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We model the dynamics of Jupiter’s jets by averaging the dynamics of eddies, in a
barotropic beta-plane model, and explicitly predicting the balance between Reynolds’
stresses and dissipation, thus predicting the average velocity profile explicitly. In order
to obtain this result, we adopt a non-equilibrium statistical mechanics approach. We
consider a relevant limit for Jupiter troposphere, of a time scale separation between
inertial dynamics on one hand, and stochastic forcing and dissipation on the other hand.
We assume that the forcing acts on scales much smaller than the jet scale, and we obtain
a very simple explicit relation between the Reynolds stress, the energy injection rate,
and the average velocity shear, valid far from the jet edges (extrema of zonal velocity). A
specific asymptotic expansion close to jet edges unravel an asymmetry between eastward
and westward, velocity extrema. We recover Jupiter’s jet specificities: a cusp on eastward
jets and a smooth parabola on westward jets.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction
The giant gaseous planets like Jupiter and Saturn can be seen as experimental systems

to study geostrophic turbulent flows (see the review (Vasavada & Showman 2005)
for Jupiter). The data collected by the probes Gallileo and Cassini during their close
encounter with Jupiter gave high resolution observations of the dynamics of the upper
layers of Jupiter’s atmosphere (Salyk et al. 2006; Porco et al. 2003). Not only do we have
access to the velocity profile of zonal winds that form the alternance of large colored bands
at the top of the troposphere, but we also have a lot of informations of the smaller vortices
imbedded in the flow. Those vortices often appear after three dimensional convective
activity in the atmosphere. Those fluctuations of the wind are continuously injecting
energy to the zonal wind (Ingersoll et al. 1981; Salyk et al. 2006), and equilibrate the
dissipation mechanisms. As the ratio between vertical and horizontal velocities is very
small for those planets, the dynamics of the atmosphere, and the formation of large
scale jets, may be qualitatively well understood within the framework of two-dimensional
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geostrophic turbulence in a β plane (Pedlosky 1982), although more refined models are
needed if one wants to understand the quantitative features of zonal jets on Jupiter (Li
et al. 2006; Schneider & Liu 2009). As the aim of this work is to make progresses in the
theoretical understanding of turbulent flows, we consider geostrophic turbulence in a β
plane model. Despite all its limitations, for instance the lack of dynamical effects related
to baroclinic instabilities, we will show that this model reproduces the main qualitative
features of the velocity profiles.

An interesting property of two dimensional turbulent flows is their inverse energy
transfer from small scales to large scales, sometimes through a cascade among scales, but
much more often through a direct transfer from small scale to large scale mediated by
the large scale flow. This inverse energy transfer is responsible for the self organization
of the flow into large scale coherent structures that evolve much slower than the eddies.
Among those structures, giant vortices and zonal jets have raised strong interest in the
scientific community. The formation of those large scale structures is subtle and far from
being perfectly understood. The β effect favors the formation of jets, but without β
effect both jets and vortices can be observed in numerical simulations (Sommeria 1986;
Frishman et al. 2017). Both structures are also observed in the atmosphere of gaseous
planets (Ingersoll 1990; Galperin et al. 2014, 2001). On Earth, jets play a crucial role
in atmosphere dynamics and their analysis is one of the key for understanding climate
dynamics. From a theoretical point of view, the dynamics of turbulent jets and vortices is
still very challenging. Some years ago, the computation of statistical equilibrium theory
of the two-dimensional Euler and quasi-geostrophic equations (Bouchet & Venaille 2012),
using large deviation theory, led to the conclusion that zonal jets as well as large vortices
are stable equilibrium states of the flow, and thus natural attractors. However, planetary
flows are continuously forced with an energy injection at small scales and damped by
many dissipative phenomena and are thus rather out of equilibrium systems. There is
clear empirical and numerical evidence that quasi stationary states of non-equilibrium
turbulent flows are nearly always close to statistical equilibria (Bouchet & Simonnet
2009), in the limit of time scale separation between force and dissipation on one hand,
and inertial effects on the other hand. However a complete theoretical relation between
the equilibrium states and the non-equilibrium states remains to be fully established.
This work is one step in this direction.

Following the observation that zonal jets on Jupiter are forced by convective motion
that are not described by the β plane model, it will be natural to model the forcing
by stochastic forces. Adding stochastic forces is also a classical way to model such out
of equilibrium systems. Thanks to the astronomical observations (Ingersoll et al. 1981;
Salyk et al. 2006), we can estimate the magnitude of the parameters used in such a
nonequilibrium models. It comes out that, provided we model Jupiter’s jets by a beta
plane model, the regime of weak forcing and weak dissipation is the relevant one. Moreover
the convective plumes produce small vortices with a typical scale of order of few thousands
kilometers, comparable with the the first internal Rossby deformation radius. This scale
is thus much smaller that the typical meridional extension of jets, such that a small scale
forcing limit may also be relevant.

One crucial question is to know whether simpler equations can be derived from
the beta-plane turbulence ones, leading to a much deeper understanding. A promis-
ing nonequilibrium statistical theory is the stochastic structural stability (S3T) theory
(Farrell & Ioannou 2003; Farrell & Ioannou 2007) or the closely related second order
cumulant expansion theory (CE2) (Marston et al. 2008). The key ingredient in those
theories is to neglect eddy-eddy interactions, keeping only the interaction between eddies
and the mean flow. With this approximation, there is no inverse energy cascade in Fourier
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space any more, and the inverse energy flux goes through interactions with the mean
flow. This may be relevant only when the inverse energy cascade flux are negligible. In
other intermediate case where the two inverse energy transfer phenomena do coexist,
this drawback is corrected by a parametrization of the Fourier spectrum of the stochastic
forcing (Farrell & Ioannou 1993). The flow governed by the S3T equations, with or
without phenomenological added stochastic forcing, produces spontaneous emergence
and equilibration of zonal jets (Bakas & Ioannou 2013; Constantinou et al. 2012) which
velocity profiles reproduce quite well the main features of jets obtained in rotating-tank
experiments (Read et al. 2004), numerical experiments (Vallis & Maltrud 1993; Williams
1978) or in the atmosphere of gaseous planets.

The question why quasilinear approximation give such good results has been adressed
in (Bouchet et al. 2013). The main result of this work is to show that the quasilinear
approximation is self-consistent in the limit of weak stochastic forcing and dissipation.
Moreover it follows from this analysis that the quasilinear equations are expected to be
valid above a crossover scale, that tends to zero in the limit of weak stochastic forces
and dissipation limit. Using this justified approximation, it is then possible to write a
close equation for the evolution of the mean velocity. This equation involves an abstract
functional F [U ] that contains the effect of the small-scale turbulence on the mean flow.
Even if this partial differential equation has no explicit solution, it is an important
starting point for further numerical and theoretical studies, and it will be extensively
used in the present work. We will show that a huge simplification occurs in the limit of
small scale forcing.

The exact shape of zonal winds on Jupiter reveals an astonishing asymmetry between
eastward jets and westward jets (Porco et al. 2003; Sánchez-Lavega et al. 2008; Garcí et al.
2001). Whereas eastward jets form cusps at their maximum velocity, westward jets are
smoother, close to a parabolic velocity profile. At the same time, the profile of potential
vorticity (PV) looks like “staircases” (Dritschel & McIntyre 2008), and all those prominent
features are well reproduced in direct numerical simulations of β plane turbulence and
with the S3T model. The “staircase” shape of potential vorticity could be a consequence
of Rossby waves breaking, a phenomenon that mixes potential vorticity between two
maxima of jets. Nevertheless, the physical mechanism leading to the staircase profile
remains unclear. One could ’postulate’ a PV staircase profile and derive the corresponding
mean flow (Dritschel & McIntyre 2008), but we would like to have more insights in the
mechanism of two-dimensional turbulence.

The aim of stochastic models is to give a close system of equations to study the
dynamics of zonal jets. As we said, a theoretical model like for example the S3T model
can be used to study the dynamics of the mean flow, but one still has to resolve together
the dynamics of fluctuations of the velocity field. From a theoretical point of view,
even the S3T system remains complicated. Even if it provides excellent framework to
study numerically the dynamics of the flow (Constantinou 2015), it is a difficult work
to emphasize the physical phenomena that lead to emergence and equilibration of a
jet, because those phenomena are in some sense “hidden” by the numerical integration,
and difficult to isolate. Another approach is to start directly from the equations and do
analytic calculations. The kinetic theory developed in (Bouchet et al. 2013) has led to
the justification of the quasilinear approximation and has emphasized the importance of
the small parameter α that sets the magnitude of energy injection (Bouchet & Simonnet
2009). One year later, using a completely different approach, a way has been found (Laurie
et al. 2014) to close the equation for the mean velocity, in the analogous problem of the
two-dimensional stochastic Navier-Stokes equations. The energy balance for the eddies
is composed of terms of different orders: some terms are quadratic in the fluctuations,
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some are cubic, and there is a term involving the pressure. If the pressure term and
the cubic terms are neglected, the surprising fact is that the Reynolds stress can be
expressed in terms of the zonal velocity profile and the rate of energy injected in the
flow. The consequence of this approximation is that, if a large scale vortex (Laurie et al.
2014) or a large scale jet (Falkovich 2016) is created, it should surprisingly exhibit a
universal velocity profile, i.e a velocity profile that depends only on the energy injection
rate. Such a universal velocity profile has indeed been observed in numerical simulations,
in a restricted part of the domain, far from the core of the vortex and far from the
flow separatrix. (Kolokolov & Lebedev 2016a) give scaling arguments to show in which
domain of the flow the theoretical expression for the velocity profile is expected to hold.
related to this theoretical work, detailed numerical studies of the energy balance has been
discussed in several papers (Tangarife 2015; Nardini & Tangarife 2016; Frishman et al.
2017). One major contribution of this paper is, we hope, to give a unified framework that
links the previous numerical and theoretical studies on zonal jets.

In this paper, following the work of (Bouchet et al. 2013) and (Laurie et al. 2014), we
try to give a deeper physical understanding of the mechanisms leading to equilibration of
a jet. Preliminary results related to the present work were obtained in (Woillez & Bouchet
2017). The present work contains partial analytical results, and numerical computations
are performed when necessary to proceed in the analysis of the jet. Starting from the
equations for a barotropic flow on a periodic beta plane with stochastic forces in section
2, we first write the energy balance for the mean flow and for the small scales of the
flow. If, as a first guess, we assume that the energy injection rate at small scales per
unit of mass ε (m2.s−3) is locally transferred to the mean flow U , and we neglect small
scale dissipation and pressure effects, it happens that we can give an expression for the
Reynolds stress that does not depend on the details of the stochastic forcing. It writes

〈uv〉 = ε

U ′
. (1.1)

This expression is very similar to the one obtained in (Laurie et al. 2014) for a vortex.
If the mean flow is linear, i.e U ′ is constant, it is possible to compute the Reynolds
stress without approximations (Srinivasan & Young 2014). A similar result holds in the
case of dipoles for the 2D Navier-Stokes equations (Kolokolov & Lebedev 2016a,b). The
result can be expressed with the energy injection rate, the dissipation, the constant
derivative U ′ and a parameter depending on the anisotropy of the stochastic forcing.
In the limit of vanishing dissipation and fully anisotropic forcing, one finds expression
(1.1). A first aim of this paper is to prove that this result can be recovered analytically
with the quasilinear barotropic model, thus justifying the assumption that all energy is
locally transferred in space to largest scales, and thus pressure effects are negligible. The
quasilinear approximation and the pseudo-momentum conservation law allows us to give
an expression for the divergence of the Reynolds stress (see equation (2.12)). In section
3, we carry out an asymptotic calculation of the Reynolds stress by taking the limit of
small scale forcing first, and then taking the inertial limit (i.e vanishing linear friction).
With those two limits, we recover expression (1.1).

In the following (section 3.2), we use the previous result (1.1) to write a close partial
differential equation for the mean velocity profile U , we solve it and plot the resulting
stationary profile. With such an equation, the stationary profile diverges at some finite
latitude, that’s why we conclude at the end of section 3 that the so called small-scale
inertial limit may not be the relevant one from a physical point of view. Realistic values
for the parameters of the stochastic forcing and of dissipation taken from data of Jupiter
prompt us to consider rather the inertial limit before taking the small-scale forcing limit.
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Indeed, we show in section 4 that both limits do commute only for strictly monotonic
velocity profiles U . We thus conclude that the appealing formula (1.1) is valid only in
some regions of the flow, where U ′ does not vanish. A more refined analysis is required
to deal with the zonal jet velocity extrema, which is the subject of section 4.

In section 4, using Laplace transform tools, we are able to derive an equation for
the Reynolds stress divergence in the inertial limit. Taking afterwards the small-scale
forcing limit, we give a set of equations that describes the zonal velocity extremum of the
eastward jet. Although the full numerical calculation of the solution is avoided, we give
some arguments to show that this set of equations leads to the formation of a “cusp” of
typical size 1

K where 1
K is a typical scale of the stochastic forcing. We explain that this

cusp has no universal shape, it depends on the spectrum of the stochastic forcing and
on the dissipative mechanism, and yet we found a universal relation, valid when viscous
phenomena are negligible at the size of the cusp, that relates the curvature of the cusp
to the maximal velocity U(ycr). It writes (equation (4.6))

U(ycr)U
′′(ycr) = −

εK2

r
,

where r is the linear friction coefficient in s−1. As for the formula (1.1), only the energy
injection rate ε together with the typical scale of the forcing 1

K and the linear friction
coefficient r matter, but not the exact Fourier spectrum of the forcing.

On the contrary, the westward jet cannot form this cusp because it would violate
the Rayleigh-Kuo criterion of stability. In the last part of this paper (section 4.4.3), we
explain how an instability can develop at the extremum of a westward jet, and how this
instability stops the growth of the westward jet such that the zonal flow form a parabolic
profile of curvature about β.

2. Reynolds stresses from energy, enstrophy, and pseudomomentum
balances

2.1. Averaged equations
We start from the equations for a barotropic flow on a periodic beta plane with

stochastic forces

∂tV + V.∇V = −rV − 1

ρ
∇P + βdy

(
Vy
−Vx

)
+
√
2εf (2.1)

∇V = 0

where V :=

(
Vx
Vy

)
is the two dimensional velocity field, r models a linear friction, and f is a

stochastic force, that we assume white in time, i.e E [f(r, t)f(r, t′)] = δ(t−t′)Cf (r, r′), and
βd is the Coriolis parameter which comes from the fact that the Coriolis force projected
on a plane tangent to the sphere depends on the north-south coordinate y. We choose
a normalization for the force correlation Cf , such that ε is the rate of energy injection
in the flow per unit of mass: ε has dimensions m2s−3. In the following, we will always
assume that there is no direct energy injection in the zonal velocity profile, i.e that
1
Lx

∫
dxf(r, t) = 0.

The main idea is then to separate the flow V in two parts, V (r, t) = U(y, t)ex +(
u(r, t)
v(r, t)

)
. The mean velocity Uex = 〈V 〉 is defined as the zonal and stochastic average of

the velocity field. More precisely, we assume that the mean flow is parallel and we take
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U(y)ex = 1
Lx

∫
dxE[V (x, y)] . In the following, the bracket 〈〉 will be used for this zonal

and stochastic average.
In this paper, we will refer to U indifferently as the mean flow or zonal flow. Let us

emphasize here that our aim is not to determine how the mean velocity profile becomes
a parallel shear flow, but we assume that the mean flow has this shape and we want then
to study the dynamics of the zonal component. It is an empirical evidence that this is
indeed the case for many regimes of the barotropic flow equation, especially when βd is
strong enough. Those regimes are of interest for geophysical applications as illustrated
by Jupiter or Saturn (Bouchet et al. 2016). We note also that the mean flow is not always
zonal, especially for small or vanishing values of βd (Bouchet & Simonnet 2009).

Using this decomposition and the continuity equation, the equation for the mean
velocity U becomes

∂tU + ∂y 〈uv〉 = −rU. (2.2)
Equation (2.2) shows that the mean flow is forced by the divergence of the Reynolds stress
∂y 〈uv〉. In order to reach an equilibrium, this latter term has to balance the dissipation
coming from linear friction.

2.2. Energy balance
Let us write the total energy balance

1

2
∂t
〈
V 2
〉
+ ∂y

(
U 〈uv〉+

〈
v

(
u2 + v2

2
− p

ρ

)〉)
= −r

(
U2 +

〈
u2 + v2

〉)
+ ε (2.3)

For the zonal flow, equation (2.2) gives us the balance

1

2
∂tU

2 + U∂y 〈uv〉 = −rU2.

It is interesting for the physical comprehension to write the term U∂y 〈uv〉 as the sum
∂y (U 〈uv〉)−∂yU 〈uv〉, because it shows the existence of an energy flux for the large scale
given by J = U 〈uv〉 . The second term ∂yU 〈uv〉 is classically interpreted in the literature
as the rate of energy transferred from small scales to the zonal flow. In (Ingersoll et al.
1981) for example, the authors estimate the correlation coefficient between ∂yU and
〈uv〉. If it is strictly positive, it means that the zonal flow has extracted energy from
the fluctuations. This decomposition is not unique, but it is physically relevant, because
the term ∂yU 〈uv〉 has its exact counterpart −∂yU 〈uv〉 in the energy balance for the
fluctuations. The energy balance for the large scales of the flow becomes

1

2
∂tU

2 + ∂yJ = ∂yU 〈uv〉 − rU2. (2.4)

Then we can subtract this equation from the total energy balance equation (2.3) to get
the energy balance for the fluctuations

1

2
∂t
〈
u2 + v2

〉
+ ∂y

〈
v

(
u2 + v2

2
− p

ρ

)〉
= −∂yU 〈uv〉 − r

〈
u2 + v2

〉
+ ε. (2.5)

We find that the energy balance is composed of four terms. The stochastic force injects
energy at rate ε in the flow, and this energy is for one part dissipated by the term
−r
〈
u2 + v2

〉
whereas an other part is transferred directly to the zonal flow by the term

−∂yU 〈uv〉. The energy flux at small scale is j =
〈
v
(
u2+v2

2 − p
ρ

)〉
, it creates a spatial

transfer of energy. If we would heuristically identify the zonal flow with the large scales
and the fluctuations with the small scales, the flux v

(
u2+v2

2

)
would be related to the



turbulent closure for Jupiter 7

inverse energy cascade towards the larger scales and the term −∂yU 〈uv〉 as a direct
transfer from small scale to large scale through non local interaction in Fourier space . For
the nonlinear equations, energy is thus transferred to the zonal flow by two mechanisms, a
nonlinear interaction between the fluctuations and a direct interaction of the fluctuations
with the zonal flow.

We will now do the following assumption: in the stationary regime, all the energy
produced at small scales is locally (in space) transferred to the largest scale. It means
that we neglect dissipation of the fluctuations r

〈
u2 + v2

〉
, and we neglect also the energy

flux j =
〈
v
(
u2+v2

2 − p
ρ

)〉
coming from the cubic terms and the pressure term, compared

to the direct interaction term ∂yU 〈uv〉. With this assumption, we then readily get the
equality

ε = 〈uv〉 ∂yU. (2.6)

We also note, that from dimensional analysis, assuming that the Reynolds tensor com-
ponent 〈uv〉 depends only from the local energy injection rate and the flow shear, this
expression could have been obtained immediately, up to a multiplicative nondimensional
constant.

We do this approximation here without any justification, because the conditions for
it to be valid is precisely one of the aims of this article. But with this assumption,
the momentum equation (2.2) becomes solvable because we have an expression for the
Reynolds tensor in terms of the mean velocity profile. Explicitly, we get

∂y < uv >= −ε U
′′

U ′2
, (2.7)

where we have replaced the y-derivative by ’ for clarity. What is attracting on this formula
is that we can express the Reynold’s stress in terms of the mean velocity profile U and
this expression does no longer depends on the details of the stochastic forcing, it is simply
represented by the energy injection rate ε. Using this formula one could solve the ordinary
differential equation describing the stationary velocity profile rU = ε U

′′

U ′2 .
As a matter of fact, this is illusory to believe that such a simple formula could be valid

in the general case. There are many indications of that. For example, if the profile U has
extrema, which is the case for jets, the energy transfer to the mean flow U ′ 〈uv〉 has to
vanish because U ′ = 0, and an expression like (2.7) has no chance to be valid. Moreover,
Kaushik, Shrinivasan and Young (Srinivasan & Young 2014) have computed explicitly
the Reynolds stress for a linear profile, and they found that the result depends on the
anisotropy of the correlation function of the noise. They found that the stress is zero for
perfect isotropic forcing, a result that was already known from the work of Ioannou. For
all these reasons we can not close the equations using approximation (2.7), we need more
input from the equations. The first relevant approximation we can do is the quasilinear
approximation, which we will discuss in the next subsection.

2.3. Quasilinear approximation and pseudomomentum balance
The first step to do mathematical treatment of equations (2.1) is to chose length and

time scales to make the equations nondimensional. There is not just a single accepted
way for writing the non dimensional stochastic β plane equations in the literature. We
choose here to set temporal and spatial units such that the mean kinetic energy is 1, and
Lx = 1 (please see (Bouchet et al. 2013) for more details, or (Bouchet et al. 2016) page
2-3 for comparison with other common nondimensionalization of the equations). Finally,
we eliminate the pressure term by taking the rotational of the first equation of (2.1). The
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nondimensional equations are

∂tΩ + V.∇Ω = −αΩ − βVy +
√
2αη (2.8)

∇V = 0,

where η = ∇ ∧ f . Now α = L
√
r3/ε is a nondimensional parameter although we will

often refer to it as the “friction”. β =
√
r/εL2βd is the new nondimensional Coriolis

parameter, while βd is the dimensional one. We note that β = L2/L2
R, where LR =(

ε/rβ2
d

)1/4 is Rhines scale. The zonostrophy index used in many references would be Rβ =

β1/10ε1/20r−1/4. We find that α ∝ (Rβ)
−5, which implies that the limit of vanishing α

corresponds to the limit of large Rβ . The Gaussian stochastic term η is defined through its
correlation function 〈η(r, t)η(r′, t′)〉 = C(r−r′)δ(t−t′). We assume that C is statistically
homogeneous such that is depends only on the difference r−r′. As a correlation function,
C is a definite positive function and has to satisfy the following properties: let us call
Ĉk,l the Fourier coefficients of C

C(x, y) :=
∑
k,l

Ĉk,le
ikx+ily (2.9)

and K2 = k2+ l2, then the function Ĉk,l is real and positive. Moreover, if we assume the
symmetry x→ −x and y → −y, the function Ĉk,l is symmetric wrt k → −k and l→ −l.
The constrain that the mean kinetic energy is one writes 1

2

∫∫
dkdl

Ĉk,l
K2 = 1. From now

on, the computations will be done with nondimensional quantities. If we want to write a
result in its dimensional formulation, we will reintroduce

[
ε
r

]
= m2.s−2 and [Lx] = m.

The quasilinear approximation has been used for a very long time to study the behavior
of the large scales of flows that are dominated by a large scale component, or in plasma
physics. Specifically for the problem of jet formation, such a quasilinear approach is
at the core of Stochastic Structural Stability Theory (S3T) first proposed by Farrell,
Ioannou (Farrell & Ioannou 2003), for quasi-geostrophic turbulence. More recently, an
interpretation in terms of a second order closure (CE2) has also been given (Marston et al.
2008), and used to describe the transition from homogeneous large scale flows to zonal jets
(Srinivasan & Young 2011). It has been shown that this approximation is self consistent
in the limit where α goes to zero in equation (2.1) with some assumption on the profile
U (stability, no zero modes) (Bouchet et al. 2013). This approximation is also believed to
be valid for a larger class of situations. In the following we are precisely interested in the
small α regime. We will not develop the full justification of the quasilinear approximation
here, the interested reader is referred to (Bouchet et al. 2013). Let us simply recall the
steps leading to the equations with quasilinear approximation. First, we notice that the
strength of the noise is of order

√
α. As fluctuations are sheared and transferred to

the largest scales on a time scale of order one, this is a natural hypothesis to expect
fluctuations (u, v) to be of the same order. This was proven to be self-consistent in
(Bouchet et al. 2013). We do the substitution (u, v)→

√
2α(u, v) in equation (2.1). The

eddy-eddy interaction terms are of order α
3
2 , and can then be neglected. We are left with

the set of equations
∂tU = −α [∂y 〈uv〉+ U ] (2.10)

∂tω + U∂xω + (β − U ′′)v = −αω + η (2.11)
where we have introduced ω = ∂xv−∂yu = 4ψ, the vorticity of the fluctuations. Equation
(2.10) shows that the typical time scale for the evolution of the mean flow U is 1

α which
is, following our assumption α � 1, much larger than the time scale for the evolution
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of eddies. Using this time scale separation, we will consider that U is a constant field in
the second equation (2.11), and we will always solve ω(t) for a given U . Therefore, the
eddy equation becomes linear because U is considered as a given field. This time-scale
separation is observed for example on Jupiter where the typical time of eddies evolution
ranges from few days to few weeks whereas significant changes in the mean flow are only
detected over decades. (see e.g (Porco et al. 2003)).

Let us just precise one point: if we had made the quasilinear approximation at the level
of the velocity equation (2.1) and studied the energy balance following the steps of section
2.2, we would have get rid of the term j =

〈
v
(
u2+v2

2

)〉
in the fluctuation energy balance

equation. However, the part of the flux due to the pressure ∂y
〈
v pρ

〉
would still remain in

the fluctuation energy budget. Hence, it is not sufficient to have proved self-consistency of
quasilinear approximation for small α be cause it is only a partial explanation of formulas
(2.6-2.7). More physical ingredients are needed.

The quasilinear equations conserve energy and enstrophy as the full Navier-Stokes
equations. One of the key relation we will use in this paper comes from the fluctuation
enstrophy balance,

1

2
∂t
〈
ω2
〉
+ (β − U ′′) 〈vω〉 = −α

〈
ω2
〉
+

1

2
C(0).

As we assume a time scale separation between the zonal flow and fluctuation dynamics,
we are interested in the long time behavior of the latter equation. When the vorticity
fluctuations ω reach its stationary distribution, we have the equality

〈vω〉 = 1

U ′′ − β

[
α
〈
ω2
〉
− 1

2
C(0)

]
. (2.12)

Equation (2.12) will be a key formula for our work. Indeed, using the incompressibility
condition, we have the equality 〈vω〉 = −∂y 〈uv〉. One can notice looking at (2.12) that
in the absence of dissipation and forcing, we have 〈vω〉 = 0. In steady state without
dissipation and forcing, waves have no effects on the mean flow. This result is classically
known in the literature as the non acceleration theorem (see (Gill 1982) p 537 or (Andrews
& McIntyre 1978) for a more complete description). It is then natural to expect that any
forcing on the mean flow should come from the nonconservative processes which are here
only a linear friction and an enstrophy injection at small scales, but we could have add
in the equations a viscous term. Whitout those processes, the left-hand side of equation

(2.11) conserves the pseudomomentum
∫ 〈ω2〉
U ′′−β . If U

′′ − β has constant sign in the flow,
the conservation of the pseudomomentum does not allow any instability to occur and
the flow is stable. This is called the Rayleigh-Kuo criterion for stability of shear flows. If
U ′′−β vanishes somewhere in the flow, an instability may or may not exist. The fact that
U ′′ − β vanishes is a necessary condition for instability, not a sufficient one. In equation
(2.12), the right-hand side is not defined where U ′′ = β. The denominator is zero but the
numerator also vanishes. Indeed, for U ′′ = β, equation (2.11) reduces to a free transport
of the fluctuations and can be sloved directly giving α

〈
ω2
〉
− 1

2C(0) = 0. In general, the
Reynolds stress divergence remains finite except perhaps at some particular places in the
flow as we will discuss in section 4.4.

This means that the latter equation gives us a way to compute the Reynold stress that
forces the mean flow:
• We solve the linear equation (2.11) and compute the stationary distribution as a

function of U .
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• Then we can use this expression to close the first equation (2.10), and discuss possible
stationary profile U .
Of course things will not be that easy because the dynamics of ω is given by a partial
differential equation, and in the general case there are no reasons why we could find
any simple expression. Let us focus on the average

〈
ω2
〉
. First we can take advantage

of the invariance along the x direction by taking the Fourier transform of (2.11) in x.
The Fourier transform in y does not provide an obvious simplification as the profile
U depends on y. However, we can use the linearity to express the solution as the
sum of particular solutions for independent stochastic forcings ηl(y, t). Each of these
forcing has a correlation function cl(y) = eily, this means that we have the relation
E [ηl(y, t)ηl(y

′, t)] = eil(y−y
′)δ(t − t′). We take the Fourier transform in x defined by

ωk(y) :=
1
Lx

∫
dxω(x, y)e−ikx with k taking the values 2π

Lx
n, n is an integer. ωk,l(y, t) is

then defined as the function ωk(y, t) that is solution of (2.11) with a stochastic forcing
with only one Fourier component (k, l). We then obtain

〈vω〉 = 1

U ′′ − β
∑
k,l

Ĉk,l
2

[
2α
〈
|ωk,l|2

〉
− 1
]
, (2.13)

where the positive constants Ĉk,l are defined by (2.9). Be careful that in this formula
the bracket

〈
|ωk,l|2

〉
denotes a stochastic averaging, because the zonal average is already

taken into account by the sum over all vector k. The vorticity ωk,l(y, t) is the solution of
the stochastic partial differential equation

∂tωk,l + ikUωk,l + ik(β − U ′′)ψk,l = −αωk,l + ηl. (2.14)

As the reader would have notice, we try to reduce the problem by expressing the solution
as the sum of particular problem that we hope to be much simpler. Now we have to find
an expression for ωk,l instead of the full solution ω. We will go one step further and show
that the stochastic problem described by the two equations (2.13-2.14) reduces in fact
to a deterministic one, following (Bouchet et al. 2013). Equation (2.14) can be formally
written as

∂tωk,l + Lk[ωk,l] = −αωk,l + ηl,

where
Lk[ωk,l] = ikUωk,l + ik(β − U ′′)ψk,l (2.15)

is a linear operator for a given U . Then we use the fact that the noise ηk,l is white in time
and has an exponential correlation function cl(y) = eily to express the quantity

〈
|ωk,l|2

〉
as 〈

|ωk,l|2
〉
=

∫ 0

−∞
dt e2αt

∣∣etLk [cl]∣∣2 . (2.16)

This formula should be understood as follows: etLk [cl] is the solution at time t of the
deterministic equation ∂tωd + Lk[ωd] = 0 with initial condition cl := y → eily. The
subscript d will mean that we are dealing with the solution of a deterministic equation.
The exponential eαt ensures the convergence of this integral. The great advantage to
have reduced the stochastic problem to a deterministic one is that we now have to solve
an hydrodynamic problem, the propagation of a vorticity fluctuation in a shear flow, a
problem for which much has already been done in the literature.

2.3.1. Simplifications in asymptotic regimes
Expression (2.16) is still complicated because to get explicit results, it requires to

know the behavior of the solution etLk [cl] up to times of order 1
α . Two parameters can be
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used to further simplify the problem, the vector k = (k, l) and the damping α. We note
K := |k|. In this article, we will be interested both in the regime K → ∞ and α → 0.
The regime of large k corresponds to a small scale forcing. It will be the aim of part 2 to
do an asymptotic computation in this limit. The behavior at leading order in 1

K of ωk,l
gives 2α

〈
|ωk,l|2

〉
− 1 = 0, but Ĉk,l grows like K2 → ∞. That’s why we will have to go

to next order.
The limit α → 0 will be called the inertial limit because the fluctuating field is free

to evolve without damping. In fact, this limit will be the most difficult one, because we
let the turbulence develop on a longer time. But this limit is also the most interesting
from a physical point of view because it corresponds to fully turbulent regimes. A rough
estimation of the parameters K and α on Jupiter (assuming of course that our model
could be valid to describe the behavior of Jupiter’s jets) shows that the relevant regime
would be α → 0 before taking the limit K � 1. Typically, the transition between both
regimes will be set by the ratio between U ′′

K and α. The result in this last regime where
α� U ′′

K will depend on whether the deterministic equation

∂tωd + ikUωd + ik(β − U ′′)ψd = 0 (2.17)

sustains neutral modes or not. A neutral mode is defined as a solution of this equation
of the form ω(y, t) = ξa(y)eicat where ca is a real constant. It is also sometimes called
“modified Rossby waves” in this context, when the jet velocity is nonzero. Two cases can
be encountered:

Without modes: Bouchet and Morita (Bouchet & Morita 2010) have shown that
without neutral modes, the solution ωd behaves for long time ωd(y, t) ∼

t→∞
ω∞d (y)eikUt,

even for non monotonous velocity profiles U . Moreover they give a method to compute
this ω∞d using Laplace transform tools. In this case the correlation 〈vω〉 writes in the
limit α→ 0

〈vω〉 = 1

U ′′ − β
∑
k,l

Ĉk,l
2

[
|ω∞d |2 − 1

]
. (2.18)

We give the full justification of this result in appendix A. From the justification, an
interesting remark can be made: when α becomes small, the enstrophy term

〈
ω2
〉
diverges

as 1
α , but as the Reynolds stress divergence expression (2.13) involves α

〈
ω2
〉
, it converges.

Such a compensation can be seen as necessary in order to fulfill the pseudomomentum
balance.

With neutral modes: We have to modify expression (2.18) to take into account the
presence of modes. Again, we leave the technical details to appendice A and we give the
final result

〈vω〉 = 1

U ′′ − β
∑
k,l

Ĉk,l
2

[
|ω̃∞d |2 − 1 +

∑
modes a

|ωad |2
]
. (2.19)

This result means that we have to project first the initial condition cl over the modes
labeled by a. The component over the a mode gives the term ωad(y). This new terms are
related to the wave pseudomomentum balance. Then we compute the asymptotic solution
ω̃∞d of (2.17) using as the initial condition not cl but cl −

∑
ωad . Briefly speaking, a first

reason why there are no cross terms of the form ωaω̃ between modes and the remaining
part of the spectrum is because the frequencies ca of the modes are always outside of the
range of U . The cross terms have an oscillatory part of frequency 1

α (ca−U) that gives a
vanishing contribution in the small α limit. This is also related to the fact that, whenever
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U is monotonous, the linear operator Lk (2.15) is a normal operator in the norm defined
by the pseudomomentum.

Both formulas (2.18-2.19) will be used to study the inertial limit in section 4.

3. The regime of dissipative small scale forcing
3.1. Reynolds stress divergence as a function of U , α and the force correlation function
3.1.1. Reynolds stress divergence as a function of U with finite friction

This section is devoted to the computation of the Reynold’s stress divergence 〈vω〉
using equation (2.13), in the limit of small scale forcing i.e K →∞. As we consider this
limit with fixed α, the flows described by this regime will be characterized by a strong
friction strong at the forcing scale. We will consider the case of an infinite space in the y
direction, but we expect the result to be qualitatively similar for a finite space because
it is sufficient that the scale of the forcing 1

K is small compared to the domain size,
1
K � Ly. As was explained in the first part, we have to find the long time behavior of the
solution of the deterministic equation (2.17), with the assumption that K � 1. Please
be careful here that K and k are different, K2 = k2+ l2. We consider the limit K infinite
with both k and l going to infinity such that l = k tan θ with θ a fixed constant. We will
check that the limit K →∞ and k →∞ are not at all equivalent. As the leading order
term in equation (2.17) is the free transport term ikUω, we will use the natural Ansatz
ωd(y, t) = Ak,l(y, t)e

ikU(y)t in equation (2.17). We obtain for Ak,l the equation

∂tAk,l = −i
U ′′ − β
k

∫
dY H0(Y )Ak,l

(
y − Y

k
, t

)
eik(U(y)−U(y−Yk ))t,

where H0 is the Green function of the Laplacian operator
(
∂2

∂y2 − 1
)
, it solves(

∂2

∂y2 − 1
)
H0(y) = δ(y). The Green function for the full Laplacian

(
∂2

∂y2 − k
2
)

writes

Hk(y) =
1

2|k|H0(|ky|). For infinite space, we have thus H0(y) =
1
2e
−|y|. This expression

is very convenient to do asymptotic calculations because, as the reader can see, ∂tAk,l is
of order 1

k and thus goes to zero for large k. At zero order, we have only free transport
of the perturbation, and the expression of ω is given by ω(y, t) = ω(y, 0)eikU(y)t. The
computation of the next order is rather technical, and is developed in appendix B. It
happens that we can compute not only the divergence of the Reynolds stress, but we
can integrate the result to obtain even the Reynolds stress itself. We let tan θ = l

k be
the ratio between the y wise and x wise forcing scales. We first do the computation for
a single finite value of the parameter θ (for non zero k). The result is

Re 〈uθv∗θ〉 =
Ĉk,l
4k2

Im

∫ +∞

−∞

Y e−|Y |e−iY tan θ

(2α− iU ′(y)Y )
dY. (3.1)

Let us comment on this result. The parameter α is small because we have done the
quasilinear approximation, but we keep it finite. It has a regularizing effect, and ensures
that the integral remains well defined for every profile U even if U ′ = 0 somewhere in the
flow. The result above does not really makes sense for θ close to π

2 because it was assumed
from the beginning that the value π

2 is excluded. In numerical simulations, the spectrum
of the stochastic forcing is often an annulus with a weight function to make it more or
less anisotropic. The Fourier component k = 0 is excluded because it corresponds to a
direct stochastic forcing on the zonal flow (see figure (1)). To get results we can compare
to simulations, we have to integrate the contributions to the Reynolds stress over the
whole spectrum.
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Figure 1. Typical spectrum of the stochastic forcing

We will thus define a weight function ĝ(tan θ) such that the correlation function Fourier
component is Ĉk′,l′ = ĝ(tan θ)Kδ(K ′−K). In figure (1) for example, we have a constant
function ĝ except around the excluded values π

2 and −π2 . We approximate the discrete
sum in (2.13) by an integral assuming 1

Lx
� dK. Because we have fixed the mean kinetic

energy to 1, the function ĝ must satisfy

1

2

∫∫
dk′dl′

Ĉk′,l′

K ′2
=

1

2

∫∫
K ′dK ′dθ

ĝ(tan θ)Kδ(K ′ −K)

K ′2
=

∫ +∞

−∞
dx

ĝ(x)

1 + x2
= 1,

In the last integral, we have done the change of variable tanθ = x. Using this function
to characterize the spectrum, we obtain the simple expression for the Reynolds stress

〈uv〉 (y) = πIm

∫ +∞

−∞

Y e−|Y |g(−Y )

(2α− iU ′(y)Y )
dY, (3.2)

where g is the inverse Fourier transform of ĝ, g(Y ) = 1
2π

∫
dxĝ(x)eiY x. Now that we

have an expression for the Reynolds stress in terms of the mean profile U we can solve
equation (2.2) and find the stationary solution, if any. This work will be done in the
subsection 3.2, where we will use the above formula.

Let us conclude this section with a comparison between this result and the one obtained
in (Srinivasan & Young 2014) in case of a linear profile U(y) = γy. For an isotropic forcing,
i.e for constant ĝ, the function g is proportional to the delta function. The Reynolds stress
is then zero. On the contrary, take ĝ to be a delta function δ(x), the function g is constant
and we find

〈uv〉 (y) =
∫ +∞

0

U ′s2e−s

(4α2 + U ′2s2)
ds, (3.3)

which corresponds to the exact expression computed by Kaushik, Srinivasan and Young
in case of a fully anisotropic forcing. Therefore we conclude that our result are physically
consistent. For the linear profile, the exact expression given in (Srinivasan & Young 2014)
for the Reynolds stress is

U ′ 〈uv〉θ = 1−
∫ +∞

0

dte−t
1 + tan2 θ

1 + (tan θ − U ′

2α t)
2
. (3.4)

We find the result U ′ 〈uv〉θ → 1 when α becomes small, which coincides with the formula
(2.6) obtained by neglecting some of the terms in the energy balance, and thus justifying
it for this case. However expression (3.4) coincides with (3.3) in the limit where θ = 0
only. To compute an exact expression like (3.4), one has to use another method detailed
in (Srinivasan & Young 2014) without using our approximations of small-scale forcing.
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3.1.2. Reynolds stress divergence as a function of U in the limit of small friction
Having found the general formula for the Reynolds stress (3.2), we can consider the

limit α → 0. In this limit the Reynolds stress is no longer defined everywhere because
the limit α→ 0 is defined only when U ′ is nonzero. However, equation (3.2) tells us that
the limit of U ′ 〈uv〉 is always defined, even for U ′ = 0. It writes

U ′ 〈uv〉 (y) −→
α→0

π

∫ +∞

−∞
e−|Y |g(−Y )dY.

We transform this expression using the Fourier transform of e−|Y | and g, noting that
2π
∫ +∞
−∞ e−|Y |g(−Y )dY =

∫ +∞
−∞ dx 2

1+x2 ĝ(x) = 2. It gives the final result

U ′ 〈uv〉 −→
α→0

1, (3.5)

which writes in its dimensional formulation

U ′ 〈uv〉 −→
r→0

ε,

everywhere in the flow. This is our first main result, it is consistent with the result (2.7)
we found by studying the energy balance. Nevertheless, this result should be considered
with care. It tells us that in the limits K → ∞, α → 0 taken in this order, the energy
is totally transferred from small scales to large scales. This is physically consistent: with
the limit of large K, the eddy evolution becomes local. Everything happens as if the
perturbation only sees a region of width 1

K around itself, and thus the different parts of
the flow are decoupled. The other limit of small α forces the energy to go to the large
scale to be dissipated because the dissipation at small scales becomes negligible. Another
assumption which is quite hidden in our calculation is the fact that the forcing is not
isotropic. If it is, the Reynolds stress is zero, that’s what we emphasized on expression
(3.2) before we took the limit α → 0. The case of fully isotropic forcing is also a limit
case that is in fact never satisfied in real systems or in numerical systems because there is
always small anisotropy coming from discretization of the Fourier spectrum in numerical
simulations, or nonlinearities or other physical constrains.

As a conclusion to this section, let us discuss again the energy balance for the
fluctuations defined by (2.5). With the quasilinear approximation, it reduces to

1

2
∂t
〈
u2 + v2

〉
− 1

ρ
∂y 〈vp〉 = −U ′ 〈uv〉 − r

〈
u2 + v2

〉
+ ε.

The term 〈pv〉 is quadratic in the fluctuations, that’s why it remains in the energy balance.
This term is responsible for a possible energy flux at the small scales of the flow. The
computation of the pressure requires to invert the Laplacian operator. It is then natural
to expect that the pressure has an asymptotic expansion when K →∞ with the leading
order proportional to 1

K2 . This explains qualitatively why the energy flux represented by
the term 1

ρ 〈pv〉 vanishes in the limit of large K and why the energy transfer becomes
purely local in space. In the limit K →∞, the quadratic tems

〈
u2
〉
and

〈
v2
〉
have finite

limits, and the linear dissipation r
〈
u2 + v2

〉
contributes to the energy balance. Hence

U ′ 〈uv〉 6= ε. After we take the limit r → 0, the only way to dissipate the fluctuation
energy is to transfer it to the mean flow by the term U ′ 〈uv〉, and this gives the equality
U ′ 〈uv〉 = ε.

3.2. Self consistent jet profile
We are now discussing the possibility to have a stationary profile U in the dissipative

small scale forcing regime. We first do not consider the limit α→ 0. We have a closed set
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of equations from (2.10) and (3.2), that we will rewrite this way: we let χ be the function
defined through χ(x) := πIm

∫ +∞
−∞

Y e−|Y |g(−Y )
(1−ixY ) dY , and the stationary profile is defined

by the set

∂y 〈uv〉 = −U

〈uv〉 = 1

2α
χ

(
U ′

2α

)
.

The beautiful fact is that this system is integrable. If we replace 〈uv〉 in the first equation,
it comes

U ′′

2α

1

2α
χ′
(
U ′

2α

)
= −U, (3.6)

so we can now multiply the equality by U ′ and integrate. Let X be a primitive of xχ′(x)
and C the integration constant, we have

X

(
U ′

2α

)
+

1

2
U2 = C. (3.7)

In general, X does not seem to have any simple analytical expression, but as we have
explicit formula for its derivative, we can easily study the behavior of the dynamical
system described by equation (3.7). As an alternative point of view, let us notice that
equation (3.7) can be expressed as the extrema of some functional of U

δI

δU
= 0

I[U ] =
1

2
U2 − Γ

(
U ′

2α

)
where Γ is a primitive of the function χ. In our problem, I [U ] is a kind of energy
functional for the system, and one can interpret the term Γ

(
U ′

2α

)
as a potential energy.

The extrema of X are given by the equation xχ′(x) = 0. X is an even function which
implies for the velocity profile U that the increasing and decreasing parts of the profile
are symmetric. We are then looking for the zeros of χ′(x) =

∫
f(Y )Y

2(1−x2Y 2)
(1+x2Y 2)2 dY , where

we have set f(Y ) := πe−|Y |g(−Y ). χ′ is even. We know that f is a positive integrable
symmetric function and its integral is 1. We immediately see that χ′(0) > 0, and an
asymptotic calculation shows that χ′(x) ∼ − 1

x2 at infinity. Therefore, the function χ′

has at least two zeros, symmetrically localized around 0, γ and −γ say. Moreover if the
function f has a monotonic behavior, one can show that these are the only zeros of χ′.
Therefore, for monotonic f the potential X has 3 extrema, and there exists a well in
the potential between −γ and γ. One example of such functions χ′ and X is given in
figure (2).

For non monotonic or more eccentric functions f , we can have more extrema for X,
but a small study of the behavior of X around zero will show that 0 is always a local
minimum for X. We conclude that the potential has at least one well at zero whatever
the function f and that a periodic solution to (3.7) always exists.

We have depending on the value of the constant in (3.7) periodic solutions or diverging
solutions. All these properties are illustrated in the figures (4).

In equation (3.7), X plays the role of a potential, and the dynamics is similar to a
particle moving in a potential. The only difference is that the roles of U and U ′ are
exchanged compared to the role of x and ẋ for a particle in a potential. The constant
in the right-hand side is set by U ′(0) because C = X

(
U ′(0)
2α

)
. Depending on the value
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Figure 2. The functions χ′ (left) and X (right) when f is a normal Gaussian function. The
function χ′ is symmetric with two zeros, and X has three extrema. The potential X has a well
which means that periodic solutions can exist.
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Figure 3. In the limit of small scale forcing, the mean flow can be computed analytically from
the Newtonian Eq. (3.7). We show here that the situation is analogous to a particle moving
in a one-dimensional potential. The curve displays the potential X appearing in Eq.(3.7). If
the constant C is between X0 and Xmax as is the case in the figure, there are three solutions
allowed. Two of them have a divergent velocity field U , but one is periodic and bounded by
Umax =

√
2C −X0. For other values of C outside the range X0 −Xmax, the periodic solution

disappears.

of this constant, there can be one, two or three solutions. The situation is represented
in figure (3). If C > Xmax, there is one solution for which U never vanishes. If X0 <
C < Xmax, there are three possible solutions, one is periodic, the two other diverge.
The periodic solution corresponds to U ′

2α confined in the well of X. In that case the flow
is periodic and the solution exchanges kinetic energy in the term 1

2U
2 with potential

energy X
(
U ′

2α

)
. This situation is analogous to a particle moving in a potential. Outside

the well, the solutions are diverging, one corresponds to an increasing U and the other
to a decreasing U . If finally C < X0 only diverging solutions remain possible.

Our model predicts both divergent or periodic stationary profiles depending on the
value of the constant in (3.7). The transition between the two regimes is governed by the
parameter U ′(0)

2α . If U ′(0)
2α is in the interval [−γ, γ], then the solution is confined in the
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Figure 4. Mean velocity profile U , when f is a normal Gaussian function. With U ′(0) = 1 and
α = 0.5 we obtain a periodic profile (left picture). The thin curve is the energy transfer U ′ 〈uv〉.
With U ′(0) = 1 and α = 0.1 we obtain a succession of divergent profiles (right picture). On the
picture, the velocity profile has been obtained by plotting together diverging solutions.

well of the potential and is therefore periodic an regular. The numerical estimation of
γ is γ ' 1, 22 for f(Y ) = 1√

π
e−Y

2

. To obtain regular periodic profiles, one has to keep
U ′0
2α between −γ and γ, and if α goes to zero, U ′0 has to vanish too. When α goes to zero
the periodicity of this type of profiles becomes infinite, growing like 1

α . α gives a spatial
scaling of the solution. Define Ũ(y) = U

(
y
2α

)
, then Ũ satisfies the equation

X
(
Ũ ′
)
+

1

2
Ũ2 = C.

Therefore, changing the parameter α is the same as doing a rescaling in y. If the solution
of the latter equation is periodic of period L, the solution U will be periodic of period
L
2α .
A relevant question is the stability of such profiles. We will try to give a qualitative

argument to explain why a periodic profile like the one on the left of figure (4) is unstable
for the dynamics

∂tU = − U
′′

4α2
χ′
(
U ′

2α

)
− U. (3.8)

We will call U0 the stationary periodic profile and study the linearized dynamics of (3.8)
around U0. Injecting U0 + δU in the equation and keeping only the linear terms in δU
gives

˙δU = − 1

4α2
χ′
(
U ′0
2α

)
δU ′′ − U0”

4α2
χ”

(
U ′0
2α

)
δU ′

2α
− δU.

This equation has the general form

˙δU = −a2(y)δU ′′ − a1(y)δU ′ − δU,

where a1, a2 are some functions depending on the stationary solution U0(y). The behavior
of the solution results on the effect of three terms: the term in δU ′′ is a diffusive term,
the term in δU ′ makes the solution propagate on the y axis, and the last term is a linear
damping. For the question of stability, the sign of the diffusion coefficient −a2 in front of
δU ′′ will be crucial. We see that the sign of a2 is the same as for χ′

(
U ′0
2α

)
. For the periodic



18 E. Woillez and F. Bouchet

solution in the left of figure (4), χ′
(
U ′0
2α

)
is always strictly positive. Therefore the periodic

solution corresponds to a negative diffusion coefficient, which makes the equation very
unstable for large wavenumbers. On the contrary, the diverging solution on the right
of figure (4) corresponds to χ′

(
U ′0
2α

)
always strictly negative and thus a strictly positive

diffusion coefficient. We expect the divergent profile to be stable for the dynamics defined
by (3.8).

Let us summarize what we found in this section. We studied the limit K →∞ for the
quasilinear dynamics of fluctuations. We found that the Reynolds stress divergence can
be expressed in terms of the zonal flow U and its derivatives, which allow to write a closed
PDE for the dynamics of U . We solved the stationary equation for U and found that
two solutions can exist when α is finite. One solution is regular and periodic, the other
one has singularities, it is the juxtaposition of divergent profiles. (see figure (4)). With a
qualitative argument, we explained why the stable solution should be the singular one.
For a real flow, such a divergence cannot occur. The fact that Eq. (3.7) predicts diverging
profiles U shows that the expression for the Reynolds stress (1.1) is not valid everywhere
in the flow, but it holds only in the spatial subdomains where the flow is monotonic, not
at the extrema.If K is finite, there should be a regularizing mechanism at scale 1

K that
stops the growth of the mean velocity profile and regularizes the solution U at scale 1

K .
“Cusps” of typical size 1

K should be created at places where the solution U is diverging.
However, this is only one part of the mechanism. On Jupiter as well as in numerical
simulations, cusps can be observed only for the eastward part of the flow. (see figure (8))
For the westward part, the flow is more parabolic with a curvature close to β. In section
4.4, we will try to answer the question why a cusp cannot occur for westward jets. Let
us now precise that a cusp for a westward jet violates the Rayleigh-Kuo criterion for
stability whereas a cusp on eastward jets does not. The mechanism for the formation of
a parabolic profile is the hydrodynamic instability.

4. Inertial small scale forcing regime
In section 3, we took the limit K →∞ before α→ 0 , which means physically that we

were assuming U ′′

Kα � 1 in the flow. Looking at Jupiter, one could wonder if this regime
is the relevant one. Observations collected by the probes Gallileo, Cassini (see (Porco
et al. 2003) and others) allows to estimate typical values of K and α. K can be estimated
with the typical size of cyclones in Jupiter’s atmosphere, which are typically of 1000 km.
The dissipation on Jupiter involves different mechanisms, which are all “hidden” in the
linear friction. It is not at all obvious what could be a typical time scale for dissipation.
We consider a time of 1500 days. The data provide us an estimation of Urms , and the
Coriolis parameter β is easily computed from the rotation rate of Jupiter. It is convenient
to chose a spatial scaling such that the typical length of a jet is one, and -as was done
in equation (2.8)- to scale the mean velocity Urms to one. With this particular scaling,
we would have K ∼ 0.1 and α ∼ 10−3. The typical length for a jet is of order 1 and
therefore U ′′ should also be of order 1. To model the flow on Jupiter, we have to take
rather α→ 0 first, it will be relevant whenever U ′′

Kα � 1.
Nothing tells us a priori that the limits in K and α commute. This question is the

subject of the present section. Please take note that we are always dealing with the
deterministic problem of time evolution of a perturbation (2.17) and we will stop using
the subscript d for the deterministic solution ωd. This deterministic problem with U ′′

Kα � 1
is much more difficult to analyze.
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4.1. Computation of ω∞

In the following and until section 4.4, we assume there are no Rossby waves in the flow.
It has been shown long ago that those waves travel at a velocity c < Umin (Drazin et al.
1982; Pedlosky 1964). In case of jets, this property imply that they are localized around
the extrema of westward jets. We do not know any method to compute those waves for a
general mean flow U . In section 4.4, we will explain how we can compute them in case of
a parabolic profile. It will be shown that the waves exist only for a curvature 0 < U ′′ < β
and that there is at least one Rossby wave in this configuration. In particular, when
U ′′ < 0 as for the cusp of westward jets, we expect no waves, that’s why this case is of
interest and we postpone their computation to section 4.4.

In this subsection, we will summarize the main result obtained by Bouchet and Morita
(Bouchet & Morita 2010) that allows us to compute the function ω∞k,l that appears in
(2.18). ω∞k,l gives then an easy access to the small α limit, independently of the large K
limit.

We start from equation (2.17) that describe the linear evolution of a perturbation
ω(y, t)eikx of meridional wave number k, and with streamfunction ψ(y, t)eikx. The idea
is to transform equation (2.17) into an inhomogeneous Rayleigh equation, as classically
done, and then to study its asymptotics solutions close to the real axis, which is the limit
ε→ 0, with the notations below. We introduce the function ϕε(y, c) which is the Laplace
transform of the stream function ψ(y, t) i.e ϕε(c) :=

∫∞
0

dtψ(y, t)e−ik(c+iε)t . To avoid
any confusion, we stress that in this section, ε will always denote in this section a small
parameter and not the energy injection rate. The Laplace transform ϕε is well defined
for any non zero value of the real variable ε with a strictly negative product kε. c has
to be understood as the phase speed of the wave, and kε is the (negative) exponential
growth rate of the wave. We will set the energy injection to 1. Using the same notations
as in (Bouchet & Morita 2010) , the equation for ϕε is(

d2

dy2
− k2

)
ϕε(y, c) +

β − U ′′(y)
U(y)− c− iε

ϕε(y, c) =
ω(y, 0)

ik(U(y)− c− iε)
, (4.1)

with the boundary conditions that ϕε vanishes at infinity. We do not have a flow infinite
in the y direction, but as was already stated, the properties of the flow become local
for large K. The choice to take vanishing boundary conditions at infinity is done for
convenience and it is expected that this particular choice does not modify the physical
behavior of the perturbation.

For all ε > 0 the function ϕε is well defined. The inhomogeneous Rayleigh equation
(4.1) is singular for ε = 0 and any critical point (or critical layer) yc such that the zonal
flow velocity is equal to the phase speed: U(yc) = c. One can show that ϕε has a limit
denoted ϕ+ when ε goes to zero. The function ω∞ is then given by

ω∞(y) = ik(U ′′(y)− β)ϕ+(y, U(y)) + ω(y, 0), (4.2)

see (Bouchet & Morita 2010). The function ω∞ depends on the Laplace transform of
the stream function but for a phase velocity c equal to the zonal velocity at latitude
y. From a mathematical point of view, it corresponds to the value of ϕ+ exacly at its
singularity. The singularity in equation (4.1) is of degree one (proportional to 1

y ) except at
the extrema of the jets where it is of degree two. A singularity of order two would create
a divergence for the solution, but it happens that the numerator in (4.1) vanishes at such
points and the solution is still defined at the extrema of a jet. A nontrivial consequence
of that is

ω∞(yc) = 0
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at all critical latitudes ycr where U ′ = 0. This result, called depletion of vorticity
fluctuation at the jet critical points in (Bouchet & Morita 2010), has important physical
consequences that influence the dynamics of a jet.

As decribed in (Bouchet & Morita 2010), using formula (4.1) and (4.2), one can
numerically compute the function ω∞ : we first have to solve a set of boundary value
problems for ordinary differential equations parameterized by c and ε to obtain a solution
familly ϕε(c). Then we evaluate, for small enough ε each solution ϕε(c) at the value yc
satisfying U(yc) = c. This method is much faster and has less numerical cost than
computing the long time evolution of the partial differential equation (2.17). We use this
method in the following of this section.

4.2. Limit of small scale forcing for monotonic profiles

Again, we assume there are no Rossby waves. We will now consider the limit of small
scale forcing. The question is: do we find the results of section 3 when taking the limit
α → 0 before the limit K → ∞ ? This question is crucial and not easily answered. The
calculations are rather technical and can be skipped in the first lecture. We will prove
that the limits do commute only for strictly monotonic profiles. If U ′ never vanishes, we
will find again the result of section 3 where we found that 〈vω〉 ∼

K→∞
− U ′′

U ′2 in the limit

α→ 0. (recall that the mean kinetic energy is set to one)
We start from equation (4.1) that describes the inertial behavior of a deterministic

evolution of a perturbation ω(y, 0) when ε vanishes. Using the Green function Hk(y) of
(∂2y − k2) we write

ϕε(y, c) = (U ′′(y)− β)
∫

dy′Hk(y
′)

ϕε(y − y′, c)
U(y − y′)− c− iε

+

∫
dy′Hk(y

′)
ω(y − y′, 0)

ik(U(y − y′)− c− iε)
.

Now we make the change of variable Y = ky′ . The Green function has the scaling
Hk(y

′) := − 1
2kH0(Y ). Recalling that ϕ+(y, c) = limε↓0 ϕε(y, c), it follows

ϕ+(y, c) = −
(U ′′(y)− β)

2k2
lim
ε→0

∫
dY H0(Y )

ϕε(y − Y
k , c)

U(y − Y
k )− c− iε

− 1

2ik3
lim
ε→0

∫
dY H0(Y )

ω(y − Y
k , 0)

U(y − Y
k )− c− iε

. (4.3)

Please note that we are again making the asumption that l
k := tan θ is finite and thus

K →∞ implies k →∞. Let us remind here that it is crucial to take the limit ε→ 0 first
before K →∞ because ε plays exactly the role of the linear fricion in section (3). If we
want to study the inertial regime, we have to take a vanishing friction first. In (Bouchet
& Morita 2010), it is shown that the function ϕε has the finite limit ϕ+.

Consider now the magnitude of both terms in the right-hand side of (4.3). We have a
term depending on ϕ+ and another depending on the initial condition ω(y, 0). The initial
condition is of order 1, and then the second term will be of order 1

k3 . As a consequence,
the first term in the asymptotic expansion of ϕ+ will be of order 1

k3 . The first term in
the right-hand side of (4.3) gives the next order of the asymptotic expansion and is thus
negligible. We write

ϕ+(y, c) ∼
K→∞

− 1

2ik3
lim
ε→0

∫
dY H0(Y )

ω(y − Y
k , 0)

U(y − Y
k )− c− iε

. (4.4)



turbulent closure for Jupiter 21

Combining equations (4.2) and (4.4) we find that

|ω∞(y)|2 ∼
K→∞

|ω(y, 0)|2 − U ′′ − β
k2

Re

{
lim
ε→0

∫
dY H0(Y )

ω ∗ (y, 0)ω(y − Y
k , 0)

U(y − Y
k )− U(y)− iε

}
.

The final step is to replace ω(y, 0) = eily, and H0(Y ) = e−|Y |. We use also the
Sokhotski–Plemelj formula: lim

ε→0

1
x−iε = iπδ(x) + P

(
1
x

)
, to obtain

|ω∞(y)|2 ∼
K→∞

|ω(y, 0)|2 − U ′′ − β
k2

Re

{
lim
ε→0

∫
dY e−|Y |

e−iY tan θ

U(y − Y
k )− U(y)− iε

}

∼
K→∞

|ω(y, 0)|2 − U ′′ − β
k2

Re
{
iπ

∫
dY e−|Y |e−iY tan θδ

(
U

(
y − Y

k

)
− U(y)

)}
−U

′′ − β
k2

Re

{
P

{∫
dY e−|Y |

e−iY tan θ

U(y − Y
k )− U(y)

}}

∼
K→∞

|ω(y, 0)|2 − U ′′ − β
k2

P

{∫
dY e−|Y |

cos(Y tan θ)

U(y − Y
k )− U(y)

}
,

where we have used that the term iπ
∫
dY e−|Y |e−iY tan θδ

(
U
(
y − Y

k

)
− U(y)

)
is purely

imaginary. Injecting this result in (2.18) gives the contribution of one Fourier mode k, l
with k

l = tan θ to the Reynolds stress divergence

Re 〈v∗θωθ〉 ∼
K→∞

− Ĉk,l
2k2
P

{∫
dY e−|Y |

cos(Y tan θ)

U(y − Y
k )− U(y)

}
.

Some lengthy calculations are required to show that this expression coincides with U ′′

U ′2 ,
for an energy injection rate equal to one. We do it in appendix C. But we have to do an
additional assumption: the asymptotic expansion is valid only if kU

′

U ′′ →∞. There should
exist a small region in the vicinity of the extremum U ′ = 0 where this calculation breaks
down. The formula can be valid only for strictly monotonic profiles or for the monotonic
part between two extrema of a jet.

We have shown that the limit of vanishing friction and small scale forcing commute
for a strictly monotonic velocity profile U . In these limits, the Reynolds stress does not
depend on the shape of the stochastic forcing. It is worth to emphasize that our results
are asymptotic results. The behavior may be really different for finite friction and finite
K. The work done in (Srinivasan & Young 2014) shows that the shape of the stochastic
forcing matters in the general case. Jets have nonmonotonic velocity profile U . In the
limit K → ∞ first, figure (4) shows the existence of a cusp at the extremum of the
jet. The extremum is a place where the velocity profile has a structure at scale 1

K , and
therefore U ′′

Kα is large. What is the behavior of a jet in the vicinity of an extremum is the
subject of the following sections.

4.3. Cusps for eastward jets
In the previous parts of this paper, we saw that the formula 〈vω〉 = − U ′′

U ′2 gives a
divergent mean velocity profile and we discussed that this formula can be valid only in
the limit kU ′

U ′′ →∞. It is thus natural to think that this formula for the divergence of the
Reynolds stress is valid between the extrema of the jet, but in a region of size 1

K around
the extremum, another mechanism should take place to stop the jet growth. On Jupiter,
the data collected by Gallileo and Cassini probes, shown in figure (5), indicate that the
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Figure 5. The 24oN Jupiter eastward jet (taken from (Sánchez-Lavega et al. 2008)). The
vertical scale is the mean velocity of the wind (m.s−1).

eastward jets have “cusps”, while westward jets seem smoother. We first discuss eastward
jet cusps.

Looking more precisely on these cusps in figure (5), we see that their size is ap-
proximately 1 degree i.e a scale of ∼ 1000 km. When we observe the surface of the
planet, we can see the fluctuating vortices evolving in a timescale of few days. The size
of those vortices are related to three dimensional motions, producing convection plumes,
that develop potential vorticity disturbances at a scale which approximately the Rossby
deformation radius of order 1, 000 km and with potential vorticity of order β, the Coriolis
parameter. In our effective model of a barotropic flow, those convective phenomena are
modeled by the stochastic force, and this gives us a rough estimate of the scale 1

K , of
order of a thousand kilometers. Those observations are consistent with our finding that
the cusp should be regularized at a scaled of order 1/K.

Our question is: can we have a cusp solution of the stationary equation

〈vω〉 [U ] = U,

in the limit K →∞ ?
The idea is to take equation (4.1) and study its large asymptotic after changing the

scale y ← Ky. We will call θ the angle defined through cosθ := k
K . As we are looking for

a cusp of size 1
K , it will be convenient to set Ũ(y) = U

(
y
K

)
. It implies that 1

K2U
′′ ( y

K

)
=

Ũ”(y). It comes(
d2

dy2
− cos2 θ

)
ϕε(y/K, c) +

β/K2 − Ũ”(y)

Ũ(y)− c− iε
ϕε(y/K, c) =

ω(y/K, 0)

ikK2(Ũ(y)− c− iε)
.

We set ikK2ϕ(y/K, c) := φ(y, c), and the function ω∞ satisfies

ω∞
( y
K

)
= ω

( y
K
, 0
)
+

(
Ũ”(y)− β

K2

)
φ+(y, c).
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We see that in the limit of large K, the parameter β completely disappears, it has no
effect on the profile. However the solution Ũ still depends on θ. We will first consider the
case where the spectrum has only one component θ . Let wθ(y) := ω∞

(
y
K

)
. The set of

equations defining the Reynolds stress divergence 〈vω〉 [Ũ ] is(
d2

dy2
− tan2 θ

)
φε(y, c)−

Ũ”(y)

Ũ(y)− c− iε
φε(y, c) =

ei sin θy

Ũ(y)− c− iε
ei sin θy + Ũ”(y)φ+(y, Ũ(y)) = wθ(y)

1

Ũ”(y)
[|wθ(y)|2 − 1] = 〈vω〉θ [Ũ ]. (4.5)

The first equation is the inhomogenous Rayleigh equation without β effect. The second
one is the modified expression to compute ω∞, and the last one is the pseudomomentum
balance giving access to the Reynolds stress divergence.

Before we go on with numerical analysis, let us give some analytical results on this set
of equations.
• We already gave an expression for the Reynolds stress divergence in the limit K →

+∞, away from the extremum of the jet. As we have done the scaling y ← Ky, we expect
to find the same asymptotic as y → ∞. For a given profile Ũ , we have the asymptotic
result 〈vω〉 [Ũ ] ∼

y→∞
− Ũ”
Ũ ′2

.

• We know that at the extremum, we have ω∞(ycr) = 0 (see subsection 4.1 ), which
corresponds here to wθ(ycr) = 0. At the extremum, the mean velocity profile is forced by
〈vω〉 = − 1

Ũ”
, it comes from the last equation of (4.5). At a maximum of U (eastward jet),

Ũ” < 0 and the Reynolds stress divergence makes the profile Ũ grow. It is the opposite
at a minimum of U , we have Ũ” > 0 and the negative velocity grows. The consequence
is that the turbulence is always pushing the jet to grow . This growth can be stopped
only by either linear friction or non linear effects beyond the quasilinear approximation.
For westward jets, we will see further that it can also be stopped by an hydrodynamic
instability.
• The formula 〈vω〉 (ycr) = − 1

Ũ”(ycr)
is in itself noteworthy. It comes from the

phenomenon of depletion of vortcity at the stationary streamlines, which has been
already emphasized in (Bouchet & Morita 2010). To reach the stationary profile, 〈vω〉
has to equilibrate the linear friction. At he extremum of the jet it gives the equality
〈vω〉 (ycr) = Ũ(ycr). We can thus link the value of the velocity at the extremum of the
jet and the curvature of the cusp. Let us write this equality in its full dimensional form,

U(ycr) = −
εK2

rU ′′(ycr)
, (4.6)

where in that formula ε is the energy injection rate. This is a universal property of a
stationary jet profile, it relates the strength of a jet to its curvature, and the physical
parameters ε, r and K. It does not depends on θ that characterizes the forcing spectrum
through the ratio k/K. Exactly as was the case before when we took the dissipative-
small-scale limit, this relation does not depend on the detailed form of the spectrum of
the stochastic forcing.

Let us illustrate those results by a numerical computation of the nondimensional
equations (4.5). The numerical computation goes the following way: with the solver
ode45 of matlab, we write a program solving the first equation of (4.5), for given values
of ε (the Laplace transform parameter) and c, and given boundary conditions. In our
computations, we impose vanishing boundary conditions for φε and we take a domain
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Figure 6. Reynolds stress divergence from (4.5) for a parabolic profile Ũ(y) = − y
2

2
, and

θ = π
8
. (thick curve). The thin curve depicts the theoretical asymptote Ũ”

Ũ′2
. As one can notice,

〈vω〉 (0) = − 1

Ũ”
= 1 in agreement with the theoretical result.

size Ly = 30 which we think to be sufficient to approximate an infinite domain. ε has
to be small because we want to compute the solution φ+ when ε goes to zero. For the
results of figure (6), ε = 10−5. Because the solution φ+ has a singularity at U(yc) = c,
an extreme precision is required to obtain convergence of the numerical calculations. We
had to impose ’RelTol’=10−13 and ’AbsTol’=10−15 with the MATLAB solver odeset. To
obtain the value of 〈vω〉θ (y), we have to compute the solution φ+ for c = y2

2 , and this
has to be done for each value of y. In figure (6), about 20 values of y were used to plot
the blue curve.

The plot of the Reynolds stress divergence in figure (6) clearly displays two regions
with a sharp transition at about y = 2. For, y < 2 the profile should equilibrate to form
a cusp, which joins continuously the second region where y > 2. In the second region, the
expression 〈vω〉 = − U ′′

U ′2 seems to be valid, and we expect the profile to join continuously
the solution computed in section (3.2) and displayed in figure (4) right. The abscise of the
transition to the asymptote − U ′′

U ′2 depends on θ, and is thus non-universal with respect to
the force spectrum. When θ approaches π2 , the blue curve reaches the asymptote for larger
and larger values of y. This is illustrated in figure (7). The same figure also illustrates
the asymetry of 〈vω〉θ w.r.t the transformation θ → −θ. For negative values of θ, the
solution oscillates before reaching the asymptotic regime. Note that the set of equations
(4.5) is invariant to the transformation y → −y and θ → −θ, which means that we do
not have to compute the curve for negative values of y, it corresponds to the same curve
for positive values of y and the change θ → −θ. In figure (7), we present the curves 〈vω〉θ
for different values of θ. Because our algorithm is limited to a domain size Ly = 30, we
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Figure 7. Left: The Reynolds stress divergence 〈vω〉 for positive values of θ between 0 and
π
3
. From left to right on the picture, the thick curves correspond to values of θ respectively

of 0, π
12
, 2π
12
, 3π
12
, 4π
12
. The thin curve displays the asymptote U′′

U′2 . Middle: The Reynolds stress
divergence 〈vω〉 for the same but negative values of θ between 0 and −π

3
. Right: The total

Reynolds stress divergence resulting from the sum over θ. One can see that the asymptotic
behavior is not reached within the range 0 < y < 5 because of the contribution of the most
negative value θ = −π

3
.

limited our computation to θ ∈
[
−π3 ;

π
3

]
; otherwise the domain of y would be too small

for the curve 〈vω〉 (y) to reach its asymptotic regime.
At this point, much remains to do to obtain the real stationary profile of the cusp. We

should now use the differential equation

∂tU = α (〈vω〉 − U)

to compute the stationary profile satisfying 〈vω〉 [U ] = U . We should use the Reynolds
stress divergence 〈vω〉 integrated over θ with the method presented above. The third
graph in figure (7) displays the total Reynolds stress divergence after integration over
the interval

[
−π3 ,

π
3

]
with uniform density function (equal weight for all values of θ).

We stress that this curve 〈vω〉 (y) is not at all universal, it depends on the spectrum of
the stochastic forcing. To compute the total stress tensor with our method, we have to
sample the density function of the spectrum, ie to chose enough values of θ and then
to sum each contribution. This integration requires much computational effort, maybe
even more effort than a direct numerical integration of the S3T equations. Therefore, we
think that the set of equations (4.5) is rather a theoretical tool to investigate the general
properties of the cusp than a practical way to do an exact computation of the cusp.

With the system of equations (4.5), we have been able to show that a cusp of typical
size 1

K should exist at the eastward extremum of the jet. This cusp regularizes the
velocity profile at its maximum and stops the divergence observed in figure (4). The
relation between the curvature of the jet at the extremum and its maximal velocity
(4.6) is universal as it does not involve the explicit expression of the spectrum of the
stochastic forcing. However, the exact profile of a cusp is rather complicated and is not
at all universal. For each particular stochastic forcing, one has to do the whole numerical
computation of the Reynolds stress divergence and solve the stationary equation for the
velocity profile U .

4.4. Computation of Reynold’s stress divergence for westward jets
As we saw in the last section, the parameter β disappears from the equation when

we try to compute the equilibrium profile in the limit K → ∞, because the β effect
becomes irrelevant at those scales. Using this approach, we could expect the jet to be
symmetric with respect to the transformation U → −U . At a formal level, nothing in the
equations we considered seems to make any difference between the eastward part of a jet
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Figure 8. Left panel: zonal jets on Jupiter. Data collected by the probes Gallileo and Cassini
(from (Porco et al. 2003)). Right panel: A numerical simulation of the quasilinear barotropic
equations (S3T system) performed in (Constantinou 2015).The top figure displays the mean
velocity profile U and the bottom figure displays β − U ′′. The cusp is obvious on both figures,
the peak corresponds to the westward extremum of the jet. β − U ′′ is always positive, thus
satisfying the Rayleigh-Kuo criterion except possibly at the eastward extremum.

and its westward component. However, if we look at the jets observed on Jupiter, we see
a clear asymmetry between eastward and westward jets, especially at high latitudes. One
key point will be that, as clearly stated, the computations in (Bouchet & Morita 2010;
Bouchet et al. 2013) and the previous sections assume that the linearized equations close
to the jet are stable, and are modified by the presence of stable neutral modes.

On Jupiter, the cusp only exists on the westward part whereas the eastward part looks
like a parabolic profile with curvature between 2β and 3β (see figure (8) and (Ingersoll
et al. 1981) for a discussion on the value of the curvature). Numerical simulations of
the barotropic model also show this asymmetry. Of course, numerical simulations always
include a small scale dissipation (usually an hyperviscosity), but as this viscosity is small,
we expect the results to be close to those of our model. In (Constantinou 2015) for
example, the curvature at the eastward jet is almost exactly β and seems to be trapped
at this value whatever large the coefficients K and 1

α are. The value of β −U ′′ is always
positive, and the Rayleigh-Kuo criterion for jet stability is satisfied. The aim of this
section is to understand what is the behavior of a parabolic jet with U ′′ close to β and
see if the profile β y

2

2 can be or not a stationary solution to our equations.

4.4.1. Modified Rossby waves

We consider in equation (4.1) a parabolic profile U(y) = γ y
2

2 , and we want to study
the behavior of the Reynolds stress divergence when γ is close to β. For γ = β, any
perturbation is carried freely by the mean flow, and equation (2.17) reduces to

∂tω + ikUω = 0,
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which is easily solved by ω(y, t) = ω(y, 0)e−ikUt. Expression (2.18) is then singular,
because U ′′ − β vanishes in the denominator, and |ω∞|2 − 1 = |ω(y, 0)|2 − 1 = 0. If we
try to compute the Reynolds stress divergence 〈vω〉 directly, we will find a singularity
in y = 0. Therefore, the aim is to compute 〈vω〉 for γ smaller and larger than β and let
then γ → β.

It has been proved long ago that for 0 < γ < β we have modified Rossby waves in the
flow (Drazin et al. 1982), with at least one Rossby wave as soon as γ < β. In (Brunet
1990), the case of a parabolic profile is thoroughly studied and a method is found to
compute the Rossby waves and their velocity. Basically, it consists in doing a Fourier
transform in y and transform the Rayleigh equation into a one dimensional Schrödinger
equation. This one dimensional Schrödinger equation describes a particle in a potential
vanishing at infinity. Possible bound states of the Schrödinger equation correspond to
modified Rosby waves.

For γ > β, the Schrödinger equation potential is positive, and classical results prove
that there is no bound state, and thus there is no Rossby waves. In that case expression
(2.18) will be valid to compute the Reynolds stress divergence. By contrast, for 0 < γ < β,
the Schödinger equation potential is negative (the position zero is attractive). Classical
results (Reed & Simon 1978) shows that there exists a least one bound state, as this
is a one-dimensional Schrödinger equation. There is thus at least one modified Rossby
wave. Moreover as the potential deepens for decreasing γ/β, the number of bound states
and thus the number of modified Rossby waves increases when γ/β decreases. When
0 < γ < β, because of the presence of waves, we have to use expression (2.19) to compute
the Reynolds stress divergence.

We have used the numerical method described in (Drazin et al. 1982), to compute the
Rossby waves and we sum up the main results in appendix D.

4.4.2. Singularity of the Reynolds stress
We now compute the stress 〈vω〉 using the same method as for the cusp case discussed

in section 4.3, but without taking the limit K →∞. It happens that the parabolic profile
has an additionnal symmetry, it is invariant under the transformation y ← Ky. For a
parabolic profile, the set of equations only depends on the parameter tanθ := l

k and
µ := 1 − β

γ . As discussed previously, Rossby waves appear when µ < 0, or equivalently
0 < γ < β.

Now we have to modify expression (2.18) to take into account the presence of those
modes and we discuss this problem in more details in appendix A. Using expression
(2.19), the self-consistent equations for the jet write(

d2

dy2
− tan2 θ

)
φε(y, c)−

µ
y2

2 − c− iε
φε(y, c) =

Pei sin θy
y2

2 − c− iε

Pei sin θy + µφ+

(
y,
y2

2

)
= wθ(y)

1

µ

[∣∣(1− P) ei sin θy∣∣2 + |wθ(y)|2 − 1
]
=

1

γ
〈vω〉θ [Ũ ]. (4.7)

We have denoted by P the projector on the space orthogonal to the neutral modes. The
reader should notice that the quantity 1

γ 〈vω〉θ depends on β and γ only through the
parameter µ. The computation of the Reynolds stress divergence for a parabolic profile
in the β plane resumes to the normal profile y2

2 and an other control parameter µ.
The result of the numerical integration of (4.7) is shown in figure (9). The main result

is that the stress 〈vω〉 has the same qualitative behavior both for γ < β and for γ > β.
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Figure 9. Left: Minus the Reynolds stress divergence < vω > obtained for µ = 0.3 (green),
µ = 0.1 (red) and µ = 0.05 (blue). When the parameter µ comes closer to zero, the divergence at
y = 0 becomes more and more pronounced. Right: The Reynolds stress divergence for µ = −0.3
(green), µ = −0.1 (red) and µ = −0.05 (blue). Other parameters are θ = π

8
and β = 1.

For γ > β, i.e µ > 0, we still have the result that wθ(0) = 0, which implies that the
stress 〈vω〉 is diverging as − 1

µ when µ → 0+. For 0 < γ < β, i.e µ < 0, the stress is

diverging as [|ω1
θ(0)|

2−1]
µ when µ → 0−. ω1

θ is the projection of ei sin y on the first neutral

mode. It happens that |ω1
θ(0)|2 − 1 is always positive. Hence, [|ω1

θ(0)|
2−1]

µ is negative. We
conclude that whatever the sign of µ, the stress 〈vω〉 has a negative divergence at the
minimum of the jet that makes the jet grow. If the curvature γ is smaller than β, the
effect of the Reynolds stress divergence is to narrow the jet and increase the curvature.
It will come to a point where γ > β and the Rayleigh-Kuo criterion of stability will be
violated. No mechanism in our present model can stop the growth of the westward jet.
The jet should create a cusp exactly the same way as for the eastward jet. To explain the
numerical simulations, we thus have to consider other hypothesis than the ones we did.
Among those, we have assumed there is no instability in the set of equations (4.7), i.e
a mode with nonzero imaginary part of the velocity. When the Rayleigh-Kuo criterion
is violated, the stability of a jet is no longer guaranteed, and instabilities may occur. In
the last section of this paper, we will study qualitatively the effect of an instability to
see whether it can really stop the growth of the westward jet.

4.4.3. The question of the instability in the westward jet
We discussed previously (in appendix A) how the Reynolds stress divergence is modified

when there are modified Rossby waves in the flow. Rossby waves are regular solutions of
the homogeneous Rayleigh equation(

∂2

∂y2
− k2

)
ψ +

β − U ′′

U − c
ψ = 0, (4.8)

where c is the phase speed of those modes. Modified Rossby waves are called neutral
modes because the phase speed is real. An unstable mode would be a solution of equation
(4.8) with complex phase speed c. In particular for unstable modes, the imaginary part
satisfies kci > 0 and the consequence of that is the exponential growth of a disturbance
|ψ(y, t)| ∝ ekcit. The Rayleigh-Kuo criterion has to be violated in the flow, this is a well
known necessary condition for instability (see e.g (Pedlosky 1982)). This condition is not
sufficient but if we assume an unstable mode exists, expression (2.19) will not be valid
anymore, because the unstable mode has a contribution in the stress. This contribution is
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not at all trivial. If we take the limit α→ 0 in the presence of such a mode, the Reynolds
stress is diverging because there is no mechanism to compensate the exponential growth
of the unstable mode. To obtain a finite value of the Reynolds stress, we assume that
the flow equilibrates in a state for which kci < α. This would correspond to a situation
of marginal instability, a kind of barotropic adjustment mechanism. The computation
is similar to the one developed in appendix A for neutral modes. There will be a term
coming from the unstable mode alone, and cross terms coming from the contribution
mode-continuum. Contrary to what happens for Rossby waves, we cannot assume that
the cross contributions vanishes because for an unstable mode, the real part cr of the
speed c lies within the range of U ((Drazin & Reid 2004; Drazin et al. 1982)). However,
the computation shows that the cross term mode-continum is small compared to the
contribution mode-mode except perhaps in a region where k(U(y) − cr) is of order α.
The contribution of an instability in the Reynolds stress has been already computed in
the deterministic case ((Pedlosky 1982) p 576), and we modify here the classical result
to adapt it to the stochastic case.

Let ωc(y) be the projection of the initial condition eily on the unstable mode, and ψc

the associated stream function defined by
(
∂2

∂y2 − k
2
)
ψc = ωc. The projection refers to

the scalar product induced by the pseudomomentum conservation law (see appendix A
for the discussion). Then the term mode-mode in the computation of 2α

〈
|ω|2

〉
writes

2α
〈
|ω|2

〉
= 2α

∫ 0

−∞
dt e2αt

∣∣ωc(y)eikct∣∣2
= |ωc(y)|2 2α

2α− 2kci
.

Equation (4.8) shows that ωc = −β−U
′′

U−c ψ
c. Therefore, we have a contribution to the

Reynolds stress divergence

2α
〈
|ω|2

〉
U ′′ − β

= − 2α

2α− 2kci

|ψc|2

|U − c|2
(β − U ′′). (4.9)

Let us emphasize once more that this term is a contribution to the Reynolds stress
adding to the other terms coming from the effect of Rossby waves and from ω̃∞. The
important point in (4.9) is that the coefficient 2α

2α−2kci
|ψc|2
|U−c|2 is strictly positive, which

means that the term coming from the unstable mode opposes a change of sign of β−U ′′.
In the numerical simulations, we see hat the profile U tends to satisfy the Rayleigh-Kuo
criterion with β − U ′′ > 0 in the flow except perhaps at the extremum of the westward
jet. Then in section 4.4.2 we have shown that a parabolic profile U with curvature γ < β
but close to β is forced by a Reynolds stress divergence with a kind of singularity at zero
(see figure (9), right). The effect of the stress is to increase the jet and makes it violate
the Rayleigh-Kuo criterion. In order to equilibrate, the jet needs another mechanism to
compensate this forcing. Our analysis thus allows us to make the qualitative following
statements:

If the Rayleigh–Kuo criterion is violated at the westward jet and if an hydrody-
namic instability develops, then the instability tends to reequilibrate the flow to a
configuration for which the flow is stable, with β − U ′′ > 0.

Please note that this probably makes our assumption of marginal stability kci of order
α self-consistent.

In order to illustrate this assertion and go a bit further in the above description of the
instability mechanism, we tried to find numerically a configuration where the instability
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Figure 10. We show here the tensor |ω|2 − 1 at T = 30 for different values of η, and we
compute the value of c if possible. The thiner curve (red color online) shows β − U ′′. Close to
the instability threshold, it is no longer possible to determine the value of c because the growth
of the instability is too slow.

develops. We perform a direct numerical integration of the equation

∂tω + ikUω + ik(β − U ′′)ψ = 0,

using periodic boundary conditions in y for the solution ω(y, t) and the initial condition
ω(y, 0) = eily. We use a Runge-Kutta algorithm of order 4. The profile U is parabolic
with 0 < γ < β but we add a small disturbance at the extremum in 0 of the form of a

gaussian −ηe−
y2

σ2 . This disturbance is the qualitative effect of the forcing described in
figure (9), it models the fact that the mean velocity profile is “curved” at its extremum.

U(y) = γ
y2

2
− ηe−

y2

σ2 . (4.10)

The values of the chosen parameters are β = 1, µ = 1− β
γ = −0.3, k = l = 10, and the box

size is Ly = 10. σ quantifies the width of the disturbance, we chose σ = 0.1. The solution
ω(y, t) is oscillating very fast in y at long times because of the contribution of e−ikUt, and
it imposes a very high spatial resolution. With Ny = 2.104 we obtain satisfactory results
as long as t < 100. We have a time step dt = 10−3. η describes the magnitude of the
disturbance, this is the parameter we will vary. Results are displayed in figure (10). The
red curve is the graph of β−U ′′(y). When this quantity is strictly positive everywhere in
the flow, the Rayleigh-Kuo criterion is satisfied and the flow is stable. With the velocity
profile chosen in (4.10), the Rayleigh-Kuo criterion is violated around y = 0 because the
red curve crosses the ordinate zero. The blue curve displays the quantity |ω|2(y, t) − 1
at T = 30. In our simulations, we clearly see the three peaks of the blue curve growing
exponentially with time, and this indicates the existence of an hydrodynamic instability.
From left to right, we have increased the value of the parameter η. The larger η, the
more the Rayleigh-Kuo criterion is violated, and the instability grows faster. It has been
already emphasized that |ω|2−1 has to vanish at the same time where β−U ′′ = 0 in the
flow, and this is confirmed by our simulation and displayed in figure (10). The largest
peak of the blue curve corresponds exactly to the region in the flow where β − U ′′ is
negative.

As soon as η > 0.003 we can see the instability growing in the reynolds stress
divergence. The value corresponds to a violation of the Rayleigh-Kuo criterion in the
vicinity of y = 0. When we increase the values of η, the magnitude ci of the instability
increases as well, as we expected. At long time, the dominant contribution in ω is
given by the unstable mode ω(y, t) ∼ ωc(y)e−ikct. Hence the value of ω̇

ω gives access
to the coefficient ikc. To obtain the mode ωc(y), we simply look at the convergence of
ω(y, t)eikct. The real and imaginary parts of the unstable mode ωc(y) are displayed
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Figure 11. Left: real part (blue curve) and imaginary part (red curve) of the unstable mode ωc.
The value of η is 0.05. The thiner curve (green) displays β −U ′′(y), the Rayleigh-Kuo criterion
is violated in the vincinity of zero. Right: The tensor |ω|

2−1
U′′−β that contributes to the Reynolds

stress divergence obtained for T=30. The artefact comes from the fact that U ′′−β vanishes and
that we use a finite discretisation in y. The effect of this tensor is to reequilibrate the velocity
U to satisfy β − U ′′ > 0. The value of c is c = −2.02 + 1.04i e− 2

in figure (11) left panel in respectively blue and red. The curve β − U ′′ has been
superimposed in yellow. We see again that the unstable mode is vanishing at points
where β − U ′′ = 0 and that the mode is larger in the region where β − U ′′ < 0. On
the right panel of figure (11) we display the Reynolds stress divergence 〈vω〉 = |ω|2−1

U ′′−β
obtained from equation (2.18) with one single Fourier component. As can be checked
directly in figure (11) right, the effect of the instability is exactly the opposite as on
figure (9). The Reynolds stress divergence is positive in the region where the Rayleigh-
Kuo criterion is violated, and thus the tensor in figure (11) reequilibrates the profile U

and damps the perturbation −ηe−
y2

σ2 .
Let us summarize the results of the last section. We have first investigated the behavior

of the Reynolds stress divergence for a parabolic profile, because we know from numerical
simulations that the mean velocity profile is close from parabolic for a westward jet. The
Reynolds stress divergence is the tensor that forces the mean flow according to equation
(2.2). Even if we cannot always compute exactly this tensor, we can study its sign and its
qualitative properties to see if it damps the flow or if it makes it grow. We did first the
assumption that there is no hydrodynamic instability in the flow, that means that there
is no unstable mode growing exponentially. But this assumption leads to a contradiction
for the parabolic profile because the Reynolds stress divergence distorts the parabolic
profile at y = 0 as was shown in figure (9). Thus, we conclude that another mechanism
is at place to equilibrate the parabolic profile. When we consider a small violation of
the Rayleigh-Kuo criterion near y = 0, we see numerically the growth of an instability
that opposes exactly to the distortion of the parabolic profile where the Rayleigh-Kuo
criterion is violated. Those results are qualitative, we do not have computed the velocity
profile at equilibrium. But it is consistent to assume that the equilibration mechanism
is a kind of barotropic adjustment of the mean flow: an instability develops as soon as
β − U ′′ changes sign. The flow has to adjust itself such that the instability is not too
large, i.e close to a parabolic profile with U ′′ ∼ β, and such that the instability can be
damped by the linear friction.
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5. Conclusion and perpectives
The quasilinear barotropic equations in a β plane can lead to formation and equili-

bration of zonal jets. Those jets are in an out of equilibrium steady state that results
in a balance between energy injection at small scales and linear friction that dissipates
energy at large scales. With the quasilinear approximation, there is no inverse energy
cascade in Fourier space and energy is directly transferred from small scales to the mean
flow. After rescaling of the equations, two nondimensional parameters remain, α and K,
where α gives the ratio of the time scale for energy injection and dissipation over the
inertial time scale and 1

K gives the scale of the stochastic forcing. From astronomical
observations on Jupiter, we believe that both limits α → 0 and K → ∞ are relevant to
describe planetary flows.

The presence of the small parameters α, 1
K in the equations allows us to perform

asymptotic calculations and derive explicit expressions for the Reynolds stress tensor
〈uv〉. More precisely, we show that for a monotonic mean velocity profile U , both limits
commute and give the same expression for the Reynolds stress 〈uv〉 = ε

U ′ , where ε is the
energy injection rate in m2s−3 and U ′ is the spatial derivative of U . We explained in
this paper the physical meaning of this relation: U ′ 〈uv〉 is the energy rate transferred
to the mean flow by the eddies. With vanishing dissipation and small scale forcing, all
energy has to be transferred locally in space to the mean flow. Thus we obtained for the
Reynolds stress a kind of universal relation because it does not depend any more on the
detailed spectrum of the forcing.

Because jets are nonmonotonic velocity profiles, the asymptotic expansion breaks down
at the extrema. The first naive computation of the velocity profile in the limit K → ∞
leads to a divergence of the velocity at the extremum. For the asymptotic expansion to be
valid, the parameter U ′′

Kα has to remain small. But at the extremum, the velocity profile
is regularized by a small scale structure, a cusp, where U ′′ scales typically like K2 and
therefore the parameter U ′′

Kα is always large at the extremum of eastward jets where the
cusp develops. We studied therefore the inertial limit α→ 0 and we derived a system of
equations that describes the velocity profile of the cusp. No universal behavior is expected
for a cusp, the shape should depend on the precise spectrum of the stochastic forcing.
Nevertheless, the mechanism of depletion of vorticity at the stationary streamlines leads
to an interesting relation between the curvature of a cusp and the maximal velocity
U(ycr) = − εK2

rU ′′(ycr)
. This relation is ’universal’ because only the energy injection rate

and the scale of the forcing appear explicitly.
Surprisingly, no numerical simulations display a cusp for westward jets whereas our

equations for the cusp predict that if U is solution, −U should also be a solution. The
physical mechanism that prevents westward jets from creating a cusp is an hydrodynamic
instability. When a cusp starts to develop, the Rayleigh-Kuo criterion of stability is vio-
lated at the extremum and an hydrodynamic instability grows. Supported by numerical
simulations, our claim is that the parabolic profile observed for westward jets is the result
of a marginal stability: without instability, the Reynolds stress divergence enhances the
mean flow. But as soon as the mean flow has a curvature U ′′ > β, the hydrodynamic
instability opposes the growth of the velocity profile. Therefore, the parabolic profile is
stabilized with a curvature around β resulting of the competition of the two previous
mechanisms.

Westward jets on Jupiter display indeed a parabolic profile, but with a curvature U ′′
clearly larger than β. This is one reason why the barotropic model is not sufficient to
describe Jupiter’s atmosphere. We believe our analysis could be extended to more refined
models, for example a two-layer model. If the aim is to obtain quantitative results about
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the velocity profile of Jupiter, one would have to go further in numerical computations
than we did. It would be interesting to find numerically the equilibrium profile of a cusp,
and then check that this profile is indeed solution of the set of equations (4.7).

In this paper, we have considered the case of a Rayleigh friction as the mechanism
for removing energy that is transferred to the largest scale. Rayleigh friction is a rather
ad-hoc type of damping (although it can be justified in certain cases involving, e.g.,
Ekman pumping). If one would consider other kinds of friction, for instance scale-selective
damping, provided that this damping actually acts on the largest scales of the flow, in a
corresponding inertial limit we expect most of our results to easily generalize (the proper
dissipation operator should then replace Rayleigh friction in equation (2.1)). Indeed the
processes that explain the computation of the Reynolds stress are inertial in nature
and independent from the dissipation mechanisms. As an example, the case of viscous
dissipation has been discussed in section 5.1.2 of Bouchet et al. (2013), showing that while
the regularization by viscosity is very different from the regularization by linear friction,
the inertial results for the Reynolds stresses do coincide. This is true as far as the shear
is non zero and equation (1.1) is concerned; by contrast the regularization of the cusp is
dissipation dependent. In some specific cases, changing the dissipation mechanism may
induce specific instability modes, like boundary layer modes due to viscous dissipation,
however such effects are expected to be non generic.

This work was thought to be the first step toward a general comprehension of the
statistical properties of zonal jets. What we have done here is to compute the averaged
Reynolds stress 〈uv〉 wrt the realizations of the stochastic force. However, it is known
from numerical simulations that the mean flow U can have more than one stable
stationary state, with a different number of jets. With a stochastic forcing, the system
can do transitions between those different states, with however a small probability. To
understand the rare transitions between states with a different number of jets, one would
have to go beyond the averaging procedure and study also the fluctuations and large
deviations of the Reynolds stress. On Jupiter, there are some clues that one jet has
been lost in the past, which indicates that transitions similar to those observed in our
numerical simulations could really happen in real systems. Numerical work is in progress
to study the appearance or disappearance of a jet, and much remains to be done in
theory.

We thank P. Ioannou for interesting discussion during the preliminary stage of this
work.
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Council under the European Union’s seventh Framework Program (FP7/2007-2013 Grant
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Appendix A. The Reynolds stress divergence in the inertial limit
The aim of this section is to give the proof of formula (2.18) and (2.19). We have to

compute

2α
〈
|ω|2

〉
= 2α

∫ 0

−∞
dt e2αt

∣∣etLk [cl]∣∣2 , (A 1)

where etLk [cl] := ωd is the solution to the deterministic equation

∂tωd + ikUωd + ik(β − U ′′)ψd = 0 (A 2)(
∂2y − k2

)
ψd = ωd
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with initial condition cl(y) = eily. We will first assume there are no neutral modes
solutions of (A 2). First, we do the change of time scale 2αt→ t in the integral of (A 1).
It gives us

2α
〈
|ω|2

〉
=

∫ 0

−∞
dt et

∣∣∣e t
2αLk [cl]

∣∣∣2 .
When α goes to zero, the term e

t
2αLk [cl] is the long time limit of the solution of (A 2).

We use the nontrivial result for the case of non monotonous flows, of (Bouchet & Morita
2010) already mentioned, that there exists a function ω∞d (y) such that ωd(y, t) ∼

t→∞

ω∞d (y)e−ikUt when there are no neutral modes. Hence
∣∣∣e t

2αLk [cl]
∣∣∣ → |ω∞d (y)| , and the

presence of the exponential in the integral ensures the convergence of the whole. This
proves that without neutral modes

2α
〈
|ω|2

〉
−→
α→0
|ω∞d |2.

The second case, with neutral modes, is a bit more subtle. The result of (Bouchet &
Morita 2010) relies on a Laplace transform of ωd denoted ω̂d. To do the inverse Laplace
transform, one has to know where the singularities of ω̂d are. The presence of modes
in the equation is exactly equivalent to the presence of poles of order 1 in the complex
plane for ω̂d. For unstable modes, these poles have an imaginary part, whereas for neutral
modes, they are located on the real axis. We also assume in our calculation that there are
no instabilities, which means that all singularities of ω̂d are on the real axis. Some of these
singularities are outside the range of U (outside of [Umin, Umax]) and are isolated, they
correspond to neutral modes or “modified Rossby waves”. But there is also a continuum
of singularities all along the range of U. The integration around the isolated singularities
will give the contribution of neutral modes, and it is of the form

∑
a
ωa(y)eikcat where a

is the mode index, ca is the mode frequency, and the ωa(y) are the projections of the
initial condition el on the modes ζa(y). The projections are defined with the natural
scalar product induced by the pseudomomentum conservation law, that is � ω∗1ω2 �=∫ ω∗1ω2

U ′′−βdy. For this particular scalar product, the operator ω → Uω + (β − U ′′)ψ is
self-adjoint, and this implies that its eigenvectors are orthogonal with respect to this
scalar product. If we subtract the contribution of the modes from cl, we leave only the
continuum part of the singularities and the result of Bouchet and Morita (Bouchet &
Morita 2010) holds. There should exist a function ω̃d∞(y) such that the remaining part
of the solution behaves at infinity like ω̃∞d (y)e−ikU(y)t. We eventually find that for long
time, the solution of the deterministic equation behaves like

ωd(y, t) ∼
t→∞

∑
a

ωa(y)e−ikcat + ω̃∞d (y)e−ikU(y)t.

When we inject this result in the expression of
∣∣∣e tαLk [el]∣∣∣2 we get three different terms.

(i) Terms coming from the mode-mode contribution of the form
∑
a
|ωa(y)|2. The time

integration is then trivial.
(ii) Also the term coming from the continuum gives us immediately the contribution
|ω̃∞d (y)|2.
(iii) What happens for terms of the form ωa∗ω̃∞e−ik(U−ca)

t
α and ωa∗ωbe−ik(cb−ca)

t
α ?

The frequencies 1
αk(U − ca) and 1

αk(ca − cb) grow to infinity as α vanishes. We have
an oscillating integral with frequency growing to infinity, so its a well known result that
such an integral is vanishing. The cross terms give no contributions.
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We have then proved the desired result that

2α
〈
|ω|2

〉
−→
α→0

∑
a

|ωa|2 + |ω̃∞d |2.

Appendix B. Computation of the Reynolds stress in the small scale
forcing regime

The aim of this section is to compute an asymptotic expression for the Reynolds stress
when K →∞. We will give a proof of equation (3.1).

Let us first recall the two expressions, defined in section 3, that we will use in the
computation

∂tAk,l = −i
U ′′ − β
k

∫
dY H0(Y )Ak,l

(
y − Y

k
, t

)
eik(U(y)−U(y−Yk ))t, (B 1)

with initial condition Ak,l(y, 0) = eily and the quantity 2α
〈
|ω|2k,l

〉
that appears in the

Reynolds stress divergence (2.13)

2α
〈
|ωk,l| 2

〉
= 2α

∫ +∞

0

e−2αt|Ak,l(y, t)|2dt.

Again, the bracket 〈〉 is simply a stochastic averaging. An integration by parts gives

2α
〈
|ωk,l|2

〉
= |Ak,l(y, 0)|2 + 2Re

∫ +∞

0

e−2αtAk,l(y, t)
∗∂tAk,l(y, t)dt.

Because |Ak,l(y, 0)|2 = 1, it compensates exactly the −1 coming from the enstrophy
injection in expression (2.13). Replacing ∂tAk,l using (B 1) and equation (2.13) that
gives the expression of Re 〈vk,lωk,l∗〉, we get the exact expression for the Reynolds stress
divergence

Re
〈
vk,lω

∗
k,l

〉
=
Ĉk,l
k
Im

∫ +∞

0

dt

∫
dY H0(Y )A∗k,l(y, t)Ak,l

(
y − Y

k
, t

)
eik(U(y)−U(y−Yk ))te−2αt.

Now we will have to use our hypothesis K →∞ to go on in the computation. Here comes
a small subtlety, the l component does not appears explicitly, it is hidden in the initial
condition Ak,l(y, 0) = eily. Therefore we cannot just expand Ak,l

(
y − Y

k , t
)
in power of

1
k as one may guess at first sight. But expression (B 1) tells us that ∂tAk,l → 0 as K
goes to infinity. The right way to do the asymptotic expansion consists in an expansion
of Ak,l(y, t) wrt time and we use that each temporal derivation of Ak,l is smaller of order
1
K

A∗k,l(y, t)Ak,l

(
y − Y

k
, t

)
= A∗k,l(y, 0)Ak,l

(
y − Y

k
, 0

)
+t∂t

[
A∗k,l(y, t)Ak,l

(
y − Y

k
, t

)]
t=0

+O

(
1

K2

)
,

and we expand also U using that k is large

k

(
U(y)− U(y − Y

k
)

)
= U ′(y)Y − U ′′(y)

2k
Y 2

:= aY − bY 2.
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The last expression defines a and b. Using that Ak,l(y, 0) = eily , H0(Y ) = 1
2e
−|Y | for

infinite space, the first nonzero contribution is given by

Re
〈
vk,lω

∗
k,l

〉
∼

K↑∞

Ĉk,l
2k
Im

∫ +∞

0

dt

∫
dY e−|Y |e−iY tan θei(aY−bY

2)te−2αt, (B 2)

with tan θ = l
k . One could check easily that the expression (B 2) is zero when b = 0,

that’s why we have to keep the b term to get the leading order term in the expansion in
powers of 1/K.

We now prove that the second term in the expansion of A∗k,l(y, t)Ak,l
(
y − Y

k , t
)
is zero.

With expression (B 1), we compute

∂tAk,l(y, 0) = −i
U ′′ − β
k

eily

1 + tan2 θ
,

and then

A∗k,l(y, 0)∂tAk,l

(
y − Y

k
, 0

)
= −iU

′′ − β
k

e−il
Y
k

1 + tan2 θ

∂tA
∗
k,l(y, 0)Ak,l

(
y − Y

k
, 0

)
= i

U ′′ − β
k

e−il
Y
k

1 + tan2 θ

The sum of both terms is zero. The next contribution then implies two derivatives and
is of order 1

K2 .
The presence of both exponentials in (B 2) allows us to invert the order of integration

and integrate the time first. We get

Re
〈
vk,lω

∗
k,l

〉
∼

K↑∞

Ĉk,l
2k
Im

∫
dY

e−|Y |e−iY tan θ

2α− i(aY − bY 2)
.

Now we have to use that b := U ′′

2k is small and develop the denominator. This gives

Re
〈
vk,lω

∗
k,l

〉
∼

K↑∞

Ĉk,l
2k
Im

∫
dY

e−|Y |e−iY tan θ

2α− iaY + ibY 2

∼
K↑∞

− Ĉk,l
2k
Im

∫
dY bY 2 ∂

∂(aY )

{
e−|Y |e−iY tan θ

2α− iaY

}
.

Now comes a trick: U ′′Y 2 ∂
∂(U ′Y ) = Y ∂(U ′(y)Y )

∂y
∂

∂(U ′(y)Y ) = Y ∂
∂y and, recalling that b =

U ′′/2k, we can put the derivative in y in front of the integral. This is a method to
recognize that our expression is a derivative in y and get the analytic expression of
the Reynolds stress. The idea to recognize a derivative seems to fall from nowhere, but
it comes in fact from the work (Srinivasan & Young 2014) and the expression they
derived for the Reynolds stress. In Fourier space, the incompressibility condition writes
Re
〈
vk,lω

∗
k,l

〉
= −∂yRe

〈
uk,lv

∗
k,l

〉
, we then get

−∂yRe
〈
uk,lv

∗
k,l

〉
∼

K↑∞
− Ĉk,l
4k2

∂

∂y
Im

∫
dY

Y e−|Y |e−iY tan θ

2α− iaY
and finally

Re
〈
uk,lv

∗
k,l

〉
∼

K↑∞
C +

Ĉk,l
4k2
Im

∫
dY

Y e−|Y |e−iY tan θ

2α− iaY
.

The integration procedure defines 〈uv〉 up to a constant. This constant has no influence on
the solution of equation (2.2). We are considering an unbounded space in the y-direction.



turbulent closure for Jupiter 37

Consider a profile U such that U → U0 at infinity. The Reynolds stress is vanishing for a
constant velocity profile, and this implies that the integration constant is zero. In general,
the expression of the Reynolds stress will depend on the boundary conditions.

Appendix C. Equivalence of the inertial small-scale regime and the
dissipative small-scale regime for monotonic profiles

In this appendix we prove that

Re 〈v∗θωθ〉 →
K→∞α→0

U ′′

U ′2
.

In section 4, we found the expression

Re 〈v∗θωθ〉 ∼
K→∞

− Ĉk,l
2k2
P

{∫
dY e−|Y |

cos(Y tan θ)

U
(
y − Y

k

)
− U(y)

}
.

This expression has no meaning for yc such that U ′(yc) = 0 because we have a quadratic
singularity in the integral. We therefore assume that U

(
y − Y

k

)
− U(y) vanishes only

at Y = 0. In fact, a more general calculation could show that the result is also valid if
U
(
y − Y

k

)
− U(y) has more than one zero, but not on the critical point yc. With this

assumption we get

P

{∫
dY e−|Y |

cos(Y tan θ)

U
(
y − Y

k

)
− U(y)

}
= lim
η→0

∫ −η
−∞ dY e−|Y | cos(Y tan θ)

U(y−Yk )−U(y)
+
∫ +∞
η

dY e−|Y | cos(Y tan θ)

U(y−Yk )−U(y)

=
∫ +∞
0

dY e−|Y | cos(Y tan θ)

{
1

U(y−Yk )−U(y)
+ 1

U(y+Y
k )−U(y)

}
=
∫ +∞
0

dY e−|Y | cos(Y tan θ)

{
U(y−Yk )+U(y+

Y
k )−2U(y)

(U(y−Yk )−U(y))(U(y+Y
k )−U(y))

}
→
k→∞

U′′

U′2

∫ +∞
0

dY e−|Y | cos(Y tan θ) = U′′

U′2
1

1+tan2 θ
.

We have used the relations U
(
y − Y

k

)
+ U

(
y + Y

k

)
− 2U(y) ∼ U ′′ Y

2

k2

and
(
U
(
y − Y

k

)
− U(y)

) (
U
(
y + Y

k

)
− U(y)

)
∼ U ′2 Y

2

k2 .
We have thus

Re 〈v∗θωθ〉 ∼
K→∞

− Ĉk,l
2k2

U ′′

U ′2
1

1 + tan2 θ
= − Ĉk,l

2K2

U ′′

U ′2
.

Finally, with the relation 1
2

∫∫
dk′dl′

Ĉk′,l′

K′2 = 1 when we integrate over the whole spec-
trum, we get the desired result.

Appendix D. Modified Rossby waves
In this appendix, we discuss the neutral modes of parabolic jets U(y) = γ y

2

2 .
We first note that for any parabolic jet, U ′′ − β does not change sign. Hence the

Rayleigh-Kuo criteria is satisfied and the jet has no unstable modes.
For a mean velocity U(y) = γ y

2

2 , we are looking for solutions of (2.17) of the form
ωk(y)e

−ikct. The equation writes

−ikcωk + ikγ
y2

2
ωk + ik(β − γ)Hk ∗ ωk = 0.
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We do the Fourier transform ω̂k(l) :=
∫
dyωk(y)e

−ily to obtain

−1

2

d2

dl2
ω̂k +

µ

k2 + l2
ω̂k =

c

γ
ω̂k, (D 1)

where µ := 1− β
γ . We recognize the eigenvalue problem for a Schrödinger operator with

a potential µ
k2+l2 , a result already obtained by Brunet (Brunet 1990). Using classical

results for this type of 1D Schrödinger equation, we can immediately conclude that
• There exists a solution ω̂k in L2 iff µ < 0 (attractive potential). In that case, the

corresponding eigenvalue is negative which implies that c
γ < 0. The condition µ < 0

imposes already γ > 0, so the phase velocity of Rossbywave is c < 0 and the wave is
outside of the continuous spectrum. We find for this particular configuration the classical
result that Rossby waves propagate with c < Umin.
• The number of modes n (|µ|) increases with |µ|, the depth of the potential well.

Modes organize into continuous families {Ωi (|µ|)}16i6n(|µ|), with energies Ei (|µ|) =
c
γ , when |µ| is changed. Ei (|µ|) are decreasing functions of |µ|. The families Ωi are
alternatively even and odd function with a number of nodes that increases with i. A new
set of modes appears for critical values µi. For µ = µi, the mode of the new family has
a zero energy Ei (|µi|) = 0.
To compute the eigenfunction of (D 1), for a given µ we use a bisection algorithm. We
divide the interval [µ, 0] in sufficiently small intervals [τi, τi+1] and compute the solution
of (D 1) with c

γ = τi. The solution diverges like an exponential at infinity, and when this
divergence changes sign between τi and τi+1, it means that we have an eigenfunction in
the interval, and we iterate the algorithm until τi+1 − τi is small enough. This way, we
obtain the Fourier transform of a mode, we just have to inverse the Fourier transform to
get the mode in real space. Then we project eily on these modes with the standard scalar
product on L2. figure (12) displays the 3 first eigenfunctions obtained with µ = −1.

REFERENCES

Andrews, DG & McIntyre, ME 1978 Generalized eliassen-palm and charney-drazin
theorems for waves on axismmetric mean flows in compressible atmospheres. Journal of
the Atmospheric Sciences 35 (2), 175–185.

Bakas, Nikolaos & Ioannou, Petros 2013 A theory for the emergence of coherent structures
in beta-plane turbulence. preprint arXiv:1303.6435 .

Bouchet, F. & Morita, H. 2010 Large time behavior and asymptotic stability of the 2D
Euler and linearized Euler equations. Physica D Nonlinear Phenomena 239, 948–966,
arXiv: 0905.1551.

Bouchet, Freddy, Nardini, Cesare & Tangarife, Tomás 2013 Kinetic theory of jet
dynamics in the stochastic barotropic and 2d navier-stokes equations. Journal of Statistical
Physics 153 (4), 572–625.

Bouchet, F, Nardini, C & Tangarife, T 2016 Kinetic theory and quasilinear theories of
jet dynamics. arXiv preprint arXiv:1602.02879, to be published in the book Zonal Flows,
edited by Boris Galperin, and to be published by Cambridge University Press. .

Bouchet, F. & Simonnet, E. 2009 Random Changes of Flow Topology in Two-Dimensional
and Geophysical Turbulence. Physical Review Letters 102 (9), 094504.

Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical
flows. Physics Reports 515, 227–295.

Brunet, Gilbert 1990 Dynamique des ondes de Rossby dans un jet parabolique.. Universite
McGill.

Constantinou, Navid C 2015 Formation of large-scale structures by turbulence in rotating
planets. arXiv preprint arXiv:1503.07644 .

Constantinou, Navid C, Ioannou, Petros J & Farrell, Brian F 2012 Emergence and
equilibration of jets in beta-plane turbulence. arXiv preprint arXiv:1208.5665 .



turbulent closure for Jupiter 39

y
-2 -1 0 1 2

ω
(y

) 
fo

r 
th

e
 f

ir
s
t 

th
re

e
 n

e
u

tr
a

l 
m

o
d

e
s

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Figure 12. The first three neutral modes (modified Rossby waves) obtained for µ = −1. Even
modes and odd modes alternate. The first mode vanishes only at infinity, and each new mode
has an additional zero.

Drazin, PG, Beaumont, DN & Coaker, SA 1982 On rossby waves modified by basic shear,
and barotropic instability. Journal of Fluid Mechanics 124, 439–456.

Drazin, Philip G & Reid, William Hill 2004 Hydrodynamic stability . Cambridge university
press.

Dritschel, D. G. & McIntyre, M. E. 2008 Multiple Jets as PV Staircases: The Phillips
Effect and the Resilience of Eddy-Transport Barriers. Journal of Atmospheric Sciences
65, 855.

Falkovich, Gregory 2016 Interaction between mean flow and turbulence in two dimensions.
In Proc. R. Soc. A, , vol. 472, p. 20160287. The Royal Society.

Farrell, B. F. & Ioannou, P. J. 1993 Stochastic Dynamics of Baroclinic Waves. Journal of
Atmospheric Sciences 50, 4044–4057.

Farrell, Brian F. & Ioannou, Petros J. 2003 Structural stability of turbulent jets. Journal
of Atmospheric Sciences 60, 2101–2118.

Farrell, B. F. & Ioannou, P. J. 2007 Structure and Spacing of Jets in Barotropic Turbulence.
Journal of Atmospheric Sciences 64, 3652.

Frishman, Anna, Laurie, Jason & Falkovich, Gregory 2017 Jets or vortices?what flows
are generated by an inverse turbulent cascade? Physical Review Fluids 2 (3), 032602.

Galperin, Boris, Sukoriansky, Semion & Huang, Huei-Ping 2001 Universal n- 5 spectrum
of zonal flows on giant planets. Physics of Fluids (1994-present) 13 (6), 1545–1548.

Galperin, Boris, Young, Roland MB, Sukoriansky, Semion, Dikovskaya, Nadejda,
Read, Peter L, Lancaster, Andrew J & Armstrong, David 2014 Cassini
observations reveal a regime of zonostrophic macroturbulence on jupiter. Icarus 229,
295–320.

Garcí, E, Sánchez-Lavega, A & others 2001 A study of the stability of jovian zonal winds
from hst images: 1995–2000. Icarus 152 (2), 316–330.



40 E. Woillez and F. Bouchet

Gill, Adrian E 1982 Atmosphere-ocean dynamics, , vol. 30. Academic press.
Ingersoll, Andrew P 1990 Atmospheric dynamics of the outer planets. Science 248 (4953),

308–315.
Ingersoll, Andrew P, Beebe, Reta F, Mitchell, Jim L, Garneau, Glenn W, Yagi,

Gary M & Müller, Jan-Peter 1981 Interaction of eddies and mean zonal flow on
jupiter as inferred from voyager 1 and 2 images. Journal of Geophysical Research A
86 (A10), 8733–8743.

Kolokolov, IV & Lebedev, VV 2016a Structure of coherent vortices generated by the inverse
cascade of two-dimensional turbulence in a finite box. Physical Review E 93 (3), 033104.

Kolokolov, IV & Lebedev, VV 2016b Velocity statistics inside coherent vortices generated
by the inverse cascade of 2-d turbulence. Journal of Fluid Mechanics 809.

Laurie, Jason, Boffetta, Guido, Falkovich, Gregory, Kolokolov, Igor & Lebedev,
Vladimir 2014 Universal profile of the vortex condensate in two-dimensional turbulence.
Physical review letters 113 (25), 254503.

Li, Liming, Ingersoll, Andrew P & Huang, Xianglei 2006 Interaction of moist convection
with zonal jets on jupiter and saturn. Icarus 180 (1), 113–123.

Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an Unstable Barotropic Jet
from a Cumulant Expansion. Journal of Atmospheric Sciences 65, 1955, arXiv: 0705.0011.

Nardini, Cesare & Tangarife, Tomás 2016 Fluctuations of large-scale jets in the stochastic
2d euler equation. arXiv preprint arXiv:1602.06720 .

Pedlosky, Joseph 1964 The stability of currents in the atmosphere and the ocean: Part ii.
Journal of the Atmospheric Sciences 21 (4), 342–353.

Pedlosky, J. 1982 Geophysical fluid dynamics. New York and Berlin, Springer-Verlag,
1982. 636 p.

Porco, Carolyn C, West, Robert A, McEwen, Alfred, Del Genio, Anthony D,
Ingersoll, Andrew P, Thomas, Peter, Squyres, Steve, Dones, Luke, Murray,
Carl D, Johnson, Torrence V & others 2003 Cassini imaging of jupiter’s
atmosphere, satellites, and rings. Science 299 (5612), 1541–1547.

Read, PL, Yamazaki, YH, Lewis, SR, Williams, Paul David, Miki-Yamazaki, K,
Sommeria, Joël, Didelle, Henri & Fincham, A 2004 Jupiter’s and saturn’s
convectively driven banded jets in the laboratory. Geophysical research letters 31 (22).

Reed, Michael & Simon, Barry 1978 Modern methods of mathematical physics. Analysis of
Operators, Academic Press .

Salyk, Colette, Ingersoll, Andrew P, Lorre, Jean, Vasavada, Ashwin & Del Genio,
Anthony D 2006 Interaction between eddies and mean flow in jupiter’s atmosphere:
Analysis of cassini imaging data. Icarus 185 (2), 430–442.

Sánchez-Lavega, A, Orton, GS, Hueso, R, García-Melendo, E, Pérez-Hoyos, S,
Simon-Miller, A, Rojas, JF, Gómez, JM, Yanamandra-Fisher, P, Fletcher, L
& others 2008 Depth of a strong jovian jet from a planetary-scale disturbance driven by
storms. Nature 451 (7177), 437–440.

Schneider, T. & Liu, J. 2009 Formation of Jets and Equatorial Superrotation on Jupiter.
Journal of Atmospheric Sciences 66, 579–+, arXiv: 0809.4302.

Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a
square box. Journal of Fluid Mechanics 170, 139–68.

Srinivasan, Kaushik & Young, WR 2014 Reynolds stress and eddy diffusivity of β-plane
shear flows. Journal of the Atmospheric Sciences 71 (6), 2169–2185.

Srinivasan, K. & Young, W. R. 2011 Zonostrophic Instability. Journal of the atmospheric
sciences 69 (5), 1633–1656.

Tangarife, Tomás 2015 Kinetic theory and large deviations for the dynamics of geophysical
flows. PhD thesis, Ecole normale supérieure de lyon-ENS LYON.

Vallis, Geoffrey K & Maltrud, Matthew E 1993 Generation of mean flows and jets on
a beta plane and over topography. Journal of physical oceanography 23 (7), 1346–1362.

Vasavada, Ashwin R & Showman, Adam P 2005 Jovian atmospheric dynamics: An update
after galileo and cassini. Reports on Progress in Physics 68 (8), 1935.

Williams, Gareth P 1978 Planetary circulations: 1. barotropic representation of jovian and
terrestrial turbulence. Journal of the Atmospheric Sciences 35 (8), 1399–1426.



turbulent closure for Jupiter 41

Woillez, E & Bouchet, F 2017 Theoretical prediction of reynolds stresses and velocity
profiles for barotropic turbulent jets. EPL (Europhysics Letters) 118 (5), 54002.


