
HAL Id: hal-01659308
https://hal.science/hal-01659308

Submitted on 8 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Logic of Sights
Cédric Dégremont, Soumya Paul, Nicholas Asher

To cite this version:
Cédric Dégremont, Soumya Paul, Nicholas Asher. A Logic of Sights. Journal of Logic and Computa-
tion, 2017, 27 (4), pp.1225-1305. �10.1093/logcom/exv077�. �hal-01659308�

https://hal.science/hal-01659308
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.1093/logcom/exv077

URL : https://doi.org/10.1093/logcom/exv077

To cite this version : Degremont, Cedric and Paul, Soumya and Asher,
Nicholas A Logic of Sights. (2016) Journal of Logic and Computation,
vol. 27 (n° 4). pp. 1225-1305. ISSN 0955-792X

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 16819

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A logic of sights

CÉDRIC DÉGREMONT, SOUMYA PAUL and NICHOLASASHER,
IRIT, Université Paul Sabatier, Toulouse, France.

E-mail: cedric.uva@gmail.com; soumya.paul@gmail.com; nicholas.asher@irit.fr

Abstract

We study labeled transition systems where at each state an agent is aware of and hence reasons about only a part of the
entire system (called the ‘sight’). We develop a logic for such systems: the ‘logic of sights’. We explore its model theory,
give an axiomatization and prove its completeness. We show that the logic is a fragment of the loosely guarded fragment of
first-order logic. We show that the satisfiability problem of the logic is PSPACE-complete and the combined complexity of
its model-checking problem is in PTIME. Finally we discuss its relation to other logics as well as extensions.

Keywords: Bounded rationality, modal logic, temporal logics, dynamic logics, sights, labeled transition systems.

1 Introduction

Chess, under the usual restrictions, is a finite extensive form game. Thus, at least in theory, it is
possible to do a backward induction on the finite game tree so as to decide if one of the players has a
winning strategy and to compute such a strategy if it exists. However, applying backward induction
on the full game tree is intractable, and human and artificial players alike have to reason differently
to make decisions. The extensive form game tree is simply too large for any algorithm to process. In
such a situation, other types of analyses are called for. Can we look at the game from the perspective
of the agents playing it? In chess, for instance, a player usually looks a few steps into the future of
the current position, and then tries to play the optimal move, hoping that such a move will lead to a
global optimization, and eventually to victory. In the process, there might be certain moves or paths
along the game tree that the player is not aware of or does not consider possible. In other words, the
player has a particular ‘view’ of the current game and of what can happen.
More formally, given a labeled transition system, an agent might be able to foresee only some,

but not all, of the possible evolutions of the system. Things can get even more subtle if the agent has
to take into account what she might be able to foresee once certain actions have been taken and the
state of the system has changed. In the context of extensive games, Rêgo and Halpern [27] develop
a semantic approach for such a notion of awareness (to be distinguished from an approach in which
awareness depends on the syntactic resources of the language, such as, e.g. [15, 16, 22]). The main
idea is that an agent is assigned a subtree out of the current subgames at every stage in the extensive
games where she plays. This approach is further explored in [13].
In this article, we explore the modal logic of this concept, which [13] call ‘sight’. Our semantics

is as general as possible: expanding labeled transition systems with a sight function at every state
consisting in an arbitrary subset of states containing the current state. Syntactically,we add an operator
[!N]ϕ, meaning that, at the current state, from the perspective of the agent, ϕ is true or, paraphrasing
the semantics more closely, that, at the current state, in the sight of the agent at the current state, ϕ is
true. Themodal logic of these types ofmodels is very natural; [!N] results in a restriction of the current
model. The dynamic and restricting nature of [!N] makes our logic a cousin of a recent family of
dynamic and/or temporal epistemic logics: Future Event Logic (FEL) [34, 35], toPAL [2, 11, 26] and
to TPAL [32], PAL with protocols [7, 25]. But there are important differences, and in many respects

our system is more general. For instance, we extend temporal logics with horizons, while (T)PAL

and FEL treat modally-definable restrictions or quantification over all such restrictions, respectively.
We assume a given unique restriction in each state, generalizing away from any process of describing
the structure of that restriction, via e.g. quantification as in FEL. Furthermore, the restrictions we
are considering are in general not syntactically-definable (unlike those in (T)PAL). Hence, there is
no decompositional analysis from the logic of sights back into the basic modal language. Finally, we
note that while Liu et al. [21] proposes a logic of extensive games with short sights, where v |=〈σ 〉ϕ
holds whenever the visibly terminal state—that is terminal in the sight s(v)—that players would
reach by playing according to the strategy profile σ is a ϕ-state. While the motivation behind the
development of [21] and our work is similar, formally the two systems are very different. In [21],
the action modalities, as well, as the sight modality receive the standard relational semantics of basic
modal logic.We show below that the expressive power of such a static sight operator is incomparable
with our dynamic sight operator.
We give an axiomatization for our logic, which uses induction rules corresponding to the well-

known fact that universal formulas are preserved under restrictions. It follows a simple idea: every
transition that can be done in the current sight can be done in general, and hence is simulated in the
full model. We prove the completeness of our axiom system. We compare the expressive power of
the logic with some other known logics. We also show that the satisfiability problem for the logic is
PSPACE-complete. Finally, we consider some interesting extensions, and discuss the definability
problem of sight-based subgame perfection.

Structure of the article: The rest of the article is organized as follows. Section 2 has notation and
technical background, that might be skipped at first reading. Section 3 introduces the language of
our logic of sights, L(!σ,A), and its semantics. We discuss its translation into decidable fragments of
FO. Section 4 discusses the expressive power of L(!σ,A). In Section 5, we provide an axiomatization
of L(!σ,A) and prove its completeness in Section 6. Section 7 shows that the satisfiability problem
for L(!σ,A) is PSPACE-complete and the combined complexity of its model-checking problem is in
PTIME. Section 8 discusses the relation of L(!σ,A) to other logics, as well as extensions. Section 9
discusses the modal definability of sight-based subgame perfection. We conclude in Section 10.

2 Preliminaries

In this section, we give the necessary background and define the notation used in the article.

2.1 Basic notation

Let ǫ denote the empty sequence. Given a set X we let X ∗ be the set of finite sequences over X
and let X+=X ∗\{ǫ}. Given a relation R⊆X ×X , R∗ will be the reflexive transitive closure of
R. It will always be clear from the context whether we mean the reflexive transitive closure of a
relation or the set of finite sequences over a set. And we define R[x]={y∈X |(x,y)∈R}—for A⊆X ,
R[A]={y∈X |(x,y)∈R for some x∈A}. We use R(x) as a notational variant of R[x] and R(A) as a
notational variant of R[A]. Given a sequence (si), sn is the n-th member of (si). Given a sequence
Ex, |Ex| denotes the set of elements in Ex, Ex[k] its k-th-element and Ex|k its initial prefix of length k and
len(Ex) denotes the length of Ex. Given a non-empty finite sequence Ex, we let last(Ex)=Ex[len(Ex)]. We
use ω for the set of natural numbers. Given a relational structure M, we refer to its domain by |M|,
but sometimes also by M. In Section 7, on complexity, we use |X | to refer to the cardinality of X .
We make sure that it is clear from the context we which one we intend. Finally, given a function f

we let dom(f) be its domain and ran(f) be its range.

2.2 LTS and the basic modal language

Definition 2.1

Given a finite non-empty set A, an A-labeled transition system (henceforth LTS(A)) is a tuple

〈W ,(
a
→)a∈A,V 〉 where W is a non-empty set, A is a set of labels, for each a∈A,

a
→⊆ (W×W),

and for some non-empty countable set of propositional letters prop, V :prop→℘(W) is a valuation
function.

When the underlying set of labels A is unimportant or is clear from the context, we simply write LTS

for LTS(A). Given an LTS M=〈W ,(
a
→)a∈A,V 〉, the elements of W are called the states of M. We

also use the notation |M| to denote the set of states W of the LTS M.

Intuitive interpretation.Wewould like to be as comprehensive as possible as how to interpret these
models, as we believe that the concepts of sights we will discuss are interesting in many contexts or
situations that can be modeled as labeled transition systems. An intuitive, yet generic, interpretation
is to think of W as states of a system andA as possible events or actions that can change those states.
In general, more than one action could be executable in a given state.

Definition 2.2

Given an LTS M and a state w∈|M|, the pair (M,w) is called a pointed model or a pointed LTS.

A tree-like LTS (nowTLTS) is such that for any a,b∈Awith a 6=bwe have
a
→∩

b
→=∅ andmoreover

→=
⋃

a∈A
a
→ is such that 〈W ,→〉 is a tree.

The basic modal language LA over A is recursively defined as follows:

ϕ ::=p |¬ϕ |ϕ∧ϕ | 〈a〉ϕ,

where p ranges over prop and a overA. Given an LTS M and a statew∈|M|, we define the satisfaction
of a formula ϕ∈LA at w inductively:

M,w |=p iff w∈V (p)
M,w |=¬ϕ iff M,w 6|=ϕ
M,w |=ϕ∧ψ iff M,w |=ϕ and M,w |=ψ

M,w |=〈a〉ϕ iff for some v with w
a
→v we have M,v |=ϕ

Given a modal language L, a formula ϕ∈L and a model M, we let ||ϕ||M :={w∈|M| | M,w |=ϕ},
be the truth set of ϕ in M. We simply write ||ϕ|| when M is clear from context.

2.3 Invariance and expressivity

Let M=〈W ,(
a
→)a∈A,V 〉 and M′=〈W ′,(

a′

→)a∈A,V ′〉 be two LTS(A)s.

Definition 2.3 (Simulation)
A non-empty binary relation Z⊆W×W ′ is a simulation from M to M′ iff Z is such that:

1. x′∈V ′(p) whenever (x,x′)∈Z and x∈V (p)

2. If x
a
→y and (x,x′)∈Z , then there exists y′∈W ′ such that (y,y′)∈Z and x′

a
→
′
y′

Definition 2.4 (Bisimulation)
Anon-empty binary relation Z⊆W×W ′ is a bisimulation betweenM andM′ iff Z is such that:

1. x∈V (p) iff x′∈V ′(p), whenever (x,x′)∈Z

2. If x
a
→y and (x,x′)∈Z , then there exists y′∈W ′ such that (y,y′)∈Z and x′

a
→
′
y′

3. If x′
a
→
′
y′ and (x,x′)∈Z , then there exists y∈W such that (y,y′)∈Z and x

a
→y

Definition 2.5 (Bounded p-morphisms)
A function f :W→W ′ is a bounded p-morphism from M to M′ iff f is such that

1. x∈V (p) iff f (x)∈V ′(p)

2. f (x)
a
→
′
f (y) whenever x

a
→y

3. If f (x)
a
→
′
y′, then there exists y such that x

a
→y and f (y)=y′

Definition 2.6 (Submodel)
Let M=〈W ,(

a
→)a∈A,V 〉 be an LTS. Given a non-empty subset X ⊆W , we let M|X :=

〈X ,(
a
→|X)a∈A,V |X 〉 where

a
→|X is the restriction of

a
→ to X and V |X is the restriction of V to

X . If M′=M|X for some non-empty subset X ⊆W , we say that M′ is a submodel of M.

Definition 2.7 (Generated submodel)
If M′ is a submodel of M and y∈W ′ whenever x∈W ′ and x

a
→y for some x∈W ′ and some a∈A,

we say that M′ is an A-generated submodel of M. We drop A whenever it is clear from context.

Definition 2.8

Wesay that two pointedmodelsM,w andM′,w′ areL-equivalent iff for everyϕ∈LwehaveM,w |=ϕ
iffM′,w′ |=ϕ. We writeM,w!L M′,w′. We drop L whenever it is clear from context. We also drop
M and M′ whenever M=M′.

Definition 2.9 (Expressivity)
We say that a language L′ is at least as expressive as a language L over a class of pointed models C

(denoted L≤C L′) if for every pair of pointed models (M,w),(M′,w′)∈C if there is a formula ϕ∈L
with M,w |=ϕ but M′,w′ 6|=ϕ, we also have a formula ϕ′∈L′ such that M,w |=ϕ′ but M′,w′ 6|=ϕ′.
When the intended class of pointed models C is clear from context we drop the subscript.

2.4 Guarded and bounded fragments of FO

Given an FO-formula ϕ, Free(ϕ) is the set of free variables occurring in ϕ.

Definition 2.10

The guarded fragment GF of FO is defined by induction as follows:

1. Every relational atomic formula belongs to GF.
2. GF is closed under propositional connectives ¬,∧,∨,→,↔.
3. If Ex,Ey are tuples of variables,α(Ex,Ey) is atomic andϕ(Ex,Ey) is a formula inGF, such thatFree(ϕ)⊆

Free(α)={Ex,Ey}, then the formulas

∃Ey(α(Ex,Ey)∧ϕ(Ex,Ey)) and ∀Ey(α(Ex,Ey)→ϕ(Ex,Ey))

are in GF.

Definition 2.11 ([29])
The loosely guarded fragment LGF of FO is defined similarly to the GF, by relaxing clause (3)
as follows:

3′. If ψ ∈LGF, γ is a conjunction of relational atomic formulas, Free(ψ)⊆Free(γ), Ey is a tuple
of free variables of γ and moreover

− if x∈Free(γ), y∈|Ey| and x 6=y, then there is a conjunct of γ in which x,y both occur,

then ∃Ey(γ ∧ψ)∈LGF.

Van Benthem [29] calls the LGF of FO, the pair-wise guarded fragment. The clause (3′) relaxes
(3) in that the guard that relativizes the quantifier does not have to be an atomic formula, but can be a
conjunction of atomic formulas, provided that for every quantified variable y and every free variable
x from the guard there is an atom of the guard in which both x and y occur. Two examples taken from
[12], will illustrate this condition.
First, an example of a formula that is loosely guarded, but not guarded, is the first-order translation

of (ψuntilϕ):

∃y (x≤y∧ϕ(y)∧∀z ((x≤z∧ z≤y)→ψ(z)))

By contrast the first-order translation of the transitivity axiom:

∀xyz ((Rxy∧Ryz)→Rxz)

is not loosely guarded.

Definition 2.12

Given a relational signature, thebounded fragment BF of FO is defined by induction as follows:

1. Every relational atomic formula belongs to BF.
2. BF is closed under propositional connectives ¬,∧,∨,→,↔.
3. If Ey is a (n−1)-tuple of variables, t is a term with t 6∈ |Ey| and ϕ∈BF, then for every n-ary

relational symbol R in the relational signature, the formulas

∃Et(RxEy∧ϕ) and ∀Et(RxEy→ϕ)

are also in BF.

Theorem 2.13 ([8, 9])
Given a relational signature τ , a formula ϕ of FO(τ) is equivalent to a formula in BF(τ) iff ϕ is
invariant under τ -generated submodels.

2.5 Extensions of basic modal logic

In this article, we refer to two well-understood extensions of basic modal logic. The first one
LA,∩ allows for operators that exploit the intersection of relations in the similarity type. The
second one adds nominals, names for states, to the language, and is the basic hybrid logic HA

over A.

2.5.1 Modal logic with intersection
The modal language LA,∩ over A is recursively defined as follows:

α ::=a |α∩α; ϕ ::=p |¬ϕ |ϕ∧ϕ | 〈α〉ϕ,

where p ranges over prop and a over A. Rα , the interpretation of α is defined recursively as
follows:

Ra =
a
→

Rα∩β = Rα∩Rβ

Given an LTS M and a statew∈|M|, the only new clause in definition of the satisfaction of a formula
ϕ∈LA,∩ at w is the following:

M,w |=〈α〉ϕ iff for some v with wRαv we have M,v |=ϕ

2.5.2 Basic hybrid logic
The basic hybrid language HA over A, has another parameter, the set of nominals nom, disjoint from
the set of propositional letters prop. It is interpreted over LTSs for which the valuation V has domain
prop⊎nom and such that for every pi∈nom, |V (pi)|=1. When we need to be clear about nom; we
write HA(nom). The modal language HA(nom) is recursively defined as follows:

ϕ ::=p |pi |¬ϕ |ϕ∧ϕ | 〈a〉ϕ,

where p ranges over prop, pi over nom and a overA. Its semantics is defined on LTSs. The satisfaction
definition contains nothing new except for a clause for nominals:

M,w |=pi iff V (pi)={w}

2.6 Computational complexity

We assume familiarity with basic computational complexity theory (for an introduction, see, e.g.
[24]).We refer to a set of (encoding of) inputs as a language. Given a function f :ω→ω, DSPACE(f)
is the class of languages which can be recognized by a deterministic Turing machineM which uses
at most f (|x|) cells of the working tape for inputs x of size |x|≥n0 for some constant n0∈ω, on all
branches in the computation tree of M on x.
Alternation is a generalization of non-determinism. For a precise definition of an alternatingTuring

machine and corresponding notions, see [4]. Here is an informal definition:

Definition 2.14 (Alternating Turing machine, see, e.g. [18])
An alternating Turing machine is a Turing machine whose states are divided into existential and
universal states. The notion of acceptance is defined recursively as for non-deterministic Turing
machines, except that an alternating Turing machine in a universal state accepts if there is at least
one next configuration and all next configurations are accepting.

Given a function f :ω→ω, let ATIME(f) be the class of languages which can be recognized by an
alternating Turing machine M whose computation tree depth for inputs x of size |x|≥n0, for some
constant n0∈ω, is bounded by f (|x|). We write: APTIME=

⋃
k∈ωATIME(nk) and we make use of

the following result:

Theorem 2.15 ([4])
PSPACE=APTIME

3 Dynamic logic of sights

We extend labeled transition systems with sights, which are functions associating to each state a set
of states, which contains that state.

Definition 3.1

A Labeled Transition System with Sights (henceforth σLTS) M is an LTS expanded with a
function: N :W→℘(W) such that w∈N(w) for every w∈W .

Given a non-empty subset X ⊆W , we write

M|X :=〈X ,(
a
→|X)a∈A,V |X 〉

where
a
→|X is the appropriate restriction to X . Let Cσ be the set of all labeled transition system with

sights. A σTLTS is a σLTS such that its N-free reduct is a TLTS.
The language of L(!σ,A) over A extends the basic modal language LA over A with an unary

operator [!N]:

ϕ ::=p |¬ϕ |ϕ∧ϕ | 〈a〉ϕ | [!N]ϕ,

where p ranges over prop and a overA. The semantics of the Boolean and of the basicmodal operators
is the usual one. The semantics of [!N]ϕ is defined as follows:

M,w |=[!N]ϕ iff M|N(w),w |=ϕ

Informally speaking, [!N]ϕ means that from the perspective of the agent at the current state ϕ holds.
As we said earlier, we would like to be as minimal as possible as how to A should be interpreted

as we believe the concept of sight is relevant in different contexts that call for different interpretation
of the meaning of A. If the reader would like to have some concrete intuition to rely on, she or he can
think of A as possible actions or events that can change the state that the system is in. 〈a〉ϕ would
then mean that action a can be executed in the current state and in one of the possible execution of
a, ϕ will hold afterwards. To take an example involving both the sight and the action modality, the
intuitive interpretation of:

([!N](〈a〉p∧¬〈a〉¬p))∧〈a〉¬p

is that ‘in the sight of the agent, the action a is executable and executing a will necessary lead to the
system being in a p-state, while in fact there is a possible execution of a that leads to a ¬p-state’.
But again, we believe that the approach is more general and interesting in contexts where other
interpretations of A are evoked.

3.1 Notions of complexity and modal depth for L(!σ,A)

Depending on the context two notions of complexity will be useful, the first one depends on the
negation normal form of a formula. We write it as cpx :L(!σ,A)→ω and define it as follows:

cpx(p) = cpx(¬p) = 1

cpx(ϕ∧ψ) = max{cpx(ϕ),cpx(ψ)}+1

cpx(ϕ∨ψ) = max{cpx(ϕ),cpx(ψ)}+1

cpx(〈a〉ϕ) = cpx(ϕ)+1

cpx([a]ϕ) = cpx(ϕ)+1

cpx([!N]ϕ) = cpx(ϕ)+1

Alternatively, we will use com :L(!σ,A)→ω with the following modified clause for negation:

com(¬ϕ) = com(ϕ)+1

Later, we will also need a notion of A-modal depth depA :L(!σ,A)→ω, defined as follows:

depA(p) = 0

depA(¬ϕ) = depA(ϕ)

depA(ϕ∧ψ) = max{depA(ϕ),depA(ψ)}

depA(ϕ∨ψ) = max{depA(ϕ),depA(ψ)}

depA(〈a〉ϕ) = depA(ϕ)+1

depA([a]ϕ) = depA(ϕ)+1

depA([!N]ϕ) = depA(ϕ)

as well as a notion of σ -modal depth σdepA :L(!σ,A)→ω, which differs in only one clause from
A-modal depth:

σdepA([!N]ϕ) = σdepA(ϕ)+1

3.2 Standard translation of L(!σ,A)

We show how to translate L(!σ,A) into the loosely guarded fragment of FO.

Definition 3.2

Let FO(N,A) be the first-order language with unary relation symbols (Rp)p∈prop corresponding to
propositional letters in p∈prop, binary relations (Ra)a∈A for each label a∈A and finally a binary
relation N with Nxy to mean y∈N(x).

We let VAR be our set of first-order variables. An assignment in M is a function g :VAR→|M|. We
let g[xi/wi] be defined as follows:

g[xi/wi](x)=

{
g(x) if x 6=xi,

wi if x=xi.
(1)

We also let g[xi/wi,xj/wj]= (g[xi/wi])[xj/wj].

Let x∈VAR be a first-order variable, σ ∈VAR∗ be a finite sequence of first-order variables and
consider the following translation, the standard translation of L(!σ,A):

STx : (L(!σ,A)×VAR∗)→FO(N,A)

which is recursively defined as follows:

STx(p
ǫ) = Rp(x)

STx(p
σ) = STx(p)

STx((¬ϕ)
σ) = ¬STx(ϕ

σ)

STx((ϕ∧ψ)
σ) = STx(ϕ

σ)∧STx(ψ
σ)

STx((〈a〉ϕ)
σ) = ∃y (

∧
z∈|σ |N(z,y)∧Ra(x,y)∧STy(ϕσ))

[where y is fresh]

STx(([!N]ϕ)
σ) = STx(ϕ

σx)

STx(ϕ
σxx) = STx(ϕ

σx)

For every L(!σ,A) formula and every finite sequence of variables σ ∈VAR
∗ we have:

Fact 3.3

|STx(ϕσ)|< f (|ϕσ |) where f is a polynomial function on ω.

Proof. By induction on the structure of ϕ. The atomic cases and the negation case are immediate.
For STx((ϕ∧ψ)σ), we have by induction hypothesis (IH) that |STx(ϕσ)| and |STx(ψσ)| are bounded
by polynomials in |ϕσ | and |ψσ |, respectively, and hence |STx((ϕ∧ψ)σ)|≤|STx(ϕσ)|+|STx(ψσ)|
is bounded by a polynomial in |STx((ϕ∧ψ)σ)|. |STx(〈a〉ϕσ)|≤|STx(ϕσ)|+c1|σ |+c2 where c1 and
c2 are constants and since |STx(ϕσ)| is bounded by a polynomial in |ϕσ |, |STx(〈a〉ϕσ)| is bounded
by a polynomial in |〈a〉ϕσ | as well. The cases for ([!N]ϕ)σ and ϕσxx are straightforward. �

To prove that the above translation is correct, we need the following lemma, which intuitively shows
that STx(ϕσ) correctly captures the idea of ϕ being true in the restriction to

∧
x∈σN(x). We will use

the following piece of notation. Let Z⊆|M|, we write N(Z) :=
⋂

w∈Z N(w). We often abuse notation
and write Ew for | Ew|. For example, given Ew∈|M|∗, we writeN(Ew) forN(| Ew|), andM|N(Ew) forM|N(| Ew|).
In particular, given Ew= (w0,...,wn), with wi+1∈|M|∩N(w0)∩ ...∩N(wi), for all i with 0≤ i≤n, we
have M|N(Ew)= (...(M|N(w0))|...)|N(wn).

Lemma 3.4

LetM be a pointed σLTS. For every Ew∈|M|∗, every Ex∈VAR∗, everyw′∈N(Ew) and every assignment
g :VAR→|M|, we have:

M|N(Ew),w
′ |=ϕ iff M,g[x0/w0,...,xn/wn,y/w

′] |=STy((ϕ)
Ex)

Proof. The proof is by induction on the complexity of ϕ. The base case is immediate from the
definition of the standard translation. So is the induction step for negation and conjunction. Now
assume that ϕ=〈a〉ψ .Assume thatM|N(Ew),w

′ |=〈a〉ψ . It follows that there is a t∈|M| such that:

(a) for all wi∈ Ew, t∈N(wi)

(b) w′
a
→ t

(c) M|N(Ew),t |=ψ

By the IH, we have (c) iff (d) M,g[Ex/Ew,z/t] |=STz((ψ)Ex). From (a), (b) and (d) it follows that:

M,g[Ex/Ew,y/w′,z/t] |=
∧

xi∈Ex

Nxiz∧Rayz∧STz((ψ)
Ex) (2)

By semantics of first-order logic we have thus:

M,g[Ex/Ew,y/w′] |=∃z
∧

xi∈Ex

Nxiz∧Rayz∧STz((ψ)
Ex) (3)

But this is equivalent to
M,g[Ex/Ew,y/w′] |=STy((〈a〉ψ)

Ex) (4)

The other direction is similar, which concludes the proof for this case.
Assume thatM|N(Ew),w

′ |=[!N]ψ . It follows by semantics of [!N] that:M|N(Ew∪w′),w
′ |=ψ . But then

by the IH it follows that M,g[Ex/Ew,y/w] |=STy((ψ)Ex∪y). Hence, M,g[Ex/Ew,y/w] |=STy(([!N]ψ)Ex).
The argument works in both directions, concluding this case and the induction step. �

We can now prove that the above translation is correct:

Proposition 3.5

For each ϕ∈L(!σ,A), each pointed σLTS (M,s), and an assignment g :VAR→|M| the following holds:

M,s |=ϕ iff M,g[g(x) :=s] |=STx(ϕ)

Proof. The proof is by induction on the complexity of ϕ.

Base case: Assume that ϕ=p for some propositional letter p∈prop. We simply note that M,w |=p

iff w∈V (p) iff M,g[x/w] |=Rp(x) iff M,g[x/s] |=STx(p).

Induction step:Assume that the claim holds for formulas of complexity at most n. We have to prove
that it holds for formulas of complexity at most n+1. If the main operator is a conjunction and or a
negation, the claim is immediate from the definition of STx.
Assume that ϕ=〈a〉ψ ′′ and that M,w |=〈a〉ψ . By semantics there is some state w′ with

Raww′ and M,w′ |=ψ (5)

Hence, by inductive hypothesis (henceforth IH), M,g[y/w′] |=STy(ψ). By definition

STx(〈a〉ψ)=STx((〈a〉ψ)
ǫ)

=∃y (
∧

z∈|ǫ|

N(z,y)∧Ra(x,y)∧STy(ψ
ǫ))

=∃y (Ra(x,y)∧STy(ψ
ǫ))

But thenwe can set g(x) :=w and g(y) :=w′ and have by (5) and the IH thatM,g |=Ra(x,y)∧STy(ψǫ).
The argument is symmetric for the other direction.
Now assume that ϕ=[!N]ψ and assume M,w |=[!N]ψ . Note that this holds iff M|N(w),w |=ψ .

But by Lemma 3.4 this holds iff M,g[x/w] |=STx((ϕ)x). But this is equivalent to M,g[x/w] |=
STx(([!N]ϕ)), which concludes the argument for this case and the proof. �

Observe that the translation may not belong to the guarded fragment of FO:

Fact 3.6

STx([!N]〈a〉[!N]〈b〉p) is not guarded.

Proof. We show that the guards in STx([!N]〈a〉[!N]〈b〉p) are not atomic.

STx([!N]〈a〉[!N]〈b〉p)

=STx(〈a〉[!N]〈b〉p
x)

=∃y(N(x,y)∧Ra(x,y)∧STy([!N]〈b〉p
x))

=∃y(N(x,y)∧Ra(x,y)∧STy(〈b〉p
xy))

=∃y(N(x,y)∧Ra(x,y)∧(∃z(N(y,z)∧Rb(y,z)∧STy(p
xy))))

=∃y(N(x,y)∧Ra(x,y)∧(∃z(N(y,z)∧Rb(y,z)∧Rp(y))))

But the guard of the main formula N(x,y)∧Ra(x,y) is not atomic, and neither is the guard of
∃z(N(y,z)∧Rb(y,z)︸ ︷︷ ︸

non atomic

∧Rp(y)).

Hence, STx([!N]〈a〉[!N]〈b〉p) is not guarded. �

However, the standard translation of L(!σ,A)-formula is in the loosely guarded fragment of FO. To
see this, first observe that

Lemma 3.7

For every σ ∈VAR∗, ϕ∈L(!σ,A) and x∈VAR, Free(STx(ϕσ))⊆{x}∪|σ |.

Proof. The proof is by induction on the complexity of ϕ. Base case:Note that for any σ ∈VAR∗ and
x∈VAR, Free(STx(pσ))=Free(Rp(x))={x}. Induction hypothesis; Assume that the claim holds
for formulas of complexity at most n. Induction Step; Now assume that ϕ is of complexity n+1.
The proof is now by case. Case ϕ=¬ψ . Simply observe that Free(STx(¬ψσ))=Free(STx(ψσ)).
The claim follows from IH. Case ϕ=ψ ∧χ . Observe that Free(STx((ψ ∧χ)σ))=Free(STx(ψσ)∧
STx(χσ))=Free(STx(ψσ))∪Free(STx(χσ)). The claim follows from IH. Case ϕ=〈a〉ψ . Now,

Free(STx((〈a〉ψ)
σ))=

Free(∃y (
∧

z∈|σ |

N(z,y)∧Ra(x,y)∧STy(ψ
σ))), for some y

That is, Free(STx((〈a〉ψ)σ))=|σ |∪{x}∪Free(STy(ψσ))\{y}. But from IH we have
Free(STy(ψσ))\{y}⊆|σ |. Case ϕ=[!N]ψ . First observe that Free(STx([!N]ψσ))=
Free(STx(ψσx)). But by IH it follows that Free(STx(ψσx))⊆|σx|∪{x}=|σ |∪{x}. �

We can now prove that:

Proposition 3.8

For every formula ϕ∈L(!σ,A), x∈VAR and σ ∈VAR
∗, STx(ϕσ) is loosely guarded.

Proof. Take an arbitrary σ ∈VAR∗ and some x∈VAR. For the base case, simply note STx(pσ) is
an atomic formula, hence loosely guarded. Negation and conjunctions are straightforward from the

closure of LGF under Booleans. Now for the 〈a〉-case. First note, that by Lemma 3.7, we have

STx((〈a〉ψ)
σ)=

∃y︸︷︷︸
Ey={y}

(
∧

z∈|σ |

N(z,y)∧Ra(x,y)

︸ ︷︷ ︸
Free(γ)=|σ |∪{x,y}

∧ STy(ψ
σ))︸ ︷︷ ︸

Free(ψσ)⊆{y}∪|σ |

(where y is fresh)

And observe that all conditions of the loosely guarded quantification are respected:

− γ is a conjunction of atomic formulas
− By IH, ψσ ∈LGF

− Free(STy(ψσ))⊆Free(γ)
− {y}⊆Free(γ)
− for every z∈σ and for x we have a conjunct in γ in which both x and it are occurring.

The [!N]-case is immediate since STx(([!N]ϕ)σ)=STx(ϕσx). �

Since the loosely guarded fragment of FO is decidable Hodkinson [17], as an immediate corollary
we have:

Corollary 3.9

L(!σ,A) is decidable.

In Section 7, we show the exact complexity of the satisfiability problem for L(!σ,A). Finally, note that
it also follows that

Corollary 3.10

L(!σ,A) is compact.

4 Model theory and expressive power

4.1 Logic of sights and basic modal logic

In this section, we investigate the expressive power of our modal logics. We start with a simple
question: how does the basic modal language L(N,A) with the relation N as a binary relation compare
with L(!σ,A) in terms of expressive power? The expressive powers of these two languages are
incomparable, as we now show.
Formally, the language of L(N,A) over A extends the basic modal language LA over A with a unary

operator 〈N〉:

ϕ ::=p |¬ϕ |ϕ∧ϕ | 〈a〉ϕ | 〈N〉ϕ,

where p ranges over prop and a over A. The semantics of 〈N〉ϕ is given as follows:

M,w |=〈N〉ϕ iff for some v with v∈N(w) we have M,v |=ϕ

We show that the expressive power of L(!σ,A) and L(N,A) are incomparable.

Figure 1. L(!σ,A) is not invariant under bisimulation.

Figure 2. L(!σ,A) is not as expressive as L(N ,A).

Proposition 4.1

1. L(!σ,A) 6≤L(N,A)
2. L(N,A) 6≤L(!σ,A)

Proof. (1) For anymodel, define
N
→={(w,w′)|w′∈N(w)}. L(N,A) is clearly invariant under (

a
→,

N
→)-

bisimulations. We show that L(!σ,A) is not invariant under such bisimulations. Consider the two
models given in Figure 1 where in M1, N(w0)={w0,w2},N(w1)={w1},N(w2)={w2} and in M2,

N(w′0)={w
′
0,w

′
1},N(w

′
1)={w

′
1}. Note that (M1,w0) and (M2,w

′
0) are (

a
→,

N
→)-bisimilar. Finally, note

that M1,w0 6|=[!N]〈a〉p while M2,w
′
0 |=[!N]〈a〉p.

(2) Consider the twomodels in Figure 2 where inM1 we haveN(w0)={w0,w1},N(w1)={w1,w2},
N(w2)={w2} and in M2 we have N(w′0)={w

′
0,w

′
1}, N(w

′
1)={w

′
1}. Clearly the formula 〈a〉〈N〉¬p is

satisfied at (M1,w0), while, M2,w
′
0 6|=〈a〉〈N〉¬p.

Now we show inductively that

for every formula ϕ∈L(!σ,A) we have M1,w0 |=ϕ iff M2,w
′
0 |=ϕ (6)

To do so, we first start by showing that for every formula ϕ∈L(!σ,A),

M1,w1 |=ϕ iff M2,w
′
1 |=ϕ (7)

M1|{w1,w2},w1 |=ϕ iff M1|{w1},w1 |=ϕ (8)

M1|{w1},w1 |=ϕ iff M2|{w′1}
,w′1 |=ϕ (9)

We first show (8). To see that simply note thatM1|{w1,w2},w1 andM1|{w1},w1 areA-bisimilar and that
N(w1)={w1,w2}. Now to see that (9), simply note thatM1|{w1},w1 andM2|{w′1}

,w′1 are A-bisimilar,

and that N(w1)∩{w1}={w1} and similarly for w′1. To verify that (7), first note that M1,w1 and
M2,w

′
1 are A-bisimilar and that N(w1)={w1,w2} and N(w′1)={w1}. The claim follows from these

observations together with (8) and (9).
We observe:

M2|N(w′0)
=M2. (10)

Since Ra(w1)=∅ and w1∈N(w0), we have

M1|N(w1),w1 |=ϕ iff M1|N(w0),w1 |=ϕ. (11)

And similarly
M2|N(w′1)

,w′1 |=ϕ iff M2|N(w′0)
,w′1 |=ϕ. (12)

Let us now show inductively that for every formula ϕ∈L(!σ,A)

M1|N(w0),w0 |=ϕ iff M2|N(w′0)
,w′0 |=ϕ (13)

For the base case, M1|N(w0),w0 |=p iff M2|N(w′0)
,w′0 |=p, is immediate from the definition of

V (p). The conjunction and negation cases follow the usual argument. Now assume M1|N(w0),w0 |=
〈a〉ϕ. Since Ra(w0)∩N(w0)={w1}, it follows that M1|N(w0),w1 |=ϕ. From (11) it follows that
M1|N(w1),w1 |=ϕ, and hence by (9) that M2|{w′1}

,w′1 |=ϕ. By (12), we have M2|{w′0}
,w′1 |=ϕ. Since

w′1∈Ra(w′0)∩N(w′0) the claim follows. Finally, note that M1|N(w0),w0 |=[!N]ϕ iff M1|N(w0),w0 |=ϕ
and that M2|N(w′0)

,w′0 |=[!N]ϕ iff M2|N(w′0)
,w′0 |=ϕ. This concludes the induction step.

We are now ready to prove our main claim (6).

For the base case, note that M1,w0 |=p iff M2,w
′
0 |=p, is immediate from the definition of V (p).

Conjunction and negation follows the usual argument. Now assume M1,w0 |=〈a〉ϕ. Since Ra(w0)=
{w1}, we haveM1,w1 |=ϕ, and thus by (7) we have M2,w

′
1 |=ϕ. Now since Ra(w′0)⊇{w

′
1}, we have

M2,w
′
1 |=〈a〉ϕ. Now assume thatM1,w0 |=[!N]ϕ, we have thusM1|N(w0),w0 |=ϕ. By (13), it follows

that M2|N(w′0)
,w′0 |=ϕ. By (10), it follows that M2,w

′
0 |=ϕ. This concludes the main induction and

the proof. �

Amore direct proof of this result uses the proper notion of bisimulation for L(!σ,A). To enable us to
define this notion, we first prove a few facts.

4.2 Invariance non-invariance properties

From the first direction of the proof of Fact 4.1, we can also show that the dynamic logic of sights is
not invariant under bounded p-morphisms.

Fact 4.2

L(!σ,A) is not invariant under bounded p-morphisms.

We can also show that L(!σ,A) is not invariant under ∩-bisimulations. Conversely, L(!σ,A) is not as
expressive as L(N,A),∩ either. However, the logic is invariant under taking generated submodels.

Fact 4.3

L(!σ,A) is not invariant under (A,N,∩)-bisimulations.

Corollary 4.4

L(N,A),∩ 6≥L(!σ,A).

Fact 4.5

Let M′ be an A-generated submodel of M. For every ϕ, every {w0,...,wn}⊆|M
′| and for every

w∈N(w0)∩ ...∩N(wn)∩|M′| we have M|N(w0)∩...∩N(wn),w |=ϕ iff M′|N′(w0)∩...∩N′(wn),w |=ϕ.

Proof. By induction on ϕ. The base case follows from the fact that V ′(p)=V (p)∩|M′|. Induction
steps for booleans are straightforward. We now prove the 〈a〉 and [!N] induction steps.
For the left to right direction of the 〈a〉-induction step, assume M|N(w0)∩...∩N(wn),w |=〈a〉ψ . It

follows that there is a state v∈N(w0)∩ ...∩N(wn) (0) with wRav (1) and M|N(w0)∩...∩N(wn),v |=ψ
(2). From (1), the fact thatM′ is an A-generated submodel ofM, and the fact that w∈|M′|, it follows
that v∈|M′| (3) and wR′av (4). From (0), the fact that {w0,...,wn}⊆|M

′| and construction of M′ we
have v∈N′(w0)∩ ...∩N′(wn) (5). From (2), (3), (5) and IH, it follows thatM′|N′(w0)∩...∩N′(wn),v |=ψ
(6). From (4) and (6), it follows that M′|N′(w0)∩...∩N′(wn),w |=〈a〉ψ . The other direction is trivial.
For the left ro right direction of the [!N]-induction step, assume thatM|N(w0)∩...∩N(wn),w |=[!N]ψ .

It follows that M|N(w0)∩...∩N(wn)∩N(w),w |=ψ (7). By definition of M′ it follows that w∈N′(w0)∩
...∩N′(wn)∩N′(w) (8). From (7), (8) and IH it follows that M′|N′(w0)∩...∩N′(wn)∩N′(w),w |=ψ (9).
From (9), (8) and semantics, the claim follows. The other direction is similar. �

The following is immediate from the previous fact.

Corollary 4.6

L(!σ,A) is invariant under A-generated submodels.

From Feferman and Kreisel’s Theorem 2.13, Corollary 4.6 and Proposition 3.8 it follows that:

Corollary 4.7

For every formulaϕ∈L(!σ,A), x∈VAR and σ ∈VAR
∗, STx(ϕσ) is equivalent to a formula inBF(N,A)∩

LGF(N,A).

In words, every formula of the logic of sights is equivalent to a first-order formula that is both
bounded and loosely guarded.

4.3 σ -bisimulations

As expected, the notion of bisimulation matching L(!σ,A)-modal invariance, is particularly natural.

Definition 4.8

A(!N,A)-bisimulation between two σLTS S= (〈W ,(
a
→)a∈A,N,V 〉) and S′= (〈W ′,(

a
→
′
)a∈A,N′,V ′〉)

is a relation Z⊆ (℘(W)×W)×(℘(W ′)×W ′) such that for some w∈W and w′∈W ′ we have
(W ,w,W ′,w′)∈Z , and such that the following conditions hold:

1. (Atomic Harmony) if (X ,x,X ′,x′)∈Z then for every p∈prop, we have x∈V (p) iff x′∈V ′(p)
2. (Forth) if (X ,x,X ′,x′)∈Z and xRay for some y∈X , then there exists some y′∈X ′ such that

x′Ray
′ and (X ,y)Z(X ′,y′)

3. (Back) if (X ,x,X ′,x′)∈Z and x′R′ay
′ for some y′∈X ′, then there exists some y∈X such that

xRay and (X ,y)Z(X ′,y′)
4. (N-Forth) if (X ,x,X ′,x′)∈Z and xRay for some y∈X ∩N(x), then there exists some y′∈X ′∩

N(x′) such that x′R′ay
′ and (X ∩N(x),y)Z(X ′∩N(x′),y′)

5. (N-Back) if (X ,x,X ′,x′)∈Z and x′R′ay for some y′∈X ′∩N(x′), then there exists some y∈
X ∩N(x) such that xRay and (X ∩N(x),y)Z(X ′∩N(x′),y′)

We say that two pointed σLTS (S,w0)= (〈W ,(
a
→)a∈A,N,V 〉,w0) and (S′,w′0)= (〈W

′,(
a′

→)a∈A,

N′,V ′〉,w′0) are (!N,A)-bisimilar (notation: S,w0↔
!N,AS′,w′0) whenever there is bisimulation Z

between S and S′ such that (W ,w0,W ′,w′0)∈Z . When A is clear from context, we write σ -bisimilar
for (!N,A)-bisimilar.

Proposition 4.9 (Hennessy–Milner Theorem)
Let S= (〈W ,(

a
→)a∈A,N,V 〉) and S′=〈W ′,(

a
→
′
)a∈A,N′,V ′〉 be two image-finite σLTS. For every

w∈W and w′∈W ′, w!L(!σ,A) w
′ iff w↔ !N,Aw′

Proof. The proof is standard. We just indicate the N-Forth direction of the left to right direction.
Assume for contradiction that there are two pointed image-finite σLTS S,w0 and S′,w′0, such that
S,w0!S′,w′0, w0Raw1 and w1∈N[w0], but there is no state v′∈S′|N(w′0)

such that w′0Rav
′ and

S′|N(w′0)
,w1!S′|N(w′0)

,v′ (1). It is easy to see that Ra[w
′
0]∩N(w′0) 6=∅. Since S′ is image-finite, we

can enumerate Ra[w
′
0]∩N(w′0)={v

′
1,...,v

′
n} (for some n∈ω). Now by (1), for each v′i there is some

formulaϕi such thatS|N(w0),v
′ |=ϕi andS′|N(w′0)

,v′i 6|=ϕi. It follows that thatS,w0 |=[!N]〈a〉
∧

i∈n+1ϕi

but S′,w′0 6|=[!N]〈a〉
∧

i∈n+1ϕi. Contradicting (0). �

Now that we have the right notion of bisimulation, a shorter alternative proof for the second part
of Proposition 4.1 boils down to showing that M1,w0↔

!N,AM2,w
′
0.

5 A complete axiomatization

In this section, we give an axiom system for the logic L(!σ,A) and prove its completeness.

5.1 Existential and universal formulas

In what follows, let a universal formula be defined recursively as follows:

1. if p∈prop, then p,¬p are universal

2. if ϕ and ψ are universal, then ϕ∧ψ and ϕ∨ψ are universal.
3. if ϕ is universal, then [a]ϕ and [!N]ϕ are universal.

Existential formulas are defined symmetrically, using 〈a〉ϕ instead of [a]ϕ. Clearly, the negation
of a universal formula is an existential formula and conversely.

5.2 Preliminary observations

We start with some simple observations.

Fact 5.1

If |=ϕ→ψ then |=〈a〉ϕ→〈a〉ψ

We recall the following standard preservation result:

Theorem 5.2 (Łoś-Tarski)
A first-order formula is preserved under embeddings if, and only if, it is logically equivalent to an
existential formula.

Table 1. !N axiom system

PL ⊢ϕ if ϕ is a substitution instance of
a tautology of propositional logic

Nec if ⊢ϕ, then ⊢[a]ϕ
K ⊢[a](ϕ→ψ)→ ([a]ϕ→[a]ψ)
Dual ⊢[a]¬ϕ↔¬〈a〉ϕ
[!N]-Nec if ⊢ϕ, then ⊢[!N]ϕ
[!N]-K ⊢[!N](ϕ→ψ)→ ([!N]ϕ→[!N]ψ)
[!N]-p ⊢p↔[!N]p
[!N]-¬ ⊢[!N]¬ϕ↔¬[!N]ϕ
[!N]-∧ ⊢[!N](ϕ∧ψ)↔ ([!N]ϕ∧[!N]ψ)
[!N]-∨ ⊢[!N](ϕ∨ψ)↔ ([!N]ϕ∨[!N]ψ)
[!N]〈a〉 if ϕ is existential, then ⊢[!N]ϕ→ϕ

[!N][!N] ⊢[!N][!N]ϕ↔[!N]ϕ
MP if ⊢ϕ→ψ and ⊢ϕ, then ⊢ψ

Corollary 5.3

If ϕ is existential, then |=[!N]ϕ→ϕ.

Proof. Let ϕ∈Lσ . By Proposition 3.5 there is an equivalent FO-formula STx(ϕ). An easy induction
shows that if ϕ is existential then so is STx(ϕ). The claim follows from the right to left direction of
Theorem 5.2 �

5.3 Axiom system

Consider the axiom system !N given in Table 1. In the rest of this section, we drop reference to !N

and simply use ⊢ϕ to mean that ϕ is derivable using the axiom system !N and the term consistency
to mean !N-consistency.

Interpretation of the axioms: [!N] axioms over Booleans follow from determinacy of the [!N]
operator. The [!N][!N] axiom indicates that there is no non-trivial immediate nesting of [!N]. This
form of introspection for sights, can be interpreted as saying that agents are aware of the continuations
they are aware of. The [!N]〈a〉 axiom is saying that agents never consider as possible, evolutions of
the system that are in fact impossible. Or looking, at the converse, those agents are always aware of
the necessary evolutions of the system.

Fact 5.4

⊢[!N](ϕ→ψ)↔ ([!N]ϕ→[!N]ψ)

Fact 5.5

If ϕ is universal, then ⊢ϕ→[!N]ϕ

5.4 Soundness and completeness

Lemma (Soundness)

If ⊢ϕ then |=ϕ.

Proof. The only non-trivial case is that of axiom ([!N]〈a〉). Its soundness is immediate from
Corollary 5.3. �

In the next section, we prove the following:

Lemma (Weak completeness)

Every finite !N-consistent sets of L(!σ,A)-formulas is satisfiable.

Theorem (Strong completeness)

Every !N-consistent sets of L(!σ,A)-formulas is satisfiable.

6 Completeness

The structure of the proof is as follows. We first show how to inductively construct a finite witness
model from a finite set of formulas. This model will not be a σLTS, but rather what we call a pseudo-
σLTS (see Section 6.1). We then show that these pseudo-σLTSs are in some sense good, allowing
us to gather them back in a truth-preserving way into σLTSs. A witness pointed pseudo-σLTS is
constructed from finite maximal consistent sets (‘atoms’). A truth lemma shows that membership in
the set of formulas labeling a state of the witness pseudo-σLTS is equivalent to satisfaction at that
state. Putting this all together gives us weak completeness, and strong completeness follows from
compactness (Corollary 3.10).
All of this is fairly abstract at the moment but we need some concepts before we can give the

details in Section 6.6. To be able to guarantee that we construct good, yet finite pseudo-σLTSs, we
will use a function associating a subset of our language with each word in a finite tree on A∗, the set
of finite words on our set of labels. Section 6.3 is dedicated to this. The reader uninterested in the
details of the construction might want to skip this section, looking only at Example 6.4.2 to see how
this function is defined in a concrete case, and simply refer to it as needed.
Omitted proofs are given in Appendix B, while Appendix A contains an important numbers of

intermediate facts that a play a role in some of these proofs. The proofs of these facts are also given
in Appendix B.

6.1 Pseudo-σLTS

A pseudo-σLTS (henceforth often PσLTS) is a structure of the form:

〈W ,C,(Ra)a∈A,
!N
→,Val〉 where, (14)

– W is a non-empty set and C⊆ (W×℘(W))

– for each a∈A, Ra⊆C×C and
!N
→⊆C×C

– Val :C→℘(prop).

The finitary witness PσLTS will be generated inductively from a consistent set of Lσ -formulas, as
we will explain below.

Since PσLTSs are not σLTSs, the semantics of L(!σ) on PσLTSs is different:

M,w,X |=p iff p∈Val(w,X)
M,w,X |=〈a〉ϕ iff there is s∈W with (s,X)∈C,(w,X)Ra(s,X)

and M,s,X |=ϕ

M,w,X |=[!N]ϕ iff there is (v,Y)∈C with (w,X)
!N
→ (v,Y)

and M,v,Y |=ϕ

The semantics of Booleans is as usual. In words, this is a basic modal semantics with C being the
state space.
Later in the proof, we will restrict ourselves to a class of well-behaved PσLTSs that are more like

σLTSs.Aswewill explain, our construction ensures that ourwitnessPσLTSs are in thiswell-behaved
class. This will allow us to work with a semantics more like our original semantics, but nevertheless
equivalent to the one above on the class of proper PσLTSs. We return to this in Section 6.7.

6.2 Notation and terminology

Henceforth, in this section, we refer to Lσ -formulas simply as formulas, unless stated otherwise.
Given a set 1 of formumas, let exist(1)={ϕ∈1|ϕ is existential.}. Given a finite set of formulas
A={ϕ1,...,ϕn}we let Â=

∧
A=ϕ1∧ ...∧ϕn. Given a formula ϕ, let sub(ϕ) be the set of subformulas

of ϕ. In particular ϕ∈sub(ϕ). Given a set of formulas A, let Sub(A)=
⋃
{sub(ϕ)|ϕ∈A}.

6.3 Linguistic closure: trees and kappas

We build up the witness model by inductively selecting appropriate atoms. We construct atoms from
particular finite subsets of the language, which we describe in this section. As will become clear, we
associate with each finite subset 1 of Lσ based on A, a subtree Tree(1) of A∗. To each word Ea in
A∗ we will associate a finite set κ(Ea)⊆Lσ . Atoms labeling the states in our witness models will be
maximal consistent subsets of κ(Ea) for some Ea∈Tree(1).

6.3.1 Properties of CN-closure
Let 1 be finite a set of formulas, we define CN(1) as the smallest set of formulas such that:

– Sub(1)⊆CN(1)
– If ϕ∈CN(1) and ϕ is neither of the form ¬ψ , nor of the form [!N]ψ then ¬ϕ∈CN(1)
– If ϕ∈CN(1) and ϕ is neither of the form [!N]ψ , nor of the form ¬[!N]ψ then [!N]ϕ∈CN(1)

We sometimes abuse notation and write CN(ϕ) for CN({ϕ}). Note, that we do not allow arbitrary
iteration of negation and [!N]. This is necessary to keep the sets we are working with finite. However,
we have the following:

Fact 6.1

Let 1 be a finite set. If ϕ∈CN(1), then there is a formula Norm(¬ϕ)∈CN(1) such that
⊢Norm(¬ϕ)↔¬ϕ.

Fact 6.2

Let 1 be a finite set. If ϕ∈CN(1), then there is a formula Norm([!N]ϕ)∈CN(1) such that ⊢
Norm([!N]ϕ)↔[!N]ϕ.

Corollary 6.3

Let 1 be a finite set. If ϕ∈CN(1) then there is a formula Norm([!N]ϕ)∈CN(1) such that ⊢
Norm([!N]¬ϕ)↔[!N]¬ϕ.

Fact 6.4

If 1 is finite, then CN(1) is finite as well.

6.3.2 a images, E(1,a) and Ŵ(a)
Given a finite set 1 of formulas, let E(1,a)={ϕ|〈a〉ϕ∈1 or ¬〈a〉ϕ∈1}.
Given a set of formulas Ŵ, we also write:

Ŵ(a)=CN(E(Ŵ,a)). (15)

That is, Ŵ(a)=CN({ϕ|〈a〉ϕ∈Ŵ or ¬〈a〉ϕ∈Ŵ}). Hence, in particular:

Corollary 6.5

Let 1 be a finite set. CN(1)(a)=CN({ϕ|〈a〉ϕ∈CN(1)}).

6.4 Initial downward cn-labeling and the Tree(1) tree

Again, throughout this section,1 is assumed to be finite. Definitions and results are stated under this
proviso.

Now we define the following notation, for finite sequences Ea∈A∗:

cn(1)(Ea)=

{
CN(1) if Ea=ǫ

cn(1)(Eb)(c) if Ea=Eb·c.
(16)

Fact 6.6

For every Ea∈A∗, cn(1)(Ea) is finite.

Fact 6.7

For every Ea∈A∗, we have cn(1)(Ea)=CN(cn(1)(Ea)).

We call a finite sequence Ea∈A∗ 1-maximal if for every b∈A, cn(1)(Ea ·b)=∅ but cn(1)(Ea) 6=∅. We
also call such sequences 1-leaves. Let tree(1)={Ea∈A∗|cn(1)(Ea) 6=∅}. Let ⊑ be the subsequence
relation on A∗. We also write SubTree(1,Ea)={Eb∈A∗|Ea ·Eb∈ tree(1)}.
Define a function rank1 : tree(1)→ω be defined as follows:

rank1(Ea)=

{
0 if Ea is a 1-leaf

n+1 if max({rank(Ea ·b)|Ea ·b∈ tree(1)})=n

6.4.1 The linguistic function κ

Definition 6.8 (cj and da)
Let Ŵ be finite a set of formulas. Let cj(Ŵ) be defined as follows:

cj(Ŵ)=CN({̂S|S⊆Ŵ}) (17)

and let da(Ŵ,a) be defined as follows:

da(Ŵ,a)={〈a〉ϕ|ϕ∈cj(Ŵ)} (18)

Definition 6.9

We define a function κ1 :A∗→℘(Lσ) recursively:

1. If cn(1)(Ea)=∅, then κ1(Ea)=∅.
2. If Ea is a 1-leaf, then κ1(Ea)=cn(1)(Ea).
3. If Ea is not a 1-leaf, then κ1(Ea)=CN(

⋃
b∈Ada(κ1(Ea ·b),b)∪cn(1)(Ea))

The maximum A-modal depth of κ1(Ea) is the same as that of cn(1)(Ea).

Lemma 6.10

For every Ea∈ tree(1), max(dep(κ1(Ea)))=max(dep(cn(1)(Ea)))= rank1(Ea).

We observe two facts: sets of the form κ1(Ea) are finite and closed under CN.

Fact 6.11

For each Ea∈A∗, κ1(Ea) is finite.

Fact 6.12

For each Ea∈A∗, κ1(Ea)=CN(κ1(Ea)).

The following fact states that there is a maximal rank at which a formula ϕ can occur.

Lemma 6.13 (Maximal ϕ-children)
If ϕ∈κ1(Ea) then there is some, possibly empty, Eb∈A∗ such that for every prefix Ec of Eb we have
ϕ∈κ1(Ea ·Ec) and for every Ed ∈A∗ such that Ed 6=ǫ we have ϕ 6∈κ1(Ea ·Eb· Ed).

The following facts illustrate the exact relation between the content κ1(Ea) and the κ content of Ea’s
children in the syntactic tree Tree(1).

Fact 6.14

If ψ ∈CN({̂S|S⊆κ1(Ea ·b)}), then 〈b〉ψ ∈κ1(Ea) .

Fact 6.15

If 〈c〉ϕ∈κ1(Ea), then ϕ∈CN({̂S|S⊆κ1(Ea ·c)}).

Corollary 6.16

If 〈c〉ϕ∈κ1(Ea), then we are in one the following cases:

− ϕ∈κ1(Ea ·c)
− ϕ= (ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·c), with n≥2
− ϕ=[!N](ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·c), with n≥2
− ϕ=¬(ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·c), with n≥2
− ϕ=[!N]¬(ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·c), with n≥2

6.4.2 An example
In Appendix C, we illustrate these syntactic concepts, by computing them for 1={〈a〉(〈b〉p∧
〈b〉¬p),[!N]〈a〉[!N]〈c〉q,[!N]〈a〉¬〈b〉¬p}.

6.5 Atoms and their existence

Atoms are the building blocks of our models. They are finitary maximal consistent sets. Given a finite
set 1, κ1 associates to each Ea∈ tree(1) a non-empty finite subset of Lσ . (Ea)-atoms are maximal
consistent subsets of κ1(Ea). In this section, we show that we can find enough of these building blocks
and that they can be associated to build a canonical pseudoσLTS. The actual construction will be
discussed in Section 6.9.

6.5.1 (Ea)-Atoms and their properties

Definition 6.17 ((1,Ea)-Atoms)
For each Ea∈A∗, let At(1,Ea) be the set of maximally consistent subsets of κ1(Ea).We refer to elements
of At(1,Ea) as (1,Ea)-atoms.

First we prove a few properties about the semantic richness our set of atoms.

Fact 6.18

Let Ea∈A∗ be such that κ1(Ea) 6=∅. For each ϕ∈κ1(Ea) there is a formula Norm(¬ϕ) such that ⊢
Norm(¬ϕ)↔¬ϕ and Norm(¬ϕ)∈κ1(Ea).

Fact 6.19

Let Ea∈A∗ be such that κ1(Ea) 6=∅. For each ϕ∈κ1(Ea) there is a formula Norm([!N]ϕ) such that
⊢Norm([!N]ϕ)↔¬ϕ and Norm([!N]ϕ)∈κ1(Ea).

Fact 6.20

Let Ea∈A∗ be such that κ1(Ea) 6=∅. For each ϕ∈κ1(Ea) there is a formula Norm([!N]¬ϕ) such that
⊢Norm([!N]¬ϕ)↔¬ϕ and Norm([!N]¬ϕ)∈κ1(Ea).

Fact 6.21

Let Ea∈A∗ be such that κ1(Ea) 6=∅. Now let D∈At(1,Ea). For each ϕ∈κ1(Ea) we have either ϕ∈D or
else there is some formula Norm(¬ϕ) such that ⊢Norm(¬ϕ)↔¬ϕ and Norm(¬ϕ)∈D.

6.5.2 Existence and uniqueness properties of (Ea)-atoms
In this section, we show that we have enough atoms, or building blocks, to construct our pointed
PσLTS of1. As usual for such finitary constructions, we will need a finite form of the Lindenbaum
lemma.

Fact 6.22 (Existence of atoms)
If 1 is a finite consistent set, then there exists an atom A∈At(1,ǫ), such that 1⊆A.

Next we show that if we an Ea-atom containing a formula of the form 〈b〉ϕ, then we have an
Ea ·b-atom that can play the role of

b
→-successor.

Lemma 6.23 (Existence Lemma)
LetŴ be afinite consistent set and Ea,(Ea ·b)∈A∗.Moreover, assume thatκŴ(Ea) 6=∅ andκŴ(Ea ·b) 6=∅. Let
D∈At(Ŵ,Ea). If 〈b〉ϕ∈D, then there is an atomE∈At(Ŵ,Ea ·b) such that there are formulasχ1,...,χn∈E
such that ⊢ (χ1∧ ...∧χn)→ϕ, and D̂∧〈b〉Ê is consistent.

Proof. By Corollary 6.16 we are in one of the following cases:

1. ϕ∈κ1(Ea ·b)

2. ϕ= (ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·b), with n≥2
3. ϕ=[!N](ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·b), with n≥2
4. ϕ=¬(ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·b), with n≥2
5. ϕ=[!N]¬(ψ1∧ ...∧ψn) and ψ1,...,ψn∈κ1(Ea ·b), with n≥2

We only prove Case 5 as all other cases are similar.
Case 5: By axioms it follows that for some ψi∈{ψ1,...,ψn} we have [!N]¬ψi∈D. But since

ψi∈κ1(Ea ·b) it follows by Fact 6.20 that we have a formula Norm([!N]¬ψi)∈κ1(Ea ·b) such that ⊢
Norm([!N]¬ψi)↔[!N]¬ψi. We define E0={Norm([!N]¬ψi)}. Assume for contradiction that there
is no such ψi such that D̂∧〈b〉Ê0 is consistent. It follows that for all ψi∈{ψ1,...,ψn} we have ⊢
D̂→¬Norm([!N]¬ψi), hence by axioms, ⊢ D̂→Norm([!N]ψi). But then ⊢ D̂→¬ϕ, contradicting
the fact that D is consistent. By reduction it follows that D̂∧〈b〉Ê0 is consistent (a).
Now enumerate the formulas in κ1(Ea ·b) as α1,...,αm. By Fact 6.18, we can define En inductively

as follows:

− E0={Norm([!N]ψi)},
− En+1=En∪{αn+1}, if D̂∧〈b〉(Ên∧αn+1) is consistent,
− En+1=En∪{Norm(¬αn+1)}, otherwise.

Finally, define E=Em. We claim that for every k with 0≤k≤m we have that D̂∧〈b〉Êk is
consistent. The proof is by induction on k. The base case follows from (a). For the induction
step, assume that En has been defined and D̂∧〈b〉Ên is consistent. We have by basic modal logic:
⊢〈b〉Ên↔〈b〉((Ên∧αn+1)∨ (Ên∧Norm(¬αn+1))) and thus ⊢〈b〉Ên↔ (〈b〉(Ên∧αn+1)∨〈b〉Ên∧
Norm(¬αn+1)). Hence either D̂∧〈b〉(Ên∧αn+1) is consistent or D̂∧〈b〉(Ên∧Norm(¬αn+1)) is
consistent. It also follows that D̂∧〈b〉Ê is consistent and moreover by construction that E is a
maximally consistent subset of κ1(Ea ·b). �

Now, we show an existence lemma for [!N].

Proposition 6.24 (Existence Lemma for [!N])
Let1 be a finite set and let Ea∈A∗ be such that κ1(Ea) 6=∅. LetD be a (1,Ea)-atoms. There exists some
(1,Ea), E, such that D̂∧[!N]

∧
Ê is consistent.

Proof. By hypothesis κ1(Ea) 6=∅. Hence there is some formula ϕ0∈D (0). Either D̂∧[!N]ϕ0 is
consistent, andwe setE0={ϕ0}, or⊢ (D̂∧[!N]ϕ0)→⊥. But thenwehaveby axioms⊢ D̂→[!N]¬ϕ0.
But since D is an atom it follows that D̂∧[!N]¬ϕ0 is consistent. Moreover, by Fact 6.20 there is
some formulaNorm([!N]¬ϕ0)∈κ1(Ea) such that ⊢Norm([!N]¬ϕ)↔[!N]¬ϕ0. Moreover by (0) and
Fact 6.18 we have some formula Norm(¬ϕ0)∈κ1(Ea) such that ⊢Norm(¬ϕ)↔¬ϕ0, and we set
E0 :={Norm(¬ϕ0)}. Either way we can define some set E0 such that D̂∧[!N]Ê0 is consistent (1).
Now enumerate the formulas in κ1(Ea) as α1,...,αm. By (1) and Fact 6.18, we can define En

inductively as follows:

− E0, defined as indicated above.
− En+1=En∪{αn+1}, if D̂∧[!N](Ên∧αn+1) is consistent,
− En+1=En∪{Norm(¬αn+1)}, otherwise.

Finally, define E=Em. We claim that of for every k with 0≤k≤m we have that D̂∧[!N]Êk is
consistent. The proof is by induction on k. Base case follows from (1). For the induction step, assume
that En has been defined and D̂∧[!N]Ên is consistent. Now we are in one of two cases. Either
D̂∧[!N](Ên∧αn+1) is consistent, and by construction so is D̂∧[!N]Ên+1, or it is not consistent,
that is ⊢ (D̂∧[!N](Ên∧αn+1))→⊥. But in this case, we have by axioms [!N]¬ and [!N]∧ that

⊢ D̂→ ([!N]Ên→[!N]¬αn+1). But then by IH, Fact 6.18 and constructionwe have that D̂∧[!N]Ên+1

is consistent. Hence either way D̂∧[!N]Ên+1 is consistent. It also follows that D̂∧[!N]Ê is consistent
and moreover by construction that E is a maximally consistent subset of κ1(Ea). �

The following shows that the canonical
!N
→ relation is deterministic.

Proposition 6.25 (Uniqueness)
Let Ea∈A∗ be such that κ1(Ea) 6=∅. Let D,E,F be (1,Ea)-atoms. If D̂∧[!N]

∧
Ê is consistent and

D̂∧[!N]
∧

F̂ is consistent as well, then E=F .

Proof. Assume for contradiction that E 6=F . Since E and F are (1,Ea)-atoms, it follows that there
is some formula ϕ∈κ1(Ea) such that either ϕ∈E and ϕ 6∈F , or ϕ 6∈E and ϕ∈F . But in the first case
it follows Fact 6.21 that there is some formula Norm(¬ϕ)∈E such that ⊢Norm(¬ϕ)↔¬ϕ, but
then by consistency of atoms it follows that Norm(¬ϕ) 6∈B and clearly we have ⊢ϕ↔¬Norm(¬ϕ)
(1). (And symmetrically in the other case). Hence we can assume that that there are two formulas
ϕ,Norm(¬ϕ)∈κ1(Ea) such that ϕ∈E and Norm(¬ϕ)∈F . But since D̂∧[!N]

∧
Ê is consistent and

D̂∧[!N]
∧

F̂ is consistent as well, it follows that D̂∧[!N]ϕ is consistent and D̂∧[!N]Norm(¬ϕ) is
consistent.
Hence by maximality of D and Corollary A.32 we have some formula Norm([!N]ϕ)∈D with

⊢Norm([!N]ϕ)↔[!N]ϕ and similarly Norm([!N]Norm(¬ϕ))∈D with ⊢Norm([!N]Norm(¬ϕ))↔
[!N]Norm(¬ϕ), and thus by (1) and axioms ⊢Norm([!N]Norm(¬ϕ))↔[!N]¬ϕ. But then ⊢
D̂→ ([!N]ϕ∧[!N]¬ϕ), hence by [!N]∧, we have ⊢ D̂→[!N](ϕ∧¬ϕ). But then by axioms D̂ is
inconsistent. A contradiction. �

We show that the canonical
!N
→ reaches a reflexive sink immediately.

Fact 6.26

Let Ea∈A∗ be such that κ1(Ea) 6=∅. Let D,E be (1,Ea)-atoms. If D̂∧[!N]
∧

Ê is consistent, then
Ê∧[!N]

∧
Ê is consistent.

Proof. Assume that D̂∧[!N]
∧

Ê (1) is consistent and assume for contradiction that Ê∧[!N]
∧

Ê

is inconsistent. It follows that ⊢ Ê→¬[!N]Ê, by axioms it follows that ⊢[!N](Ê→¬Ê).
Contradicting (1). �

6.5.3 Key lemmas
Before we can sketch the structure of the completeness proof in full detail, we need a few more
lemmas that will play a key role in the proof. To do so, it will be handy to have the following piece
of notation.
Assume that Ŵ is a finite consistent set and Ea,(Ea ·b)∈A∗. Moreover, assume that κŴ(Ea) 6=∅ and

κŴ(Ea ·b) 6=∅.

− Let D∈At(Ŵ,Ea) and let E∈At(Ŵ,Ea ·b). We write D
b
→E iff D̂∧〈b〉Ê is consistent.

− Let D,E∈At(Ŵ,Ea). We write D
!N
→E iff D̂∧[!N]Ê is consistent.

− Let D,E∈At(Ŵ,Ea). We write D
π
→E iff for every ϕ with ϕ∈E such that ϕ is equivalent to an

existential formula, we have ϕ∈D.

The first two items are self-explanatory. They are the equivalent of the relation between contexts
corresponding to the 〈b〉 and [!N] operators in a PσLTS. The last relation corresponds to the relation

between two contexts based on the same state but within the sight of a richer collection of states.
π
→

generalizes
!N
→. Lemma 6.28 will make this relation precise. But we first prove the following:

Lemma 6.27 (Existence of witnesses)
Let Ŵ be a finite consistent set and Ea ·b∈A∗. Let D∈At(Ŵ,Ea) and let 〈b〉ϕ∈κŴ(Ea). We have 〈a〉ϕ∈D

iff there is some E∈At(Ŵ,Ea ·b) such that D
a
→E and such that there are formulas χ1,...,χn∈E such

that ⊢ (χ1∧ ...∧χn)→ϕ.

Proof. The left to right direction follows from Lemma 6.23. For the other direction simply observe

that if D
b
→E, then D̂∧〈b〉ϕ is consistent. But since 〈b〉ϕ∈κŴ(Ea) and D is a maximally consistent

subset of κŴ(Ea) we have 〈b〉ϕ∈D. �

Lemma 6.28

Let Ŵ be a finite consistent set and Ea∈A∗. Moreover, assume that κŴ(Ea) 6=∅. Let D,E∈At(Ŵ,Ea) we
have

If D
!N
→E, then D

π
→E (19)

Proof. AssumeD
!N
→E, it follows that D̂∧〈a〉Ê is consistent. Now assume we have some ϕ∈E such

that ⊢ϕ↔ψ (0) and ψ is existential. We have that ⊢D∧[!N]ϕ is consistent (1). By Corollary A.32
we also have some formula Norm([!N])∈κŴ(Ea) (2) such that ⊢Norm([!N]ϕ)↔[!N]ϕ (3). By (1),
(2) and maximality of atoms it follows that Norm([!N]ϕ)∈D (4). But by (0) and (3) and axioms we
have ⊢Norm([!N]ϕ)↔[!N]ψ (5). Since ψ is existential, we have by axioms, that ⊢[!N]ψ→ψ (6).
From (5) and (6) we have ⊢Norm([!N]ϕ)→ϕ (7). From (7), (4) and maximality of D it follows that
ϕ∈D. Concluding the proof. �

We are now ready to prove a key commutation lemma.

Lemma 6.29 (Simulation Image)
Let Ŵ be a finite consistent set and Ea,(Ea ·b)∈A∗. Moreover assume that κŴ(Ea) 6=∅ and κŴ(Ea ·b) 6=∅.

Let D,E∈At(Ŵ,Ea) and F ∈At(Ŵ,Ea ·b). If D
π
→E and E

b
→F . Then there exists G∈At(Ŵ,Ea ·b) such

that G
π
→F and D

b
→G.

Proof. Define G0={ϕ∈F |ϕ is equivalent to an existential formula.} (0). Clearly, Ĝ0 is equivalent
to an existential formula and so is 〈a〉Ĝ0. Now by Fact A.33 we have 〈b〉Ĝ0∈κŴ(Ea). Hence, by

maximality of E we have 〈b〉Ĝ0∈E. Now since D
π
→E it follows that 〈b〉Ĝ0∈D. Hence D̂∧〈b〉Ĝ0

is consistent. (1)

Now since F is atom, G0 is consistent. Moreover, since F ∈At(Ŵ,Ea ·b) it follows, that
G0⊆κŴ(Ea ·b) (2).
By Fact 6.11, κŴ(Ea ·b) is finite. Hence we can enumerate it, and let κŴ(Ea ·b)={ψ1,...,ψn}. By

Fact 6.18 we have for each ψi∈κŴ(Ea ·b) a corresponding formula Norm(¬ψi)∈κŴ(Ea ·b) such that

⊢κŴ(Ea ·b)↔¬ψi (3). Hence, we can define a sequence (Hi)0≤i≤n, as follows:

Hi=





G0 if i=0

Hj∪{ψn+1} if i= j+1

and D̂∧〈b〉(Ĥj ∧ψj+1) is consistent

Hj∪{Norm(¬ψj+1)} if i= j+1

and ⊢ (D̂∧〈b〉(Ĥj ∧ψj+1))→⊥

We claim that D̂∧〈b〉Ĥi is consistent for every i with 0≤k≤n. The proof is by induction on k. The
base case is immediate from (1). Now assume that D̂∧〈b〉Ĥk is consistent k (4). By propositional
logic we have ⊢ Ĥk↔ (Ĥk ∧ψk+1)∨ (Ĥk ∧¬ψk+1). By (3) we have thus ⊢ Ĥk↔ (Ĥk ∧ψk+1)∨
(Ĥk ∧Norm(¬ψk+1)). It follows that

⊢ (D̂∧〈b〉Ĥk)↔ (D̂∧〈b〉((Ĥk ∧ψk+1)∨ (Ĥk ∧Norm(¬ψk+1)))) (20)

By basic modal logic we have thus

⊢ (D̂∧〈b〉Ĥk)↔ (D̂∧ (〈b〉(Ĥk ∧ψk+1)∨〈b〉(Ĥk ∧Norm(¬ψk+1))) (21)

By IH D̂∧〈b〉Ĥk is consistent (5). Hence we have either that D̂∧ (〈b〉(Ĥk ∧ψk+1) is consistent, but
then D̂∧〈b〉Ĥk+1 is consistent, or D̂∧ (〈b〉(Ĥk ∧ψk+1) (6) is inconsistent, but in this case it follows
from (5), (21) and (6) that D̂∧ (〈b〉(Ĥk ∧Norm(¬ψk+1)) is consistent (7). But by (6), construction
of Hk+1 and (7) it follows that D̂∧〈b〉Ĥk+1 is consistent. Concluding the induction step. It follows
that D̂∧〈b〉Ĥn (8).
Now it is easy to see that by construction Hn is a maximally consistent subset of κŴ(Ea ·b), hence

Hk+1∈At(Ŵ,Ea ·b) (9). We can set G=Hn. By (0) and G0=H0⊆Hn=G we have G
π
→F (10). By

(8) we have D
b
→G (11). (9), (10) and (11) is what we had to prove. �

We have now our main ingredients and can now present the structure of the proof in details (in
Section 6.6). Appendix D analyzes the structure of the set of atoms for the specific finite set of
formulas considered in Appendix C.

6.6 Structure of the proof: details

To construct our finitary canonical PσLTS from a finite consistent set Ŵ we proceed as follows. (A
formal version of this procedure will be given in Section 6.9.)
First we generate the κŴ function. Intuitively κŴ(ǫ) is a finite subset of Lσ that has nice closure

properties. The sets of the form κŴ(Ea), for Ea∈ tree(Ŵ), will be the sublanguages our witness axioms
will be constructed from. Intuitively, these sublanguages allow for less and less modal depth as Ea
becomes longer.
Next, we start generating our finitary canonical PσLTS from our set Ŵ. Recall that such structures

have the following form

〈W ,C,(Ra)a∈A,
!N
→,Val〉 (22)

where W is a non-empty set, C⊆ (W×℘(W)) —C can be thought of as a set of contexts—and for

each a∈A, Ra⊆C×C,
!N
→⊆C×C, Val :C→℘(prop).

By Fact 6.22 we can construct an atomA∈At(Ŵ,ǫ), such thatŴ⊆A.Wewill use a labeling function
δ :C→κŴ(ǫ)—we will be more formal about this later—and we set δ(w0,ǫ)=Ŵ. The procedure will
add two types of witness children: a-children and !N-children. Let b∈A. b-witnesses of an atom in
At(Ŵ,Ea) will be selected from At(Ŵ,Ea ·b) for some Ea∈A∗. !N-witnesses are atoms of the same types
as their !N-parent.
Selecting !N-witnesses is easy. Assume that we have a context of the form (w,S) where w 6∈S and

δ(w,S)=D∈At(Ŵ,Ea). From Fact 6.25, we know that there will be a unique atom E∈At(Ŵ,Ea) such
that D̂∧[!N]Ê. We take it as our witness and will define δ(w,S∪{w})=E.
For a-children, we need to be more careful. First of all, we will need to make sure that we start

providing a-children to the right-most context first! Intuitively, if S⊂S ′, then (w,S ′) will be said to be
to the right of (w′,S ′). The reason is that for each child a-child (wa,S

′) of (w,S ′) we need tomake sure
that we have a corresponding ‘related’ or ‘similar’ child (wa,S) of (w,S). In what sense should they
be related or similar? They should be related or similar, in the sense that for each existential formula
ϕ∈δ(wa,S

′) we have ϕ∈δ(wa,S). Lemma 6.27 guarantees that we can find suitable children (for
our right-most contexts). Lemma 6.29 and Lemma 6.28 guarantee that we can find suitable related
children for all (non right-most) parents.
This procedure will end after a finite number of steps and the resulting structure will be our finitary

canonical PσLTS. From here we will proceed as follows:

1. Give a simpler semantics for L(!σ) on proper PσLTS (Section 6.7).
2. Define good PσLTSs as a subclass of proper PσLTSs (Section 6.8).
3. Give a procedure to construct canonical PσLTSs, MŴ , from a finite consistent set Ŵ

(Section 6.9).
4. Show that canonical PσLTSs are good PσLTSs (Section 6.9)
5. Prove a Truth Lemma with respect to finitary canonical PσLTSs.
6. Give a truth-preserving transformation of good PσLTSs into σLTSs

6.7 Interpreting Lσ on PσLTSs

In this section, we show that on a restricted class of PσLTSs we can use a semantics that is closer
to the original semantics of [!N] on σLTSs.
We restrict ourselves to a class of well-behaved PσLTSs. Call a PσLTSs proper if for all x,y∈W

and (w,X),(y,Y)∈C we have that:

1. (w,∅)∈C
2. whenever (w,X)∈C then (w,X ∪{w})∈C

3. (w,X)
!N
→ (v,Y) iff w=v and Y =X ∪{w}.

Our construction will make sure that our canonical PσLTSs are in this class.
Recall that the syntax of the language of L(!σ) over A is:

ϕ ::=p |¬ϕ |ϕ∧ϕ | 〈a〉ϕ | [!N]ϕ,

where p ranges over prop and a over A. On a proper PσLTS we interpret L(σ,A) as follows:

M,w,X |=p iff p∈Val(w,X)
M,w,X |=〈a〉ϕ iff there is s∈W with (s,X)∈C,(w,X)Ra(s,X)

and M,s,X |=ϕ
M,w,X |=[!N]ϕ iff M,w,X ∪{w} |=ϕ

The semantics of Booleans is defined as usual. This simplifies the semantics for PσLTSs in Section
6.1. By restricting ourselves to proper PσLTSs the clause for [!N]ϕ is really nothing but that of a
basic modal formula. Let us record this fact:

Fact 6.30

Let M be a proper PσLTSs. The following are equivalent:

1. M,w,X ∪{w} |=ϕ

2. there is some (v,Y)∈C with (x,X)
!N
→ (v,Y) and M,v,Y |=ϕ

6.8 Good PσLTSs

There are good and bad PσLTSs. A PσLTS is bad iff it is not good. Intuitively a bad PσLTS is
one that does not behave like a σLTS. Given a PσLTS

M=〈W ,C,(Ra)a∈A,
!N
→,Val〉

we say that:

1. C is reflexive if for every w∈W we have (w,{w})∈C.
2. C⊆ (W×℘(W)) is locally closed if for every w∈W and S1,S2∈℘(W) we have

(w,S1),(w,S2)∈C then for every T⊆S1∪S2, (w,T)∈C.
3. a is vertical if for every (w,S),(v,T)∈C such that (w,S)Ra(v,T) we have S=T .
4. a is grounded if for every w,v∈W whenever (w,S)Ra(v,S) for some S∈℘(W) then for all

S∈℘(W) such that (w,T),(v,T)∈C we have (w,T)Ra(v,T).
5. Val is W -based if for every p∈prop whenever p∈Val(w,X) for some w∈W and (w,X)∈C,

then for all (w,Y)∈C, p∈Val(w,Y).

Definition 6.31 (Good PσLTSs)
APσLTS

M=〈W ,C,(Ra)a∈A,
!N
→,Val〉

is good iff it satisfies the following properties:

− M is proper;
− C is reflexive and locally closed;
− for all a∈A, a is vertical and grounded; and
− Val is W -based.

Since a good PσLTS is proper, we can take it to be a structure of the form 〈W ,C,(Ra)a∈A,Val〉,

taking
!N
→ as a defined notion. Namely,

!N
→:={(w,X ,v,Y)∈C×C|w=v and Y =X ∪{w}}.

6.9 Canonical PσLTSs over Ŵ are good

We now give the formal definition of the procedure generating our finitary canonical PσLTSs from
finite consistent sets. We then show that the resulting PσLTSs are good in the sense just defined in
the previous section.
Let Ŵ be a finite consistent set of L(σ,A) formulas. During the procedure we will use a number of

functions.

− Linguistic function. η :W→A∗. It associates to each state a sequence from the Tree.
− Labeling function. δ :C→℘(L(σ,A)) and δ(w,X)∈At(Ŵ,η(w)). It associates to each context in

C an atom.
− Marking functions.

– m0 :C→{0,1}. If m0(C)=1, we say that C is m0-marked. Otherwise we say that C is
m0-unmarked.

– m1 :C→{0,1}. If m1(C)=1, we say that C is m1-marked. Otherwise we say that C is
m1-unmarked.

Structures and functions will be indexed with natural numbers. The index will be incremented
after each run of the procedure until a fixed point is reached. Since Ŵ is a finite consistent set of L(σ,A)
formulas, it follows by Fact 6.22 that there is an atom A0∈At(Ŵ,ǫ) such that Ŵ⊆A0. We initiate our
procedure by setting M0 :=〈W0,C0〉 and η, δ, m0 and m1 as follows:

− W0={w0}; C0={(w0,∅)}
− for each a∈A, set Ra=∅
− η(w0)=ǫ
− δ(w0,∅)=A0
− m0 and m1 are the constant functions with value 0.

In the procedures below, unless stated otherwise, structures and functions remain stable from k to
k+1. Sets and relations are expanded unless stated otherwise. We often simply say that we ‘add’ an
element, to indicate that we define the corresponding set indexed by its immediate successor as the
union of that set and of the singleton containing this element. When it is clear we sometimes also
drop the subscript k.

The sequence of procedures:

Execute the following procedure until Mk+1=Mk .

Procedure 1(!N saturation): check if it is necessary to add a !N-witness to any context, that is check
if there is some w such that (w,S)∈Ck , w 6∈S and (w,S∪{w}).

− If there is such a (w,S), then define Ck+1 :=Ck∪{(w,S∪{w})}. By Proposition 6.25, there is a

unique (Ŵ,ηk (w))-atom Bk+1∈ such that δk (w,S)
!N
→Bk+1. Set δk+1(w,S) :=Bk+1.

Increment index of everything else. Repeat the sequence of procedures with procedure 1.
− If there is no such context, move to procedure 2.

Procedure 2: find all the right-most m0-unmarked contexts.

− If there is no such context, move to procedure 3.
− If there is such a context, pick one. Say (w,X). Enumerate A as a1,...,an. For each ai∈A, check

if there is a formula of the form 〈ai〉ϕ∈δ(w,X).

– if there is no such formula, do nothing.

– if there is such a formula, enumerate {B∈At(Ŵ,(ηk (w)·ai))|δ(w,X)
ai
→B} asB1,...,Bm. For

each Bj add a state w ·(ai,j) to Wk+1 and add (w ·(ai,j),X) to C. Add ((w ·(ai,j),X),(w ·
(ai,j),X)) to Ra. Define δ((w ·(ai,j),X))=Bj

m0-Mark (w,X). Restart the sequence with procedure 1.

Procedure 3: find all the right-most m1-unmarked contexts.

− If there is no such context, move to procedure 4.
− If there is such a context, pick one. Say (w,X). Enumerate {S∈℘(W)\{X }| there is some v∈

W such that S=X ∪{v}} as S1,...,Sm and enumerate A as a1,...,an. For each each Si and each
aj, check if Raj [w,Si]=∅.

– If Raj [w,Si]=∅, do nothing.
– Else enumerateRaj [w,Si] as (w ·(aj,1),Si),...,(w ·(aj,q),Si). By Lemma 6.28, Lemma 6.29
and an inductive argument, for each (w ·(aj,h),Si) there is an atom G∈At(Ŵ,η(w ·(aj,h)))

such that G
π
→δ(w ·(aj,h),Si) and δ(w,X)

aj
→G. We add (w ·(aj,h),X) to C, ((w,X),(w ·

(aj,h),X)) to Raj and define δ(w ·(aj,h),X)=G.

m1-Mark (w,X). Restart the sequence with procedure 1.

Procedure 4: For each (w,X)∈C, define Val(w,X)={ p∈prop | p∈δ(w,X)}.

Fact 6.32

The procedure is well defined.

Fact 6.33

The procedure terminates.

We call the structure output by the procedure MŴ with

MŴ=WŴ,CŴ,(RŴa)a∈A,
!N
→
Ŵ

,ValŴ〉

We also let ηŴ and δŴ be our output labeling functions.

Fact 6.34

Let Ŵ be a consistent set. MŴ is proper.

Proof. (1) Similar argument as in the proof of Fact 6.35.
(2) Assume that (w,X)∈C, either w∈S and thus (w,X ∪{w})∈C, or else, Procedure 1 has

introduced a context (w,X ∪{w}) in C. Either way we have (w,X ∪{w})∈C.
(3) This fact is hard-wired in the fact that we are not using a !N-relation and will be using instead an

alternative semantics. But it is easy to see that Procedure 1 can be adapted by letting it add elements

to a relation
!N
→ under the same conditions, hence if by construction ((w,X),(v,Y)) is added only

whenever x=v and Y =X ∪{w}. �

Fact 6.35

Let Ŵ be a consistent set. CŴ is reflexive.

Proof. Let w∈W . w is either our starting state, but then {(w0,∅)}∈C and by Procedure 1 we have
{(w0,{w0})}∈C, or w has been introduced by Procedure 2 or Procedure 3. In this case, w has been

introduced with a context (w,S)∈C as a Ra-successor to some state v with (v,S)∈C for some a∈A,
with w actually with a name of the form (v ·(a,index(w)).
Either w∈S or else Procedure 1 has introduced a context (w,S∪{w}) in C. Hence we have a

context of the form (w,{w1 ...,wn}∪{w})∈C. By recursive application of Procedure 3, Lemma 6.28
and Lemma 6.29 we see that Procedure 3 will add a chain of contexts

((w,{w1 ...,wn}∪{w}),(w,{w1 ...,wn−1}∪{w}),...

...,(w,{w1}∪{w}),(w,{w}))

such that

δ((w,{w1 ...,wn}∪{w}))
π
→δ((w,{w1 ...,wn−1}∪{w}))

π
→ ...

π
→δ((w,{w1}∪{w}))

π
→δ(w,{w}))

It follows in particular that (w,{w})∈CŴ . �

Fact 6.36

Let Ŵ be a consistent set. CŴ is locally closed.

Proof. Eitherw is the starting state, but thenby construction if (w,S),(w,T)∈CŴ thenS,T ∈{∅,{w}}.
Local closure at w follows.
Assume instead that w is not the starting state; w was introduced with a context (w,S)∈C as a

Ra-successor to some state v with (v,S)∈C for some a∈A. We have in particular a chain of contexts

((w,{w1 ...,wn}∪{w}),(w,{w1 ...,wn−1}∪{w}),...

...,(w,{w1}∪{w}),(w,{w}))

such that

δ((w,{w1 ...,wn}∪{w}))
π
→δ((w,{w1 ...,wn−1}∪{w}))

π
→ ...

π
→δ((w,{w1}∪{w}))

π
→δ(w,{w}))

where {w1 ...,wn} is the context of introduction of w. Now we have (w,X)∈C iff X ⊆{w1 ...,wn,w}.
Local closure follows. �

Fact 6.37

Let Ŵ be a consistent set. RŴa is vertical.

Proof. Simply observe that the last clauses of Procedure 2 and 3 only add to Ra pairs of contexts
such that their second components are equal. �

Fact 6.38

Let Ŵ be a consistent set. RŴa is grounded.

Proof. A state v different from the initial state, is such that v is introduced by procedure 2 in context
(v,X) such that there is no Y ∈℘(w) with X ∪{v}⊂Y and (v,Y)∈CŴ with (w,X)Ra(v,X). Now for

each context (v,T) introduced by procedure 3 we have T⊂X and δ(w,T)
π
→ (w,X) and procedure 3

will (w,T)Ra(v,T), hence Ra is grounded for these contexts. Further contexts introduced will be of
the form T ∪{v} but then (w,T ∪{v}) 6∈CŴ , hence Ra is trivially grounded for these contexts. �

Fact 6.39

Let Ŵ be a consistent set. ValŴ is W -based.

Proof. By selection of atoms in procedures 3 and 1 it is easy to see that if p∈δ(w,X) then for every
Y such that (w,Y)∈CŴ then p∈δ(w,Y). �

Lemma 6.40

Let Ŵ be finite consistent set. MŴ is good.

Proof. Follows from the previous sequence of facts. �

6.9.1 An example
Appendix E shows the procedure at work with a concrete example. For, 1=
{¬〈a〉¬p,〈a〉q,[!N]〈a〉¬q}, the procedure outputs the PσLTS M1 in Figure 3.

6.10 Truth Lemma for the canonical PσLTSs over Ŵ

Let MŴ=WŴ,CŴ,(RŴa)a∈A,
!N
→
Ŵ

,ValŴ〉. Let ηŴ and δŴ be our output labeling functions.

For each (w,X)∈CŴ , λŴ(w,X)={ϕ∈cj(κŴ(η(w)))|⊢ ̂δŴ(w,X)→ϕ}.

Lemma 6.41 (Truth Lemma)
For every (w,X)∈CŴ and ϕ∈cj(κŴ(η(w))), we have

MŴ,w,X |=ϕ iff ϕ∈λŴ(w,X)

Proof. The proof is by induction of the complexity of ϕ.

Base case: From left to right.Assume thatMŴ,w,X |=p. By semantics, it follows that p∈ValŴ(w,X).
Hence by construction p∈δŴ(w,X) (1). By construction we have δ(w,X)∈At(Ŵ,ηŴ(w)) and thus
p∈cj(κŴ(η(w)) (2). The claim follows from (1) and (2).
From right to left.Assume that p∈λŴ(w,X). It follows by definition of λ, that p∈κŴ(η(w)) (1) and

⊢ ̂δŴ(w,X)→p (2). From (1), (2) and maximality of atoms we have p∈δŴ(w,X). By construction it
follows that p∈ValŴ(w,X). The claim follows from semantics.

Induction step:

Case¬:From left fo right.AssumeMŴ,w,X |=¬ψ . It follows from semantics thatMŴ,w,X 6|=ψ . By
IH we have ψ 6∈λŴ(w,X) (0). But by hypothesis ¬ψ ∈cj(κŴ(η(w))) (1), hence ψ ∈cj(κŴ(η(w))) (2).
By definition of cj and CN there is a finite subset {χ1,...,χn}⊆κŴ(η(w)) such that ψ=χ1∧ ...∧χn
(3). By (0) and (3) it follows that there is some χi∈{χ1,...,χn} such that χi 6∈δ(w,X). But then
⊢ δ̂(w,X)→¬ψ (4). From (1) and (4) we have thus by definition of λ, ¬ψ ∈λŴ(w,X).
From right to left. Assume that ¬ψ ∈λŴ(w,X). From definition of λ, it follows that ¬ψ ∈

cj(κŴ(η(w))) and ⊢ ̂δŴ(w,X)→¬ψ . By consistency of atoms it follows that 6⊢ ̂δŴ(w,X)→ψ , hence
ψ 6∈λŴ(w,X). But then by IH, we have MŴ,w,X 6|=ψ . Hence by semantics MŴ,w,X |=¬ψ .

Case ∧: From left fo right.AssumeMŴ,w,X |=ψ1∧ψ2. It follows from semantics thatMŴ,w,X |=
ψ1 and MŴ,w,X |=ψ2. By IH we have ψ1,ψ2∈λŴ(w,X) (1). But by hypothesis ψ1∧ψ2∈
cj(κŴ(η(w))) (2). The claim follows from (1) and (2).
From left fo right. ϕ1∧ϕ2∈λŴ(w,X). It follows that ϕ1,ϕ2∈δ(w,X), hence by definition of λ and

IH MŴ,w,X |=ψ1 and MŴ,w,X |=ψ2. The claim follows from semantics.

Figure 3. The PσLTS M1 for 1={¬〈a〉¬p,〈a〉q,[!N]〈a〉¬q}.

Case 〈a〉: From left to right. Assume MŴ,w,X |=〈a〉ψ . It follows from semantics that there is
some s∈WŴ , (s,X)∈CŴ such that (w,X)Ra(s,X) (1) and MŴ,s,X |=ψ (2). By (1) it follows from
construction that δ̂(w,X)∧〈a〉δ̂(s,X) is consistent (3). From (2) by IH we have ψ ∈λŴ(s,X), it

follows that ⊢ ̂δŴ(s,X)→ψ (4). But by hypothesis 〈a〉ψ ∈cj(κŴ(η(w))), hence, 〈a〉ψ ∈κŴ(η(w)) (5).
From (5), (4), (3) and maximality of atoms it follows that 〈a〉ψ ∈δ(w,X) and hence 〈a〉ψ ∈λŴ(w,X).
From right to left.Assume that 〈a〉ψ ∈λŴ(w,X). Byhypothesiswehave 〈a〉ψ ∈cj(κŴ(η(w))), hence

by definition of cj we have 〈a〉ψ ∈κŴ(η(w)) (a). By definition of λ, construction and maximality of
atoms that 〈a〉ψ ∈δŴ(w,X) (b).
It follows by Lemma 6.27 that there is an atom E∈At(Ŵ,ηŴ(w)·a) (6) such that there are

χ1,...,χn∈E (7) such that ̂δŴ(w,X)∧〈a〉Ê is consistent (8) and ⊢ (χ1,...,χn)→ψ (9). But
then by construction there is a state w ·(a,index(E))∈WŴ and (w ·(a,index(E)),X)∈CŴ with
(w,X)Ra(w ·(a,index(E)),X) (10) and δ(w ·(a,index(E)),X)=E (11).
From (a) and Corollary 6.16 we are in one of the following cases:

1. ψ ∈κ1(η(w)·a)
2. ψ= (α1∧ ...∧αn) and α1,...,αn∈κ1(η(w)·a), with n≥2
3. ψ=[!N](α1∧ ...∧αn) and α1,...,αn∈κ1(η(w)·a), with n≥2
4. ψ=¬(α1∧ ...∧αn) and α1,...,αn∈κ1(η(w)·a), with n≥2
5. ψ=[!N]¬(α1∧ ...∧αn) and α1,...,αn∈κ1(η(w)·a), with n≥2

In either case, ψ ∈cj(κŴ(η(w)·a)) (12). From (7), (9), (12) and (11) it follows that ψ ∈λŴ(w ·
(a,index(E)),X). But then by IH MŴ,w ·(a,index(E)),X |=ψ (13). From (13), (10) and semantics
we have thus MŴ,w,X |=〈a〉ψ .

Case [!N]: From left fo right. Assume MŴ,w,X |=[!N]ψ . It follows from semantics that
MŴ,w,X ∪{w} |=ψ . But then by IH, we have ψ ∈λŴ(w,X ∪{w}) (1). It follows by definition
of λ that ⊢

∧
δŴ(w,X ∪{w})→ψ . By axioms we have ⊢[!N]

∧
δŴ(w,X ∪{w})→[!N]ψ and ⊢∧

{[!N]χ |χ ∈δŴ(w,X ∪{w})}→[!N]ψ (2).
By construction δŴ(w,X ∪{w}) is an atom in At(Ŵ,ηŴ(w)) (3). From construction it follows

that ̂δŴ(w,X)∧[!N]
∧
δŴ(w,X ∪{w}) is consistent (a). But then by Fact 6.26 we have that∧

δŴ(w,X ∪{w})∧[!N]
∧
δŴ(w,X ∪{w}) is consistent (4). Moreover by (1), (3) and Fact 6.19, it

follows that for every χ ∈δŴ(w,X ∪{w}), there is a formula Norm([!N]χ)∈κŴ(ηŴ(w)) such that
⊢Norm([!N]χ)↔[!N]χ (5). From (a), (5) and maximality of atoms we have that {Norm([!N]χ)|χ ∈
δŴ(w,X ∪{w})}⊆δŴ(w,X) (6). By hypothesis we have [!N]ψ ∈cj(κŴ(η(w))) (7). But from (7), (2),
(5) and (6) it follows that [!N]ψ ∈λŴ(w,X).

From right to left. Assume that [!N]ψ ∈λŴ(w,X). By definition of λ we have ̂δŴ(w,X)→[!N]ψ

(7) and [!N]ψ ∈cj(κŴ(η(w))) (8). By construction we have that ̂δŴ(w,X)∧[!N] ̂δŴ(w,X ∪{w}) is
consistent (9).
By definition of cj and Fact 6.11 it follows that there is a finite subset {χ1,...,χn}⊆κŴ(η(w)) such

thatψ=χ1∧ ...∧χn (10). From (7), (10) and axioms we have for each χi∈{χ1,...,χn}, ̂δŴ(w,X)→
[!N]χi (11), and from (10), Fact 6.12 and Fact 6.19 we have a formula Norm([!N]χi)∈κŴ(η(w)) such
that ⊢Norm([!N]χi)↔[!N]χi (12). But from (11), (12), construction and maximality of atoms we
have Norm([!N]χi)∈δŴ(w,X) (13). By (10), (8) and Fact 6.12 we have χi∈κŴ(η(w)) (14). From
(9), (13), (12), construction and maximality of atoms it follows that χi∈δŴ(w,X ∪{w}). But by IH it
follows thatMŴ,w,X ∪{w} |=χi. Since this holds for everyχi∈{χ1,...,χn} it follows from semantics

thatMŴ,w,X ∪{w} |=χ1∧ ...∧χn, that is by (10),MŴ,w,X ∪{w} |=ψ . But from semantics we have
then MŴ,w,X |=[!N]ψ . �

6.11 Truth-preserving gathering of good PσLTSs into σLTS

Given a good PσLTSs M=〈W ,C,(Ra)a∈A,
!N
→,Val〉 we construct a σLTS

gather(M)=〈S,(
a
→)a∈A,N,V 〉, as follows:

• S=W

• for each a∈A and w,v∈W , (w,v)∈
a
→ iff (w,∅)Ra(v,∅)

• for each w∈S, N(w)={v∈S|(v,{w})∈C}
• for each p∈prop, V (p)={w∈S|p∈Val(w,∅)}

Fact 6.42

If M is a good PσLTS, then gather(M) is a well-defined σLTS.

Proof. S=W is non-empty. Assume that w,v∈W , since C is reflexive it follows that (w,{w})∈C
and (v,{v})∈C. Since C is locally closed it follows that we have (w,∅)∈C and (v,∅)∈C (1). It

follows by definition of
a
→, that it is well defined. By construction N(w) is well defined for each

w∈S. Finally by (1) it follows that V (p) is well defined for every p∈prop. �

Fact 6.43

Let M=〈W ,C,(Ra)a∈A,
!N
→,Val〉 be a good PσLTS. And let gather(M)=〈S,(

a
→)a∈A,N,V 〉. For

every w1,...,wn,v∈S we have v∈N(w1)∩ ...∩N(wn) iff (v,{w1,...,wn})∈C

Proof. For the left to right direction.Assume that v∈N(w1)∩ ...∩N(wn). It follows by construction
that for every wi∈{w1,...,wn} we have (v,{wi})∈C. Now since C is locally closed it follows that
(v,{w1,...,wn})∈C.
For the right to left direction. Assume that (v,{w1,...,wn})∈C. Since C is locally closed it

follows that for every wi∈{w1,...,wn} we have (v,{wi})∈C. But then by construction we have
v∈N(w1),...,v∈N(wn). Hence v∈N(w1)∩ ...∩N(wn). �

Fact 6.44

Let M=〈W ,C,(Ra)a∈A,
!N
→,Val〉 be a good PσLTS. And let gather(M)=〈S,(

a
→)a∈A,N,V 〉.

For every w1,...,wn,v,t∈S and a∈A we have v,t∈N(w1)∩ ...∩N(wn) and (v,t)∈
a
→, iff

(v,{w1,...,wn})Ra(t,{w1,...,wn}).

Proof. For the left to right direction. Assume that v,t∈N(w1)∩ ...∩N(wn) (1) and (v,t)∈
a
→ (2).

From (1) and Fact 6.43 it follows that (v,{w1,...,wn})∈C and (t,{w1,...,wn})∈C (3). From (2) and
construction, it follows that (w,∅)Ra(v,∅) (4). But since a is grounded, it follows from (3) and (4)
that (v,{w1,...,wn})Ra(t,{w1,...,wn}) (5).
For the right to left direction. Assume that (v,{w1,...,wn})Ra(t,{w1,...,wn}) (1). It follows that

(v,{w1,...,wn}),(t,{w1,...,wn})∈C (2). Hence by Fact 6.43 v,t∈N(w1)∩ ...∩N(wn) (a). Since C

is locally closed, it follows from (2), that (v,∅),(t,∅)∈C (3). From (1), (3) and the fact that a is

grounded, it follows that (v,∅)Ra(t,∅). But then by construction (v,t)∈
a
→ (4). The claim follows

from (4) and (a). �

Lemma 6.45 (Truth Preservation Lemma)
Let M be a good PσLTS. For every ϕ∈Lσ and v,w1,...wn∈W we have:

gather(M)|N(w1)∩...∩N(wn),v |=ϕ iff MŴ,v,{w1,...,wn} |=ϕ

Proof.
Base case: From left to right. Assume that gather(M)|N(w1)∩...∩N(wn),v |=p (1) and v∈N(w1)∩ ...∩
N(wn) (2). By semantics it follows from (1) that v∈V (p). Hence by construction p∈Val(v,∅) (3).
From (2) and Fact 6.43 it follows that (v,{w1,...,wn})∈C (4). Since Val isW -based, it follows from
(3) and (4), that p∈Val(v,{w1,...,wn}). Hence by semantics MŴ,v,{w1,...,wn} |=p.
From right to left. Assume that MŴ,v,{w1,...,wn} |=p. It follows by the semantics that p∈

Val(v,{w1,...,wn}) (1) and (v,{w1,...,wn})∈C (2). Since C is locally closed it follows from (2)
that (v,∅)∈C, hence since Val is W -based we have from (1) p∈Val(v,∅) (3). But from (2) we have
by Fact 6.43 that v∈N(w1)∩ ...∩N(wn) (4). From (3) and construction we have v∈V (p), hence by
(4) and semantics we have gather(M)|N(w1)∩...∩N(wn),v |=p.

Induction Step:

Case ¬ and case ∧: Immediate from IH and semantics.

Case 〈a〉: From left to right. Assume that gather(M)|N(w1)∩...∩N(wn),v |=〈a〉ϕ (0). It follows from

semantics that there is v,t∈N(w1)∩ ...∩N(wn) (2) with v
a
→ t (3) and gather(M)|N(w1)∩...∩N(wn),t |=

ϕ (4). From (2) and Fact 6.43 it follows that (v,{w1,...,wn})∈C (5) and (t,{w1,...,wn})∈C (6).
From (3) and construction it follows that (v,∅)Ra(t,∅) (7). Since it follows from (5), (6), (7) and the
fact that a is grounded we have (v,{w1,...,wn})Ra(t,{w1,...,wn}) (8). From (4) and IH it follows that
MŴ,t,{w1,...,wn} |=ϕ (9). From (8), (9) and semantics it follows that MŴ,v,{w1,...,wn} |=〈a〉ϕ.
From right to left. Assume that MŴ,v,{w1,...,wn} |=〈a〉ϕ, since a is vertical, it follows that

v,{w1,...,wn}∈C and by semantics it follows that there is some t with t,{w1,...,wn}∈C (0),
(v,{w1,...,wn})Ra(t,{w1,...,wn}) (1) and MŴ,t,{w1,...,wn} |=ϕ (2). Since C is locally closed we
have (v,∅)∈C and (t,∅)∈C, hence since a is grounded it follows from (1) that (v,∅)Ra(t,∅). Hence

by construction we have v
a
→ t (3). From (0) and Fact 6.43 it follows that t∈N(w1)∩ ...∩N(wn) (4).

From (2) and IH it follows that gather(M)|N(w1)∩...∩N(wn),t |=ϕ. Hence by (4), (3) and semantics we
have gather(M)|N(w1)∩...∩N(wn),v |=〈a〉ϕ.

Case [!N]: From left to right. Assume that gather(M)|N(w1)∩...∩N(wn),v |=[!N]ϕ (0). It follows
that v∈N(w1)∩ ...∩N(wn) (1) and from semantics that gather(M)|N(w1)∩...∩N(wn)∩N(v),v |=ϕ (2).
Since v∈N(v) it follows from construction that (v,{v})∈C (3). By (1) and Fact 6.43 it follows that
(v,{w1,...,wn})∈C. Hence since C is locally closed we have from (3) that (v,{w1,...,wn,v})∈C
(4). From (4), (2) and IH it follows that MŴ,v,{w1,...,wn,v} |=ϕ. Hence from semantics we have
MŴ,v,{w1,...,wn} |=[!N]ϕ.
From right to left. Assume that MŴ,v,{w1,...,wn} |=[!N]ϕ it follows from semantics

that (v,{w1,...,wn,v})∈C (0)—hence since C is locally closed that (v,{v})∈C (1)—
and that MŴ,v,{w1,...,wn,v} |=ϕ (2). From (1) and construction it follows that v∈
N (v) (3) and from (0), by Fact 6.43, that v∈N(w1)∩ ...∩N(wn) (4). From (3), (4),
(2) and IH it follows that gather(M)|N(w1)∩...∩N(wn)∩N(v),v |=ϕ. Hence, by semantics,
gather(M)|N(w1)∩...∩N(wn),v |=[!N]ϕ. �

(w0, ∅) !N (w0, {w0})

a a

a

a

a
a

π π
π

a

a
a

a
a

!N

!N

!N

!N

!N

!N
!N

!N

!N

!N

!N

p, ¬q, . . .

p, ¬q, . . .

p, ¬q, . . .p, q, . . .

p, q, . . .

p, ¬q, . . .

p, q, . . .

p, ¬q, . . .

Figure 4. PσLTS from the example in Section 6.9.1.

w0

a

a
aa

a
a

a
a

p, ¬q

p, ¬q

p, ¬qp, q

p, q

p, ¬q

p, q

p, ¬q

w0

a

aa
a

p

p

p

p

p,

p

Figure 5. σLTS obtained by gathering the PσLTS from Figure 4.

6.11.1 Example, continued
Gathering our model from the example in Section 6.9.1 (see Figure 4), we get the σLTS displayed
in Figure 5.

6.12 Completeness theorem

Lemma 6.46 (Weak completeness)
Every finite !N-consistent sets of L(!σ,A)-formulas is satisfiable.

Proof. Assume that Ŵ is a finite !N-consistent sets of L(!σ,A)-formulas. By Lemma 6.40 and Truth
Lemma (Lemma6.41) it follows that there is some good pointed pseudoσLTS, MŴ,w0,∅ such that
for every ϕ∈Ŵ we have MŴ,w0,∅|=ϕ. But then by Fact 6.42 and Lemma 6.45 it follows that we
have a pointed σLTS gather(MŴ),w0 such that for every ϕ∈Ŵ, we have gather(MŴ),w0 |=ϕ. �

Our main result follows:

Theorem 6.47 (Strong Completeness)
Every !N-consistent sets of L(!σ,A)-formulas is satisfiable.

This follows immediately from Lemmas 3.10 and 6.46.

7 Decidability and complexity

We have already indicated that there exists a polynomial translation from L(!σ,A) into the loosely
guarded fragment of first-order logic (Fact 3.3, Proposition 3.8 and Proposition 3.5). It follows that
the satisfiability problem of L(!σ,A) is decidable, and in DEXPTIME. But this is certainly not a tight
upper bound. In this section, we show that the satisfiability problem of L(!σ,A) is PSPACE-complete.
We give an alternating algorithm for checking satisfiability of a formula ϕ in L(!σ,A) and prove that
our algorithm runs in time polynomial in the size of the input formula ϕ. This results in a proof of
the fact that the decidability of the logic L(!σ,A) is PSPACE-complete.

7.1 Algorithm for SAT

We give an alternating algorithm for deciding the satisfiability of a formula ϕ in the logic L(!σ,A).
Recall thatAlternating Turing machines (Definition 2.14, see, e.g. [18]) generalize non-deterministic
Turing machines. An ATM is a Turing machine with both universal states and existential states. An
alternating Turing machine in a universal state accepts if there is at least one next configuration and

all next configurations are accepting, while an ATM in an existential state accepts if there is at least
one next configuration that is accepting. Algorithm 1 is alternating: it has both existential states (step
16) and universal states (step 27).At step 27, ‘Universally choose 〈a〉ϕ′∈1’means that the algorithm
should accept the input if it accepts nomatter which formula of the form 〈a〉ϕ′ (for some a∈A and ϕ′)
is chosen from 1′. At step 16, ‘Existentially guess 1′∈{11,12}’ means that the algorithm should
accept the input if it accepts for at least one of 11 or 12.
Throughout this section we assume that formulas are in negation normal form. It is easy to see that

we can always put a formula ϕ in negation normal form in time polynomial in |ϕ|. Moreover, recall
from Section 3.2, that given Z⊆|M|, we write N(Z) :=

⋂
w∈Z N(Z). The main procedure is called

SAT and it takes three arguments as input:

1. A finite multiset of formulas 1 in L(!σ,A).
2. A state w of the potential model M of 1.
3. A function ν which associates to every formula ϕ∈1, a set of state X ⊆|M| such that ϕ has to

be satisfied at M|N(X),w.

Initially the procedure is called with {ϕ},w0 and ν0 where ν0(ϕ)=ǫ. SAT({ϕ},w0,ν0) returns 1 if
and only if ϕ is satisfiable.
The subprocedures do as their names say. More specifically, is_not_normalized(1) returns

1 if there is a formula in 1 with the main operator being either ∧,∨ or [!N] and returns
0 otherwise. contains_only_literals(1) checks if 1 consists of only atomic literals.
is_atomically_inconsistent(1,prop) returns 1 if there exist both p and ¬p in 1 for
some propositional letter p∈prop and returns 0 otherwise. contains_no_diamond(1) returns 1

if there is no formula of the form 〈a〉ϕ′ in1 and 0 otherwise. Note that is_not_normalized(1),
contains_only_literals(1) and contains_no_diamond(1) runs in time linear in the
size of the set1while is_atomically_inconsistent(1,prop) takes time at most quadratic
in the size of 1.
The procedure States(ν) takes as argument the current function ν and returns its range which is a

set of states of the model constructed so far. Note that it runs in time linear in the size of ν.

Lemma 7.1

For any finite set 1⊆L(!σ,A), w and ν, we have SAT(1,w,ν)=1 iff there is a pointed σLTS, M,w

with ran(ν)∪{w}⊆|M| such that for each ϕ∈1, M|N(ν(ϕ)),w |=ϕ.

Algorithm 1 SAT(1,w,ν)
1: if is_not_normalized(1) then

2: for ϕ1∧ϕ2∈1 do

3: Let 1←1\{ϕ1∧ϕ2}∪{ϕ1,ϕ2}
4: ν(ϕ1)←ν(ϕ1∧ϕ2)
5: ν(ϕ2)←ν(ϕ1∧ϕ2)
6: return SAT(1,w,ν)
7: end for

8: for [!N]ϕ′∈1 do

9: Let 1=1\{[!N]ϕ′}∪{ϕ′}
10: Let ν(ϕ′)=ν([!N]ϕ′)∪{w}
11: return SAT(1,w,ν)
12: end for

13: for ϕ1∨ϕ2∈1 do

14: Let 11=1\{ϕ1∨ϕ2}∪{ϕ1}
15: Let 12=1\{ϕ1∨ϕ2}∪{ϕ2}
16: Let ν(ϕ1)=ν(ϕ2)=ν(ϕ1∨ϕ2)
17: Existentially guess 1′∈{11,12}
18: return SAT(1′,w,ν)
19: end for

20: else if is_atomically_inconsistent(1,prop) then

21: return 0

22: else if contains_only_literals(1) then

23: return 1

24: else if contains_no_diamond(1) then

25: return 1

26: else

27: Universally choose 〈a〉ϕ′∈1
28: Let 1′={ϕ′}∪{ϕ′′ | [a]ϕ′′∈1 & ν([a]ϕ′′)⊆ν(〈a〉ϕ′)}
29: Let ν′(ϕ′)=ν(〈a〉ϕ′)
30: Let ν′(ϕ′′)=ν([a]ϕ′′)
31: Let w′ /∈ states(ν)
32: return SAT(1′,w′,ν′)
33: end if

Proof. The proof is by induction on the maximum complexity of formulas in 1.
For the base case, assume that1 is a set of literals. It is easy to see that for anyw and ν,SAT(1,w,ν)

returns 1 iff it is a consistent set of literals, hence a satisfiable one. The claim follows from the fact
that we can simply put w∈N(wi) for the relevant wi’s.
We prove the induction step sequentially.
∧-step. Let 1=Ŵ∪(ϕ1∧ϕ2) with cpx(Ŵ)≤n and cpx(ϕ1∧ϕ2)=n+1. Now assume that

SAT(Ŵ∪{ϕ1∧ϕ2},w,ν)=1. By steps (2–6) of the procedure, it follows thatSAT(Ŵ,ϕ1,ϕ2),w,ν)=1
but by IH and the semantics of ∧, the claim follows. The claim holds for any number of conjunctions
of complexity at most n+1.

∨-step. Let 1=Ŵ1∪Ŵ2∪(ϕ1∨ϕ2) with cpx(Ŵ1)≤n and Ŵ2={ψ1∧χ1,...,ψn∧χn}, with
maxcpx({ψ1,χ1,...,ψn,χn})=n. Now assume that cpx(ϕ1∨ϕ2)=n+1 and assume that

SAT(Ŵ1∪Ŵ2∪{ϕ1∨ϕ2},w,ν)=1. By steps (12–18) of the procedure, we have either SAT(Ŵ1∪
Ŵ2∪(ϕ1),w,ν)=1 or SAT(Ŵ1∪Ŵ2∪(ϕ1∨ϕ2),w,ν)=1. The claim follows front the previous step
and semantics of ∨. The claim holds for any number of disjunctions of complexity at most n+1.
[!N]-step. Let 1=Ŵ1∪Ŵ2∪Ŵ3∪{[!N]ϕ} with cpx(Ŵ1)≤n, Ŵ2={ψ1∧χ1,...,ψn∧χn}, Ŵ3=

{α1∨β1,...,αn∨βn} with maxcpx({ψ1,χ1,α1,β1 ...,ψn,χn,αn,βn})=n. Now assume that
SAT(Ŵ1∪Ŵ2∪Ŵ3∪{[!N]ϕ},w,ν)=1. Let ν′=ν[ϕ/ν([!N]ϕ)∪{w}] be the expansion of ν, with
domain dom(ν)∪{ϕ} and ν′(ϕ) :=ν([!N]ϕ)∪{w}. By steps (7–11) we have SAT(Ŵ1∪Ŵ2∪Ŵ3∪
{ϕ},w,ν′)=1.But thenbyprevious stepwehave amodelM such that for everyψ ∈Ŵ1∪Ŵ2∪Ŵ3∪{ϕ},
we have M|N(ν′(ψ)),w0 |=ψ . In particular, we have M|N(ν′(ϕ)),w0 |=ϕ. Hence by semantics of [!N]
and definition of ν′ we haveM|N(ν(ϕ)),w0 |=[!N]ϕ. The claim holds for any number of [!N]-formulas
of complexity at most n+1.

〈a〉,[a]-step. When the 〈a〉,[a]-step is reached we have 1=Ŵ1∪Ŵ2 with Ŵ1=
{〈a〉ϕ1,...,〈a〉ϕn,[a]ψ1,...,[a]ψm} and Ŵ2={p1,...,pk ,¬q1,...,¬qr}, with p1,...,pk ,¬q1,...,¬qr
being literals. Now assume that SAT(1,w,ν)=1. By steps (27–33), we have for every i=1,...,n,
SAT(1i,w

′
i,ν
′)=1 where

1i={ϕi}∪{ψj|[a]ψj∈1 and ν([a]ψj)⊆ν(〈a〉ϕi)}

and ν′(ϕi)=ν(ϕi) (0) and for every j with ν([a]ψj)⊆ν(〈a〉ϕi) we have ν′(ψj)=ν([a]ψj) (1).
By IH, (0) and (1) there is a pointedmodelMi,w

′
i with ran(ν)∪{w′i}⊆|Mi| andMi|N(ν(ϕi)),w

′
i |=ϕi

and for every j with ν([a]ψj)⊆ν(〈a〉ϕi) we have Mi|N(ν(ψj)),w
′ |=ψj (2).

Now let Renamei(Mi) be identical to Mi except that we rename all states occurring in Mi with
names not occurring in M. Let newnamei be the natural isomorphism from Mi into Rename(Mi).
From steps (31) of the procedure, newnamei(w′i)=w′i. Now take the {w′i}, A-generated submodel
of Renamei(Mi). Call it Ni. By Corollary 4.6 and (2) we have Ni|N(newnamei(ν(ϕi))),w

′
i |=ϕi (3) and

for every j with ν([a]ψj)⊆ν(〈a〉ϕi) we have Ni|N(newnamei(ν(ψj))),w
′
i |=ψj (4). And let P(

⊎
iNi) be

the smallest elementary extension of
⊎

iNi such that:

1. |P(Ni)|=|
⊎

iNi|∪{States(ν)}

2. R
P(Ni)
a =R

|
⊎

iNi
a ∪

⊎
i{(w,w

′
i)}

3. For every v∈States(ν), NP(Ni)(v)={N(newnamei(v))∪{w′i}|v∈ν(〈a〉ϕi)}∪{w}
4. w∈VP(Ni)(p) iff p∈1

From (3) and construction we have P(N)i|NP(Ni)(ν(ϕi)),w
′
i |=ϕi. From construction and semantics of

〈a〉 we have P(N)i|NP(Ni)(ν(ϕi)),w |=〈a〉ϕi.
Moreover from (4) and construction we have for every j with ν([a]ψj)⊆ν(〈a〉ϕi)

that P(N)i|NP(Ni)(ν(ψj)),w
′
i |=ψj. From construction and semantics of [a] we have

P(N)i|NP(Ni)(ν(ψj)),wM[a]ψj. Truth of literals is guaranteed by the last part of the preceding
construction. The claim follows. �

Corollary 7.2

For any finite set 1⊆L(!σ,A), 1 is satisfiable in a σLTS iff SAT(1,w0,N0)=1, for N0(1)=ǫ.

Proof. Immediate from the previous lemma. �

The observation that given an initial formula ϕ∈L(!σ,A), an initial state w0 of the pointed model
to be constructed and an initial context fucntion N0 where N0(ϕ)=ǫ, SAT({ϕ},w0,N0) runs in time
polynomial in |ϕ| is also quite straightforward.

Lemma 7.3

SAT({ϕ},w0,N0) is in APTIME(|ϕ|).

Proof. The If-condition at the beginning checks if the set of formulas 1 is in the required ‘normal’
form. That is, if the main operator of every formulas is none among ∧,∨ or [!N]. If not, then it
manipulates 1 to convert it to the required form. Note that given an initial formula ϕ, |ϕ| recursive
calls of the SAT() procedure is sufficient to achieve this normal form.
In each such recursive call, one of the following happens.

− Either the set 1 is not in the normal form and the procedure SAT is called again. This is done
after updating the set1 and/or after updating the context functionN. The functionNmay grow
in the process. However, note that for every formula ϕ′ in the current target set1, at most one
new state is added to N(ϕ′). Now since there can be at most |ϕ| recursive calls to SAT, the size
of the function N does not exceed |ϕ|2.

− Or 1 is in the required normal form. In that case the call bypasses the initial If-condition. The
second, third and the fourth If-conditions, respectively, check whether1 is consistent, has only
literals or has a formula of the form 〈a〉ϕ′. As we already observed, each of these procedures is
polynomial in the size of |ϕ|. The final Else-condition updates1 to a new set1′. Note that as
the size of1 was polynomial in |ϕ|, and the constructed1′ is at most as large as1,1′ is also
polynomial in |ϕ|. The function N changes but does not grow in size. Finally to initialize the
fresh state w′ the procedure States is called which as we observed is linear in the size of N.

Thus, in each recursive call of SAT, the algorithm does only polynomially many operations in
the size of the initial formula ϕ. Hence, the overall algorithm runs in time polynomial in |ϕ| which
means it is in APTIME(|ϕ|). �

Theorem 7.4

The satisfiability problem for the logic L(!σ,A) is PSPACE-complete.

Proof. Corollary 7.2 and Lemma 7.3 shows that the satisfiability problem is in APTIME. Since
by [4] we know that APTIME = PSPACE we have that the problem is in PSPACE. PSPACE-
hardness follows from the fact that L(!σ,A) properly embeds the modal system K which is known to
be PSPACE-complete [20]. �

7.2 Model-checking

In this section, we give an algorithm for model-checking a formula ϕ∈L(!σ,A) and show that the
complexity of the model-checking problem is in time polynomial in the size of the input (the size
of the σLTS and the length of ϕ). Formally, the model-checking problem is the following: given a
σLTS M, a state w∈M and a formula ϕ∈L(!σ,A) decide if M,w |=ϕ.

7.2.1 Why the bottom-up algorithm will not do

Given a pointed LTS M,w0, with M=〈W ,(
a
→)a∈A,V 〉, and w0∈W and a basic modal formula ϕ, a

standard bottom-up algorithm (see, for instance, [5] or [3]) can decide whetherM,w |=ϕ recursively
as follows. Enumerate the set of subformulas of ϕ, and for eachψ ∈sub(ϕ), define ||ψ ||M recursively
as follows:

1. ||⊤||M=W

w0 w1 w2

a a

w0 w1

a

Figure 6. M4.

2. ||p||M=V (p) for p∈prop

3. ||¬ψ ||M=W \||ψ ||M

4. ||ψ ∧χ ||M=||ψ ||M∩||χ ||M

5. ||〈a〉ψ ||M={w∈W |(
a
→[w]∩|||ψ ||M) 6=∅}

If w0∈ϕ then M,w |=ϕ, otherwise M,w 6|=ϕ.
This bottom-up algorithm for model-checking a formula ϕ in the basic modal language in an LTS

(see, for instance Boolos et al. [3]) does not work for the logic L(!σ,A). To see this consider the σLTS

M4 shown in Figure 6 and the L(!σ,A) formula ϕ :=[!N]〈a〉〈a〉⊤. We haveM4,w0 6|=ϕ. However, the
bottom-up algorithm would work as follows. Enumerate, the subformula closure of ϕ, as follows
{⊤,〈a〉⊤,〈a〉〈a〉⊤,[!N]〈a〉〈a〉⊤}. The algorithm computes as follows:

1. ||⊤||M={w0,w1,w2}
2. ||〈a〉⊤||M={w∈W |

a
→[w] 6=∅}={w0,w1}

3. ||〈a〉〈a〉⊤||={w∈W |(
a
→[w]∩{w0,w1}) 6=∅}={w0}

However, in the next round the algorithm has to decide whether w0∈||[!N]〈a〉〈a〉⊤||
M but it

cannot decide correctly simply by looking at whether w∈||ψ ||M for each w∈N(w0) and each strict
subformula ψ of [!N]〈a〉〈a〉⊤, that is for each ψ ∈ (sub([!N]〈a〉〈a〉⊤)\{[!N]〈a〉〈a〉⊤}).

7.2.2 Model-checking in the logic of sights
We see that a model-checking procedure for the logic L(!σ,A) should, at every iteration, also keep
track of the restricted model as dictated by the function N. Algorithm 2 is a recursive algorithm for
this purpose. Note that in our recursive algorithm we are making use of the Boolean functions ¬, ∧
and ∨, defined as usual. We also make use of the switch statement, standard in most programming
languages, allowing to declare case by case, depending on the main operator of the current formula,
what the algorithm has to do.
To prove that the above algorithm is correct, we show the following invariant:

Proposition 7.5

Algorithm 2, in every recursive step ModelCheck(Mcur,wcur,ϕcur) returns 1 iff Mcur,wcur |=ϕcur.

Proof. The proof is by induction on the structure of ϕcur. The base case follows from the definition
and the Boolean cases are straightforward. Now suppose ϕcur=[!N]ϕ. By semantics,

Mcur,wcur |=[!N]ϕ iff Mcur|N(wcur),wcur |=ϕ

Algorithm 2 ModelCheck(Mcur,wcur,ϕcur)
1: if ϕcur=[!N]ϕ then

2: M←M|N(wcur)
3: ModelCheck(M,wcur,ϕ)
4: else

5: M←Mcur,w←wcur,ϕ←ϕcur
6: switch ϕ:
7: case ϕ=p

8: if p∈V (w) then

9: return 1
10: else

11: return 0
12: end if

13: case ϕ=¬p
14: if p /∈V (w) then

15: return 1
16: else

17: return 0
18: end if

19: case ϕ=¬ϕ′

20: return ¬ModelCheck(M,w,ϕ′)
21: case ϕ=ϕ1∧ϕ2
22: return ModelCheck(M,w,ϕ1) ∧ ModelCheck(M,w,ϕ2)
23: case ϕ=ϕ1∨ϕ2
24: return ModelCheck(M,w,ϕ1) ∨ ModelCheck(M,w,ϕ2)
25: case ϕ=〈a〉ϕ′

26: if ∃w′∈M,w
a
→w′ then

27: return
∨

w′:w
a
→w′

ModelCheck(M,w′,ϕ′)
28: else

29: return 0
30: end if

31: case ϕ=[a]ϕ′

32: if 6 ∃w′∈M,w
a
→w′ then

33: return 1
34: else

35: return
∧

w′:w
a
→w′

ModelCheck(M,w′,ϕ′)
36: end if

37: end switch

38: end if

Lines 1–2 of the algorithm performs the model restriction Mcur|N(wcur). By IH
ModelCheck(Mcur|N(wcur),wcur,ϕ) returns 1 iff Mcur|N(wcur),wcur |=ϕ and hence
ModelCheck(Mcur,wcur,ϕcur) returns 1 iff Mcur,wcur |=[!N]ϕ.
Now, let ϕcur=〈a〉ϕ. By semantics

Mcur,wcur |=〈a〉ϕ iff ∃w
′ :wcur

a
→w′,Mcur,w

′ |=ϕ

By IH, ModelCheck(Mcur,w
′,ϕ) returns 1 iff Mcur,w

′ |=ϕ. Hence in line 27,

∨

w′:w
a
→w′

ModelCheck(M,w′,ϕ′) is 1 iff ∃w′ :wcur
a
→w′,Mcur,w

′ |=ϕ.

The argument for ϕcur=[a]ϕ is similar. �

We thus have the correctness of Algorithm 2

Corollary 7.6

Given a pointed σLTS (M,w) and a formula ϕ∈L(!σ,A),ModelCheck(M,w,ϕ) returns 1 if and only
if M,w |=ϕ.

From the above algorithm,we also have that themodel-checking problem for L(!σ,A) is polynomial-
time solvable in the size of the input model and formula. More precisely, let |M| denote the size of
the σLTS M and |ϕ| denote the length of a formula ϕ∈L(!σ,A). We have

Proposition 7.7

ModelCheck(M,w,ϕ) runs in time O(|M|·|ϕ|).

Proof. The proof is rather straightforward. First note that ϕ can have at most |ϕ| subformulas. Every
recursive step of ModelCheck(M,w,ϕ) is on a subformula of ϕ which is strictly smaller than the
current subformula. Hence there are at most |ϕ| recursive steps. In a recursive step, the current model
can be of size at most as large as the original model, that is |M|. The steps other than the recursive
calls run in time linear in the size of the current model. �

8 Extensions and relations to other logics

We now turn to some extensions and comparisons to other logics. We discuss multi-agent
generalizations of the logic of sights, as well as temporal and epistemic extensions. We discuss
how the logic of sights relates to the logic of relativization, and to what extent it can be generalized
as a multi-dimensional modal logic.

8.1 Minimal multi-agent versions

The simplest extension is amulti-agent logic of sights, which consists in having sights defined for all
agents in some finite setN at every state of an LTS. To axiomatize this extension, the only important
axiom is the commutativity axiom [!1][!2]ϕ↔[!2][!1]ϕ, for every 1,2∈N . Checking the soundness
of this axiom is straightforward from the semantics and the fact that restriction is associative. We
believe that the main change in the completeness proof, will be in the statement of Proposition 6.25,
that should be generalized as follows:

Conjecture 8.1 (Commutativity)
Let1 be a finite set and let Ea∈A∗ be such that κ1(Ea) 6=∅. LetD,E,F be (1,Ea)-atoms. If D̂∧[!N1]

∧
Ê

is consistent and Ê∧[!N2]
∧

F̂ is consistent as well, then there is some (1,Ea)-atom, G, such that
D̂∧[!N2]

∧
Ĝ is consistent and Ĝ∧[!N1]

∧
F̂ is consistent.

We will check the details in future work.

8.2 Temporal extensions

So far we have considered the logic of sights as an extension of the basic modal language. This is
a natural starting point. However extending temporal logics such as Linear-Time Temporal Logic
(LTL), Computation Tree Logic (CTL), dynamic logics such as Propositional Dynamic Logic (PDL,
[36]), or multi-agent temporal logics such as Alternating-Time Temporal Logic (ATL) or STIT, is a
next step with natural applications.
We first discuss the question of the extension of PDL with a sight operator and then discuss the

question of the extension of ATL with a sight operator.

8.2.1 PDL with sights
If we extend our language with formulas such as 〈a∗〉ϕ with the usual semantics, we believe that the
traditional axiomatization of PDL using a least fixed-point axiom and an induction axiom on top of
the axiomatization given in Section 5.3 will be complete for PDL with sights on the class σLTS.
Proving this would require an adaption of our proof. We believe, this can be done as follows.

Instead of our CN -closure and of the usual Fisher-Ladner closure used in completeness proofs of
PDL, we would need to use a notion of closure that satisfies the richness properties of both, while
remaining finite. Next, we need to construct a PσLTS as we have done here. The idea is then to
define the interpretation of complex programs semantically from the atomic programs. To recover
the truth lemma for the 〈α∗〉ϕ case, we need to extend our proof. Precisely, we need to show if there

are atoms D,E such that, then D
α∗

→E then there is a sequence of atoms A0
α
→A1

α
→ ...

α
→An

α
→An+1

with A0=D and An+1=E. This should follow from the richness of the set of atoms and axioms. But,
we need to check the details in a separate paper.

8.2.2 ATL with sights
Our initial discussion of sights was motivated by examples of strategic interaction. Section 9 says a
bit more about the relation between the logic of sights and games. But let us look briefly at a possible
extension of ATL [1] with sights. The following definitions are variations on that of [1].

Definition 8.2 (Alternating Transition Systems (ATS), [1])
An ATS is a tuple S=〈W ,Z,A,Ag,ρ,α,δ,V 〉 where W is a non-empty set, Z⊆W , A={a1,...,am}
is a finite set of actions, Ag={1,...,n} is a finite set of agents, ρ :W→℘(Ag), with ρ(Z)={∅},
α : (Ag×W)→℘(A)\{∅}, V :prop→℘(W) and δ : (W×Ag×A)→℘(W).

Let a limitation on α be a function α′ : (Ag×W)→℘(A)\{∅} such that for every (i,w)∈dom(α′),
α′(i,w)⊆α(i,w). An S-choice function c is a function c : (W×Ag)→A such that for every (w,i)∈
dom(c) we have c(w,i)∈α(i,w).

Definition 8.3 (Safety)
We say that an ATS S=〈W ,Z,A,Ag,ρ,α,δ,V 〉 is safe whenever

− for every w∈W \Z , i 6∈ρ(w) and a∈α(i,w) we have δ(w,i,a)=℘(W) (only agents in ρ(w)
have non-trivial power at w)

− for every w∈Z , i and a∈α(i,w) we have δ(w,i,a)={w} (terminal nodes are safe sink states)
− For every w∈W and every S-choice function c we have:

⋂
i∈Ag δ(w,i,c(i)) 6=∅ (safety, the

transition function is non-blocking)

Definition 8.4 (Coalitions)
Given an ATS, a coalition is a non-empty subset of Ag.

Definition 8.5 (Strategies)
Given a coalition C⊆Ag, a strategy for C is a function SC : (W+×C)→A such that for every
(Ew,i)∈dom(SC) we have SC (Ew,i)∈α(i,last(Ew)).

Definition 8.6 (Positional Strategies)
Given a coalition C⊆Ag, a positional strategy for C is a function SC : (W×C)→A such that for
every (w,i)∈dom(SC) we have SC (w,i)∈α(i,w).

Fact 8.7

Every positional strategy for C induces a strategy for C.

Given a limitation α′ on α, we say that SC is an α′-strategy iff for every i∈C and Ew∈dom(SC)
we have SC (Ew,i)∈α′(i,last(Ew)).

Definition 8.8 (Compatible runs)
Let a run be a sequence Ew∈ (W ∗∪Wω).We say that a run Ew is compatiblewith a profile of strategies
SAg at a state w0—for short compatible with (w0,SAg)—iff Ew[1]=w0 and for every k,k+1≤ len(Ew)
we have Ew[k+1]∈

⋂
i∈Ag δ(Ew[k],i,SAg(Ew|k)). We say that v∈W is an eventuality at w0 iff there is

a run Ew that is compatible with (w0,SAg) and some k≤ len(Ew) such that Ew[k]=v.
We say that a run Ew is compatible with the limitation α′ at w0 iff there is some α′-strategy SAg for

Ag such that Ew is compatible with (w0,SAg). We say that v∈W is an α′-eventuality at w0 iff there
is a run Ew that is compatible with the limitation α′ at w0 and some k≤ len(Ew) such that Ew[k]=v.

Definition 8.9 (Immediately C-achievable sets)
Let S=〈W ,Z,A,Ag,ρ,α,δ,V 〉 be an ATS, letC be a non-empty subset of Ag and letw0∈W . We say
that X ⊆W is an immediately C-achievable next set at w0 whenever there is a positional strategy
for C, SC such that for every positional strategy S−C for Ag\C we have δ(w0,SC∪S−C)⊆X .

Definition 8.10 (Locking)
Let S=〈W ,Z,A,Ag,ρ,α,δ,V 〉 be an ATS, letC be a non-empty subset of Ag and letw0∈W . We say
that a strategy SC for C locks S in X ⊆W at w0 iff for every strategy S−C for Ag\C, and for every
run Ew∈W ∗∪Wω which is compatible with (w0,SC∪S−C) and every n≤ len(Ew) we have Ew[n]∈X .
We say that C can lock S in X ⊆W at w0 whenever there is a strategy SC for C that locks S in

X ⊆W at w0.

Definition 8.11 (C-visitable sets)
Let S=〈W ,Z,A,Ag,ρ,α,δ,V 〉 be an ATS, let C be a non-empty subset of Ag and let w0∈W . We
say that X ⊆W is a C-visitable set at w0 whenever there is a strategy SC for C such that for every
strategy S−C for Ag\C, and for every run Ew∈W ∗∪Wω which is compatible with (w0,SC∪S−C),
we have some n≤ len(Ew) such that Ew[n]∈X .

In such a system, we have operators of the form 〈〈C〉〉©ϕ and 〈〈C〉〉Gϕ and 〈〈C〉〉Fϕ, with the
intuitive meaning C can enforce that the system moves into a ϕ-state, C can make sure that ϕ holds
permanently from now on and C can make sure that ϕ will eventually hold, respectively. These
operators have the following semantics:

S,w |=〈〈C〉〉©ϕ iff ||ϕ|| is an immediately C-achievable next set at w
S,w |=〈〈C〉〉Gϕ iff C can lock S in ||ϕ|| at w
S,w |=〈〈C〉〉Fϕ iff ||ϕ|| is a C-visitable set at w

How should safe ATS be expanded with sights? We could simply add sight functions on top of
ATS. But in general, the restriction of a safe ATSwill not be a safe ATS, since the transition function
might fail to be non-blocking (an existential property). Whether or not this form of safety should be
preserved under taking sights. We could of course simply add either way.
Consider a safe pointed ATS (S,w0) with S=〈W ,Z,A,Ag,ρ,α,δ,V 〉 and let α′ be a limitation on

α. We let Nα′ (w0) be the smallest subset of W containing all α′-eventualities and w0. This subset
need not be a proper subset of W . We refer to Nα′ (w0) as the (w0,α′)-induced sight. We show the
following:

Proposition 8.12

Given a safe pointed ATS (S,w0) with S=〈W ,Z,A,Ag,ρ,α,δ,V 〉 and a limitation α′ on α
(S,w0)[α/α′]|Nα′ (w0) is a safe pointed ATS.

Proof. We only give the idea of the proof. Safety requires three properties to be satisfied: that agents
not in ρ(w) have trivial power at w, that terminal nodes are safe sink states, and that the transition
function is non-blocking. Satisfaction of the first condition follows from the fact that ρ and δ are
defined as restrictions. For the second condition, observe that a limitation α′ of α can never map
a pair (i,w) in the original model to the empty set and that it has map (i,w) to a subset of α(i,w).
Hence, terminal safe sink states that survive the restriction will still be safe sinks. Moreover, by the
same conditions and the fact that Nα′ (w0) contains all α′ eventualities (from w0), the resulting set
Z ′ (after restriction) will be a non-empty subset of Z . Finally, the third condition follows from the
definition for Nα′ (w0) just mentioned, and the fact that the new transition function δ is defined as a
restriction and that the original δ was non-blocking. �

We can now define a safe σATS as follows:

Definition 8.13 (Safe σATS)
A safe σ ATS is a structure S=〈W ,Z,A,Ag,ρ,α,δ,V ,(σi)i∈Ag〉 such that S\(σi)i∈Ag is a safe ATS

and for each w∈W and i∈Ag, σi(w) is a restriction on α. Given a state w0 and an agent i, we let
σ (w0,i,S)= (S,w0)[α/α′]|Nσi (w0)(w0).

We can now expand our language with operators of the form [!Ni]ϕ with semantics:

S,w |=[!Ni]ϕ iff σ (w,i,S),w |=ϕ

We will study σATS and its logic in another paper. We simply observe that due to the fact that
the semantics of the operator 〈〈C〉〉©ϕ contains a non-decomposable quantifier alternation ∃∀, the
axiomatization of [!N]+〈〈C〉〉©will not follow trivially from the axiomatization of Lσ over σLTS.

8.3 Epistemic extensions

We think that sight operators have interesting interactions with epistemic operators. But, before we
discuss any extensions of our logic with epistemic operators, we first discuss whether we can give a
natural epistemic or doxastic interpretation to [!N] itself.
First note that |=[!N]p↔p. As an epistemic/doxastic operator, it would mean that the agent is

never mistaken about basic facts. Moreover the agent is never mistaken about existential modal facts
(e.g., |=[!N]〈a〉p↔〈a〉p, but might be wrong about non-existential formulas. Conversely, the agent
is fully knowledgeable of universal facts (e.g. |=[a]p↔[!N][a]p).
We believe these properties are not intuitively plausible as properties of a reasonable epistemic

or doxastic operator. They are, however, relatively natural as describing the awareness an agent has
of the possible evolution of a system. If I am aware that a could happen, then a could happen. If

c d

1

a b a b

w0

w1 w2

w11 w12 w21 w22

c

w0

1

c

w

1

Figure 7. Interaction between epistemic uncertainty and sights.

executing a can only lead to p-states, then I cannot be aware of an a-execution that would lead to
non-p state. Of course, agents can be wrong, but this is why it is interesting to expand the logic of
sights with epistemic operators, or, as most will think of it, expand an epistemic or doxastic signature
with sight operators.
Many interesting questions arise when concerned with the interaction of information uncertainty

and sights.While we reserve a systematic analysis of these interactions to a follow-up paper, consider,
nevertheless, the following example. Is a model, where w1 is in the sight of w0, while w2 is not, but
w1∼w2 an acceptable model? (Figure 7 is partial representation of such a situation.)
Note that this is different from a situation in which perfect recall—see [38] for a formal discussion

of alternative mathematical definitions of the concept and their relation—is violated. The question
is essentially whether past sights (or past awareness, or past expectations) should be preserved after
actions are executed.Whether we consider the above model as acceptable or not depends on whether
an agent can be aware of certain transitions in the system, but yet, when continuations she was
considering possible do happen, is not able to distinguish whether one of the unexpected actions has
taken place.
We discussed the possibility of treating [!N] as an epistemic operator. But we could also treat our

underlying transition systems as an epistemic model. Doing so, however, requires a slightly different
approach to the semantics of sights. Consider the following example:

Example 8.14

Naive car buyerGeorg1 takes a shiny, clean car (p) to be well kept (q) by its owner and a dusty, dirty
(¬p) car to be not so well kept (¬q); skeptical buyer David2 does not make such an assumption, but
is not a car expert and cannot decide whether the car has been well kept or not.

Intuitively, we expect that in the state of theworldwhere the car is not sowell kept but shiny and clean,
it is common knowledge that the car is well kept in the sight of Georg (i). But this is incompatible
with both the assumption that for every w we have w∈N(w) and the standard assumption that the
epistemic relation is an equivalence relation.
Another intuitive requirement is an uniformity one: whenever w∼1 v then N1(w)=N2(w) (ii). If

we relax the assumption that for every w we have w∈N(w) to the fact that for every w we have
N(w) 6=∅, we could hope to accommodate (i) and (ii) with the model in Figure 8.
But if we leave the semantics of [!N] unchanged, it will not bewell defined any longer. For example,

whether [!N1]ϕ is satisfied in the model of Figure 8 at w2 would be an ill-defined question. At best

w1 : p, q w2 : p, ¬q

w3 : ¬p, q w4 : ¬p, ¬q

1,2

1,2

p

:

w2

1,2
p, qp

p, q
1,2

w4p

Figure 8. Circles represent N1 Rectangles represent N2.

we could try to patch the semantics to have:

w2 |=[!N1]⊥

But, clearly, this is not something we would like to have either. Let Ki[w]={v|w∼i v}. We also
write 〈i〉ϕ :=¬Ki¬ϕ. In addition to our previous assumptions, we require that for every w we have
(Ni(w)∩Ki[w]) 6=∅. Together with uniform sights and the assumption that ∼i is an equivalence
relation, we can use the following semantics:

M,w |=[!Ni]ϕ iff for every v∈Ki[w]∩Ni(w) we have M|Ni(v),v |=ϕ

Now the meaning of [!Ni]ϕ is that from agent i’s perspective, i knows that ϕ. This is different
from a belief operator. For example, we would not have M,w2 |=BiC1,2ϕ with a reasonable belief
operator. Moreover, with uniform sights and epistemic equivalence relations we have, with the above
semantics, not only |=[!Ni]ϕ→Ki[!Ni]ϕ, but also |=[!Ni]ϕ→[!Ni]Kiϕ. While the first assumption
is generally unproblematic for most standard semantics of belief, the second one—usually referred
to as positive certainty—is easily shown to be incompatible with having a non-trivial KD45-belief
operator, an S5-knowledge operator and the assumption that knowledge implies belief. The reader
can consult e.g. Halpern [14] for details.
Our remarks indicate that the details of the relation between knowledge, beliefs, sights and their

dynamics will be interesting but complex. We plan to discuss these in a separate paper.

8.4 Changes in sights

Sights need not be stable over time. Some events might make agents consider options they did not
consider before (sight extension) or it might make them stop considering what they considered before
(sight restriction). In either case, we might have:

− either have a semantically driven change and ask what happens if this or that subset of the
model is added to the sight of the agent, or,

− a syntactically driven change and ask what happens if someone makes the agent consider
the possibility that ϕ and if someone makes that agent only focused on possibilities that are
compatible with ϕ.

We only look at the second case.Assume that we are in the left-hand side model in Figure 9 at state
w0. Now the agent is being convinced to consider the possibility that 〈a〉〈b〉⊤. For example, a chess

w0

w01 w02

w021 : ¬p, qw011 : p, q

w03

aa

bb

a

w0

w01 w02

w021 : ¬p, qw011 : p, q

w03

aa

bb

a

Figure 9. The agent starts to consider that 〈a〉〈b〉⊤.

player is being suggested to look at a certain sequence of moves she or he was not paying attention
to. Let [+〈a〉〈b〉⊤] be the syntactic counterpart to this yet-to-be-defined operation. What should
we expect about the resulting model? We should probably expect that [+〈a〉〈b〉⊤][!N]〈a〉〈b〉⊤. Of
course, if only the sight of our agent is changing, we either need a precondition to the execution of
+〈a〉〈b〉⊤ or we need to restrict its success to cases where it is possible to succeed. So what we really
would like is something like

〈a〉〈b〉⊤→[+〈a〉〈b〉⊤][!N]〈a〉〈b〉⊤.

The right-hand side model in Figure 9 represents one of the satisfying extension of N(w0). The two
other being N(w0)={w0,w03,w01,w01} and N(w0)=|M2|. The first two are in some sense minimal,
but it is hard to argue for either one, without having some form underlying notion of plausibility
(or preferences) on either states or subsets of the model. Instead, we could simply require truth in
all models M′ which are isomorphic to M except for NM

′
(w0) and in which NM

′
(w0) is a minimal

extension of NM1 (w0) such that M′|N(w0),w0 |=〈a〉〈b〉⊤. We would then have

M,w0 |=[+〈a〉〈b〉⊤][!N]〈a〉〈b〉q

but the same would not be true for 〈a〉〈b〉p or 〈a〉〈b〉¬p

M,w0 6|=[+〈a〉〈b〉⊤][!N]〈a〉〈b〉p

Finally in the preceding model for an unsatisfiable condition we would have

M,w0 6|=[+〈c〉⊤]⊥

Asimilar semantics can be given for the other operation, usingminimal restrictions instead ofminimal
extensions.
In an epistemic context with sights, we need to restrict the acceptable extensions ofN(w0) to be in

some sense compatible with K[w0]: if K[w0] encodes the agent’s information and a reasonable agent
will only expand her sight to ‘accommodate suggestions’ that are compatible with her information.
By contrast, this would not need to be the case with respect to belief sets, but we will not get into that
in this article. In epistemic temporal models, we have to be careful about the exact meaning of the

previous restrictions. One possible formalization could be that the acceptable extensions of N(w0)

should be subsets of
a
→
∗
(K[w0]).

8.5 Logic of sights and relativization

There is a natural relation between the logic of sights and relativization. Relativization is the syntactic
counterpart to restricting models to the truth set of a formula. Let ϕ,ψ be formulas of the basic modal
language. The relativization of ϕ to ψ , written (ϕ)ψ , is a modal formula defined recursively as
follows:

pψ = p∧ψ

(¬ϕ)ψ = ¬ϕψ

(ϕ1∧ϕ2)
ψ = ϕ

ψ

1 ∧ϕ
ψ

2

(〈a〉ϕ)ψ = 〈a〉(ψ ∧ϕ)

Consider a finite σLTS Mwith domain {w0,...,wn−1}. For each,wi, expand the basicmodal language
with a surjective set of fresh nominals nomM, that is with a set of fresh propositional letters such that
for every pi∈nomM, |V (pi)|=1 and V (nomM)={w0,...,wn−1}, call the resulting model M+nom.
For every wi, define a formula πi :=

∨
wj∈N (wi)pj. Note that for basic modal formulas ϕ, we have:

M,wi |=[!N]ϕ iff M+nom,wi |=ϕ
πi

Thus, given a finite σLTS M, we can recursively define a function fM :L(!σ,A)(prop)→H(A)(prop∪

nomM) giving us for every state w∈M and every formula ϕ∈L(!σ,A)(prop), a formula fM,wi
(ϕ) as

follows:

fM,wi
(ϕ) = fM,wi

(ϕ⊤)

fM,wi
(p⊤) = p for both propostional letters and nominals.

fM,wi
(pψ) = (p∧ fM,wi

(ψ))

fM,wi
((ϕ∧χ)ψ) = fM,wi

(ϕψ)∧ fM,wi
(χψ)

fM,wi
((ϕ∨χ)ψ) = fM,wi

(ϕψ)∨ fM,wi
(χψ)

fM,wi
((¬ϕ)ψ) = ¬fM,wi

(ϕψ)

fM,wi
((〈a〉ϕ)ψ) = 〈a〉

∨

wj∈Ra[wi]

fM,wj
(ψ ∧ϕψ)

fM,wi
(([!N]ϕ)ψ) = fM,wi

(ϕπi∧ψ)

We now have to show that this translation can simulate the sight operator over finite models. First
let us make a few observations:

Fact 8.15

For any finite pointed LTS M,w and any formula ϕ∈L(!σ,A), fM,wi
(ϕ)∈H(A)(prop∪nomM).

Proof. Note that ultimately only propositional letters will be exponentiated at which stage it is
transformed in a simple conjunction. Moreover, at every stage the exponent ϕ is a conjunction of

clauses of nominals. Finiteness of the translation of 〈a〉ϕ formulas follows from finiteness of the
model. �

Fact 8.16

For every formula ϕ∈L(!σ,A)(prop) and every finite pointed model M,wi, we have

M+nom,wi |=ϕ iff M,wi |=ϕ

Proof. Trivial. �

Fact 8.17

For every ϕ∈L(!σ,A)(prop∪nom), every finite pointed model M,wi and finite subsetW0⊆|M|, such
that wi∈

⋂
w∈W0

N (w) we have:

M
+nom⋂

wk∈W0
N (wk)

,wi |=ϕ iff M+nom|||
∧

wk∈W0
πk ||,wi |=ϕ

Proof. Immediate from the definition of πk . �

Lemma 8.18

For every formula ϕ∈L(!σ,A)(prop∪nom), and every finite pointed model M,wi and finite subset
9⊆nom∪prop with wi∈||

∧
9||, we have:

M+nom|||
∧
9||,wi |=ϕ iff M+nom,wi |= fM,wi

(ϕ
∧
9)

Proof. Proof is by induction on the complexity of ϕ. If ϕ is a propositional letter p, since 9⊆
nom∪prop and 9 is finite, we have fM,wi

(p
∧
9)=p∧

∧
9. The argument is the same for nominals.

Now for the induction step. Booleans are straightforward from definition.
Now assume that M+nom|||

∧
9||,wi |=[!N]ϕ (0). First note that we have ||πi∧

∧
9||=

||πi||∩||
∧
9|| (1). Note that, by definition of πi, ||πi||=N (wi) (2). Hence we have

M+nom|||
∧
9|||N (wi)=M+nom|||πi∧

∧
9||. Also note that πi∧

∧
9 is equivalent to some formula

of the form
∧
9 ′, where 9 ′⊆nom∪prop and 9 ′ is finite. Hence M+nom|||πi∧

∧
9||,wi |=ϕ,

and thus by IH we have M+nom,wi |= fM,wi
(ϕπi∧

∧
9) (3). But by definition of fM,wi

, we have
fM,wi

(([!N]ϕ)
∧
9)=fM,wi

(ϕπi∧
∧
9) (4). The claim follows.

Now assume that M+nom|||
∧
9||,wi |=〈a〉ϕ (5). It follows that there is some state wj∈Ra(wi)

(6) such that wj∈||
∧
9|| (7) and M+nom|||

∧
9||,wi |=ϕ (8). By IH we have thus M+nom,wj |=

fM,wj
(ϕ

∧
9). By (6) and (7) we have thus M+nom,wi |=〈a〉fM,wj

(ϕ
∧
9), hence M+nom,wi |=

〈a〉
∨

wj∈Ra[wi]
fM,wj

(ϕ
∧
9), that is,M+nom,wi |= fM,wi

((〈a〉ϕ)
∧
9 . The converse direction is similar.

�

Lemma 8.19

For every ϕ∈L(!σ,A)(prop), and every finite pointed model M,wi and finite subset W0⊆|M|, such
that wi∈

⋂
w∈W0

N (w) we have:

M⋂
wj∈W0

N (wj),wi |=ϕ iff M+nom,wi |= fM,wi
(ϕ

∧
j∈{k|wk∈W0}

πj)

Proof. Immediate from Lemma 8.18 and the two previous facts. �

Our main claim follows directly:

Proposition 8.20

For every formula ϕ∈L(!σ,A)(prop), and every finite pointed model M,wi we have

M,wi |=ϕ iff M+nom,wi |= fM,wi
(ϕ)

Proof. The proof is by induction on the complexity of ϕ. The base case is immediate. Booleans
are immediate from IH. Now assume that, M,wi |=[!N]ϕ, that is, M|N (wi),wi |=ϕ. By Lemma
8.19, we have M+nom,wi |= fM,wi

(ϕπi). But fM,wi
([!N]ϕ)= fM,wi

(([!N]ϕ)⊤)= fM,wi
(ϕπi). Finally

assume that M,wi |=〈a〉ϕ, it follows that there is some wj∈Ra[wi] (0) and M,wj |=ϕ. Hence by IH,
M+nom,wj |= fM,wj

(ϕ) (1). But from (0) and (1) we have:M+nom,wj |=
∨

wj∈Ra[wi]
fM,wj

(ϕ) and thus

M+nom,wi |=〈a〉
∨

wj∈Ra[wi]
fM,wj

(ϕ). But fM,wi
(〈a〉ϕ)= fM,wi

((〈a〉ϕ)⊤)=〈a〉
∨

wj∈Ra[wi]
fM,wj

(⊤∧

ϕ⊤)=〈a〉
∨

wj∈Ra[wi]
fM,wj

(ϕ⊤)=〈a〉
∨

wj∈Ra[wi]
fM,wj

(ϕ). �

The notion of bisimilarity corresponding to the basic hybrid language with nominals only is the
following:

Definition 8.21 (HA-Bisimulation, see, e.g. [28], ch. 4)
An HA-bisimulation between M=〈W ,(

a
→)a∈A,V 〉 and M′=〈W ′,(

a
→
′
)a∈A,V ′〉 is a bisimulation

satisfying:

1. x∈V (pi) iff x′∈V ′(pi), whenever (x,x′)∈Z , for every pi∈nom

HA-bisimilarity does not implyσ -bisimilarity as such.However, consider the basic hybrid language
enriched with the 〈N 〉 operator discussed at the beginning of Section 4.1.We refer to it asHA,N (nom).
Consider two finite pointed LTSs M,wi and M′,w′i. We first claim the following:

Claim 8.22

Whenever M,wi and M′,w′i are HA,N -bisimilar, then for any ϕ∈L(!σ,A), fM,wi
(ϕ) is logically

equivalent to fM′,w′i
(ϕ).

Proof. First, observe that at every stage of the translation we have an exponentiated formula of
the form ϕψ , where ψ is a conjunction of the form πi1 ∧ ...∧πin , where each πik :=

∨
wj∈N (wi)pj.

Moreover, it is easy to see that such conjunctions of clauses of nominals are invariant under HA,N -
bisimulations.
The proof is by induction on the complexity of ϕ in ϕψ . Base case is for formulas of the form

pϕ where ϕ is a Boolean formula over nom and prop, where p∈prop. Hence by definition of the
translation, its translation in the same in both models.
Now for the induction step. First note, that the translation is only model-dependent for [!N] and

〈a〉 clauses. Hence induction steps for Booleans are trivial.
Now consider an exponentiated formula of the form (〈a〉ϕ)ψ . By definition of the translation

fM,wi
((〈a〉ϕ)ψ) = 〈a〉

∨
wj∈Ra[wi]

fM,wj
(ψ ∧ϕψ). Now by definition of a bisimulation, for each wj∈

Ra[wi] there is a state w′j∈Ra[w
′
i] such that wj and w′j are themselves HA,N -bisimilar. But then by IH

fM,wj
(ψ ∧ϕψ) is logically equivalent to fM,w′j

(ψ ∧ϕψ). And conversely using the other direction in

the definition of a bisimulation. By finiteness, it follows that fM,wi
((〈a〉ϕ)ψ) and fM,w′i

((〈a〉ϕ)ψ) are

of the form 〈a〉
∨
χ∈ψ9 and 〈a〉

∨
χ ′∈9 ′9

′, such that 9 and 9 ′ are finite collections of formulas,
such that for each formula in one collection, there is a logically equivalent one in the other. Hence
the two formulas are logically equivalent.

The [!N]-case is immediate from the definition of the translation fM,wi
(([!N]ϕ)ψ)= fM,wi

(ϕπi∧ψ).
It is sufficient to note that if ψ was a Boolean combination of nominals, then so is πi∧ψ , and that
if πi and π ′i must be logically equivalent, for otherwise there would be a state in either N (wi) or
N (w′i) satisfying a nominal, that is not satisfied by any state in the N (w′i) or, respectively, in N (wi),
contradicting the hypothesis that wi and w′i are HA,N -bisimilar. Concluding the proof for this case
and the proof of the claim. �

Now, let C be a class of pointed finite LTSs. We say that nom is surjective with respect to C,
provided that for every M∈C, VM(nom)=|M|. As a Corollary to Proposition 8.20 we now can
observe that:

Corollary 8.23

Let C be a class of finite pointed LTSs and let nom be a set of nominals, surjective with respect to
C. We have L(!σ,A)≤C HA,N (nom).

Proof. Assume for contradiction that we have two finite pointed LTSs, M,wi and M′,w′i that
are HA,N -bisimilar and such that we have a formula ϕ∈L(!σ,A) with M,wi |=ϕ and M′,wi 6|=
ϕ. By Claim 8.22 it follows that fM,wi

(ϕ) is logically equivalent to fM′,w′i
(ϕ). Since nom is

surjective with respect to C, we have by Fact 8.15, that the translation is into HA(nom),
hence certainly in HA,N (nom). Take F(ϕ) := fM,wi

(ϕ)∧ fM′,w′i
(ϕ), which is still in HA,N (nom). By

Proposition 8.20 it follows, that M,wi |=F(ϕ) and M′,wi 6|=F(ϕ), contradicting the assumption
that M,wi and M′,w′i are HA,N -bisimilar. By reduction, it follows that M,wi and M′,w′i are
not HA,N -bisimilar, but since both are finite, they are also HA,N -distinguishable. Concluding
our proof. �

8.6 Logic of sights as a multi-dimensional modal logic

If we look back at our SAT-algorithm, we can see that we have implicitly treated our logic as a
multi-dimensional modal logic. But the logic itself is really unidimensional; when we move to a
restriction the semantics does not require that we keep track of the original model to interpret the
rest of the formula. If we would like, however, to be able to switch back and forth between different
perspectives, we would require a truly multi-dimensional modal logic. Consider e.g. the addition of
an ‘abstract away’unary operator that we call [(!N)−1]ϕ. To accommodate it, we change our original
semantics. Our models are still σLTS of the form:

M :=〈W ,(
a
→)a∈A,N ,V 〉

where N :W→℘(W) where w∈N (w), for every w∈W .
The syntax of the language of L(!σ,(!σ)−1,A) over A is:

ϕ ::=p |¬ϕ |ϕ∧ϕ | 〈a〉ϕ | [!N]ϕ | [(!N)−1]ϕ,

where p ranges over prop and a over A. Given a model

M :=〈W ,(
a
→)a∈A,N ,V 〉,

w0

w1

w11

w2

a

b

a

w0

w1

w11

w2

aa

b

Figure 10. L(!σ,A) is not as expressive as L(!σ,(!σ)−1,A).

a state w∈W and a finite, possibly empty, set X ⊆W , our semantics is given as follows:

M,w,X |=〈a〉ϕ iff there is s∈ (
⋂

t∈X N (t))∩Ra[w]
with M,s,X |=ϕ

M,w,X |=[!N]ϕ iff M,w,X ∪{w} |=ϕ

M,w,X |=[(!N)−1]ϕ iff M,w,X \{w} |=ϕ

Note that our two operations are still very restrictive: they only allow us to add or remove the
current state from the last part of the context. However, a logic with these operations is strictly more
expressive than our logic. First, consider the two models given in Figure 10. Note that M1,w0,∅|=
[!N]〈a〉[(!N)−1]〈b〉⊤ but M2,w0,∅ 6|=[!N]〈a〉[(!N)−1]〈b〉⊤. But the two are σ -bisimilar. (Showing
that L(!σ,(!σ)−1,A) is at least as expressive as L(!σ,A) is straightforward.)
There are of course other multi-dimensional modal logics along those lines. L(!σ,A), the logic

of sight we have discussed in this paper, can be said to be internal: [!N]ϕ means that ϕ is true
in the restriction to N (w), where further [!N] operators are recursively interpreted in the relevant
submodels. If instead we would like an operator, call it [↓N], setting the perspective to be that of
the agent at the current state—hence a logic of sight from an external perspective— we can draw on
multi-dimensional semantics as explained below.
Our models are still σLTS of the form:

M :=〈W ,(
a
→)a∈A,N ,V 〉

where N :W→℘(W) where w∈N (w), for every w∈W .
The syntax of the language of L(↓σ,A) over A is:

ϕ ::=p |¬ϕ |ϕ∧ϕ | 〈a〉ϕ | [↓N]ϕ,

where p ranges over prop and a over A. Given a model

M :=〈W ,(
a
→)a∈A,N ,V 〉,

a pair in (w,v)∈W×W ∪{ǫ}, and defining N (ǫ) :=W , our semantics is given as follows:

M,w,v |=〈a〉ϕ iff there is s∈N (v)∩Ra[w]
with M,s,v |=ϕ

M,w,v |=[↓N]ϕ iff M,w,w |=ϕ

(a) (b)

w0 w1 w2

a b

w0

a

w1 w2

b

w0 w1 w12

w11

a b

b

w1

bb

w12w0

a

w1

bb

Figure 11. L(↓σ,A) is not as expressive as L(!σ,A).

w0

w1

w11

w2

a

b

a

w0

w1

w11

w2

aa

b

Figure 12. L(!σ,A) is not as expressive as L(↓σ,A).

M5, the left-hand side model in Figure 11 illustrates the difference between the [!N] and the [↓N]
operator. Indeed, we have M5,w0 |=[↓N]〈a〉[↓N]〈a〉⊤ but M5,w0 |=[!N]〈a〉[!N]¬〈a〉⊤. Moreover,
we can see from Figure 12 that L(!σ,A) is not as expressive as L(↓σ,A). Indeed the two w0-pointed
models are σ -bisimilar, but M1,w0 |=[↓N]〈a〉[↓N]〈b〉⊤ while M2,w0 6|=[↓N]〈a〉[↓N]〈b〉⊤.
The model-theoretic notion of invariance corresponding to modal invariance for L(↓σ,A) is based

on the following notion of bisimulation. (The proof of this correspondence is the usual one.)

Definition 8.24

A (↓N,A)-bisimulation between two σLTS S= (〈W ,(
a
→)a∈A,N,V 〉) and S′= (〈W ′,(

a
→
′

)a∈A,N′,V ′〉) is a relation Z⊆ (W×(W ∪{ǫ}))×(W ′×(W ′∪{ǫ})) such that for some w∈W and
w′∈W ′ we have (w,ǫ,w′,ǫ)∈Z , and such that the following conditions hold:

1. (Atomic Harmony) if (x,y,x′,y′)∈Z then for every p∈prop, we have x∈V (p) iff x′∈V ′(p)
2. (Forth) if (x,y,x′,y′)∈Z and xRaz for some z∈N(y), then there exists some z′∈N′(y′) such that

x′R′az
′ and (z,y)Z(z′,y′)

3. (Back) if (x,y,x′,y′)∈Z and x′R′az
′ for some z′∈N′(y′), then there exists some z∈N(y) such

that xRaz and (z,y)Z(z′,y′)

4. (↓N-Forth) if (x,y,x′,y′)∈Z and xRaz for some z∈N(y), then there exists some z′∈N′(y′) such
that x′R′az

′ and (z,z)Z(z′,z′)
5. (↓N-Back) if (x,y,x′,y′)∈Z and x′R′az

′ for some z′∈N′(y′), then there exists some z∈N(y)
such that xRaz and (z,z)Z(z′,z′)

We say that two pointed σLTS (S,w0)= (〈W ,(
a
→)a∈A,N,V 〉,w0) and (S′,w′0)= (〈W

′,(
a
→
′
)a∈A,

N′,V ′〉,w′0) are (↓N,A)-bisimilar (notation S,w0)↔↓N,A(S′,w′0) whenever there is bisimulation Z

between S and S′ such that (w0,ǫ,w′0,ǫ)∈Z . When A is clear from context, we write (↓N)-bisimilar
for (↓N,A)-bisimilar.
Note the difference with σ -bisimulations. While specific back and forth conditions for σ -

bisimulations are cumulative, the ones for (↓N,A)-bisimulations are reseting the sight to that of
the successor. Figure 11 gives an example of two models that are (↓N)-bisimilar, but not σ -bisimilar.
Hence, L(↓σ,A) is not as expressive as L(!σ,A). The expressive power of the two languages are thus
incomparable.

9 Definability of sight-based subgame perfection

We can finally come back to what was one of our original motivations: game-theoretical analysis
of strategic situations involving limited sights. We started the article with the example of a chess
game, claiming that both human and artificial players will only take into account a limited part of
the (sub)game tree into account before deciding which move to take.
Magnus Carlsen, 2013 world No. 1 chess player, claims to read up to 15–20 moves ahead (Spiegel,

19 March 2010). This limit in the depth of his sight, has to be paired not only with a limit in the
number of moves considered at each stage, but with the selection of only a small subset of relevant
sequences, even assuming an ability to go through positions at blazing speed. In general, both players
will have some form of limited sight. In particular a player, say black, might expect another (white)
to make decisions within a shorter sight than she (black) is, and try to use that to her advantage. The
converse is of course not very helpful, even if white knows that black is able to read deeper, she still
has to rely on her own reading ability, that is her own depth of reading.

9.1 Sequential game models

We follow the logical analysis of sequential games of perfect information developed in van Benthem
and Gheerbrant [31] and take our models to be finite σ -treeLTSs extended with a turn function ρ and
a preference orderings for each player. Concretely we consider structures of the following form:

Definition 9.1 (model of a sequential game with sights (σSG))
M=〈W ,Z,Ag,(

a
→)a∈A,(Ni)i∈Ag,ρ,(≤i)i∈Ag,V 〉 where 〈W ,(

a
→)a∈A,(Ni)i∈Ag,V 〉 is a σTLTS, Z is

the set of leafs, ρ : (W \Z)→Ag and for each i∈Zg, ≤i is a total pre-order on W . We refer to a
structure of the previous type as a model of a sequential game with sights, σSG for short.

Unlike models of sequential games without sights, it is necessary to require agents’ preferences
to be defined on the whole tree and not only on leaves. To go back to the chess analogy, Carlsen
states that he believes the important part (when reading ahead in a chess game) ‘is to correctly assess
the position at the end of the calculation’. In other words, being able to see ahead is pointless for
the purpose of decision-making if you are not able to assess intermediate positions. In general, for
arbitrary games, the task is more delicate than for chess, because a player must be able to assess

such intermediate stages of the games for other players as well. We let for each i∈Ag, turni be a
propositional letter with semantics:

M,w |= turni iff w 6∈Z and ρ(w)= i

We also write end for [→]⊥, that is w∈||end|| iff w∈Z .
A strategy for i, is a function fi :ρ

−1(i)→W with fi(w)∈→[w]. A sight-compatible strategy for i
is a strategy fi such that fi(w)∈Ni(w).

9.2 Backward induction with sights

A subgame perfect equilibrium (see e.g. [23]) is a profile of strategies such that the restriction of
the profile to any subgame is still a Nash-equilibrium for that subgame. This is the usual solution
concept for extensive games of perfect information. We refer to it as an SPE. On generic games,
that is games such that there is no indifference for any player between end-nodes, there exists a
unique SPE. On the class of generic games, backward induction (henceforth BI) can be seen as a
deterministic procedure selecting a unique action at each non-terminal node (or history) in the game.
When we allow for indifference, there exists generally more than one SPE and the set of pure SPE

is generally not closed under union. In other words, subgame perfection or equivalently backward
induction cannot be defined inductively as a relation on arbitrary games. However, this can be done
for generic games and this can also be done for some generalizations of backward induction, allowing
for FO with fixed points definability, as well as modal definability. The reader is referred to [31] for
details on such definability results. We say that a σSG is generic iff the preference ordering of each
agent is a strict total order. For the sake of simplicity, we will henceforth speak of the BI relation, but
the reader is now aware that this expression should be taken with a grain of salt.
In the context of sequential games with sights, [13] proposes a concept of solution they refer to as

‘sight-compatible’SPE.

Definition 9.2 (non-recursive sight-compatible SPE, [13])
A profile of strategy is a non-recursive sight-compatible SPE if at every non-terminal stage w the
action it prescribes at h is compatible with an SPE of the restriction of the game to N{ρ(w)}(w).

We refer to it as non-recursive sight-compatible SPE, because in this solution concept, as
stressed by Grossi and Turrini [13], players are not taking into account the sights restrictions under
which other players will be making decisions. Given the reader’s favorite notion of a BI relation, we
define its corresponding non-recursive sight-compatible relational counterpart as follows:

Definition 9.3 (non-recursive sight-compatible BI relation)
Given a (generic) σSG, M, the non-recursive sight-compatible BI relation, NRσBI is the subset of
(W \Z)×W such that (x,y)∈NRσBI iff (x,y)∈BI(M|σ (ρ(w))).

An important difference with the classical setting, is that we are really dealing with a family of
relations {BI(M|σ (ρ(w)))|w∈|M|\Z}. Concretely, for non-terminal x we have a backward induction
relation BIx defined with respect to the restriction of the game model to σ (ρ(x)).

9.3 Modal definability

We will be working with a relational generalization of BI defined in [31], but a similar recipe can be
applied to the reader’s favorite modal characterization of the (reader’s favorite notion of a)BI relation

(see e.g. [31, 33, 37]) in some modal language LBI. Van Benthem and Gheerbrant [31] characterize
the BI relation as follows:

turni∧〈BI〉[BI∗](end→p)→[→]〈BI∗〉(end∧〈≤i〉p) (23)

The crucial ingredients are the use of a preference 〈≤i〉 modality for each agent and an iteration
program construct ∗. Now the locality of the backward induction relation BIx makes it necessary for
modal characterization purposes that the syntax is able to refer to the particular node in the game
tree at which this sight-dependent BI relation is being defined. A way to do this is to use a sight
modality [!Ni] for each agent, defined as previously in the article, in an hybrid setting with binder.
Putting it all together, our languagewill then be amulti-agent version of Lσ expandedwith preference
modalities 〈≤i〉 for each agent, an iteration program construct ∗, state variables svar :=x,y,z,... and
a binder ↓x.,↓y.,... which binds state variables to the current state (see [28], ch. 9, for a complete
introduction).
Concretely, we have the programs:

α ::=a |→|α∗ β ::=α |≤i

and the following formulas:

ϕ ::=p | turni |x |@xϕ |↓x.ϕ |¬ϕ |ϕ∧ϕ | 〈α〉ϕ | [!Ni],

where i ranges over Ag, p over prop and x over svar. We write [!Nρ]ϕ for
∨

i∈Ag(turni∧[!Ni]ϕ).
Programs and formulas will be interpreted on pointed σSG (cf. Definition 9.1) together with

assignment functions g :svar→W . Programs are interpreted in the obvious way:

||a|| =
a
→

||→|| =
⋃

a∈A
a
→

||α∗|| = ||α||∗

||≤i || = ≤i

Now, we give the interesting cases for formulas:

M,w,g |=x iff g(x)=w

M,w,g |= turni iff ρ(x)= i

M,w,g |=@xϕ iff g(x)∈|M| and M,g(x),g |=ϕ

M,w,g |=↓x.ϕ iff M,w,g[g(x) :=w] |=ϕ

M,w,g |=[!Ni]ϕ iff M|Ni(w),w,g |=ϕ

M,w,g |=〈α〉ϕ iff there exists some v with (w,v)∈||α||M

and M,v,g |=ϕ

There are a few subtleties in the above semantics, which have to do with the interaction of
assignment functions and model restriction operations. The first question is whether, when we
interpret a formula of the form [!Ni]ϕ, we should restrict the assignment function as well. We will
not restrict the assignment function but instead modify the semantics of formulas of the form@xϕ at
M|Ni(w),v,g in the case that g(x) 6∈Ni(w). There are two ways to strengthen the semantics of @xϕ,

making it either an ‘existential’ modality or a ‘universal’ modality. In the first case, we would have
M|Ni(w),v,g 6|=@xϕ whenever g(x) 6∈Ni(w). This interpretation has our preference. @xϕ will then
intuitively mean that there is some state currently named x in the domain such that ϕ holds there.
The universal interpretation would make such formulas true. It is essentially a matter of preference
which of these strengthenings one chooses. Another way of dealing with this issue who be to keep
track of the full domain as e.g. a disjoint part of the model, whenever interpreting an [!Ni]ϕ modality.
But it does not seem natural to us to modify the semantics [!Ni] to resolve this issue. Finally, having
a subspeficied semantics is not an option we see as desirable either. In general, a systematic analysis
of logics allowing for restrictions, binders and hybrid @ operators is interesting, but we leave the
complete analysis to another paper.
We are now ready, to come back to the issue of modal definability of sight-dependent concepts of

subgame perfection. The following characterize the local character of the BIx relation.

〈BIx〉p↔↓y.@x[!Nρ]〈→
∗〉(y∧〈BIx〉p∧〈→〉p) (loc)

Now the counterpart of van Benthem and Gheerbrant’s (23), for sight-dependent subgame perfection,
is the following:

@x[!Nρ][→
∗]((turni∧〈BIx〉[BI∗x](end→q))→[→]〈BI∗x 〉(end∧〈≤i〉q)) (opt)

Finally, let us introduce the following axiom corresponding to the global solution concept:

〈R〉r↔↓x.〈BIx〉r (glo)

We can now give a modal characterization of the non-recursive sight-compatible BI relation.

Proposition 9.4

LetM be a finite σSG, let F=M\〈V 〉 be the frame ofM and let R be a program. The following are
equivalent:

1. R is the non-recursive sight-compatible BI relation on F , that is ||R||F =NRσBI.
2. F |= (loc)∧ (opt)∧ (glo).

We are not including the details of this correspondence. We will provide a systematic exploration
of solution concepts for games with sights and their definability in an another paper. A particularly
exciting next step is to explore the definability of a fully recursive concept of sight-dependent subgame
perfection. By fully recursive, wemean that agents are considering the fact that other agentswill make
decision within their own sight and will themselves anticipate other agent to make decision within
their own sight. The corresponding concept can be certainly be defined by simultaneous inflationary
inductions. Their definability in modal languages such as modal µ-calculus [19] or modal iteration
calculus [6] is something we still need to explore. The results in [10, 30] could shed some light on
this question.

10 Conclusion

We began with the problem of representing how a limited agent can reason about games she cannot
solve analytically usingmethods such as backward induction. Following [13] and [27] we considered
agents who reason about only a limited part of the game, the part that is in her ‘sight’. We have

developed this concept in amore general and abstract formal setting, using LTSswith sight functions.
We introduced a simple modal language augmenting the classical modal system K with an operator
that allows us to consider truth in certain submodels given by the sights.
Our language L(!σ,A) has a translation into the loosely guarded fragment of first-order logic,

from which decidability of its satisfiability problem follows. We have gone further, however, and
showed that its satisfiability problem is PSPACE-complete and that the combined complexity of its
model-checking problem is in PTIME. In terms of expressive power, our language is incomparable
with a modal language using a standard unary modal operator to scan sights. We have given an
axiomatization for our logic of sights and proved its completeness. In the last sections, we have
offered some potential avenues to explore in future research and have indicated relations with other
logical formalisms, and with game theory.

Acknowledgements

This research was supported by ERC grant No. 269427. The comments of two referees helped us
produce a clearer and more complete paper.

References

[1] R. Alur, T. A. Henzinger and O. Kupferman. Alternating-time temporal logic. In COMPOS.
Vol. 1536 of Lecture Notes in Computer Science,W. P. de Roever, H. Langmaack andA. Pnueli,
eds, pp. 23–60. Springer, 1997.

[2] A. Baltag and L. S. Moss. Logics for epistemic programs. Synthese, 139, 165–224,
2004.

[3] G. S. Boolos, J. P. Burgess and R. C. Jeffrey. Computability and Logic, 5th edn. Cambridge
University Press, 2007.

[4] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer. Alternation. J. ACM, 28, 114–133,
1981.

[5] E. M. Clarke and B.-H. Schlingloff. Model checking. In Handbook of Automated Reasoning,
J. A. Robinson and A. Voronkov, eds, pp. 1635–1790. Elsevier and MIT Press, 2001.

[6] A.Dawar, E. Grädel and S. Kreutzer. Inflationary fixed points inmodal logic.ACMTransactions

on Computational Logic, 5, 282–315, 2004.
[7] R. Fagin, J. Y. Halpern, Y. Moses and M. Y. Vardi. Reasoning About Knowledge. MIT Press,

Cambridge, 1995.
[8] S. Feferman. Persistent and invariant formulas for outer extensions. Compositio Mathematica,

20, 29–52, 1968.
[9] S. Feferman and G. Kreisel. Persistent and invariant formulas relative to theories of

higher order. Bulletin of the American Mathematical Society, 72, 480–485, 1966. (Research
Announcement).

[10] G. Fontaine and T. Place. Frame definability for classes of trees in the µ-calculus. In
Mathematical Foundations of Computer Science 2010, P. Hlinený and A. Kucera, eds,
pp. 381–392. Springer, 2010.

[11] J. Gerbrandy. Bisimulations on Planet Kripke. PhD Thesis, ILLC, Amsterdam, 1999.
[12] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64, 1719–1742,

1999.

[13] D. Grossi and P. Turrini. Short sight in extensive games. InProceedings of the 11th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), vol. 2, pp. 805–812,
2012.

[14] J. Y. Halpern. Should knowledge entail belief? Journal of Philosophical Logic, 25, 483–494,
1996.

[15] J. Y. Halpern. Alternative semantics for unawareness. Games and Economic Behavior, 37,
321–339, 2001.

[16] A. Heifetz,M.Meier and B. C. Schipper. Interactive unawareness. Journal of Economic Theory,
130, 78–94, 2006.

[17] I. M. Hodkinson. Loosely guarded fragment of first-order logic has the finite model property.
Studia Logica, 70, 205–240, 2002.

[18] N. Immerman. Descriptive Complexity. Graduate texts in computer science. Springer, 1999.
[19] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional mu-calculus

with respect to monadic second order logic. In CONCUR, U. Montanari and V. Sassone, eds,
Vol. 1119 of Lecture Notes in Computer Science, pp. 263–277. Springer, 1996.

[20] R. E. Ladner. The computational complexity of provability in systems of modal propositional
logic. SIAM Journal of Computing, 6, 467–480, 1977.

[21] C. Liu, F. Liu and K. Su. A logic for extensive games with short sight. In LORI. Vol. 8196
of Lecture Notes in Computer Science, D. Grossi, O. Roy and H. Huang, eds, pp. 332–336.
Springer, 2013.

[22] S. Modica and A. Rustichini. Unawareness and partitional information structures. Games and

Economic Behavior, 27, 265–298, 1999.
[23] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
[24] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[25] R. Parikh and R. Ramanujam. A knowledge based semantics of messages. Journal of Logic,

Language and Information, 12, 453–467, 2003.
[26] J. A. Plaza. Logics of public communications. In Proceedings of the Fourth International

Symposium on Methodologies for Intelligent Systems: Poster Session Program, M. L. Emrich,
M. S. Pfeifer, M. Hadzikadic and Z.W. Ras, eds, pp. 201–216. Oak Ridge National Laboratory,
1989.

[27] L. Rêgo and J. Y. Halpern. Generalized solution concepts in games with possibly unaware
players. International Journal of Game Theory, 41, 131–155, 2012.

[28] B. ten Cate. Model Theory for Extended Modal Languages. PhD Thesis, ILLC Dissertation
Series DS-2005-01. University of Amsterdam, 2005.

[29] J. vanBenthem.Exploring logical dynamics. Center for the Study of Language and Information,
1997.

[30] J. van Benthem, N. Bezhanishvili and I. Hodkinson. Sahlqvist correspondence for modal mu-
calculus. Studia Logica, 100, 31–60, 2012.

[31] J. van Benthem andA. Gheerbrant. Game solution, epistemic dynamics and fixed-point logics.
Fundam. Inform., 100, 19–41, 2010.

[32] J. van Benthem, J. Gerbrandy, T. Hoshi and E. Pacuit. Merging frameworks for interaction:
DEL and ETL. Journal of Philosophical Logic, 38, 491–526, 2009.

[33] J. van Benthem, S. van Otterloo and O. Roy. Preference logic, conditionals and solution
concepts in games. In Modality Matters: Twenty-Five Essays in Honour of Krister Segerberg,
H. Lagerlund, S. Lindström and R. Śliwiński, eds, pp. 61–76. University of Uppsala, 2005.

[34] H. P. van Ditmarsch and T. French. Simulation and information: Quantifying over epistemic
events. In KRAMAS, pp. 51–65, 2008.

[35] H. P. van Ditmarsch, T. French and S. Pinchinat. Future event logic - axioms and complexity. In
Advances in Modal Logic 8 Publisher: College Publications, L. D. Beklemishev, V. Goranko
and V. B. Shehtman, eds, pp. 77–99, 2010.

[36] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18, 194–211, 1979.

[37] W. van der Hoek and M. Pauly. Modal logic for games and information. In The Handbook of

Modal Logic, P. Blackburn, J. van Benthem and F. Wolter, eds, pp. 1077–1148. Elsevier, 2006.
[38] A. Witzel. Perfect recall of imperfect knowledge. In TARK, K. R. Apt, ed., pp. 75–81. ACM,

2011.

Received 6 February 2014

Appendix

A Preliminary facts towards completeness

In this sectionwe state an important number of intermediate facts thatwe are using in the completeness
proof. The proofs of these facts can be found in Appendix B. All these facts are stated under the
assumption that the sets 1, 11 and 12 are finite.

A.1 Facts about CN

Fact A.1

If ϕ∈ (CN(1)\Sub(1)), then there is a formula ψ ∈Sub(1) such that one the following holds

1. ϕ=¬ψ and ψ is neither of the form ¬χ , nor of the form [!N]χ
2. ϕ=[!N]ψ and ψ is neither of the form [!N]χ , nor of the form ¬[!N]χ
3. ϕ=[!N]¬ψ and ψ is neither of the form ¬χ , nor of the form [!N]χ

Fact A.2

Sub(CN(1))=CN(1).

Fact A.3

CN(11∪12)=CN(11)∪CN(12)

Fact A.4

CN(CN(1))=CN(1).

Fact A.5

If 11⊆12, then CN(11)=CN(12).

Fact A.6

If ϕ1∈CN(ϕ2) and ϕ2∈CN(ϕ3), then ϕ1∈CN(ϕ3)

Fact A.7

For every n with 1<n∈ω we have CN(ϕ1∧ ...∧ϕn)={ϕ1∧ϕn,¬(ϕ1∧ϕn),[!N](ϕ1∧
ϕn),[!N]¬(ϕ1∧ϕn)}∪CN({ϕ1,...,ϕn}).

Fact A.8

max({depA(ϕ)|ϕ∈CN(1)})=max({depA(ϕ)|ϕ∈1})

A.2 Facts about CN(1)(a)

Fact A.9

CN(1)(a)=CN(E(CN(1),a)).

Fact A.10

E(CN(1),a)={ϕ|〈a〉ϕ∈CN(1)}.

Fact A.11

Assume that CN(1)(a) 6=∅. max(dep(CN(1)(a)))<max(dep(CN(1))).

A.3 Facts about cn(1)(Ea)

Fact A.12

For every Ea, Ea ·b∈A∗, we have cn(1)(Ea ·b)=CN({ϕ|〈b〉ϕ∈cn(1)(Ea)}).

Fact A.13

If ϕ∈cn(Ea ·b), then there is some formula χ such that 〈b〉χ ∈cn(Ea) with ϕ∈CN(χ).

Fact A.14

If ϕ∈cn(Ea ·Eb·c), then there is a formula χ such that 〈c〉χ ∈cn(Ea) and ϕ∈CN(χ).

Corollary A.15

If ϕ∈cn(Ea ·Eb ·c), then ϕ∈cn(Ea ·c).

Fact A.16

If cn(1)(Eb·c) 6=∅, then max(dep(cn(1)(Eb·c)))<max(dep(cn(1)(Eb)))

A.4 Facts about tree(1)

Corollary A.17 (Bounded Depth)
The depth of tree(1) is bounded by maxdep(1).

Fact A.18

If 1 is finite, then tree(1) is finitely branching.

A.5 Facts about cj and da

Fact A.19

If 11⊆12, then cj(11)⊆cj(12)

Fact A.20

If 11⊆12, then for every a∈A, da(11,a)⊆da(12,a)

A.6 Facts about κ1(Ea)

Fact A.21

If Ea is a 1-leaf, then max(dep(κ1(Ea)))=0.

Fact A.22

da(κ1(Ea ·b),b)={〈b〉ϕ|ϕ∈CN({̂S|S⊆κ1(Ea ·b)})}

Fact A.23

If Ea is a 1-leaf, then κ1(Ea) is finite.

Fact A.24

If tree(1) is finitely branching then for every Ea∈ tree(1), if for all b∈A, κ1(Ea ·b) is finite, then
κ1(Ea) is finite.

A.7 Properties of κ on Tree(1)

Fact A.25 (Downward cn-monotonicity)
Let Ea,Eb,Ea ·Ec,Eb·Ec∈Tree(1). If cn(1)(Ea)⊆cn(1)(Eb) then cn(1)(Ea ·Ec)⊆cn(1)(Eb·Ec).

Fact A.26 (Tree Monotonicity)
Let Ea,Eb∈Tree(1). If cn(1)(Ea)⊆cn(1)(Eb) then SubTree(1,Ea)⊆SubTree(1,Eb).

Fact A.27 (Immediate Upward κ-Monotonicity)
Let Ea,Eb∈Tree(1). Assume that for every c such that Ea ·c∈Tree(1) we have Eb·c∈Tree(1). If for
every c∈A such that Ea ·c∈Tree(1) we have κ1(Ea ·c)⊆κ1(Eb·c) and moreover cn(Ea)⊆cn(Eb), then
we have κ1(Ea)⊆κ1(Eb).

Fact A.28 (cn to κ Monotonicity)
Let Ea,Eb∈Tree(1). If cn(1)(Ea)⊆cn(1)(Eb) and for every c∈A, κ1(Ea)⊆κ1(Eb).

Corollary A.29 (Upward Monotonicity)
Let 1 be a finite set. Let Ea,Ea ·b∈Tree(1). We have κ1(Ea ·b)⊆κ1(Ea).

Corollary A.30 (Interior Monotonicity)
Let 1 be a finite set. Let Ea ·Eb·c,Ea ·c∈Tree(1). We have κ1(Ea ·Eb·c)⊆κ1(Ea ·c).

A.8 Important properties of κ

Fact A.31

If Ea is not a 1-leaf and ϕ∈κ1(Ea), then we are in one of two cases

a. there is some b∈A and ϕ∈CN(da(κ1(Ea ·b),b))
b. ϕ∈CN(cn(1)(Ea))

Corollary A.32

Let1 be a finite set. For each Ea∈A∗, if ϕ∈κ1(Ea), then there is some formula Norm([!N]ϕ)∈κ1(Ea)
such that ⊢Norm([!N]ϕ)↔[!N]ϕ.

Fact A.33

If ϕ1,...,ϕn∈κ1(Ea ·b), then 〈b〉(ϕ1∧ ...∧ϕn)∈κ1(Ea).

Corollary A.34

Let 1 be a finite set. If ϕ∈κ1(Ea ·Eb) then ϕ∈κ1(Ea)

Corollary A.35

Let 1 be a finite set. If ϕ∈CN({̂S|S⊆κ1(Ea ·Eb·c)}) then 〈c〉ϕ∈κ1(Ea).

Fact A.36

If 〈c〉ϕ∈κ1(Ea) then we have either ϕ∈CN({̂S|S⊆κ1(Ea ·c)}) or 〈c〉ϕ∈κ1(Ea ·b) for some b 6=c.

B Proof of preliminary facts to the completeness proof

In this section, we list the proofs that were omitted in either the main part of the article orAppendixA.
The proofs are listed in order of occurrence in the papers, hence proofs of facts stated inAppendixA
will be given after the proofs of facts stated in the main part of the article.

Proof of Fact 6.1. Assume thatϕ is neither of the form¬ψ , nor of the form [!N]ψ , then by definition
of CN(1) we have ¬ϕ∈CN(1). Now assume instead that ϕ=¬ψ . ψ is a subformula of ϕ, hence
we have by construction ϕ∈CN(1). Finally assume instead that ϕ=[!N]ψ . We are in one of two
cases.

Case 1. ψ is neither of the form ¬χ , nor of the form [!N]χ (1). By construction χ ∈CN(1) and
hence by (1) we have ¬χ ∈CN(1) as well.

Case 2. ψ is of the form (¬∗[!N]∗)∗χ for some χ , where χ is neither of the form ¬χ2, nor of the
form [!N]χ2 (2). Note that by axioms [!N][!N] and [!N]¬, ψ is either equivalent to [!N]χ or
to [!N]¬χ (3). Moreover, we have χ ∈CN(1) (4). Hence by (2) we have ¬χ ∈CN(1) (5).
From (3), (4) and (5) the conclusion follows.

�

Proof of Fact 6.2. Assume that ϕ∈CN(1) and ϕ is neither of the form [!N]ψ , nor of the form
¬[!N]ψ then [!N]ϕ∈CN(1). Assume instead that ϕ is of the form [!N]ψ and simply observe that
⊢[!N][!N]ψ↔[!N]ψ . Finally assume that ϕ is of the form ¬[!N]ψ . Again it is easy to see that by
axioms [!N][!N] and [!N]¬ we have ⊢[!N]¬[!N]ψ↔¬[!N]ψ . �

Proof of Corollary 6.3. Immediate from the previous two facts. �

Proof of Fact 6.4. First observe that the subformula closure of a finite set, is a finite set. Now
enumerate the formulas in Sub(1)={ψ1,...,ψn}. Next observe that to satisfy the two last closure
conditions we might have to add at most three new formulas for each formula ψi in Sub(1), namely
[!N]ψi, ¬ψi and [!N]¬ψi, but it is easy to see that the resulting set is closed under subformulas, and
it is also easy to see that the two last closure conditions are satisfied. All conditions are then satisfied
by the finite set we have just constructed. But CN is the smallest such set. �

Proof of Fact 6.6. Straightforward. �

Proof of Fact 6.7. If Ea=ǫ, then by definition of cn we have cn(1)(Ea)=CN(1). Hence by Fact
A.4 cn(1)(Ea)=CN(cn(1)(Ea)). Instead if Ea= (Eb·c). We have

cn(1)(Eb·c)= (cn(1)(Eb))(c) (B.1)

=CN(E(cn(1)(Eb),c)) (B.2)

But by Fact 6.6 cn(1)(Eb) is finite, hence so isE(cn(1)(Eb),c). But then FactA.4we have cn(1)(Eb·c)=
CN(cn(1)(Eb·c)). �

Proof of Lemma 6.10. The proof is by induction on the rank of Ea. Assume that rank1(Ea)=0.
It follows that Ea is 1-leaf, hence by definition of κ1 we have κ1(Ea)=cn(1)(Ea). Assume for
contradiction that there is a formula ϕ∈cn(1)(Ea) such that dep(ϕ)>0. It follows by Fact 6.7 that

there is a formula of the form 〈b〉ψ ∈cn(1)(Ea) for some b∈A and ψ . Hence by Fact A.12 it follows
that cn(1)(Ea ·b) 6=∅, contradicting the fact that Ea is 1-leaf. Hence max(dep(cn(1)(Ea)))=0.

Induction step. Assume that rank1(Ea)=n+1 (1).

Claim 1: max(dep(κ1(Ea)))≤n+1

It follows from (1) that for every b∈A, rank1(Ea ·b)≤n. Hence by IH for every b∈A, we have
max(dep(κ1(Ea ·b)))=max(dep(cn(1)(Ea ·b)))≤n (2).
Assume for contradiction that there is a formulaϕ∈cn(1)(Ea) such thatdep(ϕ)>n+1. It followsby

Fact 6.7 that there is a formula of the form 〈b〉ψ ∈cn(1)(Ea) for some b∈A and someψ with dep(ϕ)>
n. But by Fact A.12, ϕ∈cn(1)(Ea ·b), contradicting (2). Hence max(dep(cn(1)(Ea)))≤n+1 (a).
Now assume, for contradiction that there is a formula ϕ∈κ1(Ea) (3) such that dep(ϕ)>n+1 (4).

By definition of κ1 it follows that ϕ∈CN(
⋃

b∈Ada(κ1(Ea ·b),b)∪cn(1)(Ea)) (5). From (3), (4), (5)
and Fact A.3 it follows that there is a formula ψ and some c∈A such that dep(ψ)>n (6) and such
that one the following holds:

i. either 〈c〉ψ ∈CN(
⋃

b∈Ada(κ1(Ea ·b),b))
ii. 〈c〉ψ ∈CN(cn(1)(Ea))

Note (6) and (ii) contradicts (a). Hence we have 〈c〉ψ ∈CN(
⋃

b∈Ada(κ1(Ea ·b),b)). By Fact A.3, it
follows that for some b∈A we have 〈c〉ψ ∈CN(da(κ1(Ea ·b),b)). By Fact A.22, It follows that that
one the following holds:

iii. b=c and ψ ∈CN({̂S|κ1(Ea ·c))
iv. b 6=c and 〈c〉ψ ∈CN({̂S|κ1(Ea ·b))

If we are in case (iii), then by Fact A.3 and Fact A.7 it follows that ψ ∈CN(κ1(Ea ·c)).
Hence by (6) and Fact A.8, it follows that max(dep(κ1(Ea ·c)))>n, contradicting (2). Hence by
reduction max(dep(κ1(Ea)))≤n+1. If instead we are in case (iv), then by Fact A.7 it follows that
〈c〉ψ ∈CN(κ1(Ea ·b)). Hence by (6) and Fact A.8, it follows that max(dep(κ1(Ea ·b)))>n+1>n,
contradicting (2). Hence by reduction max(dep(κ1(Ea)))≤n+1. Hence in either case we have
max(dep(κ1(Ea)))≤n+1.

Claim 2: max(dep(κ1(Ea)))>n

It follows from (1) that there is some b∈A with rank1(Ea ·b)=n. Hence by IH max(dep(κ1(Ea ·
b)))=max(dep(cn(1)(Ea ·b)))=n. But by FactA.16, it follows that max(dep(cn(1)(Ea)))>n. But by
definition of κ1 it follows that max(dep(κ1(Ea)))>n. �

Proof of Fact 6.11. Since1 is finite, it follows by CorollaryA.17, the depth tree(1) is bounded by
max(dep(1)) and that by FactA.4 tree(1) is finitely branching. Now by induction on the rank1(Ea),
we can show that for each Ea∈ tree(1), κ1(Ea) is finite. (If instead Ea 6∈ tree(1), the claim follows
trivially, by emptiness of κ1(Ea).) The base induction follows immediately from Fact A.23. For the
induction step, we simply use Fact A.4 and Fact A.24. �

Proof of Fact 6.12. Follows from Fact 6.11, definition of κ1 and Fact A.4. �

Proof of Lemma 6.13. Assume that ϕ∈κ1(Ea) and dep(ϕ)=n. By Fact 6.10 we have rank1(Ea)≥n.
If rank1(Ea)=n, then for every b∈A, ϕ 6∈κ1(Ea ·b) and the claim follows trivially.Assume instead that
rank1(Ea)>n. Consider a branch Ea ·Eb in tree(1) with rank1(Ea ·b)<n By Fact 6.10, ϕ 6∈κ1(Ea ·Eb). By
Corollary A.29 it follows that for any descendant Ea ·Eb·Ec of Ea ·Eb with Ec 6=∅ we have ϕ 6∈κ1(Ea ·Eb·Ec).
Now enumerate Eb as (b1,...,bn). We have ϕ 6∈κ1(Ea ·b1 · ...·bn). By Corollary A.29 it follows that

there is some Ed⊑ (b1 · ...·bn) such that ϕ∈κ1(Ea · Ed), for every Ee⊑ Ed , we have ϕ∈κ1(Ea ·Ee) and for
every Ef such that Ed ❁ Ef we have ϕ 6∈κ1(Ea ·Ef). �

Proof of Fact 6.14. Since ψ ∈CN({̂S|S⊆κ1(Ea ·b)}), it follows by definition of κ1(Ea ·b) that
cn(1)(Ea ·b) 6=∅ and so Ea is not a 1-leaf. (0) Now since ψ ∈CN({̂S|S⊆κ1(Ea ·b)})=cj(κ1(Ea ·b)),
we have 〈b〉ψ ∈da(κ1(Ea ·b),b). Hence 〈b〉ψ ∈

⋃
b∈Ada(κ1(Ea ·b),b). (1). From (0) and (1) we have

〈b〉ψ ∈κ1(Ea). �

Proof of Fact 6.15. Assume that 〈c〉ϕ∈κ1(Ea). By Fact A.36 we have either ϕ∈CN({̂S|S⊆κ1(Ea ·
c)}) or 〈c〉ϕ∈κ1(Ea ·b1) for some b1 6=c. If we are in the first case, we are done, so assume instead
we are in the second case. By Fact 6.13 there is some Eb= (b1,...,bn) such that 〈c〉ϕ∈κ1(Ea ·Eb) (1)
and for every Ed 6=ǫ we have 〈c〉ϕ 6∈κ1(Ea ·Eb· Ed) (2). From (1) and Fact A.36, it follows that we have
either ϕ∈CN({̂S|S⊆κ1(Ea ·Eb·c)}) (a) or 〈c〉ϕ∈κ1(Ea ·Eb·d1) for some d1 6=c (b). But (b) contradicts
(2), hence we are in case (a). But by Fact A.30 and Fact A.19, the claim follows. �

Proof of Corollary 6.16. Straightforward from Fact 6.15 and Fact A.1. �

Proof of Fact 6.18. Immediate from Fact 6.12 and Fact 6.1. �

Proof of Fact 6.19. Immediate from Fact 6.12 and Fact 6.2. �

Proof of Fact 6.20. Immediate from Fact 6.12 and Fact 6.3. �

Proof of Fact 6.21. Immediate from Fact 6.18 and maximality of atoms. �

Proof of Fact 6.22. Folklore. �

Proof of Fact A.1. Straightfoward. �

Proof of Fact A.2. The right to left inclusion is from the definition of Sub. Now assume ϕ∈
Sub(CN(1)) it follows that there is a formula ψ ∈CN(1) such that ϕ∈sub(ψ). Now either ψ ∈
Sub(1), but then it is easy to see that ϕ∈Sub(1)⊆CN(1). Or else ψ ∈ (CN(1)\Sub(1)). But then
by Fact A.1, there is a formula χ ∈Sub(1) such that one the following holds

a. ψ=¬χ and χ is neither of the form ¬α, nor of the form [!N]α
b. ψ=[!N]χ
c. ψ=[!N]¬χ and χ is neither of the form ¬α, nor of the form [!N]α

It follows that one of the following holds

1. ϕ=χ
2. ϕ=¬χ and χ is neither of the form ¬α, nor of the form [!N]α
3. ϕ∈sub(χ)

In case 1, we simply have to observe that ϕ=χ ∈Sub(1)⊆CN(1). In case 2, we have that by
definition of CN that ¬χ ∈CN(1), since χ is neither of the form ¬α, nor of the form [!N]α, hence
ϕ=¬χ ∈CN(1). In case 3, we have ϕ∈sub(χ)⊆Sub(1)⊆CN(1). �

Proof of Fact A.3. Straightforward. �

Proof of Fact A.4. The right to left inclusion follows from the fact that CN(1)⊆Sub(CN(1)) but
by definition of CN we have Sub(CN(1))⊆CN(CN(1)). For left to right inclusion, assume that
ϕ∈CN(CN(1)), then either ϕ∈Sub(CN(1)), but then by FactA.2, or else, by FactA.2 there is some

ψ ∈Sub(CN(1)) (1) such that one the following holds:

a. ϕ=¬ψ and ψ is neither of the form ¬χ , nor of the form [!N]χ
b. ϕ=[!N]ψ and ψ is neither of the form [!N]χ , nor of the form ¬[!N]χ
c. ϕ=[!N]¬ψ and ψ is neither of the form ¬χ , nor of the form [!N]χ

But by (1) and Fact A.2 we have ψ ∈CN(1). But then in cases (a)–(c) we have by definition of CN ,
ϕ∈CN(1). �

Proof of FactA.5. Assume thatϕ∈CN(11) and11⊆12 (1). From (1)wehaveSub(11)⊆Sub(12)
(2). Then there is a formula ψ ∈Sub(11) (3) such that either ϕ=ψ , but then by (2) and (3) we have
ϕ=ψ ∈Sub(12), or else one the following holds:

a. ϕ=¬ψ and ψ is neither of the form ¬χ , nor of the form [!N]χ
b. ϕ=[!N]ψ and ψ is neither of the form [!N]χ , nor of the form ¬[!N]χ
c. ϕ=[!N]¬ψ and ψ is neither of the form ¬χ , nor of the form [!N]χ

but then, by definition of CN , we have in each case ϕ∈CN(12). �

Proof of Fact A.6. Assume that ϕ1∈CN(ϕ2). It follows that there is some ψ2∈sub(ϕ2) such that
one of the following holds:

a. ϕ1=ψ2
b. ϕ1=¬ψ2 and ψ2 is neither of the form ¬χ , nor of the form [!N]χ
c. ϕ1=[!N]ψ2 and ψ2 is neither of the form [!N]χ , nor of the form ¬[!N]χ
d. ϕ1=[!N]¬ψ2 and ψ2 is neither of the form ¬χ , nor of the form [!N]χ

But since ϕ2∈CN(ϕ3) and ψ2∈sub(ϕ2), we have ψ2∈CN(ϕ3). Hence in each of the previous cases
ϕ1∈CN(ϕ3). �

Proof of Fact A.7. Trivial. �

Proof of Fact A.8. The ≥ is trivial, since 1⊆CN(1). For the ≤ direction observe that
depA([!N]ϕ)=depA([!N]¬ϕ)=depA(¬ϕ)=depA(ϕ) (1). Next observe that for any ϕ,ψ if ϕ∈
sub(ψ) then depA(ϕ)≤depA(ψ) (2). Now assume that ϕ∈CN(1), then there is some χ ∈1 (3)
and ψ ∈sub(χ) such that ϕ is of the form [!N]∗¬∗ψ . Note that by (1), depA(ϕ)=depA(ψ) (3). But
by (4) we have depA(χ)≥depA(ψ) (5). By (3), (4), (5) and the fact ψ was arbitrary, the claim
follows. �

Proof of Fact A.9. Immediate by the application of the definition of Ŵ(a) to the case where Ŵ=
CN(1). �

Proof of Fact A.10. The right to left inclusion is immediate from the definition of E. The left to
right inclusion follows from Fact A.2. �

Proof of Fact A.11. By Corollary 6.5 we have CN(1)(a)=CN({ϕ|〈a〉ϕ∈CN(1)}). Hence, by
Fact A.8:

max(dep(CN(1)(a)))=max(dep({ϕ|〈a〉ϕ∈CN(1)})) (B.3)

Moreoever, we have

max(dep({〈a〉ϕ|〈a〉ϕ∈CN(1)}))≤max(dep(CN(1))) (B.4)

And by Fact A.8
max(dep(CN(1)))=max(dep(1)) (B.5)

It follows that
max(dep({〈a〉ϕ|〈a〉ϕ∈CN(1)}))≤max(dep(1)) (B.6)

Therefore, it is enough to show that

max(dep({ϕ|〈a〉ϕ∈CN(1)}))<max(dep({〈a〉ϕ|〈a〉ϕ∈CN(1)})) (B.7)

But this is immediate from Fact 6.4 and the definition of dep. �

Proof of Fact A.12.

cn(1)(Ea ·b)= (cn(1)(Ea))(b)

=CN(E(cn(1)(Ea),b))

But then, by Fact 6.7 we have

cn(1)(Ea ·b)=CN(E(CN(cn(1)(Ea),b)))

Hence, by Fact A.10 we have

cn(1)(Ea ·b)=CN({ϕ|〈b〉ϕ∈CN(cn(1)(Ea)}))

By Fact 6.7 we have thus

cn(1)(Ea ·b)=CN({ϕ|〈b〉ϕ∈cn(1)(Ea)})

�

Proof of Fact A.13. Assume that ϕ∈cn(Ea ·b). From Fact A.12 it follows that ϕ∈CN({ϕ|〈b〉ϕ∈
cn(1)(Ea)}). Hence by Fact 6.6 and Fact A.3 there is some formula χ such that 〈b〉χ ∈cn(1)(Ea) and
ϕ∈CN(χ). �

Proof of Fact A.14. If Eb=∅ the claim holds trivially. So assume instead that Eb= (b1 · ...·bn).
But then by Fact A.13 there is a set of formulas {χc,χn,...,χ1} such that:

ϕ∈cn(1)(Ea ·Eb·c)

〈c〉χc∈cn(1)(Ea ·b1 · ...·bn) and ϕ∈CN(χc)

〈bn〉χn∈cn(1)(Ea ·b1 · ...·bn−1) and 〈c〉χc∈CN(χn)

〈bn−1〉χn−1∈cn(1)(Ea ·b1 · ...·bn−2) and 〈bn〉χn∈CN(χn−1)

...

〈b2〉χ2∈cn(1)(Ea ·b1) and 〈b3〉χ3∈CN(χ2)

〈b1〉χ1∈cn(1)(Ea) and 〈b2〉χ2∈CN(χ1)

First observe that by Fact A.6 we have 〈c〉χc∈CN(χ1) (1). But by Fact 6.7 we have χ1∈cn(Ea)
(2). From (1), (2) and Fact 6.7 we have thus 〈c〉χc∈cn(Ea) and ϕ∈CN(χc) for some χc. �

Proof of Corollary A.15. Assume that ϕ∈cn(Ea ·Eb·c). By Fact A.14 we have some χ such that
〈c〉χ ∈cn(Ea) and ϕ∈CN(χ) (1) for some χ . But then by Fact A.12 we have χ ∈cn(Ea ·c). Hence by
(1) and Fact 6.7, ϕ∈cn(Ea ·c). �

Proof of Fact A.16. Follows from definition of cn and Fact A.11. �

Proof of Corollary A.17. Follows from Fact A.16. �

Proof of Fact A.18. Since 1 is finite, there is only a finite subset A0⊆A occurring in 1. Let
A0={a1,...,an}. The claim follows from the definition of tree(1). �

Proof of Fact A.19. Assume11⊆12. It follows that ℘(11)⊆℘(12). It follows that {̂S|S⊆11}⊆
{̂S|S⊆12}. The claim follows from Fact A.5. �

Proof of Fact A.20. Immediate from Fact A.19 and the definition of da(11,a) and da(12,a). �

Proof of Fact A.21. If Ea is a 1-leaf then κ1(Ea)=cn(1)(Ea) (1). Now assume for contradiction
that max(dep(cn(1)(Ea)))>0. It follows that there is a formula of the form 〈b〉ϕ∈cn(1)(Ea).
But then by Fact A.12, cn(1)(Ea ·b) 6=∅, contradicting the assumption that Ea is a 1-leaf. Hence
max(dep(cn(1)(Ea)))=0. Hence by (1), max(dep(κ1(Ea)))=0. �

Proof of Fact A.22. Immediate from definitions. �

Proof of Fact A.23. Immediate from the definition of κ1 at 1-leaves and Fact 6.6. �

Proof of Fact A.24. Assume that tree(1) is finitely branching. Let Ea∈ tree(1) with Ea not a1-leaf.
It follows that there is a finite set A0⊆A such that (Ea ·b)∈ tree(1) iff b∈A0 (1). Now assume that
for each b∈A0, κ1(Ea ·b) is finite. It follows that {̂S|S⊆κ1(Ea ·b)} is finite as well. Hence by Fact
6.4 CN({̂S|S⊆κ1(Ea ·b)}) is finite. It follows by Fact A.22, that da(κ1(Ea ·b),b) is finite (2). By the
definition of κ1 at non-leaves and by (1), (2), Fact 6.6 and FactA.22 it follows that κ1(Ea) is finite.�

Proof of Fact A.25. From Fact A.12 and Fact 6.7. �

Proof of Fact A.26. From Fact A.12 and Fact 6.7. �

Proof of Fact A.27. Straightforward from the definition κ1(Ea), Fact A.20 and κ1(Eb). �

Proof of Fact A.28. Let L(Ea) be the maximal words in SubTree(1,Ea). By Fact A.26 we have
L(Ea)⊆SubTree(1,Eb). By construction we have for every Ec∈L(Ea), Fact A.25 and the definition of
κ1 on leaves, that κ1(Ea ·Ec)⊆κ1(Eb·Ec). The claim follows by an easy inductive argument using Fact
A.25 and Fact A.27. �

Proof of Corollary A.29. From Fact A.28 and Fact A.13. �

Proof of Corollary A.30. From Fact A.28 and Corollary A.15. �

Proof of FactA.31. Since Ea is not a1-leaf,we have κ1(Ea)=CN(
⋃

b∈Ada(κ1(Ea ·b),b)∪cn(1)(Ea)).
But then by Fact A.3 we have CN(

⋃
b∈Ada(κ1(Ea ·b),b)∪cn(1)(Ea))=CN(

⋃
b∈Ada(κ1(Ea ·b),b))∪

CN(cn(1)(Ea)). Hence we are in one of two cases:

a. there is some b∈A and ϕ∈CN(da(κ1(Ea ·b),b))
b. ϕ∈CN(cn(1)(Ea)) �

Proof of Corollary A.32. Immediate from Fact 6.12, Fact 6.11 and Fact 6.2. �

Proof of Fact A.33. Assume ϕ1,...,ϕn∈κ1(Ea ·b). It follows that (ϕ1∧ ...∧ϕn)∈{̂S|S⊆κ1(Ea ·b)}.
Hence (ϕ1∧ ...∧ϕn)∈CN({̂S|S⊆κ1(Ea ·b)}). But then by Fact 6.14 we have 〈b〉(ϕ1∧ ...∧ϕn)∈
κ1(Ea). �

Proof of Corollary A.34. Immediate from Fact A.33 and 6.12 and a very simple inductive
argument. �

Proof of Corollary A.35. Immediate from Fact 6.14, Fact A.34 and 6.12 and a very simple
inductive argument. �

Proof of Fact A.36. Assume that 〈c〉ϕ∈κ1(Ea). By Fact A.21 it follows, that Ea is not a 1-leaf.
Moreover by Fact A.31 it follows that we are in one of two cases:

1. there is some b∈A and 〈c〉ϕ∈CN(da(κ1(Ea ·b),b))
2. 〈c〉ϕ∈CN(cn(1)(Ea))

From (2), it follows by Fact 6.7 and Fact A.12 that ϕ∈cn(1)(Ea ·c). Hence by definition of κ1 we
have ϕ∈κ1(Ea ·c). But by definition of CN we have ϕ∈CN({ϕ})⊆CN({̂S|S⊆κ1(Ea ·c)}).
Assume instead that we are in case (1). There is some b∈A and 〈c〉ϕ∈CN(da(κ1(Ea ·b),b))
By definition of da we have da(κ1(Ea ·b),b)={〈b〉ψ |ψ ∈CN({̂S|S⊆κ1(Ea ·b)})}. Hence 〈c〉ϕ∈

CN({〈b〉ψ |ψ ∈CN({̂S|S⊆κ1(Ea ·b)})}). There are two subcases: either b=c and ϕ∈CN({̂S|S⊆
κ1(Ea ·c)}), or b 6=c and then there is some ψ ∈CN({̂S|S⊆κ1(Ea ·b)}) such that 〈c〉ϕ∈CN(ψ), that is
〈c〉ϕ∈CN({̂S|S⊆κ1(Ea ·b)}).
But then there is some S⊆κ1(Ea ·b) with S={χ1,...,χn} such that for some χi∈{χ1,...,χn},

〈c〉ϕ∈CN(χi). But then 〈c〉ϕ∈κ1(Ea ·b). �

C Computing CN(1), cn and κ1

In this section, we illustrate the important syntactic definitions used in the completeness proof, such
as CN(1), the cn function and the κ1 function. To illustrate their computation concretely let us
consider the set of formulas 1={〈a〉(〈b〉p∧〈b〉¬p),[!N]〈a〉[!N]〈c〉q,[!N]〈a〉¬〈b〉¬p}.
We start by computing Sub(1) and CN(1).

Sub(1)= { 〈a〉(〈b〉p∧〈b〉¬p), [!N]〈a〉[!N]〈c〉q, [!N]〈a〉¬〈b〉¬p,

〈b〉p∧〈b〉¬p, 〈a〉[!N]〈c〉q, 〈a〉¬〈b〉¬p,

〈b〉p, 〈b〉¬p, [!N]〈c〉q, ¬〈b〉¬p,

p, ¬p, 〈c〉q,q}

cn(ǫ) = CN(∆)

cn(a)
cn(b) ={¬p, p,

[!N]¬p, [!N]p}

cn(ab) ={¬p, p,

[!N]¬p, [!N]p}

cn(ac) ={¬q, q,

[!N]¬q, [!N]q}

cn(c) ={¬q, q,

[!N]¬q, [!N]q}

Figure C1. Inductive definition of the cn function.

CN(1)={ 〈a〉(〈b〉p∧〈b〉¬p), ¬〈a〉(〈b〉p∧〈b〉¬p),

[!N]〈a〉(〈b〉p∧〈b〉¬p), [!N]¬〈a〉(〈b〉p∧〈b〉¬p),

〈b〉p∧〈b〉¬p, ¬(〈b〉p∧〈b〉¬p),

[!N](〈b〉p∧〈b〉¬p), [!N]¬(〈b〉p∧〈b〉¬p),

[!N]〈a〉[!N]〈c〉q 〈a〉[!N]〈c〉q,

[!N]¬〈a〉[!N]〈c〉q ¬〈a〉[!N]〈c〉q,

[!N]〈a〉¬〈b〉¬p, [!N]¬〈a〉¬〈b〉¬p,

〈a〉¬〈b〉¬p, ¬〈a〉¬〈b〉¬p,

〈b〉p,¬〈b〉p,[!N]〈b〉p, [!N]¬〈b〉p,〈b〉¬p,

¬〈b〉¬p,[!N]¬〈b〉¬p, p,¬p,[!N]p,[!N]¬p,

[!N]〈c〉q,[!N]¬〈c〉q,〈c〉q,¬〈c〉q, [!N]q,[!N]¬q,q,¬q }

We can now define cn, inductively, from the root, forming the labeled tree in Figure C1.

cn(a)={〈b〉p∧〈b〉¬p, ¬(〈b〉p∧〈b〉¬p),[!N](〈b〉p∧〈b〉¬p),

[!N]¬(〈b〉p∧〈b〉¬p),[!N]¬〈b〉¬p, ¬〈b〉¬p, 〈b〉¬p,[!N]¬〈b〉p,

[!N]〈b〉p, ¬〈b〉p, 〈b〉p,

[!N]〈c〉q,¬[!N]〈c〉q,〈c〉q,[!N]¬〈c〉q,¬〈c〉q,

¬p,p,[!N]¬p,[!N]p,¬q,q,[!N]¬q,[!N]q}

It should be clear that this tree is a syntactic tree: a useful means to describe the syntactic content
that we will use to construct atoms (and hence of the canonical model). It is not a semantic structure.
Now that we have defined our cn function, we can construct the function κ1, inductively, from the

leaves, back to the root (see Figure C2). We do not give the full syntactic extension of κ1(a), which
also contains, for example, [!N]〈c〉([!N]¬q∧q∧[!N]q or 〈c〉(q∧[!N]q), but rather an equivalent

κ∆(ǫ) = CN(∆)

κ∆(a)
κ∆(b) =

cn(b) ={¬p, p,

[!N]¬p, [!N]p}

κ∆(ab) =

cn(ab) ={¬p, p,

[!N]¬p, [!N]p}

κ∆(ac) =

cn(ac) ={¬q, q,

[!N]¬q, [!N]q}

κ∆(c) =

cn(c) ={¬q, q,

[!N]¬q, [!N]q}

Figure C2. Example of a construction tree of κ1.

slightly more compact representation:

κ1(a)≡ cn(a) ∪

{[!N]〈c〉[!N]¬q,¬[!N]〈c〉[!N]¬q,〈c〉[!N]¬q,[!N]¬〈c〉[!N]¬q,¬〈c〉[!N]¬q,

{[!N]〈c〉[!N]q,¬[!N]〈c〉[!N]q,〈c〉[!N]q,[!N]¬〈c〉[!N]q,¬〈c〉[!N]q,

{[!N]〈c〉¬q,¬[!N]〈c〉¬q,〈c〉¬q,[!N]¬〈c〉¬q,¬〈c〉¬q,

{[!N]〈c〉⊥,¬[!N]〈c〉⊥,〈c〉⊥,[!N]¬〈c〉⊥,¬〈c〉⊥,

{[!N]〈b〉[!N]¬p,¬[!N]〈b〉[!N]¬p,〈b〉[!N]¬p,[!N]¬〈b〉[!N]¬p,¬〈b〉[!N]¬p,

{[!N]〈b〉[!N]p,¬[!N]〈b〉[!N]p,〈b〉[!N]p,[!N]¬〈b〉[!N]p,¬〈b〉[!N]p,

{[!N]〈b〉¬p,¬[!N]〈b〉¬p,〈b〉¬p,[!N]¬〈b〉¬p,¬〈b〉¬p,

{[!N]〈b〉⊥,¬[!N]〈b〉⊥,〈b〉⊥,[!N]¬〈b〉⊥,¬〈b〉⊥}

As for κ1(ǫ) simply note that it contains in particular every formula of the form 〈a〉(ϕ1∧ ...∧
ϕn), where ϕ1,...,ϕn∈κ1(a). For example 〈a〉(〈b〉¬p∧〈c〉[!N]q)∈κ1(ǫ). Note also that κ1(ǫ) is
CN-closed.

D Looking at the structure of a concrete set of atoms

In this section, we return to the example fromAppendix C, where

1={〈a〉(〈b〉p∧〈b〉¬p),[!N]〈a〉[!N]〈c〉q,[!N]〈a〉¬〈b〉¬p}

and look at the candidate atoms that could play the role of building blocks for a pointed PσLTS of1.
Atoms for the 1-leaves are fairly obvious. At(1,c)=At(1,ac)={{q,[!N]q},{¬q,[!N]¬q}} and

At(1,b)=At(1,ab)={{p,[!N]p},{¬p,[!N]¬p}}.
Let us now look at At(1,a). To do so we start by cleaning up κ1(a) from all inconsistent formulas.

First there are three ‘parameters’ for the candidate atoms, a 〈b〉, a 〈c〉 parameter and a propositional
parameter. Consider the 〈b〉 parameters. Intuitively, each of them corresponds to one of the maximal

consistent subsets of {〈b〉p,¬〈b〉p,〈b〉¬p,¬〈b〉¬p,[!N]〈b〉p,[!N]¬〈b〉p,[!N]〈b〉¬p,[!N]¬〈b〉¬p}. By
axioms, those are the following:

〈b〉p,〈b〉¬p 〈b〉p,¬〈b〉¬p ¬〈b〉p,〈b〉¬p ¬〈b〉p,¬〈b〉¬p

[!N]〈b〉p,[!N]〈b〉¬p ⊥ ⊥ ⊥

[!N]〈b〉p,[!N]¬〈b〉¬p ⊥ ⊥

[!N]¬〈b〉p,[!N]〈b〉¬p ⊥ ⊥

[!N]¬〈b〉p,[!N]¬〈b〉¬p

Hence we have nine possible values for the 〈b〉 parameter, and similarly for 〈c〉. Finally, we have
four possible values for the propositional parameter. These are 4×(92)=324 atoms in At(1,a).
Before we describe At(1,ǫ), let us explain the structure behind the preceding value.
Consider a finite tree on A∗. Assume that Ea∈A∗ is not a leaf. Assume in particular that for each

b∈A0⊆A with A0 6=∅, there are nb possible values for s(Ea ·b). Now let s(Ea,b) be the selection of a
subset of all possible values for s(Ea ·b) and of a subset of that subset. There are then

∑nb
k=0

(nb
k

)
2k

possible values for s(Ea ·b).
Now observe, that the b-parameter of an atom in At(1,Ea) boils down to deciding which of the

atoms in At(1,Ea ·b) would make a consistent successor. Hence,

|At(1,Ea)|=2|prop(κ1(Ea))| ·|
∏

b∈A

|At(1,Ea·b)|∑

k=0

(
|At(1,Ea ·b)|

k

)
2k (B.8)

In particular, we have in our example,

|At(1,a)|=2|prop(κ1(a))| ·|
∏

d∈A

|At(1,Ea·d)|∑

k=0

(
|At(1,Ea ·d)|

k

)
2k

=22 ·

(2∑

k=0

(
2

k

)
2k

)2

=22 ·
(
1·20+2·21+1·22

)2

=4·(1+4+4)2

=324

and similarly:

|At(1,ǫ)|=2|prop(κ1(ǫ))| ·|
∏

d∈A

|At(1,ǫ·d)|∑

k=0

(
|At(1,ǫ ·d)|

k

)
2k

=22 ·

(324∑

k=0

(
324

k

)
2k

)
·

(2∑

k=0

(
2

k

)
2k

)
·

(2∑

k=0

(
2

k

)
2k

)

E Illustrating the procedure used in the completeness proof

In this section, we illustrate the construction used in the proof of the completeness of the logic L(!σ,A)
by an example worked out through the series of figures E1 to E9.

Consider the following set 1={¬〈a〉¬p,〈a〉q,[!N]〈a〉¬q}.
We have κ1(a)={p,¬p,q,¬q,[!N]p,[!N]¬p,[!N]q,[!N]¬q} and we have

κ1(ǫ)≡ κ1(a)

∪{〈a〉p,〈a〉q,〈a〉¬p,〈a〉¬q}

∪{〈a〉(p∧q),〈a〉(p∧¬q),〈a〉(¬p∧q),〈a〉(¬p∧¬q)}

∪{¬〈a〉p,¬〈a〉q,¬〈a〉¬p,¬〈a〉¬q}

∪{[!N]〈a〉p,[!N]〈a〉q,[!N]〈a〉¬p,[!N]〈a〉¬q}

∪{[!N]¬〈a〉p,[!N]¬〈a〉q,[!N]¬〈a〉¬p,[!N]¬〈a〉¬q}

We select as our first atom:

A0≡ {p,q}

∪{〈a〉p,〈a〉q,¬〈a〉¬p,〈a〉¬q}

∪{〈a〉(p∧q),〈a〉(p∧¬q),¬〈a〉(¬p∧q),¬〈a〉(¬p∧¬q)}

∪{[!N]〈a〉p,[!N]¬〈a〉q,[!N]¬〈a〉¬p,[!N]〈a〉¬q}

∪{[!N]¬〈a〉(p∧q),[!N]〈a〉(p∧¬q),

[!N]¬〈a〉(¬p∧q),[!N]¬〈a〉(¬p∧¬q)}

(w0, ∅)

η(w0) = ǫ, δ(w0, ∅) = A0

m0(w0, ∅) = 0

m1(w0, ∅) = 0

Figure E1. Starting the PσLTS at its root.

(w0, ∅)

η(w0) = ǫ, δ(w0, ∅) = A0

m0(w0, ∅) = 0

m1(w0, ∅) = 0

!N (w0, {w0})

η(w0) = ǫ, δ(w0, ∅) = B0

m0(w0, ∅) = 0

m1(w0, ∅) = 0

〈a〉p, 〈a〉¬q, 〈a〉(p ∧ ¬q)

Figure E2. Adding an !N-successor to (w0,∅).

(w0, ∅) !N (w0, {w0})
m0(w0, ∅) = 1

a a

a

p, ¬q, . . .

(w0 · a1, {w0}) p, ¬q, . . .

(w0 · a2, {w0})

p, ¬q, . . .

(w0 · a3, {w0})

Figure E3. Adding
a
→-successors to (w0,{w0}).

(w0, ∅) !N (w0, {w0})

a a

a

!N

!N

!N

p, ¬q, . . .

(w0 · a1, {w0, w0 · a1}) p, ¬q, . . .

(w0 · a2, {w0, w0 · a2})

p, ¬q, . . .

(w0 · a3, {w0, w0 · a3})

Figure E4. Adding !N-successors.

〈a〉p, 〈a〉q, 〈a〉¬q,

〈a〉(p ∧ q),

〈a〉(p ∧ ¬q)

(w0, ∅) !N (w0, {w0})

a a

a

!N

!N

!N

p, ¬q, . . .

p, ¬q, . . .

p, ¬q, . . .

Figure E5. (w0,∅) is now the rightmost m0-unmarked context.

The unique atom B0∈At(1,ǫ) such that Â0∧[!N]B̂0 is

B0≡ {p,q}

∪{〈a〉p,¬〈a〉q,¬〈a〉¬p,〈a〉¬q}

∪{¬〈a〉(p∧q),〈a〉(p∧¬q),¬〈a〉(¬p∧q),¬〈a〉(¬p∧¬q)}

∪{[!N]〈a〉p,[!N]¬〈a〉q,[!N]¬〈a〉¬p,[!N]〈a〉¬q}

∪{[!N]¬〈a〉(p∧q),[!N]〈a〉(p∧¬q),

[!N]¬〈a〉(¬p∧q),[!N]¬〈a〉(¬p∧¬q)}

(w0, ∅) !N (w0, {w0})

a a

aa

a

a

a

a

!N

!N

!N

p, ¬q, . . .

p, ¬q, . . .

p, ¬q, . . .p, q, . . .

p, q, . . .

p, ¬q, . . .

p, q, . . .

p, ¬q, . . .

(w0 · a4, ∅)

(w0 · a5, ∅)

(w0 · a6, ∅)

(w0 · a7, ∅)

(w0 · a8, ∅)

Figure E6. Adding
a
→-successors to (w0,∅).

(w0, ∅) !N (w0, {w0})

a a

a

!N

!N

!N

!N

!N

!N

!N

!N

p, ¬q, . . .

p, ¬q, . . .

p, ¬q, . . .p, q, . . .

p, q, . . .

p, ¬q, . . .

p, q, . . .

p, ¬q, . . .

(w0 · a4, {w0 · a4})

(w0 · a5, {w0 · a5})

(w0 · a6, {w0 · a6})

(w0 · a7, {w0 · a7})

(w0 · a8, {w0 · a8})

Figure E7. Adding !N-successors.

(w0, ∅) !N (w0, {w0})

a a

a

a

a

a

π π

π

a

a

a

a

a

!N

!N

!N

!N

!N

!N

!N

!N

p, ¬q, . . .

p, ¬q, . . .

p, ¬q, . . .p, q, . . .

p, q, . . .

p, ¬q, . . .

p, q, . . .

p, ¬q, . . .

F
ig

u
r
e

E
8
.
A
dd
in
g
π
−
1
-a
nc
es
to
rs
as

a
-s
uc
ce
ss
or
s
of
(w

0
,∅
).

(w0, ∅) !N (w0, {w0})

a a

a

a

a

a

π π

π

a

a

a

a

a

!N

!N

!N

!N

!N

!N

!N

!N

!N

!N

!N

p, ¬q, . . .

p, ¬q, . . .

p, ¬q, . . .p, q, . . .

p, q, . . .

p, ¬q, . . .

p, q, . . .

p, ¬q, . . .

F
ig

u
r
e

E
9
.
T
he

P
σ

LT
S

M
1
fo
r
1
=
{¬
〈a
〉¬

p
,〈
a
〉q
,[
!N
]〈
a
〉¬

q
}.

The PσLTS M1 is lastly gathered (Section 6.11) into a σLTS (Figure E10).

w0

a

a
aa

a
a

a
a

p, ¬q

p, ¬q

p, ¬qp, q

p, q

p, ¬q

p, q

p, ¬q

w0

a

aa
a

p

p

p

p

p,

p

Figure E10. Gathering the PσLTS M1 into a σLTS.

