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Uniform-in-time bounds for approximate solutions of the

drift-diffusion system

M. Bessemoulin-Chatard and C. Chainais-Hillairet

Abstract

In this paper, we consider a numerical approximation of the Van Roosbroeck’s drift–
diffusion system given by a backward Euler in time and finite volume in space discretization,
with Scharfetter-Gummel fluxes. We first propose a proof of existence of a solution to the
scheme which does not require any assumption on the time step. The result relies on the
application of a topological degree argument which is based on the positivity and on uniform-
in-time upper bounds of the approximate densities. Secondly, we establish uniform-in-time
lower bounds satisfied by the approximate densities. These uniform-in-time upper and lower
bounds ensure the exponential decay of the scheme towards the thermal equilibrium as shown
in [3].

1 Introduction

1.1 Aim of the paper

The aim of this paper is to establish uniform-in-time positive upper and lower bounds for a finite
volume approximation of the linear drift-diffusion system. This system has been introduced by
Van Roosbroeck in [34] in order to describe the transport of mobile carriers in semiconductor
devices. The Van Roosbroeck’s drift–diffusion system consists of two parabolic equations for
the electron density N and the hole density P , and a Poisson’s equation for the electrostatic
potential Ψ.
Let Ω be an open bounded subset of Rd (d = 2, 3) corresponding to the geometry of the device
and T > 0. The drift–diffusion system is then given by:

∂tN + div(−∇N +N∇Ψ) = −R(N,P ) in Ω× (0, T ), (1a)

∂tP + div(−∇P − P∇Ψ) = −R(N,P ) in Ω× (0, T ), (1b)

−λ2∆Ψ = P −N + C in Ω× (0, T ). (1c)

It is supplemented with initial conditions:

N(x, 0) = N0(x), P (x, 0) = P0(x), x ∈ Ω, (2)

and with mixed Dirichlet–Neumann boundary conditions. More precisely, the boundary ∂Ω is
split into ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, and the boundary conditions write:

N = ND, P = PD,Ψ = ΨD on ΓD, (3a)

∇N · ν = ∇P · ν = ∇Ψ · ν = 0 on ΓN , (3b)

where ν is the unit normal to ∂Ω outward to Ω.
The given function C(x) is the doping profile describing fixed background charges and λ is the
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rescaled Debye length. The recombination–generation rate R(N,P ) can usually be written under
the form R(N,P ) = R0(N,P )(NP−1) (see [29]), which includes in particular the Shockley-Read-
Hall term:

RSRH(N,P ) =
NP − 1

τPN + τNP + τC
, τP , τN , τC > 0,

or the Auger term:
RAU = (CNN + CPP )(NP − 1).

Existence of solutions to the system (1)–(3) has been proved under natural assumptions by Mock
[30] and Gajewski and Gröger [21]. The question of uniqueness of the transient solutions has been
investigated by the same authors in [30] and [20]. Uniform-in-time upper and lower bounds for
the densities can be shown by using an approach proposed by Alikakos [1] for nonlinear reaction-
diffusion equations, closely related to an iteration technique initially introduced by Moser [31].
Let us also mention that a bound of the internal energy is needed in order to initialize the
Moser iteration process and that it is obtained thanks to an energy/energy dissipation relation.
The proof of the uniform-in-time upper and lower bounds can be found in [20, Lemmas 3 and
8] for the linear drift–diffusion system (1). In [20], the positive lower bound is obtained by
controlling uniformly-in-time the inverse of the densities. The linearity of the diffusion terms in
the system (1) is based on the assumption of Boltzmann statistics followed by the charge carriers.
Other statistics lead to nonlinear drift-diffusion systems. The case of Fermi–Dirac statistics is
considered for instance by Gajewski and Gröger in [21] and existence of solutions, bounds and
long-time behavior are also established. In [21], the uniform positive lower bound is proved by
bounding the logarithm of the densities. The same type of results have been proved using similar
arguments for generalized drift–diffusion systems describing more than two charged species [23].
Many different numerical methods have already been designed for the approximation of the linear
drift–diffusion system. It started with 1D finite difference methods and the so-called Scharfetter-
Gummel scheme [33]. Finite element methods have been successfully developed in [2, 12, 32]
for instance, as mixed exponential fitting finite element schemes in [7]. Finite volume schemes
have also been proposed and studied from different viewpoints: convergence in [10], large time
behavior in [8, 11, 3], study at the quasi-neutral limit λ→ 0 in [6].

In this paper, we consider a backward Euler in time and finite volume in space scheme with a
Scharfetter-Gummel approximation of the convection-diffusion fluxes. One main feature of this
scheme is that it preserves the thermal equilibrium (steady-state where the densities of current
vanish). It satisfies a discrete energy/energy dissipation estimate as established by Gajewski
and Gärtner in [19] and by Chatard in [11]. Thanks to this estimate and some functional
inequalities, the exponential decay towards the equilibrium of the Scharfetter-Gummel scheme is
established in [3]. However, the proof of the exponential decay is also based on uniform-in-time
positive upper and lower bounds of the approximate densities. Such a result is easily obtained
when the doping profile C vanishes and, in this case, the values of the bounds do only depend
on the upper and lower bounds of the initial and boundary densities. With a non-vanishing
doping profile, existence of a solution to the scheme is proved in [3] thanks to Brouwer’s fixed
point theorem, using exponentially growing upper bounds and exponentially decreasing lower
bounds on the densities. With this technique of proof, a strong assumption on the time step ∆t,

∆t ≤ ‖C‖∞λ2 , is needed in order to get the bounds and the existence result. But, based on this
existence result, uniform-in-time upper bounds have been then proved by Bessemoulin-Chatard,
Chainais-Hillairet and Jüngel in [5] by application of the Moser iteration process at the discrete
level.
Our aim in the current paper is twice: we want first to propose a new proof of existence of
a solution to the scheme without any restrictive assumption on ∆t. This proof will rely on
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the application of a topological degree argument. It will use the uniform-in-time upper bounds
already proved in [5]. Then, we want to prove the positivity of the approximate densities and
some uniform-in-time positive lower bounds.

Throughout the paper, we assume that the domain Ω is an open bounded polygonal (or poly-
hedral) subset of Rd (d = 2, 3) and that ∂Ω = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅ and ΓD of positive
measure. We assume that the Dirichlet boundary conditions ND, PD and ΨD are traces of
some functions defined on the whole domain Ω, still denoted by ND, PD and ΨD and that the
recombination-generation rate writes

R(N,P ) = R0(N,P )(NP − 1). (4)

Finally, we consider the following standard assumptions on the data:

(H1) C ∈ L∞(Ω),

(H2) ND, PD ∈ L∞ ∩H1(Ω), ΨD ∈ H1(Ω),

(H3) ∃αD ∈ R such that logND −ΨD = αD and logPD + ΨD = −αD.

(H4) ∃M, m > 0 such that m ≤ N0, P0, N
D, PD ≤M a.e. on Ω or ΓD,

(H5) ∃R̄ > 0 such that 0 ≤ R0(N,P ) ≤ R̄(1 + |N |+ |P |) ∀N, P ∈ R.

Let us just remark that hypothesis (H3) means that the boundary data are in thermal equilibrium.
It implies that NDPD = 1.

1.2 The numerical scheme

In order to introduce the numerical scheme for the drift-diffusion system (1)–(3), we first define
the mesh of the domain Ω. It is given by a family T of open polygonal (or polyhedral in 3D)
control volumes, a family E of edges (or faces), and a family P = (xK)K∈T of points. As it
is classical in the finite volume discretization of diffusive terms with two-points flux approxi-
mations, we assume that the mesh is admissible in the sense of [16, Definition 9.1]. It implies
that the straight line between two neighboring centers of cells (xK , xL) is orthogonal to the edge
σ = K|L.
In the set of edges E , we distinguish the interior edges σ = K|L ∈ Eint and the boundary edges
σ ∈ Eext. Within the exterior edges, we distinguish the Dirichlet boundary edges included in ΓD

from the Neumann boundary edges included in ΓN : Eext = EDext ∪ ENext. For a control volume
K ∈ T , we define EK the set of its edges, which is also split into EK = EK,int ∪ EDK,ext ∪ ENK,ext.
For each edge σ ∈ E , there exists at least one cell K ∈ T such that σ ∈ EK , which will be denoted
Kσ. In the case where σ = K|L ∈ Eint, Kσ can be either equal to K or L.
In the sequel, we denote by d the distance in Rd and m the measure in Rd or Rd−1. For all σ ∈ E ,
we define dσ = d(xK , xL) if σ = K|L ∈ Eint and dσ = d(xK , σ) if σ ∈ Eext, with σ ∈ EK . Then
the transmissibility coefficient is defined by τσ = m(σ)/dσ, for all σ ∈ E . Notations introduced
are illustrated in Figure 1.

We assume that the mesh satisfies the following regularity constraint:

∃ξ > 0 such that d(xK , σ) ≥ ξ dσ, ∀K ∈ T , ∀σ ∈ EK . (5)

We also assume that the mesh satisfies the following nondegeneracy property:

∃τm > 0 such that τσ ≥ τm, ∀σ ∈ E . (6)
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Figure 1: Admissible mesh.

This property is for example fulfilled by meshes satisfying: there exists α, β > 0 such that

α size(T )2 ≤ m(K) ≤ β size(T )2 ∀K ∈ T , (7)

α size(T ) ≤ m(σ) ≤ β size(T ) ∀σ ∈ E ,

where the size of the mesh is defined by size(T ) = maxK∈T diam(K). Assumptions (7) are rather
classical and close to those used within the finite element framework.
Let ∆t > 0 be the time step. For T > 0, we set NT the integer part of T/∆t and tn = n∆t
for all n = 0 . . . NT . We denote by δ = max(∆t, size(T )) the size of the space–time discretization.

A finite volume scheme with two-point flux approximation provides, for an unknown u, a vector
uT = (uK)K∈T ∈ Rθ (with θ = Card(T )) of approximate values. A piecewise constant function,
still denoted uT , can be defined by

uT =
∑
K∈T

uK1K ,

where 1K denotes the characteristic function of the cell K. However, since there are Dirichlet
boundary conditions on a part of the boundary, we also need to define approximate values for u at

the corresponding boundary edges: uED = (uσ)σ∈EDext ∈ RθD (with θD = Card(EDext)). Therefore,
the vector containing the approximate values both in the control volumes and at the Dirichlet
boundary edges is denoted by uM = (uT , uED ). We denote by X(M) the set of the discrete
functions uM.
For any vector uM = (uT , uED ), we define for all K ∈ T and all σ ∈ EK :

uK,σ =


uL if σ = K|L ∈ EK,int,
uσ if σ ∈ EDK,ext,
uK if σ ∈ ENK,ext,

(8)
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and
DK,σu = uK,σ − uK , Dσu = |DK,σu|.

Then, we can define the discrete H1-seminorm | · |1,M on X(M) by

|uM|21,M =
∑
σ∈E

τσ(Dσu)2, ∀uM ∈ X(M).

Let us now introduce the numerical scheme. We have to define at each time step n = 0, . . . , NT
the approximate solution unT = (unK)K∈T for u = N, P, Ψ and the approximate values at the
boundary unED = (unσ)σ∈EDext (which in fact do not depend on n since the boundary data do not
depend on time). First of all, we discretize the initial and boundary conditions:(

N0
K , P

0
K

)
=

1

m(K)

∫
K

(N0(x), P0(x)) dx, ∀K ∈ T , (9)

(
ND
σ , P

D
σ ,Ψ

D
σ

)
=

1

m(σ)

∫
σ

(
ND(γ), PD(γ),ΨD(γ)

)
dγ, ∀σ ∈ EDext, (10)

and we define

Nn
σ = ND

σ , Pnσ = PDσ , Ψn
σ = ΨD

σ , ∀σ ∈ EDext, ∀n ≥ 0. (11)

Then, we consider a backward Euler in time and finite volume in space discretization of the
drift–diffusion system (1). The scheme writes:

m(K)
Nn+1
K −Nn

K

∆t
+
∑
σ∈EK

Fn+1
K,σ = −m(K)R(Nn+1

K , Pn+1
K ), ∀K ∈ T ,∀n ≥ 0, (12)

m(K)
Pn+1
K − PnK

∆t
+
∑
σ∈EK

Gn+1
K,σ = −m(K)R(Nn+1

K , Pn+1
K ), ∀K ∈ T ,∀n ≥ 0, (13)

− λ2
∑
σ∈EK

τσDK,σΨn = m(K)(PnK −Nn
K + CK), ∀K ∈ T ,∀n ≥ 0. (14)

It remains to define the numerical fluxes Fn+1
K,σ and Gn+1

K,σ . We choose to discretize simultaneously
the diffusive part and the convective part of the fluxes by using the Scharfetter–Gummel fluxes:
for all K ∈ T , for all σ ∈ EK , we set:

Fn+1
K,σ = τσ

[
B
(
−DK,σΨn+1

)
Nn+1
K −B

(
DK,σΨn+1

)
Nn+1
K,σ

]
, (15)

Gn+1
K,σ = τσ

[
B
(
DK,σΨn+1

)
Pn+1
K −B

(
−DK,σΨn+1

)
Pn+1
K,σ

]
, (16)

where B is the Bernoulli function defined by

B(0) = 1 and B(x) =
x

exp(x)− 1
∀x 6= 0. (17)

These fluxes have been first introduced by Il’in in [26] and Scharfetter and Gummel in [33] in a
1D finite difference framework. They are second order accurate in space, as shown by Lazarov,
Mishev and Vassilevski in [28]. They also preserve steady–states. In [19], the dissipativity
of the implicit Scharfetter–Gummel scheme is proved; an energy/energy dissipation relation
is also established in [11], leading to the study of the long–time behavior of the Scharfetter–
Gummel scheme for the linear drift–diffusion system. The exponential decay towards the thermal
equilibrium is obtained in [3] under assumption of uniform-in-time upper and lower bounds for
the approximate charge carrier densities. In [24], some bounds for discrete steady–states solutions
obtained with the Scharfetter–Gummel scheme are established.
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Remark 1. Using definition (8) of uK,σ for σ ∈ ENK,ext and the fact that B(0) = 1, we recover

as expected from the continuous framework the zero flux boundary conditions on ΓN :

FK,σ = 0, GK,σ = 0 ∀K ∈ T , σ ∈ ENK,ext.

In the sequel, we denote by (S) the scheme defined by (9)–(17).

1.3 Main result and outline of the article

In this article, our aim is to adapt the ideas developed by Gajewski and Gröger in [20, 21, 22]
to the discrete framework in order to obtain uniform-in-time upper and lower bounds for the
approximate densities Nn

T , PnT obtained with the implicit Scharfetter-Gummel scheme (S). In
practice, the proof of the bounds will also ensure the existence of a solution to the numerical
scheme thanks to a topological degree argument.
In order to get the uniform-in-time L∞-bounds, we apply a Nash-Moser type iteration method
based on Lr bounds [1, 31]. This method has already been applied in a discrete framework by
Fiebach, Glitzky and Linke in [17] for reaction-diffusion systems arising in electrochemistry.

Our main result is stated in the following theorem.

Theorem 1. Let (H1)–(H5) be fulfilled. LetM = (T , E ,P) be an admissible mesh of Ω satisfying
(5) and (6). We also assume that the time step satisfies ∆t ≤ 1.
Then there exists a solution (Nn

T , P
n
T ,Ψ

n
T )n≥0 to the scheme (S), such that the approximate

densities satisfy the following uniform-in-time upper and lower bounds:
∃D, E > 0 such that

0 < D ≤ Nn
K , P

n
K ≤ E ∀K ∈ T , ∀n ≥ 0. (18)

These constants D and E are independent of the discretization size δ, and depend only on the
data, namely the boundary conditions ND, PD, ΨD, the initial conditions N0, P 0, the doping
profile C, the Debye length λ, the domain Ω and the regularity constraints ξ and τm.

This theorem establishes the assumptions needed to prove the exponential decay of approximate
solutions given by the scheme (S) towards an approximation of the thermal equilibrium [3,
Theorem 3.1].
As mentioned above, the proof of (18) applies a Nash-Moser type iteration method [1, 31]. It
also follows ideas developed in [15, 35, 36]. Since we deal here with equations on a bounded
domain, we have to take care about the boundary conditions. Therefore, as in [27], we establish
the uniform upper bound for NM = (N −M)+ and PM = (P −M)+, where M is given in
(H4), instead of N and P . Moreover, the positive lower bound is obtained as in [17, 21] by
establishing a L∞ bound for an appropriate function of the logarithm of the densities. In both
cases, application of the Moser iteration technique needs a convenient initial a priori bound in
some Lp norm, p ≥ 1. This starting point of the bootstrapping procedure is provided in the case
of the upper bound by an energy/energy dissipation relation which yields uniform-in-time L1

bound. In the case of the lower bound, we establish an appropriate uniform-in-time L2 bound
to initialize the method.

The outline of the article is as follows. In Section 2, we propose a new proof of existence of a
solution to the implicit Scharfetter-Gummel scheme which does not necessitate any assumption
on the time step. This result is based on a topological degree argument which requires some a
priori estimates. We will use and recall the uniform-in-time upper bound for the approximate
densities proved in [5]. We will also obtain the positivity of the approximate densities, which
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allows us to consider the appropriate test functions involving the logarithm of the densities to
prove uniform-in-time lower bounds in Section 3. The most technical results are detailed in the
Appendix to lighten the presentation. We finally present in Section 4 some numerical experiments
illustrating the presented theoretical results.

2 Existence of a solution to the scheme

We first state the existence of a solution to the scheme, with a uniform-in-time upper bound and
the positivity of the approximate densities.

Proposition 1. Let (H1)–(H5) be fulfilled. LetM = (T , E ,P) be an admissible mesh of Ω satis-
fying (5) and (6) and let ∆t > 0. Then, for all T > 0, there exists a solution (Nn

T , P
n
T ,Ψ

n
T )0≤n≤NT

to the scheme (S), which satisfies the following L∞ estimates for the approximate densities:

0 < Nn
K , P

n
K ≤ E, ∀n = 0, . . . , NT , ∀K ∈ T , (19)

where E is only depending on the data and independent of δ and T .

Proposition 1 will be proved by applying a topological degree argument, similar to Leray-
Schauder’s fixed point theorem [14, 25]. For κ ∈ [0, 1], we introduce a scheme (Sκ) defined
by: ∀K ∈ T , ∀n ≥ 0,

m(K)
Nn+1
K −Nn

K

∆t
+
∑
σ∈EK

F̂n+1
K,σ = −κm(K)R(Nn+1,+

K , Pn+1,+
K ), (20)

m(K)
Pn+1
K − PnK

∆t
+
∑
σ∈EK

Ĝn+1
K,σ = −κm(K)R(Nn+1,+

K , Pn+1,+
K ), (21)

− λ2
∑
σ∈EK

τσDK,σΨn = κm(K)(PnK −Nn
K + CK), (22)

where the numerical fluxes F̂n+1
K,σ , Ĝn+1

K,σ are given by:

F̂n+1
K,σ = τσ

[
B
(
−DK,σΨn+1

)
Nn+1,+
K −B

(
DK,σΨn+1

)
Nn+1,+
K,σ

]
, (23)

Ĝn+1
K,σ = τσ

[
B
(
DK,σΨn+1

)
Pn+1,+
K −B

(
−DK,σΨn+1

)
Pn+1,+
K,σ

]
, (24)

with the notation x+ = max(x, 0) for the nonnegative part of x. The scheme is supplemented
with the initial and boundary conditions (9), (10) and (11). Let us remark that, in order to
lighten the notations, we do not write the dependency of the unknowns with respect to κ : we
keep the notation (Nn

K , P
n
K ,Ψ

n
K) even if it could be written (Nn,κ

K , Pn,κK ,Ψn,κ
K ).

The proof of Proposition 1 is split into 4 steps. Assuming that the scheme (Sκ) has a solution,
we first establish the positivity of the densities (Nn

K , P
n
K)K∈T ,n≥0 (Lemmas 1 and 2). It implies

that a solution to (Sκ) can be seen as a solution to (S) with κR instead of R and λ2/κ instead
of λ2 for κ ∈ (0, 1]. We then recall a discrete energy/energy dissipation inequality (Proposition
2) and its consequences (Proposition 3). Using these preliminary results, we establish in Section
2.3 a uniform-in-time upper bound for the approximate densities. This bound is also uniform
with respect to κ ∈ [0, 1]. Finally in Section 2.4, we apply a topological degree argument based
on the a priori estimates to prove the existence of a solution to the initial scheme (S).
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2.1 Positivity of the densities

We first prove the nonnegativity of the approximate densities obtained with the scheme (Sκ). It
implies that a solution to (S1) is necessarily a solution to (S).

Lemma 1. Under the assumptions of Proposition 1, let assume that there exists a solution
(Nn
T , P

n
T ,Ψ

n
T )0≤n≤NT to the scheme (Sκ) for κ ∈ [0, 1]. Then the obtained approximate densities

are nonnegative:
Nn
K , P

n
K ≥ 0 ∀K ∈ T ,∀n = 0, . . . , NT .

Proof. We proceed by induction. The result holds for n = 0. We assume it for a given n. Then,
multiplying the scheme (20) by Nn+1,−

K = min(Nn+1
K , 0) and summing over K ∈ T , we get:

T1 + T2 = T3, (25)

with

T1 =
∑
K∈T

m(K)
Nn+1
K −Nn

K

∆t
Nn+1,−
K ,

T2 =
∑
K∈T

∑
σ∈EK

F̂n+1
K,σ N

n+1,−
K ,

T3 = −κ
∑
K∈T

m(K)R(Nn+1,+
K , Pn+1,+

K )Nn+1,−
K .

Classically, due to the induction hypothesis and since x−(x − y) ≥ 1
2

(
(x−)2 − (y−)2

)
(with

x− = min(x, 0)), we have

T1 ≥
1

2

∑
K∈T

m(K)

∆t

(
Nn+1,−
K

)2

.

Moreover, using the definition (4) and the nonnegativity of R0, we have

T3 = κ
∑
K∈T

m(K)R0(Nn+1,+
K , Pn+1,+

K )Nn+1,−
K ≤ 0.

Then, using the definition (23) of the modified numerical flux, and performing a discrete inte-
gration by parts, we have

T2 = −
∑
σ∈E

τσ

[
B
(
−DK,σΨn+1

)
Nn+1,+
K −B

(
DK,σΨn+1

)
Nn+1,+
K,σ

] (
Nn+1,−
K,σ −Nn+1,−

K

)
= −

∑
σ∈E

τσ

[
B
(
−DK,σΨn+1

)
Nn+1,+
K Nn+1,−

K,σ +B
(
DK,σΨn+1

)
Nn+1,+
K,σ Nn+1,−

K

]
.

But since B(x) ≥ 0 for all x ∈ R and x+ ≥ 0, x− ≤ 0 for all x, we finally get that T2 ≥ 0. Using
this in (25), we obtain that ∑

K∈T
m(K)

(
Nn+1,−
K

)2

≤ 0,

from which we deduce that Nn+1
K ≥ 0 for all K ∈ T . Finally, we proceed exactly in the same

way for P .

Thanks to the nonnegativity of the approximate densities, we are now able to prove their posi-
tivity.
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Lemma 2. Under the assumptions of Proposition 1, let assume that there exists a solution
(Nn
T , P

n
T ,Ψ

n
T )0≤n≤NT to the scheme (Sκ) for κ ∈ [0, 1]. Then the approximate densities are

positive:
Nn
K , P

n
K > 0 ∀n ≥ 0, ∀K ∈ T . (26)

Proof. Once again, we proceed by induction. The result holds for n = 0. We assume that for a
given n, Nn

K > 0 and PnK > 0 for all K ∈ T . We already know that Nn+1
K ≥ 0 and Pn+1

K ≥ 0 for
all K ∈ T . Let us assume that there is a K ∈ T such that Nn+1

K = 0. Then the scheme (20)
yields:

−m(K)

∆t
Nn
K =

∑
σ∈EK

τσB
(
DK,σΨn+1

)
Nn+1,+
K,σ + κm(K)R0(0, Pn+1,+

K ) ≥ 0,

which is in contradiction with the induction assumption. We deduce thatNn+1
K > 0, and similarly

that Pn+1
K > 0, for all K ∈ T .

2.2 Discrete energy/energy dissipation inequality

In all this subsection, we assume that there exists a solution (Nn
T , P

n
T ,Ψ

n
T )0≤n≤NT to the scheme

(Sκ). Due to the positivity of the densities established in Lemma 2, we note that we can let down
the positive parts in the definition of the numerical fluxes (23) and (24) and in the recombination-
generation terms.
We now recall an estimate relating the discrete relative energy and its dissipation. To define this
discrete relative energy, we need to introduce an approximation of the thermal equilibrium. This
equilibrium is a steady state for which electron and hole currents, ∇N −N∇Ψ and ∇P +P∇Ψ,
vanish, as the recombination-generation term. For the original system (1)-(2), it is defined by

N∗ = exp(αD + Ψ∗)

P ∗ = exp(−αD −Ψ∗)

−λ2∆Ψ∗ = exp(−αD −Ψ∗)− exp(αD + Ψ∗) + C

Ψ∗ = ΨD on ΓD, ∇Ψ∗ · ν = 0 on ΓN ,

where αD is defined by (H3).
For every value of κ ∈ [0, 1], we can define the following finite volume scheme: ∀K ∈ T ,

−λ2
∑
σ∈EK

τσDK,σΨ∗ = κm(K)
(
exp(−αD −Ψ∗K)− exp(αD + Ψ∗K) + CK

)
, (27)

N∗K = exp(αD + Ψ∗K), (28)

P ∗K = exp(−αD −Ψ∗K). (29)

This scheme has been introduced and studied by Chainais-Hillairet and Filbet in [8] in the case
where κ = 1: existence and uniqueness of a solution to this nonlinear scheme have been proved.
However, the proof still works for κ ∈ (0, 1] and the existence and uniqueness result is still
well-known for κ = 0.
Let H(x) = x log(x) − x + 1. For κ ∈ [0, 1], we define a discrete relative energy functional
(En(κ))n≥0 by:

En(κ) =
∑
K∈T

m(K) (H(Nn
K)−H(N∗K)− log(N∗K)(Nn

K −N∗K)

+H(PnK)−H(P ∗K)− log(P ∗K)(PnK − P ∗K)) +
λ2

2κ
|Ψn
M −Ψ∗M|

2
1,M ,∀κ > 0 (30)
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and

En(0) =
∑
K∈T

m(K) (H(Nn
K)−H(N∗K)− log(N∗K)(Nn

K −N∗K)

+H(PnK)−H(P ∗K)− log(P ∗K)(PnK − P ∗K)) . (31)

We also define the discrete energy dissipation functional (In(κ))n≥0 by: ∀κ ∈ [0, 1],

In(κ) =
∑
σ∈E

τσ

[
min(Nn

K , N
n
K,σ) (Dσ(log(Nn)−Ψn))

2

+ min(PnK , P
n
K,σ) (Dσ(log(Pn) + Ψn))

2
]

+ κ
∑
K∈T

m(K)R(Nn
K , P

n
K) log(Nn

KP
n
K). (32)

We now give the discrete energy/energy dissipation inequality and some first consequences.

Proposition 2. Let (H1)–(H5) be fulfilled and let M = (T , E ,P) be an admissible mesh of Ω.
Let κ ∈ [0, 1] and assume that the scheme (Sκ) has a solution (Nn

T , P
n
T ,Ψ

n
T )n≥0. Then, for all

n ≥ 0, we have :
0 ≤ En+1(κ) + ∆tIn+1(κ) ≤ En(κ). (33)

Furthermore, if the mesh satisfies the regularity assumption (5), there exists a constant CE > 0
depending only on the boundary conditions ND, PD, ΨD, the initial conditions N0, P 0, the
doping profile C, the Debye length λ, the domain Ω and the regularity constraint ξ given in (5)
such that for all n ≥ 0 and for all κ ∈ [0, 1],

0 ≤ En(κ) ≤ E0(κ) ≤ CE. (34)

Proof. The proof of (33) is given in [11] for the case where κ = 1. It can be extended to the case
κ ∈ (0, 1] just replacing R by κR and λ2 by λ2/κ. When κ = 0, we note that Ψn

M = Ψ∗M for all
n ≥ 0, so that the proof given in [11] also gives (33) in the case κ = 0.
Summing (33) over k = 0, . . . , n, we get that

0 ≤ En+1(κ) +

n∑
k=0

∆tIk+1(κ) ≤ E0(κ) ∀n ≥ 0.

Provided that E0(κ) is bounded and Ik(κ) is nonnegative for all k ≥ 0, this gives a uniform-in-
time and uniform-in-κ estimate for En(κ).
Therefore, it remains to establish the boundedness of E0(κ). It is proved in [8, Theorem 2.1] that
there exists a constant C > 0 only depending on ΨD and λ (and in particular not depending on
κ) such that:

|Ψ∗K | ≤ C ∀K ∈ T . (35)

Then using the definitions (28) and (29), we deduce that there exists m∗ > 0 and M∗ > 0 such
that

m∗ ≤ N∗K , P ∗K ≤M∗ ∀K ∈ T ,

and we can choose m∗ ≤ m and M∗ ≥M . As the function H satisfies the following inequality:

∀x, y > 0, H(y)−H(x)− log(x)(y − x) ≤ 1

min(x, y)

(y − x)2

2
,
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we deduce that∑
K∈T

m(K)
[
H(N0

K)−H(N∗K)− log(N∗K)(N0
K −N∗K)

]
≤ m(Ω)

(M∗ −m∗)2

2m∗
,

and the same inequality holds for P , which gives a bound for E0(0). In order to bound E0(κ) for
κ ∈ (0, 1], it remains to bound

λ2

2κ

∣∣Ψ0
M −Ψ∗M

∣∣2
1,M .

But, subtracting the scheme for Ψ0 and the scheme for Ψ∗, we get :

−λ2
∑
σ∈EK

τσDK,σ(Ψ0 −Ψ∗) = κm(K)(P 0
K −N0

K − P ∗K +N∗K) ∀K ∈ T .

Then, multiplying this relation by (Ψ0
K − Ψ∗K), summing over K ∈ T and using standard tech-

niques like discrete integration by parts, discrete Poincaré inequality (see for instance [16, 4])
and the bounds on N0, P 0, N∗ and P ∗, we get that there exists C not depending on κ such that:

λ2

2κ

∣∣Ψ0
M −Ψ∗M

∣∣2
1,M ≤ Cκ ≤ C ∀κ ∈ (0, 1],

which concludes the proof.

From Proposition 2, we can deduce in particular the following result which is useful in what
follows:

Proposition 3. Let (H1)–(H5) be fulfilled, and let M = (T , E ,P) be an admissible mesh of Ω.
For κ ∈ [0, 1], we assume that the scheme (Sκ) has a solution (Nn

T , P
n
T ,Ψ

n
T )K∈T ,n≥0. If the mesh

M also satisfies (5) and (6), there exists a constant γ ∈ (0, 1] independent of n and κ such that:

B(DσΨn+1) ≥ γ ∀σ ∈ E , ∀n ≥ 0. (36)

Proof. From (34), we have En(κ) ≤ CE for all n ≥ 0 and for all κ ∈ [0, 1], and from the definition
of the discrete relative energy, this implies that for κ ∈ (0, 1]:

λ2

2
|Ψn+1
M −Ψ∗M|21,M ≤ CEκ ≤ CE ∀n ≥ 0.

Then, thanks to (6), we get that

(Dσ(Ψn+1 −Ψ∗))2 ≤ 2CE

λ2τm
∀σ ∈ E .

Using the L∞ estimate on Ψ∗T , we deduce the existence of CΨ depending only on the data
ND, PD, ΨD, N0, P 0, the doping profile C, the Debye length λ, the domain Ω, the regularity
constraints ξ and τm, such that

0 ≤ DσΨn+1 ≤ CΨ ∀σ ∈ E , ∀n ≥ 0. (37)

Then the definition of the Bernoulli function ensures (36) with γ ∈ (0, 1] for κ ∈ (0, 1]. The
result is straightforward for κ = 0.
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2.3 Uniform-in-time upper bound

We still assume the existence of a solution (Nn
T , P

n
T ,Ψ

n
T )0≤n≤NT to the scheme (Sκ) for κ ∈ [0, 1].

For κ = 0, there is a discrete maximum principle for Nn
T and PnT for each n ≥ 0, so that the

uniform-in-time upper bound is clearly satisfied.
Let κ ∈ (0, 1]. We now prove the following uniform-in-time upper bound for the approximate
densities Nn

T and PnT : there exists E as in Proposition 1 such that

0 < Nn
K , P

n
K ≤ E, ∀K ∈ T ,∀n ≥ 0,∀κ ∈ (0, 1].

This result is established in [5] for κ = 1. We recall here the guidelines of the proof which still
hold for κ ∈ (0, 1]. The crucial point is that the constants in Proposition 4 do not depend on κ
when κ ≤ 1.
Since we have to take care about the boundary conditions, we define

Nn
M,K = (Nn

K −M)+, PnM,K = (PnK −M)+, ∀K ∈ T , ∀n ≥ 0,

where M is the upper bound of the initial and boundary conditions given in (H4). Our aim is
to prove that Nn

M,T and PnM,T are uniformly bounded.

Let us set
V nq =

∑
K∈T

m(K)
[
(Nn

M,K)q + (PnM,K)q
]
, ∀n ≥ 0, ∀q ≥ 1,

and
Wn
k = V n2k ∀n ∈ N, ∀k ∈ N.

The aim is to prove that there is a constantM > 0 such that Wn
k ≤M

2k

, from which we deduce

a L2k bound for the approximate densities which is uniform in k, and finally the L∞ bound by
letting k tend to ∞.
The first step is the following result about the time evolution of V nq+1, proved in [5].

Proposition 4. Let (H1)–(H5) be fulfilled, and let M = (T , E ,P) be an admissible mesh satis-
fying the nondegeneracy assumption (6). Then there exist positive constants µ and ν such that
for all q ≥ 1, for all n ≥ 0,

1

∆t

(
V n+1
q+1 − V nq+1

)
+

4q

q + 1
γ
∑
σ∈E

[
(Dσ(Nn+1

M )
q+1
2 )2 + (Dσ(Pn+1

M )
q+1
2 )2

]
≤ µqV n+1

q+1 + νm(Ω),

(38)
where γ ∈ (0, 1] is the constant defined in (36).

Then, the aim is to control the term V n+1
q+1 appearing on the right-hand side of (38). To do this,

we use the discrete Nash inequality [4, Corollary 4.5] which reads for functions χM vanishing on
a part of the boundary ΓD as:(∑

K∈T
m(K)χ2

K

)1+ 2
d

≤ C̃

ξ

(∑
σ∈E

τσ(Dσχ)2

)(∑
K∈T

m(K)|χK |

) 4
d

,

where ξ is given in (5) and C̃ only depends on Ω and the space dimension d. Thanks to Young’s
inequality, it follows that for ε > 0, up to a change of the value of C̃,

∑
K∈T

m(K)χ2
K ≤

C̃

εd/2ξd/2

(∑
K∈T

m(K)|χK |

)2

+ ε

(∑
σ∈E

τσ(Dσχ)2

)
. (39)
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Applying this inequality to χ =
(
Nn+1
M

) q+1
2 and χ =

(
Pn+1
M

) q+1
2 , we have

V n+1
q+1 ≤

C̃

(εξ)d/2

(
V n+1
q+1
2

)2

+ ε
∑
σ∈E

[(
Dσ(Nn+1

M )
q+1
2

)2

+
(
Dσ(Pn+1

M )
q+1
2

)2
]
. (40)

Arguing similarly as in [15] and using the fact that γ ∈ (0, 1], we can find A > 0 depending only
on µ such that

γA

q

(
µq +

γA

q

)
≤ 4γq

q + 1
, ∀q ≥ 1.

Therefore, multiplying (40) by µq+ ε(q) with ε(q) = γA/q and adding the resulting equation to
(38), we infer that

V n+1
q+1 − V nq+1

∆t
≤−ε(q)V n+1

q+1 +νm(Ω)+
C̃

ε(q)d/2ξd/2
(µq + ε(q))

(
V n+1
q+1
2

)2

. (41)

We now use this estimate to prove the uniform bound on the approximate densities by a Moser
iteration technique. The definitions of M and the initial condition ensure that W 0

k = 0 for all
k ∈ N. Moreover, the discrete energy/energy dissipation inequality (34) ensures that En(κ) ≤ CE
for all n ≥ 0 and applying the inequalities

∀x, y > 0 x log
x

y
− x+ y ≥ (

√
x−√y)2 ≥ x

2
− y,

we deduce a uniform bound of Wn
0 for all n ≥ 0. With q = 2k− 1 = ζk and εk = γA/ζk, we infer

from (41) that

Wn+1
k −Wn

k

∆t
≤ −εkWn+1

k + B̃
(
ζ
d/2
k (ζk + εk)(Wn+1

k−1 )2 + 1
)

(42)

with

B̃ = γ−d/2 max{νm(Ω),
C̃

ξd/2
A−d/2,

C̃

ξd/2
A−d/2µ}.

Setting Mk := supn≥0W
n
k and δk = B̃ζ

d/2
k (ζk + εk)/εk, we then have

Wn
k ≤ δk(M2

k−1 + 1) ∀n ≥ 0. (43)

Since (Wn
0 )n≥0 is uniformly bounded, we then define

M = max(1,M0) = max(1, sup
n≥0

Wn
0 ) < +∞.

Using (43), we obtain by induction that for k ≥ 0,

Wn
k ≤ 2δk(2δk−1)2 . . . (2δ1)2k−1

M2k ∀n ≥ 0,

remarking that Mk = 2δk(2δk−1)2 . . . (2δ1)2k−1M2k ≥ 1.
We now conclude as in [15] (see also [5]):

Wn
k ≤

(
25+d B̃

A
M

)2k

,
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and taking the power 1
2k

of Wn
k we obtain that

‖Nn
M,T ‖L2k (Ω)

≤ 25+d B̃

A
M, ‖PnM,T ‖L2k (Ω)

≤ 25+d B̃

A
M, ∀n ≥ 0, ∀k ∈ N.

Passing to the limit k →∞ gives

‖Nn
M,T ‖L∞(Ω) ≤ 25+d B̃

A
M, ‖PnM,T ‖L∞(Ω) ≤ 25+d B̃

A
M, ∀n ≥ 0,

which concludes the proof of the uniform upper bound.

2.4 Proof of Proposition 1

The existence result exhibited in Proposition 1 is a consequence of the a priori estimates estab-
lished in the previous sections for the solutions to (Sκ) for all κ ∈ [0, 1]. To conclude the proof of
the existence result, we apply a topological degree argument as presented for instance in [14, 25].

Let (N0
K , P

0
K)K∈T be given by (9) and (Nn

σ , P
n
σ )σ∈EDext, n≥0 be given by (11). We define the map

H associated to the scheme (Sκ) in the following way:

H : Rθ×NT × Rθ×NT × [0, 1] → Rθ×NT × Rθ×NT(
(Nn

K , P
n
K)K∈T , 1≤n≤NT , κ

)
7→

(
((HκN)nK , (HκP )nK)K∈T , 1≤n≤NT

)
,

where

(HκN)
n
K = m(K)

Nn+1
K −Nn

K

∆t
+
∑
σ∈EK

F̂n+1
K,σ + κm(K)R(Nn+1,+

K , Pn+1,+
K ),

(HκP )
n
K = m(K)

Pn+1
K − PnK

∆t
+
∑
σ∈EK

Ĝn+1
K,σ + κm(K)R(Nn+1,+

K , Pn+1,+
K ),

with

F̂n+1
K,σ = τσ

[
B
(
−DK,σΨn+1

)
Nn+1,+
K −B

(
DK,σΨn+1

)
Nn+1,+
K,σ

]
,

Ĝn+1
K,σ = τσ

[
B
(
DK,σΨn+1

)
Pn+1,+
K −B

(
−DK,σΨn+1

)
Pn+1,+
K,σ

]
,

where Ψn+1
T satisfies: −λ

2
∑
σ∈EK

τσDK,σΨn+1 = κm(K)(Pn+1
K −Nn+1

K + CK) ∀K ∈ T ,

Ψn
σ = ΨD

σ ∀σ ∈ EDext.
(44)

We define K := [0, E+ 1]2θ×NT , where E is the uniform upper bound established in the previous
section. This subset K of R2θ×NT is compact.
The application H is uniformly continuous on K × [0, 1], and since we proved that a solution
(Nn
T , P

n
T ,Ψ

n
T )0≤n≤NT of the scheme (Sκ) satisfies

0 < Nn
K , P

n
K ≤ E ∀K ∈ T , ∀n = 0, . . . , NT ,
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the nonlinear system

H ((Nn
K)K∈T , 1≤n≤NT , (P

n
K)K∈T , 1≤n≤NT , κ) = 0

cannot admit any solution on ∂K. Therefore, the corresponding topological degree δ(H,K, κ) is
constant with respect to κ.
For κ = 0, we obtain from (44) that, for all n, Ψn+1

T does not depend neither on n nor on N or
P : it is the solution to the classical scheme for the Laplace equation. Moreover, as the densities
are necessarily positive, the fluxes F̂n+1

K,σ (respectively Ĝn+1
K,σ ) are linear combinations of Nn+1

K

and the Nn+1
K,σ (respectively of Pn+1

K and the Pn+1
K,σ ).

Then, the problem
H ((Nn

K)K∈T , 1≤n≤NT , (P
n
K)K∈T , 1≤n≤NT , 0) = 0

reduces to a linear invertible system, so that it admits a unique solution. It implies that
δ(H,K, 0) = 1 and therefore that δ(H,K, 1) = 1. We deduce that the scheme (S1) admits a
solution and, due to the positivity established for the approximate densities, that (S) admits a
solution. This concludes the proof of Proposition 1.

3 Uniform-in-time positive lower bound

In this section, we now prove the uniform lower bound for the approximate densities (Nn
T , P

n
T )n≥0

given by the scheme (S), namely: there exists D > 0 as in Theorem 1 such that:

0 < D ≤ Nn
K , P

n
K , ∀K ∈ T , ∀n ≥ 0. (45)

To this end, we adapt to the discrete framework the proof done in [21, Lemma 3.6]. It consists in
applying a Moser iteration technique on an appropriate function of the logarithm of the densities.

Let m := max(− logm, logE), where E is the uniform upper bound of the approximate densities
(Nn
T )n≥0, (PnT )n≥0. Using the function wm defined on R∗+ by wm(x) = −(log x + m)− (where

s− = min(s, 0)), we can define

wnT = wm(Nn
T ) = − (logNn

T +m)
−
.

In order to prove that (Nn
T )n≥0 admits a uniform-in-time positive lower bound, we will in practice

prove that (wnT )n≥0 admits a uniform-in-time upper bound. The uniform positive lower bound
for (PnT )n≥0 can be established exactly in the same way. We start with the following preliminary
result, which will be crucial to apply the Nash-Moser iteration technique.

Proposition 5. Let (H1)–(H5) be fulfilled. Let M = (T , E ,P) be an admissible mesh of Ω
satisfying (5) and (6), and 0 < ∆t ≤ 1. Let (Nn

T , P
n
T ,Ψ

n
T )n≥0 be a solution to the scheme (S).

Then there exist two positive constants µ and ν, depending only on the data, such that for all
q ≥ 2, for all T > 0:

etNT+1

∑
K∈T

m(K)
(
wNT+1
K

)q
+

q

(q + 1)2
γ

NT∑
n=0

∆tetn
∑
σ∈E

τσ

(
Dσ(wn+1)

q+1
2

)2

≤ µq d2 +1
NT∑
n=0

∆tetn

(∑
K∈T

m(K)
(
wn+1
K

)q/2)2

+ νq

NT∑
n=0

∆tetn , (46)

where γ ∈ (0, 1] is defined in (36).
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Proof. Multiplying the scheme (12) by −(wn+1
K )q−1 1

Nn+1
K

and summing over K ∈ T , we get

Tn1 + Tn2 = Tn3 , where

Tn1 = −
∑
K∈T

m(K)
Nn+1
K −Nn

K

∆t
(wn+1

K )q−1 1

Nn+1
K

, (47)

Tn2 =
∑
σ∈E
Fn+1
K,σ DK,σ

(
(wn+1)q−1 1

Nn+1

)
, (48)

Tn3 =
∑
K∈T

m(K)R(Nn+1
K , Pn+1

K )(wn+1
K )q−1 1

Nn+1
K

. (49)

Using assumption (4) on R, we can rewrite

R(Nn+1
K , Pn+1

K )(wn+1
K )q−1 = R0(Nn+1

K , Pn+1
K )(Nn+1

K Pn+1
K − 1)(wn+1

K )q−1.

This term vanishes if Nn+1
K ≥ e−m. But, if Nn+1

K ≤ e−m, the definition of m and the upper
bound on Pn+1

T ensure that :

Nn+1
K Pn+1

K − 1 ≤ e−mE − 1 ≤ 0.

Thanks to (H5), we deduce that Tn3 ≤ 0.
Applying (69) from Lemma 3, we obtain that

Tn1 ≥
∑
K∈T

m(K)
(wn+1

K )q − (wnK)q

q∆t
. (50)

Thanks to (74) from Lemma 5, we get:

Tn2 ≥
∑
σ∈E

τσDK,σΨn+1

(
DK,σ(wn+1)q−1 +

1

q
DK,σ(wn+1)q

)
+
∑
σ∈E

τσB
(
DσΨn+1

)(4(q − 1)

q2

(
Dσ(wn+1)q/2

)2

+
1

(q + 1)2

(
Dσ(wn+1)

q+1
2

)2
)
. (51)

Performing a discrete integration by parts on the first term of the right-hand-side and using the
scheme (14) for Ψ, we obtain:

Tn2 ≥
1

λ2

∑
K∈T

m(K)

(
(wn+1

K )q−1 +
1

q
(wn+1

K )q
)(

Pn+1
K −Nn+1

K + CK
)

+
∑
σ∈E

τσB
(
DσΨn+1

)(4(q − 1)

q2

(
Dσ(wn+1)q/2

)2

+
1

(q + 1)2

(
Dσ(wn+1)

q+1
2

)2
)
. (52)

We may now multiply the inequality Tn1 + Tn2 ≤ 0 by q∆tetn and sum over n ∈ J0, NT K. Using
that w0

K = 0, the convexity of x 7→ ex and (50), we have:

NT∑
n=0

q∆tetnTn1 ≥
NT∑
n=0

etn
∑
K∈T

m(K)
(
(wn+1

K )q − (wnK)q
)

=

NT∑
n=0

∑
K∈T

m(K)
[
etn+1(wn+1

K )q − etn(wnK)q − (etn+1 − etn)(wn+1
K )q

]
≥ etNT+1

∑
K∈T

m(K)(wNT+1
K )q −

NT∑
n=0

∆tetn+1

∑
K∈T

m(K)(wn+1
K )q. (53)
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From (52) and the bound (36), we deduce that

NT∑
n=0

q∆tetnTn2 ≥
1

λ2

NT∑
n=0

q∆tetn
∑
K∈T

m(K)

(
(wn+1

K )q−1 +
1

q
(wn+1

K )q
)(

Pn+1
K −Nn+1

K + CK
)

+ γ

NT∑
n=0

q∆tetn
∑
σ∈E

τσ

(
4(q − 1)

q2

(
Dσ(wn+1)q/2

)2

+
1

(q + 1)2

(
Dσ(wn+1)

q+1
2

)2
)
. (54)

But, since |Pn+1
K −Nn+1

K + CK | ≤ 2E + ‖C‖∞ for all K ∈ T , for all n ≥ 0, and∑
K∈T

m(K)

(
(wn+1

K )q−1 +
1

q
(wn+1

K )q
)
≤
∑
K∈T

m(K)(wn+1
K )q + m(Ω),

we obtain from (53) and (54) the following estimate:

etNT+1

∑
K∈T

m(K)(wNT+1
K )q

+ γ

NT∑
n=0

q∆tetn
∑
σ∈E

τσ

(
4(q − 1)

q2

(
Dσ(wn+1)q/2

)2

+
1

(q + 1)2

(
Dσ(wn+1)

q+1
2

)2
)

≤
(
e∆t +

2E + ‖C‖∞
λ2

q

) NT∑
n=0

∆tetn
∑
K∈T

m(K)(wn+1
K )q + q

2E + ‖C‖∞
λ2

m(Ω)

NT∑
n=0

∆tetn .

As ∆t ≤ 1, let us set

ν = e1 +
2E + ‖C‖∞

λ2
max(1,m(Ω))

Using that q ≥ 2 and applying inequality (39) with χ = (wn+1)q/2 and ε = γ
ν

4(q−1)
q2 , we finally

obtain (46) with

µ =
ν1+ d

2 C̃

(2γξ)
d
2

,

independent of q.

We are now going to apply the Moser iteration technique. Multiplying (46) by e−tNT+1 , using

that q
d
2 ≥ 1 and x2 + y2 ≤ (x+ y)2 for all x, y ≥ 0, we obtain

∑
K∈T

m(K)(wNT+1
K )q ≤ ωq d2 +1e−tNT+1

NT∑
n=0

∆tetn

(∑
K∈T

m(K)(wn+1
K )

q
2 + 1

)2

, (55)

with ω = max(µ, ν).
Let us define

Znk :=
∑
K∈T

m(K)(wn+1
K )2k , ∀k ≥ 1, ∀n ≥ 0.

We set
bk := sup

n≥0
Znk + 1.

To conclude the proof of the positive lower bound (45), it remains to establish the following
result.
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Proposition 6. Under the assumptions of Proposition 5, we have

bk ≤
(
8ω2db1

)2k
, ∀k ≥ 2. (56)

Moreover, there exists a constant Z independent of T and δ such that:

b1 ≤ Z + 1 < +∞. (57)

Proof. For all k ≥ 1, taking q = 2k in (55) leads to

ZNTk ≤ ω(2
d
2 +1)ke−tNT+1b2k−1

NT∑
n=0

∆tetn .

Using the convexity of exp, we have

NT∑
n=0

∆tetn ≤
NT∑
n=0

(etn+1 − etn) ≤ etNT+1 ,

and then we deduce that
bk ≤ 2ω(2

d
2 +1)kb2k−1.

We finally establish (56) by induction.
It remains now to prove the initialization of the Moser iteration, namely the fact that b1 =
supn≥0 Z

n
1 + 1 is bounded. We start again from (46), with q = 2:

etNT+1ZNT1 +
2

9
γ

NT∑
n=0

∆tetn
∑
σ∈E

τσ

(
Dσ(wn+1)

3
2

)2

≤ µ2
d
2 +1

NT∑
n=0

∆tetn

(∑
K∈T

m(K)wn+1
K

)2

+ 2ν

NT∑
n=0

∆tetn . (58)

Using Hölder inequality, we have(∑
K∈T

m(K)wn+1
K

)2

≤

(∑
K∈T

m(K)(wn+1
K )3

) 2
3

m(Ω)
4
3 . (59)

Moreover, we can apply the discrete Poincaré inequality [4, Theorem 4.3] since wn+1
M = 0 on ΓD:

there exists a constant CΩ,ξ > 0 only depending on Ω and the regularity parameter ξ such that∑
K∈T

m(K)(wn+1
K )3 =

∑
K∈T

m(K)
(

(wn+1
K )

3
2

)2

≤ CΩ,ξ

∑
σ∈E

τσ

(
Dσ(wn+1)

3
2

)2

. (60)

Gathering (59) and (60), we obtain

µ2
d
2 +1

(∑
K∈T

m(K)wn+1
K

)2

≤ θ

(∑
σ∈E

τσ

(
Dσ(wn+1)

3
2

)2
) 2

3

,

where θ = µ2
d
2 +1m(Ω)

4
3C

2
3

Ω,ξ, and Young inequality gives

µ2
d
2 +1

(∑
K∈T

m(K)wn+1
K

)2

≤ 1

3
ε−2θ3 +

2

3
ε
∑
σ∈E

τσ

(
Dσ(wn+1)

3
2

)2

.

18



Taking ε = γ/3, (58) becomes

etNT+1ZNT1 ≤ Z
NT∑
n=0

∆tetn ,

with Z = 3θ3/γ2 + 2ν, and finally multiplying by e−tNT+1 , we obtain

ZNT1 ≤ Z,

which gives the desired result (57) since Z is independent of T and δ.

Equipped with this result, we can now conclude the proof. Taking the power 1/2k in (56) and
using the definition of bk, we obtain(∑

K∈T
m(K)(wNT+1

K )2k

)1/2k

≤ 8ω2db1, ∀k ≥ 1, ∀NT ≥ 1.

Finally, since b1 is bounded by a constant, we obtain by letting k →∞ that

‖wnT ‖∞ ≤ 8ω2db1 ∀n ≥ 0,

which gives the uniform-in-time upper bound for (wnT )n≥0 and then the uniform-in-time positive
lower bound for (Nn

T )n≥0. The hole density (PnT )n≥0 can be treated exactly in the same way.
In the end, gathering this with the results established in Section 2, the proof of Theorem 1 is
achieved.

4 Numerical results

In this section, we present some numerical experiments that illustrate the behavior of the upper
and lower bounds of approximate densities for different type of doping profiles. We consider
1D test cases with Ω =]0, 1[. The space step is taken uniform and fixed to h = 0.01, and the
time step to ∆t = 0.01. In all the simulations, the recombination-generation term is taken equal
to 0. We fix λ2 = 1 everywhere, except for the last part of Case 1 where we take λ2 = 10−4

to illustrate the influence of the Debye length on the upper and lower bounds. The Dirichlet
boundary conditions ND and PD for the densities are computed from ΨD using Hypothesis (H3)
with αD = 0.

Case 1. Initial conditions are given by:

N0(x) = 0.5 and P0(x) = 1 ∀x ∈]0, 1[,

and the Dirichlet boundary conditions for Ψ are ΨD(0) = 0 = ΨD(1).
In Figure 2, we present the approximate densities of electrons and holes in the case of a zero
doping profile, computed at different times: T = 0.01, T = 0.07 and T = 5. As expected, the
maximum principle is satisfied in this case.
Figure 3 is devoted to the case of a constant doping profile C(x) = 20 and Figure 4 to the case
of a doping profile given by C(x) = 20 if x ∈ [0, 0.5[ and C(x) = −20 if x ∈ [0.5, 1]. We observe
that the maximum principle is no more satisfied in this case. Finally, we investigate the influence
of the doping profile on the upper and lower bounds of approximate densities. In Figures 5 and
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Figure 2: Evolution of approximate densities in Case 1, for C = 0.
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Figure 3: Evolution of approximate densities in Case 1, for C = 20.
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Figure 4: Evolution of approximate densities in Case 1, for C piecewise constant with ‖C‖∞ = 20.

6, we present the upper and lower bounds as functions of ‖C‖∞. The lower bound is represented
in log scale. Figure 5 corresponds to

C(x) = k for x ∈ [0, 1], with k = 0, . . . , 30, (61)

and Figure 6 to

C(x) =

{
k for x ∈ [0, 0.5[
−k for x ∈ [0.5, 1]

, with k = 0, . . . , 40. (62)

Depending on the chosen doping profile, we observe that the obtained upper bound E (resp.
lower bound D) can be larger than the upper bound of data M = 1 here (resp. lower bound of
data m = 0.5 here).
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Figure 5: Upper and lower bounds as functions of ‖C‖∞ in Case 1, with C given by (61).
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Figure 6: Upper and lower bounds as functions of ‖C‖∞ in Case 1, with C given by (62).

Finally, we consider the same test case but with λ2 = 10−4. Due to the stiffness occurring with
this choice, we have to choose an adaptative time step to ensure the convergence of the Newton’s
method used to solve our nonlinear implicit scheme. Indeed, this stiffness comes from the fact
that the considered boundary conditions are not compatible with the quasi-neutral limit (the
quasi-neutrality relation writes P −N+C = 0, which is not satisfied for C 6= 0 at the boundary).
We represent in Figure 7 the solutions obtained at final time T = 5 for a constant doping profile
C(x) = 20 with either λ2 = 1 or λ2 = 10−4. Finally in Figure 8, we present the upper and lower
bounds obtained with λ2 = 10−4 for constant doping profiles defined by (61). Comparing the
results obtained with those presented in Figure 5, we clearly remark the influence of the Debye
length λ2 on the upper and lower bounds of densities.

Case 2. Initial conditions are now given by

N0(x) =

{
0.1 if 0 < x ≤ 0.8
1 if 0.8 < x < 1

, P0(x) =

{
1 if 0 < x ≤ 0.7
0.1 if 0.7 < x < 1

.

The boundary conditions for Ψ are ΨD(0) = −1 and ΨD(1) = 1.
As before, we represent the upper and lower bounds of the densities as functions of ‖C‖∞, in
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Figure 7: Comparison of solutions obtained in Case 1 at T = 5 with C = 20 and λ2 = 1 or
λ2 = 10−4.
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Figure 8: Upper and lower bounds as functions of ‖C‖∞ in Case 1, with C given by (61) and
λ2 = 10−4.

Figure 9 for a doping profile given by

C(x) = 2k for x ∈ [0, 1], with k = 0, . . . , 40, (63)

and in Figure 10 for a doping profile given by

C(x) =

{
2k for x ∈ [0, 0.7[
−2k for x ∈ [0.7, 1]

, with k = 0, . . . , 40. (64)

We observe that the upper and lower bounds obtained for a same test case depend strongly on
the chosen doping profile. The upper bound is a nondecreasing function of ‖C‖∞ whereas the
lower bound is a nonincreasing function of ‖C‖∞. The lower bound remains always positive
(despite it can be small).

5 Conclusion

In this article, we establish existence of an approximate solution of the Van Roosbroeck’s drift-
diffusion system obtained with an implicit in time Scharfetter-Gummel scheme. Moreover, we
prove that the obtained approximate densities satisfy uniform-in-time positive upper and lower
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Figure 9: Upper and lower bounds as functions of ‖C‖∞ in Case 2, with C given by (63).
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Figure 10: Upper and lower bounds as functions of ‖C‖∞ in Case 2, with C given by (64).

bounds. Our proof relies on the application of a topological degree argument which requires
some a priori estimates. The discrete energy/energy dissipation inequality (33) is a cornerstone
in this work. Such inequality can be obtained for slightly different models and/or discretizations,
leading to possible generalizations of our results. We list below some of them.

Models with variable mobilities. The original Van Roosbroeck’s model [34] includes vari-
able mobilities and can be written, using Einstein relations, as: ∂tN + div (µN (−∇N +N∇Ψ)) = −R(N,P ),

∂tP + div (µP (−∇P − P∇Ψ)) = −R(N,P ),
−λ2∆Ψ = P −N + C,

(65)

where µN and µP are positive continuous functions of the electric field ∇Ψ. Such variable mobil-
ities model was for example studied in [21], and a semidiscretization in time was also considered
in [13]. Our result can be easily generalized to this model. Indeed, using the boundedness of the
discrete electric field (37), we obtain that there exists positive constants µ? and µ? such that:

0 < µ? ≤ µN , µP ≤ µ?,

and then our proofs can be straightforwardly extended to a discretization of this model (65).
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Models with nonlinear diffusion. In this paper, we only consider the classical drift-diffusion
model based on Boltzmann statistics. However, other statistics can be necessary to describe
relevantly the behavior of the considered semiconductor device, leading to a modification of
the diffusive terms, which become nonlinear. Under some assumptions on the nonlinearity, the
discrete energy/energy estimate (33) can be established for a generalized Scharfetter-Gummel
scheme [3, Proposition 3.2]. However it seems difficult for the moment to obtain the other results
(in particular the technical result given in Lemma 5) in the nonlinear setting.

Other finite volume discretizations. In view of [9], extension of our work to a larger class of
two-point monotone fluxes seems possible. Indeed, in this paper, a discrete entropy/entropy dissi-
pation estimate is established both for Fokker-Planck equations (Theorem 2.7) and porous media
equations (Theorem 3.2), for a family of B-schemes including upwind, centered and Scharfetter-
Gummel schemes. The result is not yet proved for the drift-diffusion system, but it could be a
natural extension of this work.

Explicit in time discretizations. Here we only considered a backward Euler time discretiza-
tion. In [18, Theorem 4.4], a discrete entropy/entropy dissipation estimate is proved for an
explicit in time finite volume scheme discretizing a class of nonlinear parabolic equations, under
a CFL condition. However, it seems difficult for the moment to adapt our result to such a time
discretization, and even more for high order methods, since it will lead to treat a lot of residual
terms coming from the explicit in time discretization.

Appendix: some technical results

In this Appendix, we detail some technical results which we use in the paper. There are first
functional inequalities and then some properties of the numerical fluxes.
We define x+ = max(x, 0) and x− = min(x, 0) for all x ∈ R. Let us first recall some elementary
inequalities :

∀x, y ∈ R,∀q ≥ 1, x
(
(x+)q − (y+)q

)
≥ x+

(
(x+)q − (y+)q

)
, (66)

∀x, y ≥ 0,∀α, β > 0 (yα − xα)(yβ − xβ) ≥ 4αβ

(α+ β)2

(
y
α+β

2 − x
α+β

2

)2

, (67)

∀x, y ≥ 0,∀q ≥ 2, yq − xq ≥ qxq−1(y − x) (68)

For m ∈ R, we can define the function wm by wm(x) = (log x + m)− for all x ∈ R∗+. This
function is widely used for the proof of the uniform-in-time positive lower bound in Section 3.
We give in Lemma 3 some properties of the function wm.

Lemma 3. Let m ∈ R, the function wm defined by wm(x) = −(log x + m)− for all x ∈ R∗+
verifies the following inequalities :

• For all q ≥ 2, for all x, y > 0,

−x− y
x

(
wm(x)

)q−1≥ 1

q

((
wm(x)

)q−(wm(y)
)q)

. (69)
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• For all q ≥ 2, for all x, y > 0,

x

(
(wm(y))

q−1

y
− (wm(x))

q−1

x

)
≥ (wm(y))

q−1 − (wm(x))
q−1

+
1

q
((wm(y))

q − (wm(x))
q
) . (70)

Proof. We start with the proof of (69). It is trivial when x = y. We consider the case where
x 6= y. We remark that :

− (x− y)
(
wm(x)

)q−1
= − x− y

log x− log y

(
log x− log y

)(
wm(x)

)q−1

=
x− y

log x− log y

(
−(log x+m)+ + wm(x) + (log y +m)+ − wm(y)

)(
wm(x)

)q−1
.

Therefore,

−(x− y)
(
wm(x)

)q−1≥ x− y
log x− log y

(
wm(x)− wm(y)

)(
wm(x)

)q−1
.

But, on one hand the function wm is a nonincreasing function and on the other hand, we have :

1

x

x− y
log x− log y

> 1⇐⇒ 0 < x < y.

This yields

−x− y
x

(
wm(x)

)q−1≥
(
wm(x)− wm(y)

)(
wm(x)

)q−1
.

The inequality (69) is then deduced from (68).
Let us now prove (70). We first remark that

x

(
(wm(y))

q−1

y
− (wm(x))

q−1

x

)
= (wm(y))

q−1 − (wm(x))
q−1

+ (wm(y))
q−1

(
x

y
− 1

)
.

Thus, we just need to prove:

(wm(y))
q−1

(
x

y
− 1

)
≥ 1

q

(
(wm(y))

q − (wm(x))
q
)
, ∀x, y > 0. (71)

If y ≥ e−m, wm(y) = 0 and the result holds for all x > 0. We consider now the case where
y < e−m. As a direct consequence of (68), we get:((

wm(y)
)q−(wm(x))q

))
≤ q
(
wm(y)

)q−1(
wm(y)− wm(x)

)
.

But, for all x > 0, we have :

wm(y)− wm(x) ≤ − log y + log x ≤ x− y
y

,

which yields (71) and therefore (70).

We now establish some properties satisfied by the numerical fluxes. Lemma 4 is crucial for the
proof of Proposition 4, while Lemma 5 is used in the proof of Proposition 5.
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Lemma 4. Let q ≥ 1. The numerical fluxes defined by (15), (16) and (17) verify that for all
K ∈ T , for all σ ∈ EK , for all n ≥ 0,

Fn+1
K,σ DK,σ(Nn+1

M )q ≤ − 4q

(q + 1)2
τσB(DσΨn+1)

(
DK,σ(Nn+1

M )
q+1
2

)2

+
q

q + 1
τσDK,σΨn+1DK,σ(Nn+1

M )q+1 +MτσDK,σΨn+1DK,σ(Nn+1
M )q,

(72a)

Gn+1
K,σDK,σ(Pn+1

M )q ≤ − 4q

(q + 1)2
τσB(DσΨn+1)

(
DK,σ(Pn+1

M )
q+1
2

)2

− q

q + 1
τσDK,σΨn+1DK,σ(Pn+1

M )q+1 −MτσDK,σΨn+1DK,σ(Pn+1
M )q. (72b)

Proof. We prove only inequality (72a) since (72b) can be deduced by replacing DK,σΨn+1 by
−DK,σΨn+1. Using the property B(x)−B(−x) = −x satisfied by the function B, we can rewrite
the fluxes Fn+1

K,σ under two different forms:

Fn+1
K,σ = τσ

(
DK,σΨn+1Nn+1

K −B(DK,σΨn+1)DK,σN
n+1
)

(73a)

= τσ

(
DK,σΨn+1Nn+1

K,σ −B(−DK,σΨn+1)DK,σN
n+1
)
. (73b)

With the formulation (73a), we write:

Fn+1
K,σ DK,σ(Nn+1

M )q = τσ
(
DK,σΨn+1(Nn+1

K −M)DK,σ(Nn+1
M )q

+MDK,σΨn+1DK,σ(Nn+1
M )q −B(DK,σΨn+1)DK,σN

n+1DK,σ(Nn+1
M )q

)
.

But, using (66) and (67), we get:

(Nn+1
K −M)DK,σ(Nn+1

M )q ≤ q

q + 1
DK,σ(Nn+1

M )q+1,

DNn+1
K,σ DK,σ(Nn+1

M )q ≥ 4q

(q + 1)2

(
DK,σ(Nn+1

M )
q+1
2

)2

.

Moreover, B is a nonnegative function. Then, we deduce (72a) if DK,σΨn+1 ≥ 0. The same
result is obtained when DK,σΨn+1 ≤ 0 but starting with (73b) instead of (73a).

Lemma 5. Let q ≥ 2. Let m ∈ R, we set wn+1
K = wm(Nn+1

K ) for all K ∈ T , for all n ≥ 0. The
numerical fluxes defined by (15) and (17) verify that for all K ∈ T , for all σ ∈ EK , for all n ≥ 0,

Fn+1
K,σ DK,σ

(
(wn+1)q−1 1

Nn+1

)
≥ τσDK,σΨn+1

(
DK,σ(wn+1)q−1 +

1

q
DK,σ(wn+1)q

)
+ τσB

(
DσΨn+1

)(4(q − 1)

q2

(
Dσ(wn+1)q/2

)2

+
1

(q + 1)2

(
Dσ(wn+1)

q+1
2

)2
)
. (74)

Proof. We first assume that DK,σΨn+1 ≥ 0. Using formulation (73a), we write

Fn+1
K,σ DK,σ

(
(wn+1)q−1 1

Nn+1

)
= R1 +R2,
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with

R1 = −τσB
(
DσΨn+1

)
DK,σN

n+1DK,σ

(
(wn+1)q−1 1

Nn+1

)
,

R2 = τσDK,σΨn+1Nn+1
K DK,σ

(
(wn+1)q−1 1

Nn+1

)
.

We treat R1 following the same computations as those used in [17, proof of Theorem 4] for the
diffusion term. More precisely, we have

R1 = τσB
(
DσΨn+1

)
(R11 +R12),

with

R11 = −DK,σN
n+1 1

2
DK,σ

(
(wn+1)q−1

)( 1

Nn+1
K

+
1

Nn+1
K,σ

)
,

R12 = −DK,σN
n+1 1

2
DK,σ

(
1

Nn+1

)(
(wn+1

K )q−1 + (wn+1
K,σ )q−1

)
.

According to [17, Lemma 7], we can rewrite R11 and R12 respectively as :

R11 = −f
(
DK,σ

(
logNn+1

))
DK,σ

(
logNn+1 +m

)
DK,σ(wn+1)q−1,

R12 = g
(
DK,σ

(
logNn+1

)) (
DK,σ

(
logNn+1 +m

))2 1

2

(
(wn+1

K )q−1 + (wn+1
K,σ )q−1

)
,

with

f(z) =
(ez − 1)(e−z + 1)

2z
≥ 1, ∀z ∈ R,

g(z) = − (ez − 1)(e−z − 1)

z2
≥ 1, ∀z ∈ R.

Moreover, using the definition of wn+1
T and (67) with α = 1 and β = q − 1, we have:

−DK,σ

(
logNn+1 +m

)
DK,σ(wn+1)q−1 = −DK,σ

(
(logNn+1 +m)+

)
DK,σ(wn+1)q−1

+DK,σ(wn+1)DK,σ(wn+1)q−1

≥ 4(q − 1)

q2

(
DK,σ(wn+1)q/2

)2

.

Then we get

R11 ≥
4(q − 1)

q2

(
DK,σ(wn+1)q/2

)2

. (75)

We also have

R12 ≥
1

2

(
DK,σw

n+1
)2 (

(wn+1
K )q−1 + (wn+1

K,σ )q−1
)
,

and since for all x, y ≥ 0 we have, as shown in [17, Lemma 6],

(x− y)2(xq−1 + yq−1) ≥ 2

(q + 1)2

(
x
q+1
2 − y

q+1
2

)2

,

which yields

R12 ≥
1

(q + 1)2

(
DK,σ(wn+1)

q+1
2

)2

. (76)
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Gathering (75) and (76), we finally deduce that

R1 ≥ τσB
(
DσΨn+1

)(4(q − 1)

q2

(
DK,σ(wn+1)q/2

)2

+
1

(q + 1)2

(
DK,σ(wn+1)

q+1
2

)2
)
. (77)

The term R2 is now treated using (70) from Lemma 3 with x = Nn+1
K and y = Nn+1

K,σ (we still

assume that DK,σΨn+1 ≥ 0). We get:

R2 ≥ τσDK,σΨn+1

(
DK,σ(wn+1)q−1 +

1

q
DK,σ(wn+1)q

)
. (78)

Gathering (77) and (78) yields the result if DK,σΨn+1 ≥ 0. The case DK,σΨn+1 ≤ 0 can
be treated exactly in the same way, starting from the expression (73b) of the flux instead of
(73a).
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