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ADAPTIVE ESTIMATION FOR STOCHASTIC DAMPING HAMILTONIAN

SYSTEMS UNDER PARTIAL OBSERVATION.

FABIENNE COMTE (1), CLÉMENTINE PRIEUR (2), AND ADELINE SAMSON (2)

Abstract. The paper considers a process Zt = (Xt, Yt) where Xt is the position of a particle
and Yt its velocity, driven by a hypoelliptic bi-dimensional stochastic differential equation. Un-
der adequate conditions, the process is stationary and geometrically β-mixing. In this context,
we propose an adaptive non-parametric kernel estimator of the stationary density p of Z, based
on n discrete time observations with time step δ. Two observation schemes are considered: in
the first one, Z is the observed process, in the second one, only X is measured. Estimators are
proposed in both settings and upper risk bounds of the mean integrated squared error (MISE)
are proved and discussed in each case, the second one being more difficult than the first one. We
propose a data driven bandwidth selection procedure based on the Goldenshluger and Lespki
[2011] method. In both cases of complete and partial observations, we can prove a bound on
the MISE asserting the adaptivity of the estimator. In practice, we take advantage of a very
recent improvement of the Goldenshluger and Lespki [2011] method provided by Lacour et al.
[2016], which is computationally efficient and easy to calibrate. We obtain convincing simulation
results in both observation contexts.
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1. Introduction

In this paper, we focus on a hypoelliptic bi-dimensional stochastic differential equation, called
Langevin or hypoelliptic, damping Hamiltonian system. It can be viewed as describing the
dynamic of a particle: the first coordinate represents the position of the particle and the second
its velocity. The position is defined as the (deterministic) integral of the velocity, but the dynamic
of the velocity is modeled with a stochastic noise. Thus, the noise occurs only in the second
component leading to a hypoelliptic stochastic differential equation: the diffusion coefficient
matrix is singular. Such models appear in many domains such as random mechanics, finance,
biology, ecology. . . We refer to Pokern et al. [2009] for some examples of such models arising in
applications. There is thus a need for efficient estimation methods. But the singularity of the
diffusion coefficient prevents to apply standard estimation methods that have been developed
for (multi-dimensional) stochastic differential equations (see more details below). The aim of
this paper is to propose a data-driven non-parametric estimator of the stationary density of the
system.
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More precisely, let us denote Xt the position of the particle, Yt its velocity, and Zt := (Xt, Yt).
We assume that (Zt, t ≥ 0) is governed by the following stochastic differential equation:

(1)

{
dXt = Ytdt

dYt = σ dWt − (c(Xt, Yt)Yt +∇D(Xt))dt.

with c(x, y) the damping force, D the potential, σ > 0 the diffusion coefficient and (Wt)t≥0 a
standard Brownian motion. We assume that the damping force c and the potential D are regular
enough to ensure the existence and uniqueness of a non explosive solution of (1).

Our objective is to estimate the stationary density p of Zt. Except from specific choices of c
and D, this stationary density has no closed expression. We thus consider the non-parametric
framework.

In some applications, it is not possible to measure the two coordinates and only discrete time
observations are available. We will proceed in two steps: First we consider the case of “complete
observation” where we have at hand a sample (Xiδ, Yiδ)1≤i≤n for a time step δ of observations.
Second, we consider the ”partial observation” case where only the sample (Xiδ)1≤i≤n is available.

Estimation of such hypoelliptic systems has already been studied. In the parametric frame-
work, we refer to Gloter [2006], Samson and Thieullen [2012] who propose contrasts to estimate
parameters σ, c and those appearing in D. Pokern et al. [2009] propose estimation strategies
for parameters appearing in D through a complex Gibbs algorithm in a Bayesian parametric
framework.

Non-parametric estimation in stochastic differential equations (SDE) has been widely studied
in the elliptic case, i.e. when a noise also drives the first coordinate and when the diffusion
coefficient is not singular. For elliptic SDE, we can cite among others Comte et al. [2007] for a
data-driven non-parametric estimation procedure of the drift and diffusion coefficient in a one-
dimensional stochastic differential equation discretely observed with small step. The strategy
has been extended in Comte et al. [2009] when only discrete integrated observations are available.
The method is based on projection estimators minimizing a mean-square contrast with model
selection. The problem here is different since estimation is bi-dimensional and focused on the
stationary density. Extension of adaptive non-parametric drift estimation to multidimensional
setting has been considered in Schmisser [2013a]. Especially adaptive projection estimation of
the stationary density is developed in Schmisser [2013b], see also the references on the topic
therein. However, the results in Schmisser [2013b] are first stated for one-dimensional mixing
processes, and in a second step, applied to elliptic stochastic differential equation in order to
estimate the drift when the observation step is fixed. We emphasize that the elliptic assumption
is not easy to weaken. Thus the hypoelliptic case considered in Model (1) is not considered in
the previous estimation methods for multi-dimenstional SDE. The main element that explains
why hypoellipticity is difficult to work with is the form of the transition density. The transition
density of hypoelliptic diffusion explodes when the step size δ between two observations goes
to 0 at a specific rate: 1/δ2. This rate directly deteriorates the variance of the estimator and
impacts the rate of convergence of the estimator.

The main references in non-parametric estimation of multi-dimensional hypoelliptic stochastic
differential equations are Cattiaux et al. [2014a,b]. In Cattiaux et al. [2014b], a kernel estimator
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of the stationary density p is proposed, in both the complete observation and the partial observa-
tion cases. The authors prove the consistency and the asymptotic normality of their estimators.
But the problem of the automatic data-driven selection of the bandwidth is not studied.

Our study is related to adaptive density estimation for dependent variables, which was con-
sidered by Comte and Merlevède [2002, 2005], relying on useful tools and inequalities proved in
Viennet [1997]; these authors study univariate estimation and use penalized projection estima-
tors. In most cases, the penalty used in the procedure involves an unknown coefficient related
to the dependence of the data. From this point of view, their proposal has been improved by
Lerasle [2011], who studies an original penalization based on a resampling strategy. Note that
different types of dependence have been studied by Gannaz and Wintenberger [2010]. Recently,
Asin and Johannes [2016] investigated the topic, still for univariate projection estimators: using
a specific assumption on the joint density of two observations, they can avoid the mixing coef-
ficient in the penalty. Lastly, we mention that a strategy similar to the one presented here but
in a pointwise univariate setting is presented in Bertin and Klutchnikoff [2016]: more precisely,
they propose a kernel estimator with point-by-point selection of the bandwidth. Their procedure
is more demanding than the global strategy studied and implemented in the present paper, but
may be adapted to inhomogeneous functions; however, it involves a log-loss in the rate, which
is known to be unavoidable in the independent setting.

In this paper, we want to provide a non-parametric estimator of p with a fully data-driven
procedure of the bandwidth. We first study the integrated risk of the kernel estimator. We
distinguish the case of an estimation of p on a compact subset of R2 or on the whole real plane,
which give two different bounds. Then, under regularity assumptions on p, we provide rates of
convergence of the estimators. Finally, we propose a non-asymptotic fully data-driven selection
procedure of the bandwidth of the kernel estimator, the procedure is inspired by the methodology
detailed in Goldenshluger and Lespki [2011]. The method has the decisive advantage of being
anisotropic: the bandwidths selected in each direction are in general different, which is coherent
with the possibly different regularities with respect to each variable. Finally, we prove oracle
results of our final estimators. However, the implementation of the Goldenshluger and Lespki
[2011] method is complex in the multi-dimensional setting: the convolution of estimators is
computationally demanding and the influence of the constant is not intuitive, thus preventing
for using automatic procedure such as the slope heuristic. We thus implement a simplified version
of the method of Goldenshluger and Lespki [2011], that has been most recently developed by
Lacour et al. [2016]. Their simplification is a decisive improvement for the implementability
of the method in the multidimensional setting: it avoids the computation of convolution of
estimators and allows to calibrate automatically the constant by slope heuristic. We illustrate
the two estimators on two hypoelliptic systems: the Harmonic Oscillator and the Van Der Pol
Oscillator.

The paper is organized as follows. We give in Section 2 assumptions on the system ensuring
that the aim is meaningful. In particular, we take advantage of previous probabilistic studies
of the system provided in Konakov et al. [2010] and Cattiaux et al. [2014b]. We study first the
estimation of p from discrete but complete observations of Z in Section 3, and then the more
realistic but difficult case of partial observations in Section 4. Simulation experiments illustrate
the methodology in the two observation contexts in Section 5.
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2. Probabilistic useful results

2.1. Assumptions on equation (1). In this section, we recall some results proved in Cattiaux
et al. [2014b]. We first give some assumptions on the model.

In all the following, we assume that the potential D is lower bounded, smooth over R, that
D and ∇D have polynomial growth at infinity and that

(2) 0 < d ≤ lim inf
|x|→+∞

x.∇D(x)

|x|
≤ +∞ ,

the latter being often called the drift condition. We also assume that the damping coefficient
c(x, y) is smooth and bounded, and there exist c, L > 0 such that c(x, y) ≥ cId > 0, ∀(|x| >
L, y ∈ R).

Hypoelliptic property of the system ensures that the distribution Pt(z, ·) of the process Zt
starting from Z0 = z has a smooth density pt(z, ·). Some bounds are given in Appendix 6.1,
especially the fact that transition density pt(z, ·) is explosive when t → 0 with a specific (hy-
poelliptic) rate of explosion 1/t2 (bound (27)). Moreover, the drift condition (2) ensures that
the process is positive recurrent with a unique invariant probability measure µ. This measure
has a smooth density µ(dz) = p(z)dz [Cattiaux et al., 2014b], with

µ(dx, dy) = exp

(
− 2c

σ2
H(x, y)

)
dxdy

where H(x, y) = 1
2y

2 +D(x) is the Hamiltonian (see [Roberts and Spanos, 2003]).
Under the drift condition, it is proved in Wu [2001] (see Theorem 3.1 therein) that the Markov

chain (Zi)i∈N, with initial condition Z0 ∼ p(z)dz is exponentially β-mixing. We recall hereafter
the meaning of this property as well as useful bounds and properties.

2.2. About β-mixing coefficients and processes. Let (Ω,A,P) be a probability space. Let
Γ be a random variable with values in a Banach space (B, ‖ · ‖B). Let M be a σ-algebra of A.
Let PΓ|M be a conditional distribution of Γ given M, PΓ be the distribution of Γ, and let B(B)
be the Borel σ-algebra on (B, ‖ · ‖B). Define now

β(M, σ(Γ)) = E
(

sup
A∈B(B)

|PΓ|M(A)− PΓ(A)|
)
.

The coefficient β(M, σ(Γ)) is the mixing coefficient introduced by Volkonskii and Rozanov [1960].
Let now Γ = (Γi)i≥1 be a strictly stationary sequence of real-valued random variables. For any
k ≥ 0, the coefficients βΓ,1(k) are defined by

βΓ,1(k) = β(σ(Γ1), σ(Γ1+k)),(3)

Let Mi = σ(Xk, 1 ≤ k ≤ i). The coefficients βΓ,∞(k) are defined by

βΓ,∞(k) = sup
i≥1,l≥1

sup {β(Mi, σ(Γi1 , . . . ,Γil)), i+ k ≤ i1 < · · · < il} .

We recall the coupling properties of these coefficients. Assume that Ω is rich enough, which
means that there exists U uniformly distributed over [0, 1] and independent ofM∨σ(Γ). There
exists a M∨ σ(U) ∨ σ(Γ)-measurable random variable Γ∗1 distributed as Γ and independent of
M such that

(4) β(M, σ(Γ)) = P(Γ 6= Γ∗1).
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The equality in (4) is due to Berbee [1979], and is used in our proofs for adaptive estimators.
Moreover, several covariance inequalities can be given for β-mixing variables. We state the

inequality that we apply to the β-mixing process (Ziδ)i∈N. This result follows from the proof
p.479 in Viennet [1997]. It asserts that there exist functions gkδ(.) such that, for any measurable
bounded function ψ,

(5) |Cov(ψ(Z0), ψ(Zkδ))| ≤ 2

∫
ψ2(z)gkδ(z)dPZ0(z)

with
∫
gkδ(z)dPZ0(z) = β(kδ) = βZ.δ,1(k), the β-mixing coefficient of (Zkδ).

Let us remark that the β-coefficients for covariance inequality are coefficients of type βZ.δ,1,
while those used for coupling in the proofs are of type βZ.δ,∞. As Z := (Ziδ; i ≥ 1) is a Markov
chain, by the Markov property and an elementary argument, for each n ≥ 1, βZ.δ,∞(k) =
βZ.δ,1(k) (see e.g., Bradley et al. [2005]). They are indifferently denoted by β(kδ) in the following.

Finally, Cattiaux et al. [2014b] prove the geometric β-mixing property of the system: there
exist a coefficient ρ ∈ (0, 1) and a constant C such that for all i ∈ N:

(6) β(iδ) ≤ Cρiδ.

3. Estimation of the density p in the complete observation case.

As already mentioned, our aim is to estimate the invariant density p non parametrically in
two cases: from discrete observations of Z at discrete times iδ, i = 1, . . . , n with discretization
step δ and from only discrete observations of the first component X.

In this section we define an estimator of the invariant density p in the complete case from
observations Ziδ = (Xiδ, Yiδ). We study the integrated quadratic risk, first on R2 and then on a
compact set. Then, we study the rate of convergence of the estimator and propose an adaptive

procedure to select the bandwidth. In the following, for g ∈ L2(R2), ‖g‖2 =
√∫

g2(x, y)dxdy

denotes the L2-norm with respect to Lebesgue on R2. Sometimes we omit the sub-index 2.

3.1. The estimator. The density p is estimated with a kernel estimator. Let K denote the
kernel, and assume that K is a C1 function such that its partial derivatives functions ∂K/∂x
and ∂K/∂y are in L2(R),

∫
K(x, y)dxdy = 1 and

∫
K2(x, y)dxdy <∞. For all b = (b1, b2) > 0,

for all (x, y) ∈ R2, we denote

Kb(x, y) =
1

b1b2
K

(
x

b1
,
y

b2

)
.

When both coordinates are observed, we propose the following estimator of p for all z =
(x, y) ∈ R2:

(7) p̃b(z) = p̃b(x, y) :=
1

n

n∑
i=1

Kb (x−Xiδ, y − Yiδ) =
1

n

n∑
i=1

Kb(z − Ziδ).

3.2. Integrated quadratic risk. In this section we study the integrated risks of p̃b computed
on R2 or on a compact set. We introduce pb(z) = pb(x, y) = Kb ∗ p(x, y) = Kb ∗ p(z), which is
the function that is estimated without bias by p̃b(z) , i.e. E(p̃b(z)) = pb(z). Following the proof
of Viennet [1997] for the variance bound, we can obtain the Proposition hereafter.



6 F. COMTE, C. PRIEUR, AND A. SAMSON

Proposition 1. Consider the estimator given by (7), under the drift condition (2). Then we
have

(8) E
[∫

(p̃b(z)− p(z))2dz

]
≤
∫

(pb(z)− p(z))2dz +
4‖K‖2

nb1b2

n−1∑
i=0

β(iδ) .

where β(.) denotes the β-mixing coefficient defined in Section 2.

The proof of this result, like most other results, is given in Section 6.
On the other hand, restricting the estimation of p on a compact A, we can provide more specific

computations using the coefficient ρ of the β-mixing property (6) and obtain the following bound.

Proposition 2. Let A be a compact subset of R2. Consider the estimator given by (7). Then
there exists a constant C > 0 such that

(9) E
[∫

A
(p̃b(z)− p(z))2dz

]
≤
∫
A

(pb(z)− p(z))2dz+C

(
1

nb1b2
+

1

n

n−1∑
i=1

[
(1 +

1

i2δ2
) ∧ ρiδ

b1b2

])
.

Let us emphasize that the term 1/(i2δ2) is a direct consequence of the hypoellipticity of model
(1) and of the bound on the transition density pt(z, ·) (equation (27) in Appendix 6.1). This
term is thus explosive when δ → 0. We enhance in the remark below, the difference between
the variance bounds stated in Propositions 1 and 2.

Remark 1. Consider first the last term in the bound given by (8), and assume that nδ2 ≥ 1.
We get that

∑n
i=0 β(iδ) ≤ C/(1− ρδ). For any 0 < δ < 1, we get

∑n
i=0 β(iδ) ≤ C/(δρ| log(ρ)|).

As a consequence, the variance bound in (8), for 0 < δ < 1, is

(10)
4‖K‖2

nb1b2

n∑
i=0

β(iδ) ≤ 4‖K‖2

ρ| log(ρ)|
C

nb1b2δ
.

Now, consider the variance bound stated in (9). Choose in an integer larger than 1/δ2,
in = [1/δ2] + 1. Then we have

n−1∑
i=1

[
(1 +

1

i2δ2
) ∧ ρiδ

b1b2

]
=

in−1∑
i=1

(1 +
1

i2δ2
) +

n−1∑
i=in

ρiδ

b1b2

≤ in +
1

δ2

∑
i≥1

1

i2
+

1

b1b2

ρinδ

1− ρδ

≤ 3

δ2
+

1

b1b2

ρ1/δ

1− ρδ

Here, for 0 < δ < 1, we have ρ1/δ/(1− ρδ) ≤ 1/(ρ log2(ρ)). Thus

(11)
1

nb1b2
+

1

n

n−1∑
i=1

[
(1 +

1

i2δ2
) ∧ ρiδ

b1b2

]
≤
(

1 +
1

ρ(log(ρ))2

)
1

nb1b2
+

3

nδ2
.

As a consequence, we will have to compare orders O(1/(nb1b2δ)) and O(1/(nb1b2) + 1/(nδ2)),
the term 1/(nδ2) being due to the hypoellipticity.

3.3. Rates of convergence. To evaluate the rate of convergence of the estimator p̃b, we need
to set regularity assumptions on p, and to make adequate choices of the bandwidths b1 and b2.
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This is why in this section, we consider the particular case of the Hölder’s or Nikol’ski spaces
for the density p, depending on the type of risk which is considered.

Definition 1. We say that p is Hölder H(a, L) with index a = (a1, a2) around (x, y) that is we
assume that p admits derivatives with respect to x (resp. y) up to order ba1c (resp. ba2c) in a
neighborhood of (x, y), with∣∣∣∣∣ ∂ba1cp

(∂x)ba1c
(x+ δx, y)− ∂ba1cp

(∂x)ba1c
(x, y)

∣∣∣∣∣
2

dx ≤ L|δx|2(a1−ba1c),

∣∣∣∣∣ ∂ba2cp

(∂y)ba2c
(x, y + δy)−

∂ba2cp

(∂y)ba2c
(x, y)

∣∣∣∣∣
2

dx ≤ L|δy|2(a2−ba2c) .

Definition 2. We say that p is Nikol’ski N (γ, L) with index γ = (γ1, γ2), that is we assume
that p admits derivatives with respect to x (resp. y) up to order bγ1c (resp. bγ2c) on R2, with∫ ∣∣∣∣∣ ∂bγ1cp

(∂x)bγ1c
(x+ δx, y)− ∂bγ1cp

(∂x)bγ1c
(x, y)

∣∣∣∣∣
2

dx ≤ L|δx|2(γ1−bγ1c),

∫ ∣∣∣∣∣ ∂bγ2cp

(∂y)bγ2c
(x, y + δy)−

∂bγ2cp

(∂y)bγ2c
(x, y)

∣∣∣∣∣
2

dx ≤ L|δy|2(γ2−bγ2c) .

Remark 2. If c and σ2 are constants and if the potential D satisfies the conditions stated in
Section 2, then the above regularity assumptions are fulfilled, see Cattiaux et al. [2014a,b].

Following the strategy given in Tsybakov [2009], we need to specify the order of the kernel K
and recall the following definition.

Definition 3. A kernel K is of order ` = (`1, `2) if for i ∈ {1, 2}, 1 ≤ k ≤ `i−1,
∫
zkiK(z)dz = 0.

Examples of kernels of arbitrary order are given in Tsybakov [2009], Kerkyacharian et al.
[2001]. We can now compute the order of the integrated squared bias term

∫
(pb(z)− p(z))2dz.

Proposition 3. We assume that p(x, y) is in H(a, L) for any (x, y) ∈ S where S is a subset
of R2, and K is a kernel with order ` = (`1, `2) such that K(x, y) = K1(x)K2(y) with K1 a
kernel of order `1 ≥ ba1c and K2 a kernel of order `2 ≥ ba2c and

∫
|x|`1K1(x) dx < +∞,∫

|y|`2K2(y) dy < +∞. Then,

(12)

∫∫
S

(pb(z)− p(z))2dz ≤ C
(
b2a1
1 + b2a2

2

)
.

The same order holds for integrated bias on Nikol’ski space N ((a1, a2), L), see Tsybakov [2009].

We can now minimize the quadratic risk of the estimator p̃(z) in the complete observations case.

• Estimation on R2.
Plugging in (8) the variance bound stated in (10) and the bias bound given in Proposition 3, we
obtain the following order for the integrated quadratic risk. For 0 < δ < 1, we have

E
[∫

(p̃b(z)− p(z))2dz

]
≤ C

{(
b2a1
1 + b2a2

2

)
+

4‖K‖2

ρ| log(ρ)|
1

nb1b2δ

}
.
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Then we need to calculate the trade-off between the two terms b2a1
1 + b2a2

2 and 1
nδb1b2

. We can

choose the following (anisotropic) bandwidths bj = bj,opt

(13) bj,opt ∝ (nδ)−ā/(2aj(ā+1)) where 1/ā = 1/2(1/a1 + 1/a2).

Thus we obtain the rate

(14) E
[∫

(p̃b(z)− p(z))2dz

]2

≤ O((nδ)−ā/(ā+1))

• Estimation on the compact A.
In that framework, we consider that δ is small, otherwise, we apply the previous result. It follows
now by plugging (11) and the bias bound of Proposition 3 in (9). The integrated quadratic risk
on A has the order

O

(
b2a1
1 + b2a2

2 +

(
1 +

1

ρ(log(ρ))2

)
1

nb1b2
+

3

nδ2

)
.

Choosing now the following bandwidths bj = b∗j,opt

(15) b∗j,opt ∝ n−ā/(2aj(ā+1)),

we get

E
[∫

A
(p̃b(z)− p(z))2dz

]2

≤ O
(
n−ā/(ā+1) +

1

nδ2

)
.

For small δ, the first term in the rate is smaller than the order obtained in (14). We study
conditions ensuring that the last term 1/(nδ2) is negligible w.r.t. the first one. Let us assume
δ = n−ω with 0 < ω < 1

2(ā+1) (note that this condition implies 0 < ω < 1/2 and then 1/nδ2 → 0).

Then the rate of convergence is improved with respect to (14):

(16) E
[∫

A
(p̃b(z)− p(z))2dz

]2

= O(n−ā/(ā+1)).

Note that the condition nδ2 → ∞ with which the rate (14) is improved is surprisingly the
opposite than the standard condition nδ2 → 0 required in the parametric context to obtain the
asymptotic normality of the parametric estimator [see Samson and Thieullen, 2012, for example].

Note also that the rate in (16) is the optimal rate in the minimax sense, for density estimation
when n i.i.d. observations are available, see Goldenshluger and Lespki [2011].

In all cases, we emphasize that the two selected bandwidths are different, and this anisotropy
property is important in our setting: regularity in each direction can be different. The bandwidth
selection procedure has to be able to provide such different choices for b1 and b2.

3.4. Adaptive procedure. It is clear from the previous section that the proposed bandwidth
choice depends on the regularity of the function p, which is unknown. This is why we study
a data driven bandwidth selection device. To select b adequately, we propose the following
method, inspired from Goldenshluger and Lespki [2011]. Let us define for all z = (x, y)

p̃b,b′(z) = p̃b,b′(x, y) = Kb′ ∗ p̃b(x, y) =
1

n

n∑
i=1

Kb′ ∗Kb(x−Xiδ, y − Yiδ)
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where u ∗ v(z) =
∫
u(z − t)v(t)dt. Note that p̃b,b′ = p̃b′,b. Let Bn = {(b1,k, b2,`), k, ` = 1, . . . , Bn}

be a discrete set of bandwidths among which we want to make a choice. Then let

A(b) = sup
b′∈Bn

(
‖p̃b,b′ − p̃b′‖2 − V (b′)

)
+

with V (b) = κ
‖K‖21‖K‖2

nb1b2

n−1∑
i=0

β(iδ),

where κ is a numerical constant to be calibrated by simulations. Heuristically, A(b) is an estimate
of the squared bias and V (b) of the variance bound. Thus, the selection is made by setting

b̃ = arg min
b∈Bn

(A(b) + V (b)) .

Remark. We can also choose V (b) = κ/(1− ρδ)‖K‖21‖K‖2/(nb1b2). In any case, we face the
problem which is standard for non independent data, of having an unknown quantity ρ in the
penalty. There are suggestions of block empirical variance estimation for such terms in Lerasle
[2011], Lerasle [2012].

Under conditions on Bn, we can prove the following result for the integrated risk on R2.

Theorem 1. Assume that Bn is such that

(17)
∑
b∈Bn

e−λ/
√
b/
√
b ≤ C(λ) < +∞, ∀λ > 0,

with 1/b = 1/(b1b2) ≤ n, and

(18)
log(n)

δ
e−λ
√
nδ/ log(n)card(Bn) ≤ C(λ, δ) < +∞, ∀λ > 0.

Then we have

E(‖p̃b̃ − p‖
2) ≤ C inf

b∈Bn

(
‖p− pb‖2 + V (b)

)
+ C ′

log(n)

nδ
for C and C ′ constants.

Clearly, the bound stated in Theorem 1 shows that the estimator leads to an automatic trade-
off between the bias ‖p − pb‖2 and the variance V (b), up to a multiplicative constant C. The
last term C ′ log(n)/(nδ) is indeed negligible. Moreover this procedure allows to choose different
bandwidths for the two directions x and y.

Let us give an example of set Bn of bandwidths fitting our conditions. Choose bi,k = 1/k for
i = 1, 2, and Bn = [

√
n]. Then 1/b = 1/(b1,kb2,`) ≤ n and card(Bn) ≤ n, so that for any fixed

δ and λ > 0, log(n)δ−1e−λ
√
nδ/ log(n)card(Bn) ≤ C(λ, δ) < +∞ and condition (18) is fulfilled.

Moreover as for k, ` ≥ 1, e−λ
√
k` ≤ exp(−λ

√
k/2) exp(−λ

√
`/2), we get

Bn∑
k=1

Bn∑
`=1

√
k`e−λ

√
k` ≤

(
Bn∑
k=1

√
ke−λ

√
k/2

)2

< +∞

Thus condition (17) is satisfied. The choice bi,k = 2−k, for i = 1, 2 and Bn = log(n)/(2 log 2)
would suit also. It is important to note that these sets contain the optimal bandwidth.
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4. Estimation of the density p in the partial observation case.

For the partially observed case, where only the position process X is available at discrete time
(iδ)i=1,...,n, we approximate the velocity Yiδ by the increment

Ȳiδ =
X(i+1)δ −Xiδ

δ
and define the 2-dimensional kernel estimator by:

(19) p̂b(x, y) :=
1

n

n∑
i=1

Kb

(
x−Xiδ, y −

X(i+1)δ −Xiδ

δ

)
.

We present the integrated risk of p̂b and an adaptive procedure to select automatically the
bandwidth b.

4.1. Integrated quadratic risk. Let us choose K(z) = K(x, y) = K1(x)K2(y) and study the
integrated risk of the new estimator in this more difficult setting.

Proposition 4. Consider, in the partial observation case, the estimator given by (19), under
the drift condition (2). Then there exists a constant C > 0 such that

(20) E
[∫

(p̂b(z)− p(z))2dz

]
≤
∫

(pb(z)− p(z))2dz +
4‖K‖2

nb1b2

n−1∑
i=0

β(iδ) +
C δ

b1b32
.

First, note that integrating on a compact set A would allow to replace

4‖K‖2

nb1b2

n−1∑
i=0

β(iδ) by C

(
1

nb1b2
+

1

n

n−1∑
i=1

[
(1 +

1

i2δ2
) ∧ ρiδ

b1b2

])
as previously.

Second, let us discuss the rate implied by the bound (20) under the condition that p ∈
N ((a1, a2), L), and β(iδ) ≤ ρiδ. In this case, the order of the bound of the integrated quadratic
risk becomes, for 0 < δ < 1,

O
(
b2a1
1 + b2a2

2 +
1

nb1b2δ
+

δ

b1b32

)
.

Assume that b1 and b2 are chosen as in the complete data case i.e. without the last error term.
In that case, bj,opt � (nδ)−ā/[2aj(ā+1)]. Assume that δ = n−ω, 0 < ω < 1. Then the rate is

O

(
n−(1−ω)ā/(ā+1) + n−ωn

(1−ω)
[

ā
2a1(ā+1)

+ 3ā
2a2(ā+1)

])
.

The estimator is consistent if the power of the second term is negative i.e. if ω > ω0(a1, a2) with

ω0(a1, a2) =
1 + ā

a2

2 + ā+ ā
a2

.

For instance in the isotropic case, a1 = a2 = a, ω0(a, a) = 2/(3 + a) ∈ (0, 2/3) for a ∈ (0,+∞).
Therefore, the estimator is convergent if ω > 2/3. If a > 1, ω > 1/2 is sufficient.

Now we can wonder when the rate of the second term is less than the first term rate, i.e.
conditions on ω ensuring that

−ω + (1− ω)
ā

ā+ 1

[
1

2a1
+

3

2a2

]
≤ −(1− ω)

ā

ā+ 1
.
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This yields ω > ω1(a1, a2) with

ω1(a1, a2) =
1 + ā

a2(1+ā)

2 + ā
a2(1+ā)

.

For instance in the isotropic case, a1 = a2 = a, ω1(a, a) = (2 + a)/(3 + 2a) ∈ (1/2, 2/3) for
a ∈ (0,+∞). Therefore, the additional term does not degrade the optimal rate if ω ≥ 2/3.

4.2. Adaptive procedure for partial observations. We extend the Goldenshluger and
Lespki [2011] procedure to the present case as follows. Let us define, in the same spirit as
in the complete observation case, for all z = (x, y)

p̂b,b′(z) = p̂b,b′(x, y) = Kb′ ∗ p̂b(x, y) =
1

n

n∑
i=1

Kb′ ∗Kb(x−Xiδ, y − Ȳiδ).

Now let
A(P )(b) = sup

b′∈Bn

(
‖p̂b,b′ − p̂b′‖2 − V (P )(b′)

)
+

with

V (P )(b) = κ1
‖K‖21‖K‖2

nb1b2

n−1∑
i=0

β(iδ) + κ2
δ

b1b32
:= V

(P )
1 (b) + V

(P )
2 (b),

where κ1 is a numerical constant to be calibrated by simulations and κ2 depends on K and σ2.
The selection is made by setting

(21) b̂ = arg min
b∈Bn

(
A(P )(b) + V (P )(b)

)
.

Then we can prove

Theorem 2. Assume that Bn satisfies conditions (17) and (18). Then we have

E(‖p̂b̂ − p‖
2) ≤ C inf

b∈Bn

(
‖p− pb‖2 + V (P )(b)

)
+ C ′

log(n)

nδ

for two constants C and C ′.

The result states that the compromise between all terms involved in the risk bound is auto-
matically performed with this strategy. As for the complete observation case, this procedure
allows to select anisotropic bandwidths.

5. Simulations

The two procedures of estimation (complete and partial observation cases) are implemented
in R and evaluated on two examples: the Harmonic and the Van Der Pol Oscillators. We first
explain the implementation of the estimators and then give the numerical results obtained for
the two models.

5.1. Implementation of the estimators. The implementation of the Goldenshluger and
Lespki [2011] is not efficient numerically in the multi-dimensional setting. Indeed, the convolu-
tion estimator p̃b,b′ has to be computed for a double collection of bandwidths ((b1, b2), (b′1, b

′
2))

which is numerically demanding. Moreover, the penalty V (b) appears twice in the procedure,
the two constants κ1, κ2 are then difficult to calibrate. Especially, the slope heuristic can not be
used in that case.
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In practice, we therefore propose to implement a method, inspired from Goldenshluger and
Lespki [2011], as rewritten most recently by Lacour et al. [2016]. The method is proposed in their
paper for an independent sample and we naturally extend the implementation to the dependent
context.

More precisely, let us define a discrete set of admissible bandwidths

Bn = {(b1,k, b2,`), k, ` = 1, . . . , Bn, b1,k ≥ b1,min, b2,` ≥ b2,min}
among which we want to make a choice. We propose to select the bandwidth with the following
criterion:

(22)
˜̃
b = arg min

b∈Bn

(
‖p̃b − p̃bmin

‖2 + V (b)
)
.

Heuristically, ‖p̃b − p̃bmin
‖2 is an estimate of the squared bias and replaces the term A(b) =

supb′∈Bn
(
‖p̃b,b′ − p̃b′‖2 − V (b′)

)
+

. The main advantage is that we avoid the computation of the

convolved p̃b,b′ and the constant κ appears only once, and in a standard manner. This allows to
calibrate it with the slope heuristic, as explained below. The final estimator is p̃˜̃

b
.

A Gaussian kernel is chosen for function K. The collection of estimators (p̃b)b∈Bn is computed

for the following collection of bandwidths: Bn = {(b1, b2) : b1 ∈ {1/
√

4n, 2/
√

4n, . . . , 30/
√

4n}, b2 ∈
{1/
√

4n, 2/
√

4n, . . . , 30/
√

4n}}. Note that bmin = (1/
√

4n, 1/
√

4n). Then the automatic selec-
tion of the best bandwidth with the criterion (22) is implemented: the norm ‖p̃b − p̃bmin

‖2 is
computed by discretization of the integral. Then we approximate V (b). The β-mixing coeffi-
cients β(δ) are generally unknown but bounded by Cρδ (equation (6)). If 0 < ρ < 1, we have∑n

i=1 β(iδ) ≤ C/(δρ| log ρ|). As ρ is unknown, we let the constant κ absorbs the term in ρ and
approximate the penalty V (b) by

Ṽ (b) = κ
1

nδb1b2
.

The constant κ can then be calibrated numerically by the slope heuristic [Arlot and Massart,

2009, Lacour et al., 2016] and we find κ = 0.1. By plugging
˜̃
b into (7) we obtain p̃˜̃

b
which is our

estimator for the complete observation case.

For the partial observation case, we do not implement neither the Goldenshluger and Lespki
[2011] procedure (21) but also extend the Lacour et al. [2016]’s procedure to this case. The

bandwidth
ˆ̂
b is selected by the following criterion

(23)
ˆ̂
b = arg min

b∈Bn

(
‖p̂b − p̂bmin

‖2 + V̂ (P )(b)
)
, with V̂ (P ) = κ1

1

nδb1b2
+ κ2

δ

b1b32
,

with κ1 = 0.1 (same than for the complete observation case) and κ2 = 0.001 (obtained numer-
ically after a set of simulation experiments to calibrate it). The second term is almost always

neglected. By plugging
ˆ̂
b into (19) we obtain p̂ˆ̂

b
which is our estimator for the partial observation

case.

5.2. Numerical results for the Harmonic Oscillator. We first present the Harmonic Os-
cillator. The process (Xt, Yt) is solution of the process

dXt = Ytdt

dYt = −(αXt + γYt)dt+ σdWt
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Complete observations 0.11 0.05 0.02
nδ = 400 n = 500, δ = 0.8 n = 1000, δ = 0.4 n = 2000, δ = 0.2
Complete observations 0.090 0.013 0.011
Partial observations 0.302 0.038 0.014
nδ = 200 n = 500, δ = 0.4 n = 1000, δ = 0.2 n = 2000, δ = 0.1
Complete observations 0.023 0.018 0.016
Partial observations 0.048 0.021 0.018
nδ = 200 n = 250, δ = 0.8 n = 500, δ = 0.4 n = 1000, δ = 0.2
Complete observations 0.187 0.023 0.018
Partial observations 0.400 0.049 0.021

Table 1. Simulation study, Harmonic Oscillator. MISE of the estimation of
the stationary density p(x, y) using the estimators p̃˜̃

b
(complete observations) and

p̂ˆ̂
b

(partial observations) from 100 simulated trajectories, with different values of

n and δ.

with α > 0, γ > 0. In the following, we choose α = 4, γ = 0.5, σ = 0.5. The potential is then
D(x) = α/2x2. The stationary distribution is Gaussian, with mean zero and explicit diagonal
variance matrix:

p(x, y) =
γ
√
α

πσ2
exp(− 2γ

2σ2
y2 − 2γα

2σ2
x2)

with diagonal variances equal to 1/16 and 1/4, respectively in our case.
The two estimators p̃b̃ and p̂ˆ̂

b
are applied to 100 trajectories of the process (Xt, Yt). Several

designs are compared: nδ = 400 with (n = 500, δ = 0.8), (n = 1000, δ = 0.4)n (n = 2000, δ =
0.2); nδ = 200 with (n = 500, δ = 0.4), (n = 1000, δ = 0.2), (n = 2000, δ = 0.1) and finally
nδ = 200 with (n = 250, δ = 0.8), (n = 500, δ = 0.4), (n = 1000, δ = 0.2). For each n, δ, each of
the 100 trajectories has been simulated with a Euler scheme with a step size equal to δ/10.

An example of the collection of estimators (p̃b)b∈Bn and the associated final estimator p̃b̃,
obtained for a trajectory with n = 2000, δ = 0.2, is presented in the top line of Figure 1. The
selected bandwidth is anisotropic and equal to b̃ = (8/

√
4n, 17/

√
4n). On the same trajectory,

assuming that only X is observed (partial observations), we obtain the collection of estimators
(p̂b)b∈Bn and the associated final estimator p̂ˆ̂

b
presented in the bottom line of Figure 1. The

selected bandwidth is
ˆ̂
b = (9/

√
4n, 19/

√
4n). The densities are well estimated in both cases.

The partial observations impacts slightly the estimation of the marginal in y.
The influence of n, δ is then studied by comparing the Mean Integrated Squared Error (MISE)

of the two estimators. Results are presented in Table 1. As expected, the MISE are always
smaller in the complete observation case compared to the partial one. When n increases, the
MISE decreases. The influence of δ is more complex to analyse and depends on the evolution
of nδ: when δ decreases and n increases (this corresponds to a fixed nδ), the MISE decreases.
When δ is fixed and n increases (this correspond to a increased nδ), the MISE decreases. When
nδ is fixed and δ decreases, the MISE decreases. But when n is fixed and δ decreases, the MISE
does not always decrease.
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Figure 1. Harmonic Oscillator. Top line, complete observation case: marginals
in x (left) and in y (right) of the collection of estimators (p̃b)b∈Bn obtained for
a sample (Xiδ, Yiδ)i=1,...,n with n = 2000, δ = 0.2 (green dotted lines), final es-
timator p̃˜̃

b
(red dashed line) and true density p (black plain line). Bottom line,

partial observation case: marginals in x (left) and in y (right) of the collection of
estimators (p̂b)b∈Bn obtained for the same sample (Xiδ, Yiδ)i=1,...,n (green dotted
lines), final estimator p̂ˆ̂

b
(red dashed line) and true density p (black plain line).
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Figure 2. Van der Pol oscillator. Sample (Xiδ)i=0,...,n (top left), (Yiδ)i=0,...,n

(top right) and state phase (bottom) for δ = 0.05 and n = 2000.

5.3. Numerical results for the Van Der Pol Oscillator. We consider the Van der Pol
oscillator defined by

dXt = Ytdt

dYt = −((c1X
2
t − c2)Yt + ω2

0Xt)dt+ σdWt

with σ, c1, c2, ω
2
0 > 0. In the following, we choose σ = c1 = c2 = ω2

0 = 1. The potential is then
D(x) = ω2

0/2x
2. The invariant density has no explicit expression (c(x) is not constant). To

compare the estimators p̃b̃ and p̂ˆ̂
b

to the invariant density p, we approximate p by solving its

corresponding Fokker-Planck equation:

(24)
1

2

∂2p(x, y)

∂y2
− y∂p(x, y)

∂x
+ c(x)p(x, y) + (c(x)y +∇D(x))

∂p(x, y)

∂y
= 0

The partial differential equation (24) is approximated using a finite difference scheme [Kumar
and Narayanan, 2006].

A sample (Xiδ, Yiδ)i=0,...,n is obtained using the Euler scheme with δ = 0.05 and n = 2000.
The trajectory and its state phase is presented in Figure 2.

The collections of estimators (p̃b)b∈Bn (complete observations) and (p̂b)b∈Bn (partial observa-
tions) are presented in Figure 3. In the complete observation case, the two marginals are well
estimated. The influence of the partial observation is rather limited. Same results are obtained
for different values of n and δ (not shown).
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Figure 3. Van der Pol Oscillator. Top line, complete observation case:
marginals in x (left) and in y (right) of the collection of estimators (p̃b)b∈Bn
obtained for a sample (Xiδ, Yiδ)i=1,...,n with n = 2000, δ = 0.05 (green dotted
lines), final estimator p̃˜̃

b
(red dashed line) and true density p (black plain line).

Bottom line, partial observation case: marginals in x (left) and in y (right) of the
collection of estimators (p̂b)b∈Bn obtained for the same sample (Xiδ, Yiδ)i=1,...,n

(green dotted lines), final estimator p̂ˆ̂
b

(red dashed line) and true density p (black

plain line).
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F. Comte and F. Merlevède. Adaptive estimation of the stationary density of discrete and
continuous time mixing processes. ESAIM Probab. Statist., 6:211–238, 2002. ISSN 1292-8100.
New directions in time series analysis (Luminy, 2001).
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6. Proofs.

In the following, for p = 1, 2, ‖g‖p =
(∫
gp(x, y)dxdy

)1/p
denotes the Lp norm with respect

to Lebesgue on R2. For p = 2, we often omit the sub-index 2.

6.1. Useful results on the transition density. We recall the following result used in the
sequel (see Theorem 2.1 in Konakov et al. [2010], Corollary 2.12 in Cattiaux et al. [2014b],
Proposition 2.14 in Cattiaux et al. [2014b]).
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Proposition 5. For the system (1) under the drift condition (2), for all z and all bounded,
open neighborhood U of z, the density pt(z, .) can be bounded: ∀ t ∈ (0, T ), ∀ z′ ∈ U

(25) pt(z, z
′) ≤ C ′ 1

t2
exp

−C
 |y − y′|2

4t
+

3
∣∣∣x′ − x− t(y+y′)

2

∣∣∣2
t3


+ c(U)e−

c′(U)
t .

Moreover, for all t ≥ 0 and all pair (z, z′),

(26) pt0+t(z, z
′) ≤ sup

w
pt0(w, z′) < +∞ .

Thanks to the results in Proposition 5, we can show that for any compacts A′, A′′, if T > 1,
then for any t ∈ (0, 1]

sup
z∈A′,z′∈A′′

pt(z, z
′) ≤ C(A′, A′′)

(
t−2 + 1

)
.

One can indeed choose in Proposition 5 a common open neighborhood U of all z ∈ A′ compact,
satisfying moreover A′′ ⊂ U . Furthermore, using (26), we get

p1+t(z, z
′) ≤ sup

w
p1(w, z′) ,

and thus for any t ∈ (0,∞),

(27) sup
z∈A′,z′∈A′′

pt(z, z
′) ≤ C(A′, A′′)(t−2 + 1) .

Note that this means that the transition density is explosive when t goes to 0.

6.2. Proof of Proposition 1. We have from the standard bias variance decomposition

E
(∫

(p̃b(z)− p(z))2dz

)
=

∫
[pb(z)− p(z)]2 dz + E

∫
[p̃b(z)− pb(z)]2 dz.

Let us denote T2 = E [p̃b(z)− pb(z)]2. Recall that there exists a function gkδ such that
∫
gkδ(z)dPZ0(z) =

β(kδ) (see (5)). Thus, we have∫
T2(z)dz =

∫
E[(p̃b(z)− pb(z))2] =

∫
Var

(
1

n

n∑
i=1

Kb(x−Xiδ, y − Yiδ)

)
dxdy

≤ 4

n

∫ [∫ (
1

b1b2
K

(
x− u
b1

,
y − v
b2

))2
(
n−1∑
k=0

gkδ(u, v)

)
dP(X,Y )(u, v)

]
dxdy

=
4

n

∫ (∫
1

(b1b2)2
K2

(
x− u
b1

,
y − v
b2

)
dxdy

)(n−1∑
k=0

gkδ(u, v)

)
dP(X,Y )(u, v)

=
4

nb1b2
(

∫
K2(s, t)dsdt)

∫ (n−1∑
k=0

gkδ(u, v)

)
dP(X,Y )(u, v) =

4‖K‖2

nb1b2

n−1∑
k=0

β(kδ) .

Gathering the terms gives the announced result. �

6.3. Proof of Proposition 2. We have from the standard bias variance decomposition

E
(∫

A
(p̃b(z)− p(z))2dz

)
=

∫
A

[pb(z)− p(z)]2 dz + E
∫
A

[p̃b(z)− pb(z)]2 dz.
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Let us denote Ui,n(z) = Kb(z−Ziδ). Using the definition of T2(z) from the proof of Proposition
1, we have:∫

A
T2(z)dz =

∫
A
E

(
1

n2
(
n∑
i=1

(Kb(z − Ziδ)− EKb(z − Ziδ)))2

)
dz

=

∫
A

 1

n2

n∑
i=1

V ar(Kb(z − Ziδ)) +
2

n2

∑
1≤i<j≤n

Cov(Ui,n(z), Uj,n(z))

 dz

=

∫
A

(
1

n
V ar(U0,n(z)) +

2

n2

n−1∑
i=1

(n− i)Cov(U0,n(z), Ui,n(z))

)
dz

First we compute V ar(U0,n(z)).

V ar(U0,n(z)) = V ar

(
1

b1b2
K

(
x−X0

b1
,
y − Y0

b2

))
≤ 1

b21b
2
2

∫ ∫
K2

(
x− s
b1

,
y − t
b2

)
p(s, t)dsdt

≤ 1

b1b2

∫ ∫
K2(u, v)p(x− ub1, y − vb2)dudv.

Thus ∫
A
V ar(U0,n(z))dz ≤ ‖K‖

2

b1b2
.

Then we compute the covariance terms.

|Cov(U0,n(z), Ui,n(z))| =
1

b21b
2
2

∣∣∣∣Cov(K (x−X0

b1
,
y − Y0

b2

)
,K

(
x−Xiδ

b1
,
y − Yiδ
b2

))∣∣∣∣
≤ 1

b21b
2
2

(
E
∣∣∣∣K (z − Z0

b

)
K

(
z − Ziδ

b

)∣∣∣∣+

(
E
∣∣∣∣K (z − Z0

b

)∣∣∣∣)2
)

We have to compute E
∣∣∣K ( z−Z0

b

)
K
(
z−Ziδ
b

)∣∣∣:
E
∣∣∣∣K (z − Z0

b

)
K

(
z − Ziδ

b

)∣∣∣∣
=

∫ ∫ ∣∣∣∣K (x− sb1
,
y − t
b2

)
K

(
x− s′

b1
,
y − t′

b2

)∣∣∣∣ piδ((s, t), (s′, t′))p(s, t)dsdtds′dt′
= b21b

2
2

∫ ∫
|K(u, v)K(u′, v′)| ×

piδ((x− ub1, y − vb2), (x− u′b1, y − v′b2))p(x− ub1, y − vb2)dudvdu′dv′

We apply bound (27) to t = iδ and z = (x − ub1, y − vb2), z′ = (x − u′b1, y − v′b2) which
is explosive when δ → 0. The support AK of the kernel K is assumed to be compact and A is
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compact. Then

E
∣∣∣∣K (z − Z0

b

)
K

(
z − Ziδ

b

)∣∣∣∣
≤ CA,AK b

2
1b

2
2

(
1

(iδ)2
+ 1

)∫ ∫
|K(u, v)K(u′, v′)|p(x− ub1, y − vb2)dudvdu′dv′.

Thus ∫
A
E
∣∣∣∣K (z − Z0

b

)
K

(
z − Ziδ

b

)∣∣∣∣ dz ≤ CA,AK b21b22( 1

(iδ)2
+ 1

)
‖K‖21

We have also, denoting `AK the length of AK :

∫
A

(
E
∣∣∣∣K (z − Z0

b

)∣∣∣∣)2

dz = b21b
2
2

∫
A

(∫
AK

|K(u, v)|p(x− ub1, y − vb2)dudv

)2

dxdy

≤ b21b
2
2`AK

∫
A

∫
AK

K2(u, v)p2(x− ub1, y − vb2)dudvdxdy

≤ b21b
2
2`AK‖K‖

2
2 ‖p‖22,A+AK

Finally ∫
A
Cov(U0,n(z), Ui,n(z))dz ≤ C

(
1

(iδ)2
+ 1

)
where C is a constant depending on CA,AK , `AK , ‖K‖22, ‖K‖21, ‖p‖22,A+AK

.

We can also bound |Cov(U0,n(z), Ui,n(z))| following Viennet [1997] and the functions gkδ
introduced in (5). Thus∫
A
|Cov(U0,n(z), Ui,n(z))| dz ≤ 4

n

∫ [∫ (
1

b1b2
K

(
x− u
b1

,
y − v
b2

))2

giδ(u, v)dPZ0(u, v)

]
dxdy

=
4

n

∫ (∫
1

(b1b2)2
K2

(
x− u
b1

,
y − v
b2

)
dxdy

)
giδ(u, v)dPZ0(u, v)

≤ 4

nb1b2

∫
K2(s, t)dsdt

∫
giδ(u, v)dPZ0(u, v)

∫
A
|Cov(U0,n(z), Ui,n(z))| dz ≤ 4‖K‖2

nb1b2
β(iδ) ≤ C 4‖K‖2

nb1b2
ρiδ.

Finally, we can bound
∫
A T2(z)dz:∫

A
T2(z)dz ≤ C

nb1b2
+
C

n

n−1∑
i=1

((
1

(iδ)2
+ 1

)
∧ ρiδ

b1b2

)
.

By gathering the bounds, we get the result. �

6.4. Proof of Theorem 1.

• Preliminary results.
To prove Theorem 1, we use Berbee’s coupling method as in Viennet (1997), Proposition 5.1
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and its proof p.484. Let Ziδ = (Xiδ, Yiδ). We assume that n = 2pnqn with integers pn and qn to
be chosen. Then there exist random variables Z∗iδ, i = 1, ..., n satisfying the following properties:

• For ` = 1, ..., pn, the random vectors ~U`,1 = (Z[2(`−1)qn+1]δ, ..., Z(2`−1)qnδ)
′ and ~U∗`,1 =

(Z∗[2(`−1)qn+1]δ, ..., Z
∗
(2`−1)qnδ

)′ have the same distribution, and so have the vectors ~U`,2 =

(Z[(2`−1)qn+1]δ, ..., Z2`qnδ)
′ and ~U∗`,2 = (Z∗[(2`−1)qn+1]δ, ..., Z

∗
2`qnδ

)′.

• For ` = 1, ..., pn, P(~U`,1 6= ~U∗`,1) ≤ βZ(qnδ) and P(~U`,2 6= ~U∗`,2) ≤ βZ(qnδ).

• For each ε ∈ {1, 2}, the random vectors ~U∗1,ε, ...,
~U∗pn,ε are independent.

We denote by p̃∗b the estimator computed with the Z∗iδ instead of the Ziδ and write p̃∗b = (p̃
∗(1)
b +

p̃
∗(2)
b )/2 and p̃∗b,b′ = (p̃

∗(1)
b,b′ + p̃

∗(2)
b,b′ )/2 to separate the part with Z∗iδ with odd i (super-index (1))

or even i (super-index (2)).
For Ziδ = (Xiδ, Yiδ), let us define the set Ω∗ = {Ziδ = Z∗iδ, i = 1, . . . , n}. We have

(28) P(Ω∗c) ≤ 2pnβZ(qnδ) ≤ nβZ(qnδ).

Now writing that

‖p̃b′ − p̃∗b′‖2 =

∫ (
1

n

n∑
i=1

Kb′(z − Ziδ)−Kb′(z − Z∗iδ)

)2

dz1Ω∗c

≤ 2

n

n∑
i=1

∫
(K2

b′(z − Ziδ) +K2
b′(z − Z∗iδ))dz1Ω∗c

≤ 4

b′

∫
K2(w)dw1Ω∗c ,(29)

this implies, for 1/b ≤ n, ∀b ∈ Bn,

E(sup
b′
‖p̃b′ − p̃∗b′‖2) ≤ 4n‖K‖2P(Ω∗c) ≤ 4‖K‖2n2βZ(qnδ).

Using βZ(qnδ) ≤ ρqnδ, we choose

(30) qn = 3

[
log(n)

δ| log(ρ)|

]
,

and we get

(31) E(sup
b′
‖p̃b′ − p̃∗b′‖2) ≤ 4‖K‖2

n
.

Using Young’s Inequality ‖u ∗ v‖r ≤ ‖u‖p‖v‖q, (1/p) + (1/q) = (1/r) + 1 with r = 2, p = 1 and
q = 2, we get for any b, b′ ∈ Bn,

‖p̃b,b′ − p̃∗b,b′‖2 = ‖Kb′ ∗ (p̃b − p̃∗b)‖2 ≤ ‖Kb′‖21‖p̃b − p̃∗b‖2 = ‖K‖21‖p̃b − p̃∗b‖2.
Thus

(32) E(sup
b′
‖p̃b,b′ − p̃∗b,b′‖2) ≤ 4‖K‖21‖K‖2

n
.

Moreover, we can prove by using Talagrand Inequality (see (37)),
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Lemma 1. For i = 1, 2, and qn chosen in (30), there exist a constant C∗ and a constant κ∗0
such that, for any κ ≥ κ∗0:

(33) E

[
sup
b′∈Bn

(∥∥p̃∗(i)b′ − pb′
∥∥2 − κ

n∑
i=0

β(iδ)
‖Kb′‖2

n

)
+

]
≤ C∗ log(n)

nδ
.

Moreover there exist a constant C and a constant κ0 such that, for any κ ≥ κ0:

(34) E

[
sup
b′∈Bn

(∥∥p̃∗,(i)b,b′ − pb,b′
∥∥2 − κ

n∑
i=0

β(iδ)
‖K‖21‖Kb′‖2

n

)
+

]
≤ C log(n)

nδ
.

• Proof of Theorem 1.
The definition of b̃ implies that A(b̃) + V (b̃) ≤ A(b) + V (b) for any b ∈ Bn. Thus, for any b in
Bn, recalling that pb = Kb ∗ p, pb,b′ = Kb ∗Kb′ ∗ p, we have the decomposition

‖p̃b̃ − p‖
2 ≤ 3

(
‖p̃b̃ − p̃b,b̃‖

2 + ‖p̃b,b̃ − p̃b‖
2 + ‖p̃b − p‖2

)
≤ 3
(
A(b) + V (b̃)

)
+ 3
(
A(b̃) + V (b)

)
+ 3
∥∥p̃b − p∥∥2

≤ 6
(
A(b) + V (b)

)
+ 3
∥∥p̃b − p∥∥2

.

Therefore

(35) E
[
‖p̃b̃ − p‖

2
]
≤ 3E

[
‖p̃b − p‖2

]
+ 6V (b) + 6E[A(b)].

To study A(b), we note that for any b, b′∥∥p̃b′ − p̃b,b′∥∥2 ≤ 7

4

(∥∥p̃∗(1)
b′ − pb′

∥∥2
+
∥∥p̃∗(2)

b′ − pb′
∥∥2

+
∥∥p̃∗(1)

b,b′ − pb,b′
∥∥2

+
∥∥p̃∗(2)

b,b′ − pb,b′
∥∥2
)

+7(‖p̃b′ − p̃∗b′‖2 + ‖p̃b,b′ − p̃∗b,b′‖2 +
∥∥pb′ − pb,b′∥∥2

).

This implies that

A(b) ≤ 7

4
sup
b′

(∥∥p̃∗(1)
b′ − pb′

∥∥2 − V (b′)

7

)
+

+
7

4
sup
b′

(∥∥p̃∗(2)
b′ − pb′

∥∥2 − V (b′)

7

)
+

+
7

4
sup
b′

(∥∥p̃∗(1)
b,b′ − pb,b′

∥∥2 − V (b′)

7

)
+

+
7

4
sup
b′

(∥∥p̃∗(2)
b,b′ − pb,b′

∥∥2 − V (b′)

7

)
+

+7 sup
b′
‖p̃b′ − p̃∗b′‖2 + 7 sup

b′
‖p̃b,b′ − p̃∗b,b′‖2 + 7 sup

b′

∥∥pb′ − pb,b′∥∥2

Using Young’s Inequality again, we get for any b, b′ ∈ Bn,

(36) ‖pb′ − pb,b′‖2 = ‖Kb′ ∗ (p− pb)‖2 ≤ ‖Kb′‖21‖p− pb‖2 = ‖K‖21‖p− pb‖2.
Now using (31), (32), and inequalities (33) and (34) in Lemma 1, implies

E(A(b)) ≤ 7‖K‖21‖p− pb‖2 + 7C ∨ C ′ log(n)

nδ

and plugging this in (35), we get

E(‖p̃b̃−p‖
2) ≤ (3+42‖K‖21)‖pb−p‖2 +(

12

κ‖K‖1
+6)V (b)+336

‖K‖2(‖K‖21 ∨ 1)

n
+

42C ∨ C ′ log n

nδ
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where we use the bound of Proposition 1 which implies that E(‖p̃b − p‖2) ≤ ‖pb − p‖2 +
(4/κ)(V (b)/‖K‖21) . This ends the proof of Theorem 1. �

6.5. Proof of Lemma 1.

First, we recall the following version of Talagrand inequality.

Lemma 2. Let T1, . . . , Tn be independent random variables and νn(r) = (1/n)
∑n

j=1[r(Tj) −
E(r(Tj))], for r belonging to a countable class R of measurable functions. Then, for ε > 0,

(37) E[sup
r∈R
|νn(r)|2 − (1 + 2ε)H2]+ ≤ C

(
v

n
e−K1ε

nH2

v +
M2

n2C2(ε)
e−K2C(ε)

√
εnH
M

)
with K1 = 1/6, K2 = 1/(21

√
2), C(ε) =

√
1 + ε− 1 and C a universal constant and where

sup
r∈R
‖r‖∞ ≤M, E

(
sup
r∈R
|νn(r)|

)
≤ H, sup

r∈R

1

n

n∑
j=1

Var(r(Tj)) ≤ v.

Inequality (37) is a straightforward consequence of the Talagrand inequality given in Klein
and Rio [2005]. Moreover, standard density arguments allow to apply it to the unit ball of spaces.

We prove Inequality (33), and Inequality (34) follows the same line. We first write that

E

[
sup
b′

(∥∥p̃b′ − pb′∥∥2 − κBδ
‖Kb′‖2

n

)
+

]

≤ 3E

[
sup
b′

∥∥p̃b′ − p̃∗b′∥∥2

]
+ 3E

[
sup
b′

(∥∥p̃∗(1)
b′ − pb′

∥∥2 − κBδ
‖Kb′‖2

n

)
+

]

+3E

[
sup
b′

(∥∥p̃∗(2)
b′ − pb′

∥∥2 − κBδ
‖Kb′‖2

n

)
+

]
The first expectation is bounded by using (31), and the two others are similar, so we study only
one of them.

(38) E

[
sup
b′

(∥∥p̃∗(2)
b′ − pb′

∥∥2 − κBδ
‖Kb′‖2

n

)
+

]
≤
∑
b∈Bn

E

[(∥∥p̃∗(2)
b − pb

∥∥2 − κBδ
‖Kb‖2

n

)
+

]
.

Next we note that ‖p̃∗(2)
b − pb‖2 = supt,‖t‖=1

〈
p̃
∗(2)
b − pb, t

〉2
, and the supremum can be consid-

ered over a countable dense set of functions t such that ‖t‖ = 1; let us denote this set by B(1).
Thus,

νn(t) :=
〈
p̃
∗(2)
b −pb, t

〉
=

1

pn

pn∑
`=1

1

qn

qn∑
j=1

∫ [
Kb(z − Z∗[2(`−1)qn+j]δ)− E

[
Kb(z − Z∗[2(`−1)qn+j]δ)

]]
t(z)dz

is a centered empirical process with independent variables

ψt(~U
∗
`,1) =

1

qn

qn∑
j=1

∫ [
Kb(z − Z∗[2(`−1)qn+j]δ)− E

[
Kb(z − Z∗[2(`−1)qn+j]δ)

]]
t(z)dz,
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to which we apply Talagrand Inequality. We compute H2, v and M as defined in Lemma 2. As

|νn(t)| ≤ ‖p̃∗(2)
b − pb‖‖t‖, we have

E
[

sup
t∈B(1)

(νn(t))2
]
≤ E

[
‖p̃∗(2)
b − pb‖2

]
=

1

pn

∫
Var

 1

qn

qn∑
j=1

[
Kb(z − Z∗jδ)− E

[
Kb(z − Z∗jδ)

]] dz

≤ 4‖K‖2

pnqnb1b2
(1 +

qn−1∑
i=1

ρiδ) ≤ 8‖K‖2

nb1b2
(1 +

n−1∑
i=1

ρiδ).

Therefore H2 = 8‖K‖2/(nb1b2)(1 +
∑n−1

i=1 ρ
iδ).

For v, we have to bound for t ∈ B(1), the term Var

(
ψt(~U

∗
`,1)

)
. We apply the variance inequality

in Viennet [1997] which yields

Var

(
ψt(~U

∗
`,1)

)
≤ 4

qn

∫
[Kb ∗ t(z)]2θ(z)p(z)dz

where E(θq(Z)) ≤ qCq+1 with Cr =
∑

`∈N(` + 1)r−2β`δ (see Lemma 4.2 in Viennet [1997]). By
Schwarz Inequality, we get

Var

(
ψt(~U

∗
`,1)

)
≤ 4

qn

(∫
[Kb ∗ t(z)]4p(z)dz

)1/2(∫
θ2(z)p(z)dz

)1/2

≤ 8

qn
‖p‖1/2∞ ‖Kb ∗ t‖24

(∑
`∈N

(`+ 1)β`δ

)1/2

.

Now, we apply Young’s Inequality ‖u ∗ v‖r ≤ ‖u‖p‖v‖q, (1/p) + (1/q) = (1/r) + 1 with r = 4
and q = 2 and thus p = 4/3. We get

Var

(
ψt(~U

∗
`,1)

)
≤ 8

qn
‖p‖1/2∞ ‖Kb‖24/3‖t‖

2
2

(∑
`∈N

(`+ 1)β`δ

)1/2

.

Lastly,

‖Kb‖24/3 =

(∫
(
1

b
K(

z

b
))4/3dz

)3/2

= b−1/2‖K‖24/3.

So we get v = 8‖p‖1/2∞ ‖K‖24/3C
1/2
3 /(qn

√
b) = Cv/(δqn

√
b) where Cv = 8‖p‖1/2∞ ‖K‖24/3C

1/2
3 δ and

C3 is of order 1/δ2 explaining the normalization.

Lastly as |
∫
Kb(z − U)t(z)dz| ≤

√∫
K2
b (z − U)dz

∫
t2(z)dz, we get M = ‖K‖/

√
b. Thus we

apply Talagrand Inequality and get

E

[(
‖p̃∗(2)
b − pb‖2 −

1

7

κ‖K‖21
8

H2

)
+

]
≤ C1

pn

{
Cv

δqn
√
b

exp

(
− 8C2‖K‖2

Cv
δ

1− ρδ
1√
b

)

+
‖K‖2

pnb
exp

(
−C3
√
pn/(qn(1− ρδ))1/2

)}
.
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Note that exp
(
−C3
√
pn/(qn(1− ρδ))1/2

)
is of order exp(−C

√
nδ/ log(n)) when replacing qn by

its value as given by (30). We get the result under conditions (17) and (18) and as 1/b ≤ n. �

6.6. Proof of Proposition 4. The difference with the complete observation case is the term

T3 = E

∫ ( 1

nb1b2

n∑
i=1

K(
z − Z̄iδ

b
)−K(

z − Ziδ
b

)

)2

dz


where Z̄iδ =

(
Xiδ,

X(i+1)δ−Xiδ
δ

)
. We have

E

∫ ( 1

nb1b2

n∑
i=1

K(
z − Z̄iδ

b
)−K(

z − Ziδ
b

)

)2

dz


≤ 1

n2b21b
2
2

∫
E

[
n∑
i=1

(
K(

z − Z̄iδ
b

)−K(
z − Ziδ

b
)

)2
]
dz

≤ 1

n2b21b
2
2

∫
n2E

[(
K

(
x−X0

b1
,
y − Ȳ0

b2

)
−K

(
x−X0

b1
,
y − Y0

b2

))2
]
dz

Then, we have

K

(
x−X0

b1
,
y − Ȳ0

b2

)
−K

(
x−X0

b1
,
y − Y0

b2

)
= K1

(
x−X0

b1

)
1

b2δ

∫ δ

0
K ′2

(
y − Y0 −Mv

b2

)
(Yv − Y0)dv

where Mv = 1
δ

∫ v
0 (Ys − Y0)ds. Using the compact support AK of the kernel K, we have

|∂yK(a, b)| ≤ C1|a|≤AK1|b|≤AK . This yields to

E

∫ ( 1

nb1b2

n∑
i=1

K(
z − Z̄iδ

b
)−K(

z − Ziδ
b

)

)2

dz


≤ 1

b1b42δ
2

∫
K2

1 (x)dx

∫
E
[
δ

∫ δ

0
|Yv − Y0|2(K ′2)2

(
y − Y0 −Mv

b2

)
dv

]
dy

≤ 1

b1b32δ

∫
K2

1 (x)dx

∫
(K ′2)2(y)dy E

[∫ δ

0
|Yv − Y0|2dv

]
.

Using the definition of the model, we have

Yv − Y0 = σ(Wv −W0)−
∫ v

0
(cYt −∇D(Xt))dt

Thus, there exists a integer k ≥ 0

EZ0 |Yv − Y0|2 ≤ 2σ2v + 2cv

∫ v

0
EZ0 |Zt|kdt ≤ C(σ2v + v2)



ADAPTIVE ESTIMATION IN STOCHASTIC DAMPING SYSTEM 27

Finally, we have

T3 ≤ C

δb1b32

∫ δ

0
(σ2v + v2)dv

=
C

b1b32
δ(1 + δ) .

Now adding the bound of T3 to the bounds of Proposition 1 gives the result of proposition 4. �

6.7. Proof of Theorem 2.

• Preliminaries. The preliminaries are analogous to the proof of Theorem 1. Let Γiδ =

(Z̄iδ, Yiδ), with Z̄iδ = (Xiδ,
X(i+1)δ−Xiδ

δ ). Then the following Lemma holds.

Lemma 3. The process (Γiδ)i≥1 is β-mixing with βΓδ(k) ≤ βZ((k − 1)δ).

Proof of Lemma 3. We follow the proof of Proposition 3.2 in Genon-Catalot et al. [2000].
Since (Γiδ)i≥1 is strictly stationary Markov, βΓδ(k) = β

(
σ(Γ1δ), σ(Γ(k+1)δ)

)
. Hence βΓδ(k) ≤

βZ((k − 1)δ). �
Now, as in the proof of Theorem 1, we use Berbee’s coupling method as in Viennet (1997),

Proposition 5.1 and its proof p.484. We assume that n = 2pnqn for integers pn and qn to be
chosen. Then there exist random variables Γ∗iδ, i = 1, ..., n satisfying the following properties

(we keep the same notation ~U than in the proof of Theorem 1 even if they are not the same):

• For ` = 1, ..., pn, the random vectors ~U`,1 =
(
Γ[(2(`−1)qn+1)δ], ...,Γ[(2`−1)qnδ]

)′
and ~U∗`,1 =(

Γ∗[(2(`−1)qn+1)δ], ...,Γ
∗
[(2`−1)qnδ]

)′
have the same distribution, and so have the vectors

~U`,2 =
(
Γ[((2`−1)qn+1)δ], ...,Γ[(2`qn)δ]

)′
and ~U∗`,2 =

(
Γ∗[((2`−1)qn+1)δ], ...,Γ[(2`qn)δ]

)′
.

• For ` = 1, ..., pn, P(~U`,1 6= ~U∗`,1) ≤ βZ((qn − 1)δ) and P(~U`,2 6= ~U∗`,2) ≤ βZ((qn − 1)δ).

• For each ε ∈ {1, 2}, the random vectors ~U∗1,ε, ...,
~U∗pn,ε are independent.

We denote Z̄∗iδ the two first coordinates of Γ∗iδ. We denote by p̂∗b and p̂∗b,b′ the estimators

computed with the Z̄∗iδ instead of the Z̄iδ and write p̂∗b = (p̂
∗(1)
b + p̂

∗(2)
b )/2 to separate the part

with Z̄∗iδ with odd i (super-index (1)) or even i (super-index (2)).
Let us define the set Ω̄∗ = {Γiδ = Γ∗iδ, i = 1, . . . , n}. We have

(39) P(Ω̄∗c) ≤ 2pnβZ((qn − 1)δ) ≤ nβZ((qn − 1)δ).

Now using the analogous of (29), we obtain, for 1/b ≤ n, ∀b ∈ Bn,

E(sup
b′
‖p̂b′ − p̂∗b′‖2) ≤ 4n‖K‖2P(Ω̄∗c) ≤ 4‖K‖2n2βZ((qn − 1)δ).

Young Inequality also gives

E(sup
b′
‖p̂b,b′ − p̂∗b,b′‖2) ≤ 4‖K‖2‖K‖21n2βZ((qn − 1)δ).

Using βZ((qn − 1)δ) ≤ ρ(qn−1)δ, we choose

(40) qn − 1 = 3

[
log(n)

δ| log(ρ)|

]
,
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and we get

(41) E(sup
b′
‖p̂b′ − p̂∗b′‖2) ≤ 4‖K‖2

n
, E(sup

b′
‖p̂b,b′ − p̂∗b,b′‖2) ≤ 4‖K‖2‖K‖21

n
.

Lastly, the following result holds.

Lemma 4. For i = 1, 2, there exists a constant κ1,0 such that for all κ1 ≥ κ1,0,

E

[
sup
b′

(∥∥p̂∗(i)b′ − E(p̂
∗(i)
b′ )

∥∥2 − V
(P )

1 (b′)

9

)
+

]
≤ C log(n)

nδ
,

and for all b ∈ Bn:

E

[
sup
b′

(∥∥p̂∗(i)b,b′ − E(p̂
∗(i)
b,b′ )

∥∥2 − V
(P )

1 (b′)

9

)
+

]
≤ C log(n)

nδ
,

where C is a positive constant.

The proof of Lemma 4 follows a line similar to the proof of Lemma 1 and is omitted.

• Proof of Theorem 2. Now we start the proof of the theorem. The definition of b̂ implies
that A(P )(b̂) + V (P )(b̂) ≤ A((P )b) + V (P )(b) for any b ∈ Bn. Thus, for any b in Bn, recalling that
pb = Kb ∗ p, pb,b′ = Kb ∗Kb′ ∗ p, we have the decomposition

‖p̂b̂ − p‖
2 ≤ 3

(
‖p̂b̂ − p̂b,b̂‖

2 + ‖p̂b,b̂ − p̂b‖
2 + ‖p̂b − p‖2

)
≤ 3
(
A(P )(b) + V (P )(b̂)

)
+ 3
(
A(P )(b̂) + V (P )(b)

)
+ 3
∥∥p̂b − p∥∥2

≤ 6
(
A(P )(b) + V (P )(b)

)
+ 3
∥∥p̂b − p∥∥2

.

Therefore
E
[
‖p̂b̂ − p‖

2
]
≤ 3E

[
‖p̂b − p‖2

]
+ 6V (P )(b) + 6E[A(P )(b)].

Let us study A(P )(b). For any b, b′∥∥p̂b′ − p̂b,b′∥∥2 ≤ 9

4

(
‖̂p̂∗(1)
b′ − E(p̂

∗(1)
b′ )

∥∥2
+
∥∥p̂∗(2)

b′ − E(p̂
∗(2)
b′ )

∥∥2
)

+
∥∥p̂∗(1)

b,b′ − E(p̂
∗(1)
b,b′ )

∥∥2
+
∥∥p̂∗(2)

b,b′ − pb,b′
∥∥2
)

+9(‖p̂b′ − p̂∗b′‖2 + ‖p̂b,b′ − p̂∗b,b′‖2 +
∥∥pb′ − pb,b′∥∥2

)

+9(‖E(p̂b,b)− pb,b′‖2 + ‖E(p̂b′)− pb′‖2)

and thus

A(P )(b) ≤ 9

4
sup
b′

(∥∥p̂∗(1)
b′ − E(p̂

∗(1)
b′ )

∥∥2 − V
(P )

1 (b′)

9

)
+

+
9

4
sup
b′

(∥∥p̂∗(2)
b′ − E(p̂

∗(2)
b′ )

∥∥2 − V
(P )

1 (b′)

9

)
+

+
9

4
sup
b′

(∥∥p̂∗(1)
b,b′ − E(p̂

∗(1)
b,b′ )

∥∥2 − V
(P )

1 (b′)

9

)
+

+
9

4
sup
b′

(∥∥p̂∗(2)
b,b′ − E(p̂

∗(2)
b,b′ )

∥∥2 − V
(P )

1 (b′)

9

)
+

+9 sup
b′
‖p̂b′ − p̂∗b′‖2 + 9 sup

b′
‖p̂b,b′ − p̂∗b,b′‖2 + 9 sup

b′

∥∥pb′ − pb,b′∥∥2

+9 sup
b′

(
‖E(p̂b,b)− pb,b′‖2 − V

(P )
2 (b′)/9

)
+

9 sup
b′

(
‖E(p̂b′)− pb′‖2 − V

(P )
2 (b′)/9

)
+
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It follows from the proof of Proposition 4 and Schwarz inequality that, for κ2 large enough, the
last two terms are null.

We already noticed, using Young’s inequality, that for any b, b′ ∈ Bn,

‖pb′ − pb,b′‖2 = ‖Kb′ ∗ (p− pb)‖2 ≤ ‖Kb′‖21‖p− pb‖2 = ‖K‖21‖p− pb‖2.
This, together with Inequality (41) and Lemma 4, implies that

E(‖p̂b̂ − p‖
2) ≤ (54‖K‖21)‖pb − p‖2 + (

12

κ‖K‖1
+ 6)V (P )(b) + 432

‖K‖2(‖K‖21 ∨ 1)

n
+

54C log n

nδ

where we use the result of Proposition 4. �
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