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Human observers effortlessly and accurately judge their probability of being correct in their decisions,
suggesting that metacognitive evaluation is an integral part of decision making. It remains a challenge for
most models of confidence, however, to explain how metacognitive judgments are formed and which
internal signals influence them. While the decision-making literature has suggested that confidence is
based on privileged access to the evidence that gives rise to the decision itself, other lines of research on
confidence have commonly taken the view of a multicue model of confidence. The present study aims
at manipulating one such cue: the perceived reliability of evidence supporting an initial decision.
Participants made a categorical judgment of the average color of an array of eight colored shapes, for
which we critically manipulated both the distance of the mean color from the category boundary
(evidence strength) and the variability of colors across the eight shapes (evidence reliability). Our results
indicate that evidence reliability has a stronger impact on confidence than evidence strength. Specifically,
we found that evidence reliability affects metacognitive readout, the mapping from subjectively expe-
rienced certainty to expressed confidence, allowing participants to adequately adjust their confidence
ratings to match changes in objective task performance across conditions.

Public Significance Statement
People constantly face various types of decisions, which are commonly accompanied by an inherent
feeling of (in)correctness: Just as realizing the tennis ball we played will most likely hit the net, we can
feel more or less confident regarding our recent car purchase. People’s confidence judgments have been
found to be surprisingly accurate. However, little is known about the underlying mechanisms that give rise
to them. In this study, we suggest that variability in the information we receive from the outside world is
of particular importance for how confident we feel in our decisions—more so than the extent to which
evidence favors one over another choice option. Specifically, we find that this variability affects how
people translate their internal feelings of certainty into the confidence judgments they express.
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When we make decisions we experience a subjective sense of
confidence that varies from certainty that we chose correctly to
feelings that we were guessing or even made a mistake. These
confidence judgments play a crucial role in adaptive decision
making, for example in guiding search for further information that
might better inform the decision (Bonaccio & Dalal, 2006) and in

integrating diverging opinions in group decisions (Bahrami et al.,
2010). In experiments using simple perceptual comparisons, sub-
jects readily estimate the likelihood that a just-given response was
correct, whether using a verbal scale (e.g., Baranski & Petrusic,
1998; Boldt & Yeung, 2015; Lebreton, Abitbol, Daunizeau, &
Pessiglione, 2015), a numerical one (Baranski & Petrusic, 1994;
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Gigerenzer, Hoffrage, & Kleinbölting, 1991; Merkle & Van Zandt,
2006), or a confidence comparison procedure (e.g., de Gardelle &
Mamassian, 2015). These subjective judgments typically correlate
strongly with objective task performance, therefore reflecting true
metacognitive insight into participants’ own mental processes.
There is growing interest in the computational and neural basis of
these confidence judgments, and substantial progress has been
made through linking theories of confidence to established models
of the decision process itself such as signal detection theory and
evidence accumulation models (Kiani, Corthell, & Shadlen, 2014;
Moreno-Bote, 2010; Yeung & Summerfield, 2012, 2014; Zylber-
berg, Roelfsema, & Sigman, 2014).

The primary focus of past research has been on characterizing
the sensitivity (sometimes labeled resolution) of confidence judg-
ments—that is, the degree to which people can distinguish their
correct and incorrect responses such that greater subjective confi-
dence predicts greater objective accuracy. Sensitivity has been
shown to vary systematically with factors such as task difficulty,
time pressure for both the initial decision and later confidence
judgment, and the consensuality of decisions across individuals:
Confidence better predicts accuracy when the task is easy (Baran-
ski & Petrusic, 1994), when the initial decision is made under time
pressure but when confidence judgments are made at leisure (Mo-
ran, Teodorescu, & Usher, 2015; Pleskac & Busemeyer, 2010),
and when there is collective agreement that the choice made is the
correct one (Koriat, 2012). Many of these core findings can be
explained using formal decision frameworks such as a race model
in which evidence counters for each possible decision race toward
a threshold value. Here, for instance, confidence can be quantified as
the balance of evidence between counters at the time of the decision
(Vickers & Packer, 1982): The balance of evidence will on average
be larger for easy decisions in which the available evidence
strongly favors one choice over the alternatives (cf. Baranski &
Petrusic, 1994) and will grow if more time is allowed for the
confidence judgment to be made (cf. Moran et al., 2015; Pleskac
& Busemeyer, 2010). Recent single-unit recording studies have
identified possible neural correlates of such a balance-of-evidence
signal in rats (Kepecs, Uchida, Zariwala, & Mainen, 2008) and
monkeys (Kiani & Shadlen, 2009; Komura, Nikkuni, Hirashima,
Uetake, & Miyamoto, 2013). According to this perspective, con-
fidence is a direct readout of the decision process—a function of
the evidence that drives our choices.

This view diverges from the prevailing view in another promi-
nent line of research—on metacognitive processes in memory—
where it is widely assumed that judgments do not rely on direct
readout of memory strength, but instead depend on multiple heu-
ristic cues (Koriat & Levy-Sadot, 2001; Schwartz, 1994) such as
the familiarity of the question (Reder & Ritter, 1992) and the
accessibility of information at retrieval (Koriat, 1993). Interest-
ingly, some findings within the decision-making literature suggest
that cues or heuristics external to the decision process may like-
wise influence people’s confidence in their decisions, including
decision speed (Audley, 1960; Kiani et al., 2014; Zylberberg,
Barttfeld, & Sigman, 2012) and the familiarity of the decision
options (De Martino, Fleming, Garrett, & Dolan, 2013). Other
findings suggesting that confidence and objective accuracy are
dissociable include, for example, a recent study by Fleming et al.
(2015) in which stimulation of the motor cortex led to disruptions
of confidence but not objective accuracy in a perceptual decision-

making task. Conversely, Rahnev, Nee, Riddle, Larson, and
D’Esposito (2016) reported that stimulation to the anterior pre-
frontal cortex results in improved metacognitive insight, while not
changing overall task performance.

Here, we build on these findings that confidence and accuracy
are dissociable to test the hypothesis that confidence is critically
influenced by the perceived reliability of the evidence on which
decisions are based. This hypothesis derives from recent theoret-
ical work (Yeung & Summerfield, 2014; see also Meyniel, Sig-
man, & Mainen, 2015; Pouget, Drugowitsch, & Kepecs, 2016)
linking confidence judgments to the hypothesis that perceptual
uncertainty is encoded as the variance in firing rate across a neural
population, with increased uncertainty leading to down-weighting
of that evidence source in perceptual integration (Beck et al., 2008;
Ma, Beck, Latham, & Pouget, 2006). Extending these ideas to the
decision-making process, it has been proposed that variability in
stimulus representations may provide a crucial cue to confidence,
with the specific prediction that increased evidence variance—that
is, decreased reliability—should result in reduced confidence
(Meyniel et al., 2015; Yeung & Summerfield, 2014). According to
this Bayesian account, confidence reflects the precision of a pos-
terior distribution: The less precise the evidence (i.e., the wider the
posterior probability distribution), the less confident should be any
decision based on this evidence (Yeung & Summerfield, 2014).
However, experimental evidence on this point has been contradic-
tory to date with some studies suggesting that confidence increases
with evidence variability (Zylberberg et al., 2014; Zylberberg,
Fetsch, & Shadlen, 2016), and other studies suggesting the oppo-
site pattern (e.g., Allen, Frank, Schwarzkopf, Fardo, Winston,
Hauser, & Rees, 2016; Irwin, Smith, & Mayfield, 1956; Spence,
Dux, & Arnold, 2016). A recent study by Spence et al. (2016)
carefully matched the effects of evidence reliability and evidence
strength on performance, and convincingly demonstrated effects of
evidence reliability over and above the effect of evidence mean on
confidence. However, another study with a corresponding ap-
proach reported less consistent effects (de Gardelle & Mamassian,
2015). Here, we adopted this approach of directly contrasting the
effects of evidence mean on confidence, but used factorial crossing
of these two manipulations to enable us to isolate changes in
confidence from changes in first-order performance, while also
carefully controlling for decision speed as well as decision accu-
racy.

In this way, the present study investigated the impact of
evidence reliability on confidence judgments, and crucially did
so not only in the context of its effect on metacognitive sensi-
tivity—that is, on people’s ability to discriminate their correct
responses from their errors— but also on a second crucial
feature of confidence: the degree to which judgments are accu-
rately calibrated versus exhibiting systematic bias toward
under- or overconfidence, independent of objective accuracy.
This is an important but much less understood aspect of confi-
dence. Confidence bias may vary across individuals as a stable
trait—for example, in an education setting, one student might
habitually express her opinions with confidence regardless of
their veracity (overconfidence, or high bias), whereas another
may express carefully thought-through ideas with unwarranted
caution (underconfidence, or low bias). Biases may also vary
within an individual according to the situation—for example, a
student might voice the same opinion with high confidence
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when talking to a trusted peer (high bias) but hesitantly in a
crowded classroom with an intimidating professor (low bias).
Conceptually, then, biases can emerge in mapping from sub-
jectively experienced certainty to expressed confidence, for
example, in terms of the verbal or numerical labels that are
required by an experimenter (Overgaard & Sandberg, 2012) or
elicited in group interactions (Fusaroli et al., 2012). Henceforth,
we refer to this mapping as the process of metacognitive read-
out.

In existing empirical studies, overconfidence has consistently
been observed when the task is difficult, whereas calibrated or
even underconfident evaluations are observed when the task is
easy—the hard-easy effect (Baranski & Petrusic, 1994; Dru-
gowitsch, Moreno-Bote, & Pouget, 2014; Gigerenzer et al.,
1991; Lichtenstein & Fischhoff, 1977; Merkle & Van Zandt,
2006; Pleskac & Busemeyer, 2010; Suantak, Bolger, & Ferrell,
1996; but see Juslin, Winman, & Olsson, 2000; Merkle, 2009).
The pervasiveness of this effect suggests that the hard-easy
effect is a robust phenomenon of confidence processing and
thus difficult to overcome. A corresponding phenomenon is
observed across individuals, where overconfidence is found to
increase with incompetence across several domains (the
“unskilled-and-unaware-of-it” phenomenon; Kruger & Dun-
ning, 1999). Though such changes in metacognitive readout are
now well documented, their origin in the decision-making pro-
cess remains poorly understood.

The goal of this study was to provide insight into the role of
evidence reliability as a cue to decision confidence, both in
terms of metacognitive sensitivity and metacognitive bias. To
this end, we made use of a task developed by de Gardelle and
Summerfield (2011), in which participants judged the average
color of eight different-hued patches as being on average more
red or more blue. This task requires the integration of multiple
sources of evidence (i.e., color patches) toward a categorical
decision (red vs. blue). The difficulty of this decision depends
in part upon the strength of the evidence—that is, whether the
average color of the patches falls near to or far from the
category boundary. However, difficulty can also be manipu-
lated orthogonally by changing the reliability of evidence, in
terms of its variance across colored patches—the eight patches
can be either relatively dissimilar or homogeneous in hue (high
vs. low variance)—which de Gardelle and Summerfield (2011)
showed affects decision speed and accuracy independent of
evidence strength, with higher variance making decisions more
difficult. Of critical interest was how these orthogonal manip-
ulations of decision difficulty— evidence strength and evidence
reliability—would affect decision confidence. We hypothesized
that evidence reliability (manipulated via changes in variance)
more than evidence strength would serve as a crucial cue to
inform confidence. We tested this hypothesis in two ways: First,
we predicted that evidence variance would have a larger impact
on confidence than evidence strength when compared across
two conditions that were matched for task difficulty but which
differed in the source of that difficulty—weak evidence versus
high variance evidence. Second, through regression analysis,
we tested the prediction that evidence variance would explain
changes in confidence over and above its effect on task perfor-
mance. We then used signal detection theory (SDT) approaches
to assess formally the impact of evidence strength and evidence

reliability on metacognitive sensitivity and bias. To fore-
shadow, our findings suggest that evidence variance acts as a
strong and useful cue to participants, affecting metacognitive
readout so that their confidence judgments more accurately map
their subjectively experienced certainty to their objective accu-
racy.

Method

Participants

After replacing 1 participant due to apparently random use of
the confidence scale, the final sample comprised 20 participants,
14 of whom were female, with ages ranging from 18 to 25 years.
All participants had normal or corrected-to-normal vision and—
according to self-report—intact color vision. The experiment
lasted approximately 90 min. Participants received course credit
(N � 6) or money (£12; N � 15) as compensation. All testing was
approved by the local research ethics committee.

Task and Procedure

On each trial, participants performed a perceptual judgment and
then shortly afterward indicated their degree of confidence that
their perceptual judgment was correct. The perceptual task was to
judge the average color of eight shapes presented simultaneously
on a computer screen, determining whether this color was on
average more red or more blue. The shapes were spaced regularly
around a fixation point (radius �2.8° visual arc), and also varied
along an irrelevant dimension (form, varying from square to circle)
that did not affect the results and is not discussed further (cf. de
Gardelle & Summerfield, 2011). The color judgment task can be
made difficult in two distinct ways: first, by reducing the mean of
the distribution (i.e., using colors that are, on average, purple hues
rather than clearly red or blue) and, second, by increasing variance
in the distribution of colors (i.e., using colors that are a mix of red,
blue and purple rather than a homogeneous hue). The latter factor
is our experimental manipulation of evidence variance. Of interest
was the impact of manipulation of evidence mean and variance on
decision confidence.

Factorial crossing of the two experimental factors results in four
conditions of varying difficulty (Figure 1A), which were presented
randomly interleaved within blocks. Stimulus mean and stimulus
variance parameters of our experimental stimuli were carefully
controlled such that the sample presented on any given trial very
closely matched the mean and variance of the theoretical distribu-
tions from which they were drawn. The task is easy when stimulus
mean is high (on average the color is very red or very blue) and
stimulus variance is low (all stimulus elements exhibit this differ-
ence). Conversely, the task is very challenging when stimulus
mean is low (the average color is “purplish red” or “purplish blue”)
and variance is high. The other two conditions were of interme-
diate difficulty, but due to different stimulus characteristics: Low
mean, low variance is difficult because the color information,
though relatively homogeneous, does not clearly favor one option
over the other. High mean, high variance is difficult because the
evidence, though on average falling far from the category bound-
ary, is noisy and unreliable. These two medium difficulty condi-
tions were matched in terms of difficulty using a staircase proce-
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dure (see the online supplemental material). The comparison
between these conditions was of critical interest, as it could reveal
the impact of evidence mean and variance on confidence while
controlling for primary task difficulty.

A typical sequence of trial events is shown in Figure 1B:
Participants were shown the stimulus for 160 ms. They then made
a speeded response to indicate their judgment of whether the
average color of the stimulus was red or blue, with a time limit of
1,500 ms. Trials exceeding this time were counted as misses and a
warning message instructed them to respond faster. After a 600-ms
response-stimulus interval, a confidence scale was presented and
participants indicated how confident they were regarding the cor-
rectness of their response by pressing one out of six keys. The
confidence scale ranged from “certainly correct” to “certainly
wrong.” Participants were given unlimited time for their judg-
ments. The stimulus for the next trial appeared 1,000 ms after the
confidence judgment.

Participants completed extensive training in the task, both with
and without confidence judgments (512 to 704 trials), during
which an adaptive procedure was used to match the medium
conditions with regard to reaction times (RTs) and error rates
(combined in the form of an efficiency measure: median correct
RT divided by accuracy; see the online supplemental material for
further details regarding the successful matching of difficulty of
the two medium conditions). Participants then completed 16 ex-
perimental blocks of 64 trials each in which they performed the
perceptual task followed by a confidence judgment. Prior to each
block, participants completed 16 color-judgment trials without
confidence ratings and instead with auditory feedback to help them
maintain a stable color-discrimination criterion throughout the
experiment. During the main part of the blocks, feedback was not
given. Median correct RTs and error rates for the two color
categories were shown on screen after the completion of each
block.

Stimuli were presented on a 20-inch CRT monitor with a 75-Hz
refresh rate using the MATLAB Toolbox Psychtoolbox3 with a
70-cm viewing distance. All responses were made with a USB

keyboard. The color judgments were made with the c or n key (left
or right thumb). Confidence responses were made with the upper
number row (keys 1, 2, 3, 8, 9, and 0) using the index, middle, and
ring fingers of the two hands. The direction of the confidence scale
and mapping of colors to response keys were counterbalanced
across participants.

Data Analyses

The first set of analyses aimed to replicate previously observed
effects of stimulus mean and variance on perceptual judgments
and, crucially, to confirm that the two intermediate conditions
were successfully matched for difficulty. This was assessed in
terms of both RTs, error rates, efficiency, as well as using drift-
diffusion model (DDM) fits that combine RT and error data to
reveal latent variables (drift rate, v, and boundary separation, a)
indicative of key features of the underlying decision process. To
assess matching of the conditions in question, null effects were
also analyzed using Bayesian statistical methods that permit esti-
mating the probability with which the null hypothesis is true given
the data (Morey & Rouder, 2014; Rouder, Speckman, Sun, Morey,
& Iverson, 2009). For relevant analyses of variance and t tests,
Bayes factors (BFs) are thus reported with interpretative guidelines
proposed by Kass and Raftery (1995). According to these guide-
lines, values below the cutoff value between 1 and 3 fall into the
category of “not worth more than a bare mention,” whereas values
between 3 and 20 are considered to be “positive” evidence in favor
of the hypothesis in question. Values between 20 and 150 are
“strong” evidence, and above 150 are classified as “very strong”
(Kass & Raftery, 1995, p. 777).

The key analyses focused on confidence judgments made
shortly after each perceptual decision. For these analyses, confi-
dence ratings were treated as an interval scale, as is typical in
previous research (e.g., Baranski & Petrusic, 1998), by coding the
six verbal categories from 1 (certainly wrong) to 6 (certainly
correct). The objective of the first analysis of confidence judg-
ments was to assess the impact of evidence mean and variance on

Figure 1. (A) Sample stimuli, showing the four difficulty conditions in the 2 (mean) � 2 (variance) design.
Color values are made more extreme for illustrative purposes. (B) Design of the color task; participants had to
indicate whether an array of eight colored shapes was on average more red or more blue by pressing the left or
right response key. After making their response, the confidence scale was presented on screen and participants
were given unlimited time to choose how confident they were that their last response was correct. RSI:
response-stimulus interval; max. � maximum. See the online article for the color version of this figure.
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average confidence ratings. A first test of our prediction that
evidence variance would have a more pronounced effect on con-
fidence than evidence mean was carried out by contrasting confi-
dence across the difficulty-matched conditions with low mean, low
variance and high mean, high variance. To look ahead briefly, the
predicted reduction in confidence in the high mean, high variance
condition was indeed apparent in the data. A subsequent analysis
was therefore conducted to explore further the nature of this
difference. More specifically, we aimed to identify more formally
the unique contributions of these experimental manipulations on
confidence, independent of their effect on overall task performance
(response speed and accuracy).

We thus used regression techniques to assess whether evidence
mean and variance affected confidence independent of their influ-
ence on primary task performance, as a direct test of whether either
aspect served as a cue to confidence. Regression models were
fitted to each participant’s data, that is to the means of the condi-
tions (eight data points: 2 mean � 2 variance � 2 colors), pre-
dicting confidence from RTs, objective accuracy, as well as stim-
ulus mean and variance, and data fits of these differing models
were contrasted.

We hypothesized that evidence reliability (variance) as a cue to
decision confidence would primarily affect people’s metacognitive
readout, that is the process of internally mapping from subjectively
experienced certainty to expressed confidence. A change in this
mapping would correspond to a shift in metacognitive bias. We
therefore applied well-established SDT techniques to disentangle
the impact of evidence mean and variance on the sensitivity and
bias of confidence judgments. To this end, we evaluated the impact
of evidence mean and variance on signal detection measures of
metacognitive sensitivity—that is, participants’ ability to detect
reliably their errors versus correct responses—and metacognitive
bias—that is, participants’ overall tendency to be underconfident,
well calibrated, or overconfident. Note that because we used a
confidence scale with verbal labels, all cases of over- and under-
confidence have to be interpreted as relative changes, that is
participants’ overall shifts toward one or the other end of the
confidence scale. We used the approach of Kornbrot (2006), based
on Receiver Operating Characteristic (ROC) curves to calculate
distribution-free measures of metacognitive sensitivity, AROC, and
metacognitive bias, BROC, thereby circumventing problems that
arise from the fact that the distributional assumptions necessary for
a robust fit of SDT parameters are often violated for metacognitive
responses (Barrett, Dienes, & Seth, 2013; Evans & Azzopardi,
2007; see also Fleming & Lau, 2014, for a review of different
measures).

Results

Basic Perceptual Performance

Stimulus mean had a significant effect on both correct RTs, F(1,
19) � 79.31, p � .001, �p

2 � .81, and error rates, F(1, 19) �
203.69, p � .001, �p

2 � .91, with a higher mean leading to faster
RTs and lower error rates. Stimulus variance also had a reliable
effect on correct RTs, F(1, 19) � 72.52, p � .001, �p

2 � .79, and
error rates, F(1, 19) � 92.77, p � .001, �p

2 � .83, with lower
variance leading to faster RTs and lower error rates. This replicates
the findings by de Gardelle and Summerfield (2011). There was no
interaction between the two factors for correct RTs (F � 1), but
there was an interaction effect for error rates, F(1, 19) � 11.94,
p � .003, �p

2 � .39. These effects are presented in Table 1.

Matching of Medium Difficulty Conditions

Comparison of the two medium conditions indicated that they
were well matched for difficulty but exhibited a small but consis-
tent speed-accuracy trade-off. Thus, the conditions were matched
in terms of the efficiency measure (high mean, high variance:
735 ms, vs. low mean, low variance: 722 ms; t � 1; BFNULL �
3.18) and drift rate from a DDM that integrated RT and error rate
to estimate difficulty (high mean, high variance: v � �.32, vs. low
mean, low variance: v � �.33; t � 1; BFNULL � 2.88). However,
participants were reliably slower, t(19) � 3.89, p � .001; BF �
36.73, and more accurate, t(19) � 2.23, p � .038; BF � 1.74, in
the high mean, high variance condition (mean RT � 680 ms, mean
error rate � 11.9%) as compared to the low mean, low variance
condition (mean RT � 649 ms, mean error rate � 14.9%). Cor-
respondingly, DDM models revealed a reliable difference in
boundary separation, with a more cautious threshold in the high
mean, high variance condition (a � .15) as compared with the low
mean, low variance condition (a � .14), a difference that was
numerically small but very consistently observed across partici-
pants, t(19) � 3.9, p � .001, BF � 37.12, d � .87. Condition
averages of efficiency, drift rate, and boundary separation are
given in Table 1. Taken together, these effects suggest that our
manipulations of evidence strength (mean color) and evidence
variance (color variance) had their expected effect on perceptual
judgments, and were matched in terms of the overall magnitude of
their effects on task difficulty. However, the two medium diffi-
culty conditions were not perfectly matched in every respect,
exhibiting a small but consistent difference in speed-accuracy
trade-off.

Table 1
Condition Means (and Standard Errors) for RTs, Error Rates, Efficiency Scores, Drift Rates, and Boundary Separation Scores

Condition Stimulus mean Stimulus variance RT (ms)
Error rate

(%)
Efficiency

(ms)
Drift rate

(v)
Boundary

separation (a)

Easy High Low 599 (21) 5.3 (.9) 601 (21) �.52 (.04) .61 (.16)
Medium High High 680 (28) 11.9 (1.3) 735 (35) �.32 (.02) .15 (.01)
Medium Low Low 649 (25) 14.9 (1.3) 722 (32) �.33 (.02) .14 (.01)
Difficult Low High 729 (31) 24.9 (1.1) 926 (49) �.17 (.01) .15 (.01)

Note. RT � reaction time.
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Subjective Confidence and Objective Accuracy

Figure 2A plots the overall relationship between confidence and
accuracy, pooling data across conditions, to show the expected
monotonic decrease in error rates with level of confidence, with
the highest error rates for trials reported as certainly wrong (M �
88.9%), and the lowest error rate for the trials reported as certainly
correct (M � 3.0%). Across participants, confidence varied with
accuracy, as expressed in Spearman rank correlations, which were
found to be significantly different from zero (rs � �.94, ps �
.005), except for one participant (r � �.21, p � .250), who did not
have enough trials in the two lowest categories of the confidence
scale to obtain a stable correlation estimate.

Effects of Evidence Mean and Variance on Confidence

The mean level of confidence for each of the four conditions,
aggregated over correct and error trials, is presented in Figure 2B
(see the online supplemental material for a plot showing condition-
averaged confidence for each participant separately). Both stimu-
lus mean and stimulus variance reliably affected confidence: The
greater the distance of the mean color of a stimulus array from the
category boundary, the higher the confidence reported by partici-
pants, F(1, 19) � 92.89, p � .001, �p

2 � .83. The higher the
variance of a stimulus, however, the lower the confidence rating
that followed the response to this stimulus, F(1, 19) � 71.45, p �
.001, �p

2 � .79. These two factors did not interact (F � 1).
Analysis focusing on the two medium conditions that were

matched for overall difficulty confirmed our first key predic-
tion: Participants were on average less confident in the high
mean, high variance condition than in the low mean, low
variance condition. This difference was observed for both cor-
rect, t(19) � 3.98, p � .001, BF � 44.24, and error trials,
t(19) � 2.98, p � .008, BF � 6.36.

Several features of the results indicate that this difference in
confidence between difficulty-matched conditions is not a conse-
quence of the small speed-accuracy trade-off apparent in basic task
performance (with participants responding slightly more cau-
tiously in the high mean, high variance condition). First, and most
obviously, the difference in confidence between the conditions is
the opposite of what one would expect normatively given the

difference in accuracy. That is, objective accuracy was higher in
the high mean, high variance condition, which implies that par-
ticipants should have been, if anything, more confident here rather
than less. Correspondingly, formal models that explain confidence
as a reflection of the evidence accumulation process predict that
confidence should increase with response caution, tracking the
increase in objective accuracy (Moreno-Bote, 2010; Vickers &
Packer, 1982). Our results stand in contrast to this prediction.

Nor did the observed difference in confidence stem from subtle
differences in RT across conditions, as might be predicted from
theories proposing that confidence scales inversely with RT (Aud-
ley, 1960; Kiani et al., 2014; Zylberberg et al., 2012; see also
Wilimzig, Tsuchiya, Fahle, Einhäuser, & Koch, 2008): The reduc-
tion in confidence for the high mean, high variance condition was
also seen on error trials, which did not differ in RT across condi-
tions (t � 1, BFNULL � 3.71).

To further verify that the difference in confidence was not due
to a difference in RTs between these two conditions, we looked
specifically at participants for whom this difference in RTs was
minimal. A median split on the difference in RTs isolated a
subgroup of 10 participants, who exhibited no difference in correct
RTs between the two medium difficulty conditions, t(9) � 1.09,
p � .250, BFNULL � 2.00. For these participants, we found greater
accuracy in the high mean, high variance condition (10.7% vs.
15.4%), t(9) � 2.90, p � .018, BF � 3.96, but lower confidence
in this condition. This lower confidence for the high mean, high
variance relative to the low mean, low variance condition, was
found both for correct trials, t(9) � 2.49, p � .034, BF � 2.35, and
for error trials, t(9) � 2.78, p � .021, BF � 3.39. (Full factorial
analysis of both median-split groups is presented in the online
supplemental material. The results from these analyses further
support the findings reported here.)

Altogether, therefore, we find a robust reduction in confidence
in the high mean, high variance condition relative to the low mean,
low variance condition, despite these conditions being well
matched for overall difficulty. The observed difference in confi-
dence appears to reflect intrinsic differences in the effects of
stimulus mean and variance on the decision process, rather than
being caused by the small speed-accuracy trade-off difference
between the two conditions.

Unique Contributions of Mean and Variance to
Confidence

The preceding analyses suggest that high-variance evidence
leads to lower confidence, and that this effect is present even when
the high-variance condition is compared to a condition with low-
evidence strength (low mean) that is matched in overall task
difficulty.

To shed further light on the nature of this effect, we used a more
formal modeling approach to assess the unique contribution of
evidence variance (as well as evidence strength) as a cue to
confidence. To this end, we contrasted regression models that were
fitted separately to each participants’ confidence judgment data,
with models including first-order performance predictors (RT and
accuracy) in addition to predictors reflecting changes in evidence
mean and variance across conditions. For each participant, a re-
gression model was fitted to eight data points, that is the four
difficulty conditions crossed with the two color conditions. Here,

Figure 2. (A) Distributions of confidence levels displayed for correct and
error trials separately. (B) Confidence for the four difficulty color condi-
tions (together for both error and correct trials). All error bars are within-
subject confidence intervals (Loftus & Masson, 1994).
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we report second-order statistics based on the resulting standard-
ized beta weights (Figure 3A).

A first pair of models indicated that accuracy (log-odds error
rates; Zhang & Maloney, 2012) was a strong predictor of confi-
dence—as one would expect given that confidence is expressed as
a subjective estimate of accuracy—and that between-conditions
differences in RT accounted for further variance in confidence
(Models 0 and 1, respectively). Figure 3 presents the results from
this model-comparison approach: Figure 3B presents the signed
t values. The positive t value for the accuracy factor in Model 0
indicates that the more accurate a participant was, the more con-
fident he or she was. Figure 3C shows the explained variance of
the models, as expressed in R2. To allow for direct model com-
parisons, Figure 3D presents Bayesian information criteria (BICs)
for each model. The lower the BIC score, the better the model fit
the data, as was the case for the more complex Model 1,
BICM1 � �4.89, if compared to Model 0, BICM0 � �1.35. This
difference in BICs was reliable, t(19) � 2.98, p � .008.1 Thus,
these basic models establish that, as one would expect given the
findings reported above, confidence scaled with first-order perfor-
mance.

Of critical interest were the unique contributions of stimulus
mean and variance, that is, whether these factors accounted for
changes in confidence above and beyond the first-order perfor-
mance predictors. A separate model each was thus fitted to also
include these factors. Model 2a added stimulus mean as a predictor
of confidence. In this model, the regression weight for the factor of
stimulus mean was not significantly different from zero, t(19) �
1.70, p � .106, and correspondingly the reduction in BIC
(to �5.31) for the model as a whole was not significant when
compared to Model 1 (t � 1). In contrast, stimulus variance was a
reliable predictor of confidence, t(19) � 3.98, p � .001, and
including this predictor improved model fit compared to Model 1,
BICM2b � �8.98, t(19) � 3.16, p � .005, indicating that stimulus
variance explains between-conditions differences in confidence
over and above first-order performance predictors, consistent with
the key hypothesis of this study. Finally, the best-fitting model
included all four predictors, Model 3, BICM3 � �11.54. The BIC
scores of this full model were reliably lower than Model 2a,
t(19) � 4.56, p � .001. This finding is consistent with the idea that
evidence variance but not evidence mean has a reliable effect on
confidence above and beyond its effect on basic task performance.
Therefore, including evidence variance in the model as a predictor
improves the overall fit of the model. The BIC scores of Model 3
were marginally significantly different from Model 2b, t(19) �
2.08, p � .051, but inspection of Figure 3A indicates that this
marginal effect does not indicate a significant effect of evidence
mean on confidence, but rather that the model fit is improved by
a rebalancing of the effects of accuracy, RT, and condition (high/
low mean) on confidence when the three factors are considered
simultaneously.

In a final set of regression analyses, we confirmed that these
patterns of results were preserved when accuracy and RT were not
included as predictors in the regression model, with greater impact
on confidence of variance over mean. For this analysis, the
regressors were again standardized so that the influences on
confidence can be directly compared. Both the regression
weights for mean, 	mean � 0.19, t(19) � 9.65, p � .001, and
variance, 	variance � �0.31, t(19) � 8.44, p � .001, are
significantly different from zero. Comparing their unsigned
values, we found that the absolute weight of variance was
numerically greater than the absolute weight of mean on con-
fidence, in reliable manner across participants, t(19) � 3.47,
p � .003.

Taken together, these analyses suggest that whereas evidence
mean and evidence variance both affect confidence indirectly via
their effect on task difficulty (and thus accuracy and RT), only
evidence variance had an effect on subjectively rated confidence
over and above these first-order performance effects. These find-
ings support the view that evidence reliability serves as a crucial
cue to inform decision confidence.

1 The reader is referred to a recent study by Stephan, Penny, Daunizeau,
Moran, and Friston (2009) on Bayesian model selection for group studies
for more details on the approach of comparing BICs using t tests.

Figure 3. (A) Standardized regression coefficients for three different
models to predict confidence. Colored xs reflect the respective parameters
that were not considered in the regression model. (B) Signed t values for
three different models to predict confidence. The horizontal dashed lines
highlight the critical t values, so that model parameters above or below the
dashed, horizontal lines are significantly different from zero. (C) Mean R2

and (D) mean BICs for these models. RT � reaction time; BIC � Bayesian
information criterion. See the online article for the color version of this
figure.
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Confidence Sensitivity and Confidence Bias: SDT
Model Fits

The preceding analyses demonstrate that evidence variance has
a larger effect on decision confidence than evidence mean. Two
detailed features of the results suggest that the differential effect of
mean and variance primarily reflect differences in metacognitive
bias rather than sensitivity—that is, through up- and downregula-
tion of confidence ratings (metacognitive readout) rather than
reduced ability to discriminate correct and incorrect perceptual
judgments. First, confidence was reduced for both correct and
error trials in the high mean, high variance condition, whereas a
reduction in sensitivity would imply an increase in confidence
following errors in this condition. Second, the preceding regres-
sion analyses indicate that evidence variance reduces confidence
below the level that would be expected from objective perfor-
mance measures. To test this conclusion more directly, our final
analysis applied SDT approaches to disentangle the impact of
experimental manipulations on metacognitive sensitivity (partici-
pants’ ability to discriminate between their correct and incorrect
responses) and metacognitive bias (participant’s overall tendency
to express high or low confidence in their decisions). Figure 4
presents SDT measures for the four difficulty conditions. Figure
4A presents metacognitive sensitivity, AROC, that is how accurate
participants were in distinguishing between correct and error trials.
Across all four conditions and all participants, AROC values were
different from chance performance of 0.5 (minimum � .55; max-
imum � 1.00). Four paired t tests with corrected alpha levels
revealed that these values were indeed reliably different from 0.5
(ts � 11.8, ps � .001). Both stimulus mean and variance had a
significant influence on sensitivity: The closer the mean color of
the stimulus to the category boundary, the worse participants were
at discriminating their own correct from their error responses, F(1,
19) � 53.05, p � .001, �p

2 � .74, with a corresponding effect
observed when perceptual task difficulty was increased via in-
creasing variance in hue across stimulus elements, F(1, 19) �
41.46, p � .001, �p

2 � .69. These two factors did not significantly
interact, F(1, 19) � 1.40, p � .252, �p

2 � .07. There was, however,
no significant difference in measured sensitivity of confidence
judgments between the two medium conditions, t(19) � 1.05, p �
.308, BFNULL � 2.66. Thus, as one would expect given the

condition differences in first-order performance, both stimulus
mean and variance influenced how well participants distinguished
between their correct and error responses. Critically, there was no
difference in metacognitive sensitivity between the two medium
conditions for which performance had been carefully matched.
Caution is advised when comparing conditions that are not
matched for accuracy, though (Fleming & Lau, 2014). We there-
fore repeated the analysis using a measure of metacognitive accu-
racy that takes such differences into account (meta-d=; Maniscalco
& Lau, 2012). This analysis is reported in the online supplemental
material, mirroring the findings reported here.

The second analysis focused on metacognitive bias, that is the
overall tendency to classify responses as correct or incorrect in-
dependent of objective accuracy. If participants rate their re-
sponses more likely to be correct than they are objectively, they are
overconfident. If, however, they rate them as less likely to be
correct than they are, then they are underconfident. Figure 4B
presents the metacognitive biases for the four conditions. Only
stimulus mean had a significant effect on metacognitive bias,
BROC: Participants tended to express relatively higher confi-
dence—that is higher than adequate regarding changes in objective
accuracy—when mean stimulus color fell close to the category
boundary than when it fell far from the boundary, F(1, 19) �
26.68, p � .001, �p

2 � .58. Surprisingly, however, stimulus vari-
ance showed no such effect on metacognitive bias (F � 1). The
two factors also did not interact significantly (F � 1). The results
from this analysis were further supported by the fact that there was
most evidence in favor of a Bayesian model with just the main
effect of stimulus mean, BF � 125.56 (tested against a null
model). Critically, the two medium conditions, matched for accu-
racy, were found to be significantly different in terms of the
metacognitive bias, BROC, t(19) � 4.23, p � .001, BF � 73.52,
with a significantly higher metacognitive bias for the low mean,
low variance conditions compared to the high mean, high variance
condition.

Taken together, these findings indicate that for stimulus mean
(but not stimulus variance), people struggle to assess the difficulty
of a task at hand, failing to shift their confidence ratings to match
changes in their objective accuracy across conditions. As a con-
sequence, participants were relatively overconfident when the task
was more difficult. This finding is reminiscent of the hard-easy
effect—the often-replicated observation of relative overconfidence
when the task is difficult. In contrast, participants’ confidence
ratings exhibited no corresponding hard-easy effect when diffi-
culty was manipulated via change in stimulus variance: Partici-
pants appropriately shifted their confidence ratings to match
changes in their objective accuracy across low- versus high-
variance conditions. These analyses provide further support for the
hypothesis that variability in stimulus evidence provides a crucial
cue to confidence, here allowing participants to overcome the
otherwise-pervasive hard-easy effect to the difficulty of the task if
this difficulty is caused by changes in stimulus variance.

Discussion

In the present study, we manipulated evidence strength and
reliability in a perceptual decision-making task to address two key
questions. The first question was whether evidence strength and
reliability would have differential effects on decision confidence.

Figure 4. Nonparametric Type II SDT parameter estimates as a function
of difficulty. (A) AROC expresses metacognitive sensitivity. (B) BROC

expresses metacognitive bias. All error bars are within-subject confidence
intervals (Loftus & Masson, 1994). SDT � signal detection theory;
ROC � receiver operating characteristic.
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We found that participants were less confident on trials with
unreliable evidence (high stimulus variance) than on trials with
weak evidence (low stimulus mean), despite these conditions being
matched in terms of task difficulty, consistent with our key pre-
diction that evidence variance—a signal of evidence reliability—
would have a more pronounced effect on confidence than evidence
strength. This hypothesis was furthermore supported by regression
analyses which indicated that the unique contribution of evidence
variance on confidence existed over and above the effect this
factor had on first-order task performance.

These findings have strong theoretical implications for how
decision confidence is formed, and highlight the role of evidence
reliability as a crucial cue to confidence. More specifically, our
results suggest that decision confidence is not a direct readout of
the evidence leading to the initial decision, as would be predicted
by dominant theories in the decision-making literature. Instead,
confidence appears to be sensitive to multiple other cues such as
the perceived reliability of the evidence on which a decision is
based. In this regard, our conclusions align with current theories in
other domains, in particular research on metacognition in memory
(metamemory), where multicue models provide the prevailing ac-
count of metacognitive judgments (see Koriat & Levy-Sadot,
2001; Nelson, Gerler, & Narens, 1984, for a similar suggestion
regarding feeling-of-knowing judgments).

Our second key question was whether evidence reliability is
used specifically as a cue to inform a second crucial feature of
confidence: the degree to which confidence judgments are cali-
brated to reflect objective performance versus exhibit systematic
bias toward under- or overconfidence. To date, this aspect of
confidence has received less attention in formal theories of deci-
sion making, with the primary focus of past research being on
metacognitive sensitivity. To provide insight into this aspect of
confidence, we assessed whether our two difficulty manipulations
would have differing effects on metacognitive bias. We found that
participants exhibited relative overconfidence when evidence was
weak (i.e., mean stimulus color fell close to the category boundary)
than when it was strong (i.e., mean stimulus color fell far from the
boundary)—reminiscent of the hard-easy effect that has been con-
sistently reported in prior research (Baranski & Petrusic, 1994;
Drugowitsch et al., 2014; Gigerenzer et al., 1991; Merkle & Van
Zandt, 2006). In contrast, no hard-easy effect was apparent when
comparing conditions differing in evidence reliability: Metacogni-
tive bias did not increase in trials with high stimulus variance
relative to trials with low variance. Thus, participants’ ratings of
subjective confidence adjusted appropriately to changes in objec-
tive task performance only as a function of evidence reliability, not
evidence strength.

Why should evidence reliability influence confidence more than
evidence strength? One intriguing hypothesis is that taking into
account the reliability of evidence is a straightforward process in
the sense that differences in stimulus variance reflect the “native
language” of confidence. According to this view, which was
inspired by the hypothesis that uncertainty can be represented
explicitly in terms of the variance in firing rate across neural
populations (Beck et al., 2008; Ma et al., 2006), participants can
very easily read out signal reliability and transform it into decision
confidence, correctly accounting for changes in difficulty due to
evidence reliability (Yeung & Summerfield, 2014). Indeed, there
have been findings supporting the notion that mental representa-

tions are stored and accessed as a probability distribution of
activations rather than a point estimate (Bach & Dolan, 2012; Beck
et al., 2008; Fiser, Berkes, Orbán, & Lengyel, 2010; Ma et al.,
2006) and it has been proposed that confidence could be a readout
of such reliability estimates (Meyniel et al., 2015; Pouget et al.,
2016; Yeung & Summerfield, 2014). On the contrary, it may be
that participants underestimate the detrimental effect of stimulus
mean on accuracy because factoring changes in evidence strength
into subjective confidence requires an additional transformation
compared to taking into account reliability. In this regard, a key
point is that assessing whether a stimulus has a low- or high-
stimulus mean requires an additional step of comparing the mean
color of the stimulus to an internal decision boundary—that is,
evidence strength in our task is a relative rather than absolute
factor. Moreover, this decision boundary could presumably be
noisily represented. Using evidence strength as a cue to confidence
may therefore be computationally more complex, and correspond-
ingly less reliable, compared to evidence reliability. Note that this
finding stands in contrast to the results of a recent study by Kvam
and Pleskac (2016; see also Brenner, Griffin, & Koehler, 2012;
Griffin & Tversky, 1992): Kvam and Pleskac found that evidence
strength had a three-times higher influence on confidence com-
pared to evidence weight. However, it should be noted that in the
case of their study, evidence weight was not operationalized as the
variability of the available evidence on which the decision is
based, but rather the overall amount of evidence. The findings are
therefore not directly comparable to ours.

Taken together, the approach chosen in the present study al-
lowed us to disentangle the unique effects different cues have on
metacognitive sensitivity and bias, in particular highlighting the
importance of studying such biases and the metacognitive readout
processes that give rise to them. This importance is furthermore
highlighted by the pervasiveness of hard-easy effects and the
unskilled-and-unaware-of-it phenomenon. Moreover, metacogni-
tive biases have been suggested to underpin effective communi-
cation in group decision making: A recent study by Fusaroli and
colleagues (2012) showed that participants performed better in a
collective decision-making task if the verbal descriptions of their
confidence states matched, that is if they used the same linguistic
expressions. Given these findings, it could be argued that similar
benefits could be caused by a matching in the metacognitive
readout: Participants who assign the same confidence label to the
same internal level of certainty should be able to benefit much
more from communicating their confidence levels, which require
no further transformation and can instead be interpreted straight-
forwardly to discount contributions from communication partners
with little or no confidence (Bang et al., 2014). Whether this is
indeed the case remains to be addressed in future studies.

Our findings add to a growing corpus of data on the effects of
evidence reliability on decision confidence (de Gardelle & Ma-
massian, 2015; Irwin et al., 1956; Spence et al., 2016; Zylberberg
et al., 2014). In an early study, Irwin and colleagues (1956) found
that participants’ confidence in a number averaging task is affected
by the variance of the numbers. Recently, Spence et al. (2016)
showed using a dot-motion discrimination task that this effect of
variance can be observed even across conditions that are matched
in terms of first-order accuracy, following a partly similar logic to
the present study. The results reported here replicate these find-
ings, and extend them in several important ways: We directly
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compare the effect of evidence reliability with those of evidence
strength to investigate their unique contributions to confidence
while accounting for their impact on first-order task performance;
we show that differences between strength and reliability effects
on confidence persist even when conditions are carefully matched
for performance across both RT and accuracy measures; and we
consider confidence in both correct and error responses, and apply
signal detection theoretic approaches, that allow us to disentangle
the influence of evidence strength and reliability on metacognitive
bias as well as sensitivity. Altogether our results identify a clear
effect of evidence reliability on decision confidence, but critically
one that we characterize as reflecting an adaptive scaling of
metacognitive readout so that confidence shifts appropriately with
changes in objective accuracy across conditions, scaling that is not
achieved when task difficulty is manipulated via change in evi-
dence strength where the typical hard-easy effect is observed.

While aligning with some previous reports (Irwin et al., 1956;
Spence et al., 2016), our findings apparently diverge from those of
a recent study (Zylberberg et al., 2014) which found that larger
stimulus variance can lead to higher levels of confidence, rather
than lower as observed here. This differing effect of variance on
confidence might reflect specific features of their experimental
design, such as the complexity of the display (with many more
elements than the eight used here) or the nature of the judgment
required (about line orientation rather than color). However, we
suspect that the critical feature of Zylberberg et al. (2014)’s study
was their focus on trials in which evidence strength was zero or
near zero (i.e., the mean orientation of lines in the display fell
exactly on, or very close to, the category boundary of the percep-
tual judgment task). Sanders, Hangya, and Kepecs (2016) have
shown that in this special case, overconfidence is normatively
justified if the observer does not know a priori that the task is
impossible, because any evidence used to make the decision
should increase confidence (even if, unbeknownst to the observer,
this evidence reflects noise rather than true signal). To the extent
that participants mistake noise as useful signal, as proposed by
Zylberberg et al. (2014), increased variance should therefore par-
adoxically increase confidence when the task is objectively im-
possible because it will increase the likelihood of sampling evi-
dence that lies far from the category boundary. In contrast, when
the mean of the stimulus display more clearly favored one of the
choice options in Zylberberg et al. (2014)’s task, the effect of
stimulus variance reversed and participants were less confident
when the variability in a line orientation stimulus was higher, as
expected from their performance (and consistent with our results).
This discussion brings to the fore the question of how stimulus
reliability is estimated, and why systematic mis-estimation may
sometimes occur (as in Zylberberg et al.’s study), a question that
in future research will usefully be informed by emerging ideas
regarding the neural representation of uncertainty and its relation
to confidence (Pouget et al., 2016).

In conclusion, the present study supports the hypothesis that
decision confidence is affected by a range of different cues that
includes the perceived reliability of the evidence used to make the
initial decision. Our findings indicate that less reliable evidence
leads to lower confidence, and does so to a greater extent than
changes in evidence strength that have equivalent effects on first-
order performance. As a consequence, only changes in evidence
reliability led to an appropriate downscaling of confidence when

the task became more difficult, and we propose this is due to the
fact that evidence reliability is the “native language” of confi-
dence. Here, we attribute the effects of evidence reliability to
changes in metacognitive bias, that is participants’ mapping from
subjectively experienced certainty to expressed confidence. The
finding of such changes in metacognitive biases point to the
importance of studying the metacognitive readout process. This
readout process has often been overlooked in studies of decision
confidence, which have more commonly focused on metacognitive
sensitivity. Future studies should focus on how different cues—
relying both on privileged access to the decision itself, but also on
simple heuristics—affect metacognitive sensitivity and bias and
whether ways could be found to manipulate participants to selec-
tively base their confidence judgments on some cues but not
others, in a context-dependent fashion. Arguably, some cues are
more valid than others (Gigerenzer et al., 1991), depending for
instance on contextual factors such as whether speed or accuracy
are more important in a task. It would thus be worthwhile to
develop a method to train participants to tune their attention to the
currently most valid cues for confidence. Such an approach would
ultimately result in people becoming more metacognitively accu-
rate, which could in turn lead to improved cognitive control
(Logan & Crump, 2010; Yeung & Summerfield, 2014).

References

Allen, M., Frank, D., Schwarzkopf, D. S., Fardo, F., Winston, J. S., Hauser,
T. U., & Rees, G. (2016). Unexpected arousal modulates the influence of
sensory noise on confidence. eLife, 5, 1–17. http://dx.doi.org/10.7554/
eLife.18103

Audley, R. J. (1960). A stochastic model for individual choice behavior.
Psychological Review, 67, 1–15. http://dx.doi.org/10.1037/h0046438

Bach, D. R., & Dolan, R. J. (2012). Knowing how much you don’t know:
A neural organization of uncertainty estimates. Nature Reviews Neuro-
science, 13, 572–586. http://dx.doi.org/10.1038/nrn3289

Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith,
C. D. (2010). Optimally interacting minds. Science, 329, 1081–1085.
http://dx.doi.org/10.1126/science.1185718

Bang, D., Fusaroli, R., Tylén, K., Olsen, K., Latham, P. E., Lau, J. Y. F.,
. . . Bahrami, B. (2014). Does interaction matter? Testing whether a
confidence heuristic can replace interaction in collective decision-
making. Consciousness and Cognition, 26, 13–23. http://dx.doi.org/10
.1016/j.concog.2014.02.002

Baranski, J. V., & Petrusic, W. M. (1994). The calibration and resolution
of confidence in perceptual judgments. Perception & Psychophysics, 55,
412–428. http://dx.doi.org/10.3758/BF03205299

Baranski, J. V., & Petrusic, W. M. (1998). Probing the locus of confidence
judgments: Experiments on the time to determine confidence. Journal of
Experimental Psychology: Human Perception and Performance, 24,
929–945. http://dx.doi.org/10.1037/0096-1523.24.3.929

Barrett, A. B., Dienes, Z., & Seth, A. K. (2013). Measures of metacognition
on signal-detection theoretic models. Psychological Methods, 18, 535–
552. http://dx.doi.org/10.1037/a0033268

Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman,
J., . . . Pouget, A. (2008). Probabilistic population codes for Bayesian
decision making. Neuron, 60, 1142–1152. http://dx.doi.org/10.1016/j
.neuron.2008.09.021

Boldt, A., & Yeung, N. (2015). Shared neural markers of decision confi-
dence and error detection. Journal of Neuroscience, 35, 3478–3484.
http://dx.doi.org/10.1523/JNEUROSCI.0797-14.2015

Bonaccio, S., & Dalal, R. S. (2006). Advice taking and decision-making:
An integrative literature review, and implications for the organizational

1529EVIDENCE RELIABILITY AFFECTS DECISION CONFIDENCE

http://dx.doi.org/10.7554/eLife.18103
http://dx.doi.org/10.7554/eLife.18103
http://dx.doi.org/10.1037/h0046438
http://dx.doi.org/10.1038/nrn3289
http://dx.doi.org/10.1126/science.1185718
http://dx.doi.org/10.1016/j.concog.2014.02.002
http://dx.doi.org/10.1016/j.concog.2014.02.002
http://dx.doi.org/10.3758/BF03205299
http://dx.doi.org/10.1037/0096-1523.24.3.929
http://dx.doi.org/10.1037/a0033268
http://dx.doi.org/10.1016/j.neuron.2008.09.021
http://dx.doi.org/10.1016/j.neuron.2008.09.021
http://dx.doi.org/10.1523/JNEUROSCI.0797-14.2015


sciences. Organizational Behavior and Human Decision Processes, 101,
127–151. http://dx.doi.org/10.1016/j.obhdp.2006.07.001

Brenner, L. A., Griffin, D. W., & Koehler, D. J. (2012). A case-based
model of probability and pricing judgments: Biases in buying and selling
uncertainty. Management Science, 58, 159–178. http://dx.doi.org/10
.1287/mnsc.1110.1429

Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in
cognitive psychology: Is the inverse efficiency score (IES) a better
dependent variable than the mean reaction time (RT) and the percentage
of errors (PE)? Psychologica Belgica, 51, 5–13. http://dx.doi.org/10
.5334/pb-51-1-5

de Gardelle, V., & Mamassian, P. (2015). Weighting mean and variability
during confidence judgments. PLoS One, 10(3), e0120870. http://dx.doi
.org/10.1371/journal.pone.0120870

de Gardelle, V., & Summerfield, C. (2011). Robust averaging during
perceptual judgment. Proceedings of the National Academy of Sciences
of the United States of America, 108, 13341–13346. http://dx.doi.org/10
.1073/pnas.1104517108

De Martino, B., Fleming, S. M., Garrett, N., & Dolan, R. J. (2013).
Confidence in value-based choice. Nature Neuroscience, 16, 105–110.
http://dx.doi.org/10.1038/nn.3279

Drugowitsch, J., Moreno-Bote, R., & Pouget, A. (2014). Relation between
belief and performance in perceptual decision making. PLoS ONE, 9(5),
e96511. http://dx.doi.org/10.1371/journal.pone.0096511

Evans, S., & Azzopardi, P. (2007). Evaluation of a ‘bias-free’ measure of
awareness. Spatial Vision, 20(1–2), 61–77. http://dx.doi.org/10.1163/
156856807779369742

Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal
perception and learning: From behavior to neural representations. Trends
in Cognitive Sciences, 14, 119 –130. http://dx.doi.org/10.1016/j.tics
.2010.01.003

Fleming, S. M., & Lau, H. C. (2014, July). How to measure metacognition.
Frontiers in Human Neuroscience, 8, 443. http://dx.doi.org/10.3389/
fnhum.2014.00443

Fleming, S. M., Maniscalco, B., Ko, Y., Amendi, N., Ro, T., & Lau, H.
(2015). Action-specific disruption of perceptual confidence. Psycholog-
ical Science, 26, 89–98. http://dx.doi.org/10.1177/0956797614557697

Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff, A., Rees, G., Frith, C., &
Tylén, K. (2012). Coming to terms: Quantifying the benefits of linguistic
coordination. Psychological Science, 23, 931–939. http://dx.doi.org/10
.1177/0956797612436816

Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Probabilistic
mental models: A Brunswikian theory of confidence. Psychological
Review, 98, 506–528. http://dx.doi.org/10.1037/0033-295X.98.4.506

Griffin, D., & Tversky, A. (1992). The weighing of evidence and the
determinants of confidence. Cognitive Psychology, 24, 411–435. http://
dx.doi.org/10.1016/0010-0285(92)90013-R

Irwin, F. W., Smith, W. A. S., & Mayfield, J. F. (1956). Tests of two
theories of decision in an expanded judgment situation. Journal of
Experimental Psychology, 51, 261–268. http://dx.doi.org/10.1037/
h0041911

Juslin, P., Winman, A., & Olsson, H. (2000). Naive empiricism and
dogmatism in confidence research: A critical examination of the hard-
easy effect. Psychological Review, 107, 384–396. http://dx.doi.org/10
.1037/0033-295X.107.2.384

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90, 773–795. http://dx.doi.org/10
.1080/01621459.1995.10476572

Kepecs, A., Uchida, N., Zariwala, H. A., & Mainen, Z. F. (2008). Neural
correlates, computation and behavioural impact of decision confidence.
Nature, 455, 227–231. http://dx.doi.org/10.1038/nature07200

Kiani, R., Corthell, L., & Shadlen, M. N. (2014). Choice certainty is
informed by both evidence and decision time. Neuron, 84, 1329–1342.
http://dx.doi.org/10.1016/j.neuron.2014.12.015

Kiani, R., & Shadlen, M. N. (2009). Representation of confidence associ-
ated with a decision by neurons in the parietal cortex. Science, 324,
759–764. http://dx.doi.org/10.1126/science.1169405

Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T., & Miyamoto, A.
(2013). Responses of pulvinar neurons reflect a subject’s confidence in
visual categorization. Nature Neuroscience, 16, 749–755. http://dx.doi
.org/10.1038/nn.3393

Koriat, A. (1993). How do we know that we know? The accessibility model
of the feeling of knowing. Psychological Review, 100, 609–639. http://
dx.doi.org/10.1037/0033-295X.100.4.609

Koriat, A. (2012). The self-consistency model of subjective confidence.
Psychological Review, 119, 80 –113. http://dx.doi.org/10.1037/
a0025648

Koriat, A., & Levy-Sadot, R. (2001). The combined contributions of the
cue-familiarity and accessibility heuristics to feelings of knowing. Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition, 27,
34–53. http://dx.doi.org/10.1037/0278-7393.27.1.34

Kornbrot, D. E. (2006). Signal detection theory, the approach of choice:
Model-based and distribution-free measures and evaluation. Perception
& Psychophysics, 68, 393–414. http://dx.doi.org/10.3758/BF03193685

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How
difficulties in recognizing one’s own incompetence lead to inflated
self-assessments. Journal of Personality and Social Psychology, 77,
1121–1134. http://dx.doi.org/10.1037/0022-3514.77.6.1121

Kvam, P. D., & Pleskac, T. J. (2016). Strength and weight: The determi-
nants of choice and confidence. Cognition, 152, 170–180. http://dx.doi
.org/10.1016/j.cognition.2016.04.008

Lebreton, M., Abitbol, R., Daunizeau, J., & Pessiglione, M. (2015). Au-
tomatic integration of confidence in the brain valuation signal. Nature
Neuroscience, 18, 1159–1167. http://dx.doi.org/10.1038/nn.4064

Lichtenstein, S., & Fischhoff, B. (1977). Do those who know more also
know more about how much they know? Organizational Behavior &
Human Performance, 20, 159 –183. http://dx.doi.org/10.1016/0030-
5073(77)90001-0

Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in
within-subject designs. Psychonomic Bulletin & Review, 1, 476–490.
http://dx.doi.org/10.3758/BF03210951

Logan, G. D., & Crump, M. J. C. (2010). Cognitive illusions of authorship
reveal hierarchical error detection in skilled typists. Science, 330, 683–
686. http://dx.doi.org/10.1126/science.1190483

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian
inference with probabilistic population codes. Nature Neuroscience, 9,
1432–1438. http://dx.doi.org/10.1038/nn1790

Maniscalco, B., & Lau, H. (2012). A signal detection theoretic approach
for estimating metacognitive sensitivity from confidence ratings. Con-
sciousness and Cognition, 21, 422– 430. http://dx.doi.org/10.1016/j
.concog.2011.09.021

Merkle, E. C. (2009). The disutility of the hard-easy effect in choice
confidence. Psychonomic Bulletin & Review, 16, 204–213. http://dx.doi
.org/10.3758/PBR.16.1.204

Merkle, E. C., & Van Zandt, T. (2006). An application of the Poisson race
model to confidence calibration. Journal of Experimental Psychology:
General, 135, 391–408. http://dx.doi.org/10.1037/0096-3445.135.3.391

Meyniel, F., Sigman, M., & Mainen, Z. F. (2015). Confidence as Bayesian
probability: From neural origins to behavior. Neuron, 88, 78–92. http://
dx.doi.org/10.1016/j.neuron.2015.09.039

Moran, R., Teodorescu, A. R., & Usher, M. (2015). Post choice informa-
tion integration as a causal determinant of confidence: Novel data and a
computational account. Cognitive Psychology, 78, 99–147. http://dx.doi
.org/10.1016/j.cogpsych.2015.01.002

Moreno-Bote, R. (2010). Decision confidence and uncertainty in diffusion
models with partially correlated neuronal integrators. Neural Computa-
tion, 22, 1786–1811. http://dx.doi.org/10.1162/neco.2010.12-08-930

1530 BOLDT, DE GARDELLE, AND YEUNG

http://dx.doi.org/10.1016/j.obhdp.2006.07.001
http://dx.doi.org/10.1287/mnsc.1110.1429
http://dx.doi.org/10.1287/mnsc.1110.1429
http://dx.doi.org/10.5334/pb-51-1-5
http://dx.doi.org/10.5334/pb-51-1-5
http://dx.doi.org/10.1371/journal.pone.0120870
http://dx.doi.org/10.1371/journal.pone.0120870
http://dx.doi.org/10.1073/pnas.1104517108
http://dx.doi.org/10.1073/pnas.1104517108
http://dx.doi.org/10.1038/nn.3279
http://dx.doi.org/10.1371/journal.pone.0096511
http://dx.doi.org/10.1163/156856807779369742
http://dx.doi.org/10.1163/156856807779369742
http://dx.doi.org/10.1016/j.tics.2010.01.003
http://dx.doi.org/10.1016/j.tics.2010.01.003
http://dx.doi.org/10.3389/fnhum.2014.00443
http://dx.doi.org/10.3389/fnhum.2014.00443
http://dx.doi.org/10.1177/0956797614557697
http://dx.doi.org/10.1177/0956797612436816
http://dx.doi.org/10.1177/0956797612436816
http://dx.doi.org/10.1037/0033-295X.98.4.506
http://dx.doi.org/10.1016/0010-0285%2892%2990013-R
http://dx.doi.org/10.1016/0010-0285%2892%2990013-R
http://dx.doi.org/10.1037/h0041911
http://dx.doi.org/10.1037/h0041911
http://dx.doi.org/10.1037/0033-295X.107.2.384
http://dx.doi.org/10.1037/0033-295X.107.2.384
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1038/nature07200
http://dx.doi.org/10.1016/j.neuron.2014.12.015
http://dx.doi.org/10.1126/science.1169405
http://dx.doi.org/10.1038/nn.3393
http://dx.doi.org/10.1038/nn.3393
http://dx.doi.org/10.1037/0033-295X.100.4.609
http://dx.doi.org/10.1037/0033-295X.100.4.609
http://dx.doi.org/10.1037/a0025648
http://dx.doi.org/10.1037/a0025648
http://dx.doi.org/10.1037/0278-7393.27.1.34
http://dx.doi.org/10.3758/BF03193685
http://dx.doi.org/10.1037/0022-3514.77.6.1121
http://dx.doi.org/10.1016/j.cognition.2016.04.008
http://dx.doi.org/10.1016/j.cognition.2016.04.008
http://dx.doi.org/10.1038/nn.4064
http://dx.doi.org/10.1016/0030-5073%2877%2990001-0
http://dx.doi.org/10.1016/0030-5073%2877%2990001-0
http://dx.doi.org/10.3758/BF03210951
http://dx.doi.org/10.1126/science.1190483
http://dx.doi.org/10.1038/nn1790
http://dx.doi.org/10.1016/j.concog.2011.09.021
http://dx.doi.org/10.1016/j.concog.2011.09.021
http://dx.doi.org/10.3758/PBR.16.1.204
http://dx.doi.org/10.3758/PBR.16.1.204
http://dx.doi.org/10.1037/0096-3445.135.3.391
http://dx.doi.org/10.1016/j.neuron.2015.09.039
http://dx.doi.org/10.1016/j.neuron.2015.09.039
http://dx.doi.org/10.1016/j.cogpsych.2015.01.002
http://dx.doi.org/10.1016/j.cogpsych.2015.01.002
http://dx.doi.org/10.1162/neco.2010.12-08-930


Morey, R. D., & Rouder, J. N. (2014). Bayes factor: Computation of Bayes
factors for common designs. Retrieved from http://cran.r-project.org/
package�BayesFactor

Nelson, T. O., Gerler, D., & Narens, L. (1984). Accuracy of feeling-of-
knowing judgments for predicting perceptual identification and relearn-
ing. Journal of Experimental Psychology: General, 113, 282–300. http://
dx.doi.org/10.1037/0096-3445.113.2.282

Overgaard, M., & Sandberg, K. (2012). Kinds of access: Different methods
for report reveal different kinds of metacognitive access. Philosophical
Transactions of the Royal Society of London, Series B: Biological
Sciences, 367, 1287–1296. http://dx.doi.org/10.1098/rstb.2011.0425

Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal
detection: A theory of choice, decision time, and confidence. Psycho-
logical Review, 117, 864–901. http://dx.doi.org/10.1037/a0019737

Pouget, A., Drugowitsch, J., & Kepecs, A. (2016). Confidence and cer-
tainty: Distinct probabilistic quantities for different goals. Nature Neu-
roscience, 19, 366–374. http://dx.doi.org/10.1038/nn.4240

Rahnev, D., Nee, D. E., Riddle, J., Larson, A. S., & D’Esposito, M. (2016).
Causal evidence for frontal cortex organization for perceptual decision
making. Proceedings of the National Academy of Sciences, USA,
201522551. http://dx.doi.org/10.1073/pnas.1522551113

Reder, L. M., & Ritter, F. E. (1992). What determines initial feeling of
knowing? Familiarity with question terms, not with the answer. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 18,
435–451. http://dx.doi.org/10.1037/0278-7393.18.3.435

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.
(2009). Bayesian t tests for accepting and rejecting the null hypothesis.
Psychonomic Bulletin & Review, 16, 225–237. http://dx.doi.org/10
.3758/PBR.16.2.225

Sanders, J. I., Hangya, B., & Kepecs, A. (2016). Signatures of a statistical
computation in the human sense of confidence. Neuron, 90, 499–506.
http://dx.doi.org/10.1016/j.neuron.2016.03.025

Schwartz, B. L. (1994). Sources of information in metamemory: Judgments
of learning and feelings of knowing. Psychonomic Bulletin & Review, 1,
357–375. http://dx.doi.org/10.3758/BF03213977

Spence, M. L., Dux, P. E., & Arnold, D. H. (2016). Computations under-
lying confidence in visual perception. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 42, 671–682. http://dx.doi
.org/10.1037/xhp0000179

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J.
(2009). Bayesian model selection for group studies. NeuroImage, 46,
1004–1017. http://dx.doi.org/10.1016/j.neuroimage.2009.03.025

Suantak, L., Bolger, F., & Ferrell, W. R. (1996). The hard-easy effect in
subjective probability calibration. Organizational Behavior and Human
Decision Processes, 67, 201–221. http://dx.doi.org/10.1006/obhd.1996
.0074

Vickers, D., & Packer, J. (1982). Effects of alternating set for speed or
accuracy on response time, accuracy and confidence in a unidimensional
discrimination task. Acta Psychologica, 50, 179–197. http://dx.doi.org/
10.1016/0001-6918(82)90006-3

Wilimzig, C., Tsuchiya, N., Fahle, M., Einhäuser, W., & Koch, C. (2008).
Spatial attention increases performance but not subjective confidence in
a discrimination task. Journal of Vision, 8, 7.1–10. http://dx.doi.org/10
.1167/8.5.7

Yeung, N., & Summerfield, C. (2012). Metacognition in human decision-
making: Confidence and error monitoring. Philosophical Transactions
of the Royal Society of London, Series B: Biological Sciences, 367,
1310–1321. http://dx.doi.org/10.1098/rstb.2011.0416

Yeung, N., & Summerfield, C. (2014). Shared mechanisms for confidence
judgements and error detection in human decision making. In S. M.
Fleming & C. D. Frith (Eds.), The cognitive neuroscience of metacog-
nition (pp. 147–167). Berlin, Germany: Springer. http://dx.doi.org/10
.1007/978-3-642-45190-4_7

Zhang, H., & Maloney, L. T. (2012, January). Ubiquitous log odds: A
common representation of probability and frequency distortion in per-
ception, action, and cognition. Frontiers in Neuroscience, 6, 1. http://dx
.doi.org/10.3389/fnins.2012.00001

Zylberberg, A., Barttfeld, P., & Sigman, M. (2012, September). The
construction of confidence in a perceptual decision. Frontiers in Inte-
grative Neuroscience, 6, 79. http://dx.doi.org/10.3389/fnint.2012.00079

Zylberberg, A., Fetsch, C. R., & Shadlen, M. N. (2016). The influence of
evidence volatility on choice, reaction time and confidence in a percep-
tual decision. eLife, 5, 1–31. http://dx.doi.org/10.7554/eLife.17688

Zylberberg, A., Roelfsema, P. R., & Sigman, M. (2014). Variance misper-
ception explains illusions of confidence in simple perceptual decisions.
Consciousness and Cognition, 27, 246–253. http://dx.doi.org/10.1016/j
.concog.2014.05.012

Received July 22, 2016
Revision received January 24, 2017

Accepted January 24, 2017 �

1531EVIDENCE RELIABILITY AFFECTS DECISION CONFIDENCE

http://cran.r-project.org/package=BayesFactor
http://cran.r-project.org/package=BayesFactor
http://dx.doi.org/10.1037/0096-3445.113.2.282
http://dx.doi.org/10.1037/0096-3445.113.2.282
http://dx.doi.org/10.1098/rstb.2011.0425
http://dx.doi.org/10.1037/a0019737
http://dx.doi.org/10.1038/nn.4240
http://dx.doi.org/10.1073/pnas.1522551113
http://dx.doi.org/10.1037/0278-7393.18.3.435
http://dx.doi.org/10.3758/PBR.16.2.225
http://dx.doi.org/10.3758/PBR.16.2.225
http://dx.doi.org/10.1016/j.neuron.2016.03.025
http://dx.doi.org/10.3758/BF03213977
http://dx.doi.org/10.1037/xhp0000179
http://dx.doi.org/10.1037/xhp0000179
http://dx.doi.org/10.1016/j.neuroimage.2009.03.025
http://dx.doi.org/10.1006/obhd.1996.0074
http://dx.doi.org/10.1006/obhd.1996.0074
http://dx.doi.org/10.1016/0001-6918%2882%2990006-3
http://dx.doi.org/10.1016/0001-6918%2882%2990006-3
http://dx.doi.org/10.1167/8.5.7
http://dx.doi.org/10.1167/8.5.7
http://dx.doi.org/10.1098/rstb.2011.0416
http://dx.doi.org/10.1007/978-3-642-45190-4_7
http://dx.doi.org/10.1007/978-3-642-45190-4_7
http://dx.doi.org/10.3389/fnins.2012.00001
http://dx.doi.org/10.3389/fnins.2012.00001
http://dx.doi.org/10.3389/fnint.2012.00079
http://dx.doi.org/10.7554/eLife.17688
http://dx.doi.org/10.1016/j.concog.2014.05.012
http://dx.doi.org/10.1016/j.concog.2014.05.012

	The Impact of Evidence Reliability on Sensitivity and Bias in Decision Confidence
	Method
	Participants
	Task and Procedure
	Data Analyses

	Results
	Basic Perceptual Performance
	Matching of Medium Difficulty Conditions
	Subjective Confidence and Objective Accuracy
	Effects of Evidence Mean and Variance on Confidence
	Unique Contributions of Mean and Variance to Confidence
	Confidence Sensitivity and Confidence Bias: SDT Model Fits

	Discussion
	References


