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Abstract. For Smart Environments used for elder care, learning the
inhabitant’s behavior patterns is fundamental to detect changes since
these can signal health deterioration. A precise model needs to consider
variations implied by the fact that human behavior has an stochastic
nature and is affected by context conditions. In this paper, we model
behavior patterns as usual activity start times. We introduce a Frequent
Pattern Mining algorithm to estimate probable start times and their vari-
ations due to context conditions using only one single scan of the activity
data stream. Experimentation using the Aruba CASAS and the Contex-
tAct@A4H datasets and comparison with a Gaussian Mixture Model
show our proposition provides adequate results for smart home environ-
ments domains with a lower computational time complexity. This allows
the evaluation of behavior variations at different context dimensions and
varied granularity levels for each of them.

1 Introduction

Smart Homes used for elderly home care, can increase independent living time
and reduce long-term care costs. By monitoring Activities of Daily Living (ADL),
behavior patterns, their changes and their evolution, it is possible to infer a
person’s health status and her ability to live independently [14].

One element to consider about behavior patterns is the probable start time
of each monitored activity. It is possible to model start times since we tend to
do the same activities at approximately the same time [14]. Changes in the start
time of an activity can signal health disturbances. Nonetheless, the time when
an activity is done may vary depending on context conditions. For example, one
may wake up later on weekends or take a bath earlier when it is sunny outside to
go out. Learning and modeling these variations avoids false alarms and improves
routine understanding for both the elder and her caregivers.

If context conditions are not considered during learning, some patterns may
go undetected [12]. But the large number of context dimensions and attribute
values increases the complexity of the analysis specially since not all activities
are affected by the same dimensions nor by the same scale of them (hour, day,
month. . .). While the probable start time of waking up may vary on weekends,
that of cooking may vary only on Fridays and that of going out may vary when it



rains. Although we can model start times using normal distributions, analyzing
their possible variations at different scales is difficult.

Current approaches either don’t consider possible variations in the start time
of each activity, or consider the same attributes and the same scale for every
activity (Section 2). In this paper, we propose the TIMe algorithm (Section 3) to
automatically learn probable start times of daily living activities and variations
due to context conditions based on frequent pattern mining. We compare TIMe’s
start time intervals to the intervals found by fitting a Gaussian Mixture Model
using two real-life datasets (ContextAct@A4H [7] and Aruba CASAS [2]). Our
method, though less accurate than fitting a normal distribution, has a lower cost
and is processed in a stream setting. TIMe evaluates raw data simultaneously
with multiple context dimensions and scales to detect variations, without storing
raw observation data, to analyze patterns. We can analyze changes and evolution
in real-time, protecting user privacy (Section 4).

2 Behavior Pattern Learning in Smart Homes

Analyzing the temporal dimension of behavior can improve the accuracy of
anomaly detection [9, 6]. This includes both relative ordering of activities and
absolute temporal characteristics such as activity durations, start times and the
temporal gaps between activities. The main approaches for modeling behavior,
knowledge-driven and data-driven [1, 4], emphasize the relative sequential struc-
ture while absolute temporal characteristics are overlooked.

We model behavior start times since we tend to do the same activities at
approximately the same time. Proposed approaches regard time as either a con-
tinuous or a discrete dimension. When considered as a continuous dimension,
start time is mostly modeled using a Gaussian Distribution (GD) [5]. Most ac-
curately, with a linear combination of GD (a Gaussian Mixture Model, GMM)
multiple occurrences of the same activity during a day are modeled [14]. When
seen as a discrete dimension, a day is segmented into chunks and the behav-
ior occurring each interval is modeled[10] [11]. While the Gaussian Distribution
method models the tightness or flexibility of a routine with its variance, dis-
cretizing the temporal space is faster and allows easier computations. Dawadi et
al.[3] use m equal-sized windows to find activity frequency on each but model
each activity distribution over the entire day-long period, thus finding a trade-off
between both representations.

The usual start time of a behavior is modeled as the interval(s) with the high-
est observation frequencies or as [µ−σi, µ+σ]. But these times vary according to
context conditions without them being anomalies [8]. To model these variations
some authors create a different model for each possible situation [9, 10]. This ap-
proach is not scalable with the number of dimensions defining a situation. Other
authors include context as an activity feature, thus every variation is a different
concept [6]. This hinders routine understanding since the semantic relationship
between variations of the same activity is lost. Finally, other approaches model



each context dimension separately [5]. While this method is scalable, it does not
find frequent behaviors on rare contexts [12].

In sum, finding the probable start time(s) of an activity while considering
context dimensions and different granularities (scales) for each of them with a
scalable algorithm is still an open issue. We propose a frequent pattern mining
method to find a suitable trade-off between continuous and discrete representa-
tions that is computationally efficient and precise enough to model behavior.

3 Discovering Most Probable Start Time Intervals and
Probable Context Variations

In this section we formalize the problem of mining most probable start time(s)
for an activity and its possible variations in light of context conditions as a
frequent pattern mining problem (Section 3.1). By introducing the notion of a
maximum start time interval and the expected number of observations in such
interval (Section 3.2), our approach to detect start times does not previously
need neither the number of possible occurrences in a day of each activity nor the
context dimension granularity. TIMe (Section 3.3), allows not only the analysis of
different context dimensions and scales but also the analysis of pattern evolution
in real-time and can be run on small computers.

3.1 Mining Activity Start Time Intervals Problem

Let T = (T,≤) be a time domain. A time instant tx ∈ T is called a times-
tamp. Since we are interested in finding periodic patterns, we define a periodic
granularity in which each granule groups W time instants of T . There exists a
mapping fW (t) = t mod W for each timestamp t ∈ T allowing to represent the
timestamp in a circular time domain. We denote this circular domain as T ′.

Example 1. Let T be a time domain whose time instants are represented as a
Unix epoch. LetW = 86400seconds(24hours). Let, t1 = 1488656696 (2017-03-04
19:44:56) and t2 = 1489520696 (2017-03-14 19:44:56), then fW (t1) = 71096
(19:44:56) and fW (t2) = 71096 (19:44:56). Both t1 and t2 represent the same
point within the defined period.

Let A = {a1, a2, . . . an} be a set of activity labels representing the activities
to be monitored. For example, A = { sleep, cook, go out}

An activity observation is a tuple oi = (ei, tj) with ei ∈ A, tj ∈ T . ei
represents the label of the observed activity and tj represents its start time
for the current observation. A contextualized activity observation is a tuple
oi = (ei, tj , [c1, c2, . . . , ck]), where c1, c2, . . . , ck define context attribute values
of the observation such as day of the week, weather description, temperature,
noise level, etc. Context attributes are a vector in which each item takes value
in a specific context domain. A stream of activity observations is an unbounded
sequence S =< o1, o2, o3, . . . >, where oi is a contextualized activity observation.



Finding the probable start time of each monitored activity ai is equivalent to
finding all the time intervals [s, e], where s, e ∈ T ′, at which the probability that
an observation of the activity belongs to the interval is greater than a user chosen
parameter ϕ. Given a sequence S, the problem can be expressed as follows:

∀ai ∈ A find the time intervals [s, e] where s, e ∈ T ′such that:

P (∃oi = (ai, tj) ∈ S | fW (tj) ∈ [s, e]) > ϕ
(1)

The time interval [s, e] can be interpreted as: ”the time interval when there is
a high probability of starting activity ai” or as ”the time interval around which
activity ai usually starts”. Notice that for each activity ai, there may be 0 or
more probable start time intervals, each of which may have a different size e−s.

Similarly, we find variations due to a given context value ck as the time
interval(s) with a probability greater than the given parameter (see eq. 2). We
assume all ck are independent from each other, so they are considered separately.

P (∃oi = (ai, tj , ck) ∈ S|fW (tj) ∈ [s, e])

P (∃oi = (ai, tl, ck) ∈ S)
> ϕ (2)

3.2 Maximum Start Time Interval Size

As said before, we define the total size of the timespace T ′ by W , expressed in
a corresponding temporal unit. For example, if the space is a day, W has 24
hours or 1440 minutes. This is the period of analysis. To mine probable start
time intervals, we divide this space into smaller, w-sized chunks called slots.

Let ntotal be the number of observations of an activity seen thus far and ϕ be
the minimum probability for a time interval to be considered frequent (see eq. 1).
Following (see eq. 2), and assuming events are evenly distributed, the number y of
expected observations in a frequent time interval is given by: y = ntotal∗ϕ. The
maximum size T of a frequent interval is given by the minimum number of slots
that would be needed to have a frequent interval under a uniform distribution.
Thus T is defined by: T = W

w ∗ ϕ From y and T , the number n of expected
observations in a slot belonging to a frequent interval is given by n = y ∗ 1

T (3)
A probable start time interval is thus, a set of contiguous slots that have each

more than n observations.

3.3 TIMe: An algorithm for mining start time intervals

The algorithm relies on counting the total number of activity observations and
the number of observations per activity per slot. Since there are a total of W

w
slots in T ′, a matrix of counters, M|A|×W

w +1 is used for this. In the matrix, mi,0

counts the frequency of activity ai in the stream and mi,j for each j > 0 counts
the frequency of activity ai in slot sj .

TIMe runs in two phases. The first (alg 1), runs when a new activity obser-
vation is made. It updates both the total count of activity observations and that



of the corresponding slot and activity (alg 1 lines 3 to 5). The second (alg 2),
runs at the end of each period. It finds the frequent intervals for each activity by
first finding the slots with counts greater than n (Eq. 3). These are the candi-
date slots. All contiguous candidate slots are merged into a single interval. If its
total count is greater than the count of the activity times ϕ, then the interval is
considered a probable start time for the activity. To find contextual variability
of the most probable start times, we use a tree structure representing different
scales of each context dimension. Each node has a matrix keeping counts for
observations at the specific context value represented by the node. The root of
the tree keeps the total number of observations.

Algorithm 1 TIME(w, S)

total := 0, counts[0...|A| − 1][0...Ww ]

2: for oi ∈ S do
total := total + 1

4: count[oi.a][0] := count[oi.a][0] + 1
count[oi.a][oi.t] := count[oi.a][oi.t] + 1

6: if Reached end of period then
callmerge intervals(counts, total)

8: end if
end for

Algorithm 2
merge intervals(c[][], total)

I← ∅ , min := total ∗ w
W

2: for i ∈ [0 . . . |A − 1|] do
s, e := −1

4: for j ∈ [1 . . . W
w ] do

n:=c[i][j]/c[i][0]
6: if n > min then

if s == −1 then
8: s, e := j

else
10: e := j

end if
12: else if s! = −1 then

I← I ∪ (i, s, e), s, e := −1

4 Empirical Evaluation

In this section, we prove three properties of TIMe by empirical evaluation: (1)
It can find multiple start times in a day for an activity with a precision similar
to that of a GMM (Section 4.1), (2) It detects contextual variability at different
scales for such intervals (Section 4.2) and, (3) Its patterns may be used to increase
routine awareness from sensor data (Section 4.3). We used the Aruba dataset
(222 days) from CASAS project [2] and the ContextAct@A4H dataset (28 days)
from the Amiqual4Home Lab [7]. From the former dataset, we focus on the
sleep(401 observations),eating(259 obs.),meal preparation(1605 obs.) and
wash dishes(67 obs.) activities. From the latter, we focus on the sleep(26
obs.), shower(24 obs.), cook(77 obs.) and wash dishes(52 obs.) activities.
Both datasets contain real-life sensor data of activities of daily living annotated
by the inhabitant.

4.1 Comparing intervals to GMM

This experiment assessed the precision of the intervals found by TIMe by compar-
ing them to those found by fitting a GMM on the Aruba dataset. We found the
optimal number of components for the GMM using the BIC criterion [13] and fit



the model using the scikit-learn library 3. Taking [µ−σ, µ+σ] of each component
as start interval, we compared them to those found by TIMe graphically (Fig. 1).
Notice how both methods find different number of probable intervals each with
a different size for each activity. Eating shows the highest difference because it
is too irregular around midday so TIMe cannot find any usual time but GMM
finds a low probability interval.

As a quantitative measure, we calculated the Jaccard similarity of the inter-
vals whose size is measured in minutes (Table 1). Eating has the lowest similarity
due to the interval between 9:30 and 17:00, not recognized by TIMe but found by
GMM. Even though, the average similarity for every other activity is suitable.

Fig. 1: GMM v.s. TIMe start time
intervals

Activity Average similarity
Sleep 76,7 %

Eating 38,8 %
Cook 87,1 %

Wash Dishes 59,9 %

Table 1: Jaccard similarity of GMM
and TIMe intervals

4.2 Finding pattern variability

This experiment evaluated how TIMe can detect variability with respect to dif-
ferent context conditions. For the Aruba dataset we consider the day of the week
as a context dimension and evaluated differences in week and weekend patterns
(Fig. 2) and in day to day variability ( Figures 3 and 4). These results show how
an activity can start at different times each day.

Fig. 2: Week v.s. Week-
end time variations

Fig. 3: Cooking time
variations

Fig. 4: Eating time vari-
ations

To explore variability with respect to other context dimensions, we used
ContextAct@Home considering day of the week and weather conditions (Fig. ??).
Wake up corresponds to the end time of sleep. The variations found help to better
reason about routines. For example, if only patterns on the whole dataset were

3 http://scikit-learn.org/



mined, taking a bath after midday ( Fig. 5) or going to sleep later on Fridays
(Fig. 6) or waking up later when it rains (Fig. 7) would be considered an anomaly
but those changes are common given their context.

Fig. 5: Bath variations Fig. 6: Sleep variations Fig. 7: Wake variations

4.3 Understanding sensor data using patterns

To show how sensor events patterns increase understanding, we compared start
time intervals of the bed pressure, stove state, shower faucet state and dish-
washer faucet state sensor events to the intervals of sleeping, cooking, showering
and washing dishes activity annotations respectively (Fig. 8). We chose these
activities because the sensors highly correlate to doing the activity. Intervals are
very similar for all activities (Table 2).

Fig. 8: Activity v.s. Sensor events in-
tervals (A4H dataset)

Activity Jaccard similarity
Sleep 84,6 %
Shower 81,2 %
Cook 89,3 %
Wash Dishes 77,1 %

Table 2: Average similarity for ac-
tivity and sensor events intervals

Showering and washing dishes have lower similarities because these activities
started a while after stating it and because the faucet is used for other activ-
ities (like washing vegetables). Still, patterns resemble the inhabitant’s routine
greatly.

5 Discussion, Conclusion and Perspectives

In this paper, we presented TIMe, a frequent pattern mining algorithm on stream
data to learn start times and their variations without manual data slicing. With
GMM as a baseline, our experiments show that probable start time intervals
mined with TIMe are suitable (Section 4.1) but at a significant lower cost since
TIMe uses a single data scan to analyze incoming data in a streaming mode.

TIMe can analyze variability due to multiple context dimensions each at
multiple scales without manual data slicing. Our results show that there are
in fact variations in patterns when analyzed in the light of different context



conditions, but that not all patterns change with respect to the same context
condition nor scale (Section 4.2). Given this, it is specially important to analyze
each pattern separately and that each dimension is evaluated independently from
others.

Being able to find pattern variations can help to better understand behavior
and better analyze events so that false alarms are reduced. We have shown that
patterns from sensor events are highly similar to those of annotated activities
(Section 4.3).

TIMe maintains the relationship between an activity and its variations. This
not only allows a separation of concerns but also creates a richer semantic model
of behavior. As such, activity recognition methods can focus on global character-
istics and personal characteristics such as start time are dealt with by a behavior
analysis method.

As future work we will apply TIMe to analyze pattern evolution and also
study how to learn other properties of behavior (expected frequency, frequent
sequences). These aspects complete knowledge about personal behavior patterns.
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