. Then, it would be tempting to consider that it is only a theoretical result,
without possible application. Another issue could be considered. We need a procedure useful
with real data coming from both hypotheses. Under H0, the classical ML estimators could be
used. Then, we would find a good α-level of the test; but, if we are under H1, these estimators
are dramatically inefficient. Therefore we have to decide what could be the H0 component, being
under H1. A solution could be to consider the main component (the one with the largest weight)
as the H0 component and to use either an EM algorithm or a robust procedure to estimate this
component. This could be investigated. Another surprising by-product is the inaccuracy of our
simulation results with respect to the EM Test results in the case of (M9). We have no clear
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explanation so that further investigations would be needed. Finally, we stress that this work
allowed us to add a few contributions as codes implementing the LRT approach, that will be
included in a futur update of the mixtools package (Benaglia et al., 2009) for the R statistical
software (R Core Team, 2016).
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