Cédric Dégremont

Soumya Paul
email: soumya.paul@gmail.com

Nicholas Asher
email: nicholas.asher@irit.fr

A logic of sights

Keywords: Bounded rationality, modal logic, temporal logics, dynamic logics, sights, labeled transition systems

We study labeled transition systems where at each state an agent is aware of and hence reasons about only a part of the entire system (called the 'sight'). We develop a logic for such systems: the 'logic of sights'. We explore its model theory, give an axiomatization and prove its completeness. We show that the logic is a fragment of the loosely guarded fragment of first-order logic. We show that the satisfiability problem of the logic is PSPACE-complete and the combined complexity of its model-checking problem is in PTIME. Finally we discuss its relation to other logics as well as extensions.

Introduction

Chess, under the usual restrictions, is a finite extensive form game. Thus, at least in theory, it is possible to do a backward induction on the finite game tree so as to decide if one of the players has a winning strategy and to compute such a strategy if it exists. However, applying backward induction on the full game tree is intractable, and human and artificial players alike have to reason differently to make decisions. The extensive form game tree is simply too large for any algorithm to process. In such a situation, other types of analyses are called for. Can we look at the game from the perspective of the agents playing it? In chess, for instance, a player usually looks a few steps into the future of the current position, and then tries to play the optimal move, hoping that such a move will lead to a global optimization, and eventually to victory. In the process, there might be certain moves or paths along the game tree that the player is not aware of or does not consider possible. In other words, the player has a particular 'view' of the current game and of what can happen.

More formally, given a labeled transition system, an agent might be able to foresee only some, but not all, of the possible evolutions of the system. Things can get even more subtle if the agent has to take into account what she might be able to foresee once certain actions have been taken and the state of the system has changed. In the context of extensive games, Rêgo and Halpern [START_REF] Rêgo | Generalized solution concepts in games with possibly unaware players[END_REF] develop a semantic approach for such a notion of awareness (to be distinguished from an approach in which awareness depends on the syntactic resources of the language, such as, e.g. [15,[START_REF] Heifetz | Interactive unawareness[END_REF][START_REF] Modica | Unawareness and partitional information structures[END_REF]). The main idea is that an agent is assigned a subtree out of the current subgames at every stage in the extensive games where she plays. This approach is further explored in [START_REF] Grossi | Short sight in extensive games[END_REF].

In this article, we explore the modal logic of this concept, which [START_REF] Grossi | Short sight in extensive games[END_REF] call 'sight'. Our semantics is as general as possible: expanding labeled transition systems with a sight function at every state consisting in an arbitrary subset of states containing the current state. Syntactically, we add an operator [!N]ϕ, meaning that, at the current state, from the perspective of the agent, ϕ is true or, paraphrasing the semantics more closely, that, at the current state, in the sight of the agent at the current state, ϕ is true. The modal logic of these types of models is very natural; [!N] results in a restriction of the current model. The dynamic and restricting nature of [!N] makes our logic a cousin of a recent family of dynamic and/or temporal epistemic logics: Future Event Logic (FEL) [START_REF] Van Ditmarsch | Simulation and information: Quantifying over epistemic events[END_REF][START_REF] Van Ditmarsch | Future event logic -axioms and complexity[END_REF], to PAL [2,[START_REF] Gerbrandy | Bisimulations on Planet Kripke[END_REF][START_REF] Plaza | Logics of public communications[END_REF] and to TPAL [START_REF] Van Benthem | Merging frameworks for interaction: DEL and ETL[END_REF], PAL with protocols [START_REF] Fagin | Reasoning About Knowledge[END_REF][START_REF] Parikh | A knowledge based semantics of messages[END_REF]. But there are important differences, and in many respects Given a function f : ω → ω, let ATIME(f) be the class of languages which can be recognized by an alternating Turing machine M whose computation tree depth for inputs x of size |x| ≥ n 0 , for some constant n 0 ∈ ω, is bounded by f (|x|). We write: APTIME = k∈ω ATIME(n k) and we make use of the following result: Theorem 2.15 ([4]) PSPACE = APTIME

Dynamic logic of sights

We extend labeled transition systems with sights, which are functions associating to each state a set of states, which contains that state. Definition 3.1 A Labeled Transition System with Sights (henceforth σ LTS) M is an LTS expanded with a function: N : W → ℘(W) such that w ∈ N(w) for every w ∈ W .

Given a non-empty subset X ⊆ W , we write

M| X := X ,(a →| X) a∈A ,V | X
where a →| X is the appropriate restriction to X . Let C σ be the set of all labeled transition system with sights. A σTLTS is a σ LTS such that its N-free reduct is a TLTS.

The language of L (!σ,A) over A extends the basic modal language L A over A with an unary operator [!N]:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | a ϕ | [!N]ϕ,
where p ranges over prop and a over A. The semantics of the Boolean and of the basic modal operators is the usual one. The semantics of [!N]ϕ is defined as follows:

M,w |= [!N]ϕ iff M| N(w) ,w |= ϕ
Informally speaking, [!N]ϕ means that from the perspective of the agent at the current state ϕ holds.

As we said earlier, we would like to be as minimal as possible as how to A should be interpreted as we believe the concept of sight is relevant in different contexts that call for different interpretation of the meaning of A. If the reader would like to have some concrete intuition to rely on, she or he can think of A as possible actions or events that can change the state that the system is in. a ϕ would then mean that action a can be executed in the current state and in one of the possible execution of a, ϕ will hold afterwards. To take an example involving both the sight and the action modality, the intuitive interpretation of:

([!N](a p ∧ ¬ a ¬p)) ∧ a ¬p is that 'in the sight of the agent, the action a is executable and executing a will necessary lead to the system being in a p-state, while in fact there is a possible execution of a that leads to a ¬p-state'. But again, we believe that the approach is more general and interesting in contexts where other interpretations of A are evoked.

Notions of complexity and modal depth for L (!σ,A)

Depending on the context two notions of complexity will be useful, the first one depends on the negation normal form of a formula. We write it as cpx : L (!σ,A) → ω and define it as follows:

cpx(p) = cpx(¬p) = 1 cpx(ϕ ∧ ψ) = max{cpx(ϕ),cpx(ψ)}+1 cpx(ϕ ∨ ψ) = max{cpx(ϕ),cpx(ψ)}+1 cpx(a ϕ) = cpx(ϕ)+1 cpx([a]ϕ) = cpx(ϕ)+1 cpx([!N]ϕ) = cpx(ϕ)+1
Alternatively, we will use com : L (!σ,A) → ω with the following modified clause for negation:

com(¬ϕ) = com(ϕ)+1
Later, we will also need a notion of A-modal depth dep A : L (!σ,A) → ω, defined as follows:

dep A (p) = 0 dep A (¬ϕ) = dep A (ϕ) dep A (ϕ ∧ ψ) = max{dep A (ϕ),dep A (ψ)} dep A (ϕ ∨ ψ) = max{dep A (ϕ),dep A (ψ)} dep A (a ϕ) = dep A (ϕ)+1 dep A ([a]ϕ) = dep A (ϕ)+1 dep A ([!N]ϕ) = dep A (ϕ)
as well as a notion of σ -modal depth σ dep A : L (!σ,A) → ω, which differs in only one clause from A-modal depth:

σ dep A ([!N]ϕ) = σ dep A (ϕ)+1

Standard translation of L (!σ,A)

We show how to translate L (!σ,A) into the loosely guarded fragment of FO.

Definition 3.2

Let FO(N,A) be the first-order language with unary relation symbols (R p) p∈prop corresponding to propositional letters in p ∈ prop, binary relations (R a) a∈A for each label a ∈ A and finally a binary relation N with Nxy to mean y ∈ N(x).

We let VAR be our set of first-order variables. An assignment in M is a function g : VAR → |M|. We let g[x i /w i] be defined as follows:

g[x i /w i](x) = g(x) if x = x i , w i if x = x i . (1)
We also let g[x i /w i ,x j /w j] = (g[x i /w i])[x j /w j].

Let x ∈ VAR be a first-order variable, σ ∈ VAR * be a finite sequence of first-order variables and consider the following translation, the standard translation of L (!σ,A) :

ST x : (L (!σ,A) ×VAR *) → FO(N,A)
which is recursively defined as follows:

ST x (p ǫ) = R p (x) ST x (p σ) = ST x (p) ST x ((¬ϕ) σ) = ¬ST x (ϕ σ) ST x ((ϕ ∧ ψ) σ) = ST x (ϕ σ) ∧ ST x (ψ σ) ST x ((a ϕ) σ) = ∃y (z∈|σ | N(z,y) ∧ R a (x,y) ∧ ST y (ϕ σ))
[where y is fresh]

ST x (([!N]ϕ) σ) = ST x (ϕ σ x) ST x (ϕ σ xx) = ST x (ϕ σ x)
For every L (!σ,A) formula and every finite sequence of variables σ ∈ VAR * we have:

Fact 3.3 |ST x (ϕ σ)| < f (|ϕ σ |)
where f is a polynomial function on ω.

Proof. By induction on the structure of ϕ. The atomic cases and the negation case are immediate. To prove that the above translation is correct, we need the following lemma, which intuitively shows that ST x (ϕ σ) correctly captures the idea of ϕ being true in the restriction to x∈σ N(x). We will use the following piece of notation. Let Z ⊆ |M|, we write N(Z) := w∈Z N(w). We often abuse notation and write w for | w|. For example, given w ∈ |M| * , we write N(w) for N(| w|), and M| N(w) for M| N(| w|) .

In particular, given w = (w 0 ,...,w n), with w i+1 ∈ |M|∩N(w 0)∩...∩N(w i), for all i with 0 ≤ i ≤ n, we have M| N(w) = (...(M| N(w 0))|...)| N(w n) .

Lemma 3.4

Let M be a pointed σ LTS. For every w ∈ |M| * , every x ∈ VAR * , every w ′ ∈ N(w) and every assignment g : VAR → |M|, we have:

M| N(w) ,w ′ |= ϕ iff M,g[x 0 /w 0 ,...,x n /w n ,y/w ′] |= ST y ((ϕ) x)

Proof. The proof is by induction on the complexity of ϕ. The base case is immediate from the definition of the standard translation. So is the induction step for negation and conjunction. Now assume that ϕ = a ψ. Assume that M| N(w) ,w ′ |= a ψ. It follows that there is a t ∈ |M| such that:

(a) for all w i ∈ w, t ∈ N(w i) (b) w ′ a → t (c) M| N(w) ,t |= ψ By the IH, we have (c) iff (d) M,g[x/ w,z/t] |= ST z ((ψ) x). From (a), (b) and (d) it follows that: M,g[x/ w,y/w ′ ,z/t] |=

x i ∈ x Nx i z ∧ R a yz ∧ ST z ((ψ) x) (2)
By semantics of first-order logic we have thus:

M,g[x/ w,y/w ′] |= ∃z

x i ∈ x Nx i z ∧ R a yz ∧ ST z ((ψ) x) (3)
But this is equivalent to M,g[x/ w,y/w ′] |= ST y ((a ψ) x) (4)

The other direction is similar, which concludes the proof for this case. Assume that M| N(w) ,w ′ |= [!N]ψ. It follows by semantics of [!N] that: M| N(w∪w ′) ,w ′ |= ψ. But then by the IH it follows that M,g[x/ w,y/w] |= ST y ((ψ) x∪y). Hence, M,g[x/ w,y/w] |= ST y (([!N]ψ) x). The argument works in both directions, concluding this case and the induction step.

We can now prove that the above translation is correct:

Proposition 3.5
For each ϕ ∈ L (!σ,A) , each pointed σ LTS (M,s), and an assignment g : VAR → |M| the following holds:

M,s |= ϕ iff M,g[g(x) := s] |= ST x (ϕ)
Proof. The proof is by induction on the complexity of ϕ.

Base case: Assume that ϕ = p for some propositional letter p ∈ prop. We simply note that M,w |= p iff w ∈ V (p) iff M,g[x/w] |= R p (x) iff M,g[x/s] |= ST x (p).

Induction step: Assume that the claim holds for formulas of complexity at most n. We have to prove that it holds for formulas of complexity at most n+1. If the main operator is a conjunction and or a negation, the claim is immediate from the definition of ST x .

Assume that ϕ = a ψ ′′ and that M,w |= a ψ. By semantics there is some state w ′ with R a ww ′ and M,w ′ |= ψ

Hence, by inductive hypothesis (henceforth IH), M,g[y/w ′] |= ST y (ψ). By definition

ST x (a ψ) = ST x ((a ψ) ǫ) = ∃y (z∈|ǫ| N(z,y) ∧ R a (x,y) ∧ ST y (ψ ǫ))
= ∃y (R a (x,y) ∧ ST y (ψ ǫ))

But then we can set g(x) := w and g(y) := w ′ and have by [START_REF] Clarke | Model checking[END_REF] and the IH that M,g |= R a (x,y) ∧ ST y (ψ ǫ). The argument is symmetric for the other direction. Now assume that ϕ = [!N]ψ and assume M,w |= [!N]ψ. Note that this holds iff M| N(w) ,w |= ψ. But by Lemma 3.4 this holds iff M,g[x/w] |= ST x ((ϕ) x). But this is equivalent to M,g[x/w] |= ST x (([!N]ϕ)), which concludes the argument for this case and the proof.

Observe that the translation may not belong to the guarded fragment of FO: = ∃y(N(x,y)∧R a (x,y)∧(∃z(N(y,z)∧R b (y,z) ∧ R p (y))))

But the guard of the main formula N(x,y)∧R a (x,y) is not atomic, and neither is the guard of ∃z(N(y,z)∧R b (y,z) non atomic

∧R p (y)). Hence, ST x ([!N] a [!N] b p) is not guarded.
However, the standard translation of L (!σ,A) -formula is in the loosely guarded fragment of FO. To see this, first observe that Lemma 3.7 For every σ ∈ VAR * , ϕ ∈ L (!σ,A) and x ∈ VAR, Free(ST x (ϕ σ)) ⊆ {x}∪|σ |.

Proof. The proof is by induction on the complexity of ϕ. Base case: Note that for any σ ∈ VAR * and x ∈ VAR, Free(ST x (p σ)) = Free(R p (x)) = {x}. Induction hypothesis; Assume that the claim holds for formulas of complexity at most n. Induction Step; Now assume that ϕ is of complexity n+1. The proof is now by case. Case ϕ = ¬ψ. Simply observe that Free(ST x (¬ψ σ)) = Free(ST x (ψ σ)). The claim follows from IH.

Case ϕ = ψ ∧ χ . Observe that Free(ST x ((ψ ∧ χ) σ)) = Free(ST x (ψ σ) ∧ ST x (χ σ)) = Free(ST x (ψ σ))∪Free(ST x (χ σ)). The claim follows from IH. Case ϕ = a ψ. Now, Free(ST x ((a ψ) σ)) = Free(∃y (z∈|σ | N(z,y) ∧ R a (x,y) ∧ ST y (ψ σ))), for some y That is, Free(ST x ((a ψ) σ)) = |σ |∪{x}∪Free(ST y (ψ σ))\{y}. But from IH we have Free(ST y (ψ σ))\{y} ⊆ |σ |. Case ϕ = [!N]ψ. First observe that Free(ST x ([!N]ψ σ)) = Free(ST x (ψ σ x)). But by IH it follows that Free(ST x (ψ σ x)) ⊆ |σ x|∪{x} = |σ |∪{x}.
We can now prove that: Proposition 3.8 For every formula ϕ ∈ L (!σ,A) , x ∈ VAR and σ ∈ VAR * , ST x (ϕ σ) is loosely guarded.

Proof. Take an arbitrary σ ∈ VAR * and some x ∈ VAR. For the base case, simply note ST x (p σ) is an atomic formula, hence loosely guarded. Negation and conjunctions are straightforward from the closure of LGF under Booleans. Now for the a -case. First note, that by Lemma 3.7, we have

ST x ((a ψ) σ) = ∃y y={y} (z∈|σ | N(z,y) ∧ R a (x,y) Free(γ)=|σ |∪{x,y} ∧ ST y (ψ σ)) Free(ψ σ)⊆{y}∪|σ |
(where y is fresh)

And observe that all conditions of the loosely guarded quantification are respected:

γ is a conjunction of atomic formulas -By IH, ψ σ ∈ LGF -Free(ST y (ψ σ)) ⊆ Free(γ) -{y} ⊆ Free(γ) -for every z ∈ σ and for x we have a conjunct in γ in which both x and it are occurring.

The [!N]-case is immediate since ST x (([!N]ϕ) σ) = ST x (ϕ σ x).
Since the loosely guarded fragment of FO is decidable Hodkinson [START_REF] Hodkinson | Loosely guarded fragment of first-order logic has the finite model property[END_REF], as an immediate corollary we have:

Corollary 3.9 L (!σ,A) is decidable.
In Section 7, we show the exact complexity of the satisfiability problem for L (!σ,A) . Finally, note that it also follows that Corollary 3.10 L (!σ,A) is compact.

Model theory and expressive power

Logic of sights and basic modal logic

In this section, we investigate the expressive power of our modal logics. We start with a simple question: how does the basic modal language L (N,A) with the relation N as a binary relation compare with L (!σ,A) in terms of expressive power? The expressive powers of these two languages are incomparable, as we now show.

Formally, the language of L (N,A) over A extends the basic modal language L A over A with a unary operator N :

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | a ϕ | N ϕ,
where p ranges over prop and a over A. The semantics of N ϕ is given as follows:

M,w |= N ϕ iff for some v with v ∈ N(w) we have M,v |= ϕ
We show that the expressive power of L (!σ,A) and L (N,A) are incomparable. We show that L (!σ,A) is not invariant under such bisimulations. Consider the two models given in Figure 1 where in

M 1 , N(w 0) = {w 0 ,w 2 },N(w 1) = {w 1 },N(w 2) = {w 2 } and in M 2 , N(w ′ 0) = {w ′ 0 ,w ′ 1 },N(w ′ 1) = {w ′ 1 }. Note that (M 1 ,w 0) and (M 2 ,w ′ 0) are (a →, N →)-bisimilar. Finally, note that M 1 ,w 0 |= [!N] a p while M 2 ,w ′ 0 |= [!N] a p. (2
) Consider the two models in Figure 2 where in M 1 we have

N(w 0) = {w 0 ,w 1 }, N(w 1) = {w 1 ,w 2 }, N(w 2) = {w 2 } and in M 2 we have N(w ′ 0) = {w ′ 0 ,w ′ 1 }, N(w ′ 1) = {w ′ 1 }. Clearly the formula a N ¬p is satisfied at (M 1 ,w 0), while, M 2 ,w ′ 0 |= a N ¬p. Now we show inductively that for every formula ϕ ∈ L (!σ,A) we have M 1 ,w 0 |= ϕ iff M 2 ,w ′ 0 |= ϕ (6)
To do so, we first start by showing that for every formula ϕ ∈ L (!σ,A) ,

M 1 ,w 1 |= ϕ iff M 2 ,w ′ 1 |= ϕ (7) M 1 | {w 1 ,w 2 } ,w 1 |= ϕ iff M 1 | {w 1 } ,w 1 |= ϕ (8) M 1 | {w 1 } ,w 1 |= ϕ iff M 2 | {w ′ 1 } ,w ′ 1 |= ϕ (9)
We first show [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF]. To see that simply note that M 1 | {w 1 ,w 2 } ,w 1 and M 1 | {w 1 } ,w 1 are A-bisimilar and that N(w 1) = {w 1 ,w 2 }. Now to see that [START_REF] Feferman | Persistent and invariant formulas relative to theories of higher order[END_REF], simply note that

M 1 | {w 1 } ,w 1 and M 2 | {w ′ 1 } ,w ′ 1 are A-bisimilar,
and that N(w 1)∩{w 1 } = {w 1 } and similarly for w ′ 1 . To verify that [START_REF] Fagin | Reasoning About Knowledge[END_REF], first note that M 1 ,w 1 and M 2 ,w ′ 1 are A-bisimilar and that N(w 1) = {w 1 ,w 2 } and N(w ′ 1) = {w 1 }. The claim follows from these observations together with [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF] and [START_REF] Feferman | Persistent and invariant formulas relative to theories of higher order[END_REF]. We observe:

M 2 | N(w ′ 0) = M 2 . (10
)
Since R a (w 1) = ∅ and w 1 ∈ N(w 0), we have

M 1 | N(w 1) ,w 1 |= ϕ iff M 1 | N(w 0) ,w 1 |= ϕ. (11
)
And similarly

M 2 | N(w ′ 1) ,w ′ 1 |= ϕ iff M 2 | N(w ′ 0) ,w ′ 1 |= ϕ. (12)
Let us now show inductively that for every formula ϕ ∈ L (!σ,A)

M 1 | N(w 0) ,w 0 |= ϕ iff M 2 | N(w ′ 0) ,w ′ 0 |= ϕ (13)
For the base case,

M 1 | N(w 0) ,w 0 |= p iff M 2 | N(w ′ 0) ,w ′ 0 |= p, is immediate from the definition of V (p).
The conjunction and negation cases follow the usual argument. Now assume

M 1 | N(w 0) ,w 0 |= a ϕ. Since R a (w 0)∩N(w 0) = {w 1 }, it follows that M 1 | N(w 0) ,w 1 |= ϕ. From (11) it follows that M 1 | N(w 1) ,w 1 |= ϕ, and hence by (9) that M 2 | {w ′ 1 } ,w ′ 1 |= ϕ. By (12), we have M 2 | {w ′ 0 } ,w ′ 1 |= ϕ. Since w ′ 1 ∈ R a (w ′ 0)∩N(w ′ 0) the claim follows. Finally, note that M 1 | N(w 0) ,w 0 |= [!N]ϕ iff M 1 | N(w 0) ,w 0 |= ϕ and that M 2 | N(w ′ 0) ,w ′ 0 |= [!N]ϕ iff M 2 | N(w ′ 0) ,w ′ 0 |= ϕ.
This concludes the induction step. We are now ready to prove our main claim [START_REF] Dawar | Inflationary fixed points in modal logic[END_REF].

For the base case, note that M 1 ,w 0 |= p iff M 2 ,w ′ 0 |= p, is immediate from the definition of V (p). Conjunction and negation follows the usual argument. Now assume M 1 ,w 0 |= a ϕ. Since R a (w 0) = {w 1 }, we have M 1 ,w 1 |= ϕ, and thus by [START_REF] Fagin | Reasoning About Knowledge[END_REF] [START_REF] Fontaine | Frame definability for classes of trees in the µ-calculus[END_REF], it follows that M 2 ,w ′ 0 |= ϕ. This concludes the main induction and the proof.

we have M 2 ,w ′ 1 |= ϕ. Now since R a (w ′ 0) ⊇ {w ′ 1 }, we have M 2 ,w ′ 1 |= a ϕ. Now assume that M 1 ,w 0 |= [!N]ϕ, we have thus M 1 | N(w 0) ,w 0 |= ϕ. By (13), it follows that M 2 | N(w ′ 0) ,w ′ 0 |= ϕ. By
A more direct proof of this result uses the proper notion of bisimulation for L (!σ,A) . To enable us to define this notion, we first prove a few facts.

Invariance non-invariance properties

From the first direction of the proof of Fact 4.1, we can also show that the dynamic logic of sights is not invariant under bounded p-morphisms. We can also show that L (!σ,A) is not invariant under ∩-bisimulations. Conversely, L (!σ,A) is not as expressive as L (N,A),∩ either. However, the logic is invariant under taking generated submodels.

Fact 4.3 L (!σ,A) is not invariant under (A,N,∩)-bisimulations. Corollary 4.4 L (N,A),∩ ≥ L (!σ,A) .
Fact 4.5 Let M ′ be an A-generated submodel of M. For every ϕ, every {w 0 ,...,w n } ⊆ |M ′ | and for every

w ∈ N(w 0)∩...∩N(w n)∩|M ′ | we have M| N(w 0)∩...∩N(w n) ,w |= ϕ iff M ′ | N ′ (w 0)∩...∩N ′ (w n) ,w |= ϕ.
Proof. By induction on ϕ. The base case follows from the fact that V ′ (p) = V (p)∩|M ′ |. Induction steps for booleans are straightforward. We now prove the a and [!N] induction steps.

For the left to right direction of the a -induction step, assume M| N(w 0)∩...∩N(w n) ,w |= a ψ. It follows that there is a state v ∈ N(w 0)∩...∩N(w n) (0) with wR a v (1) and M| N(w 0)∩...∩N(w n) ,v |= ψ (2). From (1), the fact that M ′ is an A-generated submodel of M, and the fact that w ∈ |M ′ |, it follows that v ∈ |M ′ | (3) and wR ′ a v (4). From (0), the fact that {w 0 ,...,w n } ⊆ |M ′ | and construction of M ′ we have v ∈ N ′ (w 0)∩...∩N ′ (w n) [START_REF] Clarke | Model checking[END_REF]. From (2), (3), (5) and IH, it follows that [START_REF] Dawar | Inflationary fixed points in modal logic[END_REF]. From (4) and (6), it follows that M ′ | N ′ (w 0)∩...∩N ′ (w n) ,w |= a ψ. The other direction is trivial.

M ′ | N ′ (w 0)∩...∩N ′ (w n) ,v |= ψ (
For the left ro right direction of the [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF]. From (7), [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF] and IH it follows that M ′ | N ′ (w 0)∩...∩N ′ (w n)∩N ′ (w) ,w |= ψ (9). From (9), (8) and semantics, the claim follows. The other direction is similar.

[!N]-induction step, assume that M| N(w 0)∩...∩N(w n) ,w |= [!N]ψ. It follows that M| N(w 0)∩...∩N(w n)∩N(w) ,w |= ψ (7). By definition of M ′ it follows that w ∈ N ′ (w 0)∩ ...∩N ′ (w n)∩N ′ (w)
The following is immediate from the previous fact. In words, every formula of the logic of sights is equivalent to a first-order formula that is both bounded and loosely guarded.

σ -bisimulations

As expected, the notion of bisimulation matching L (!σ,A) -modal invariance, is particularly natural.

Definition 4.8 A (!N,A)-bisimulation between two σ LTS S = (W ,(a →) a∈A ,N,V) and S ′ = (W ′ ,(a → ′) a∈A ,N ′ ,V ′) is a relation Z ⊆ (℘(W)×W)×(℘(W ′)×W ′
) such that for some w ∈ W and w ′ ∈ W ′ we have (W ,w,W ′ ,w ′) ∈ Z, and such that the following conditions hold:

1. (Atomic Harmony) if (X ,x,X ′ ,x ′) ∈ Z then for every p ∈ prop, we have x ∈ V (p) iff x ′ ∈ V ′ (p) 2. (Forth) if (X ,x,X ′ ,x ′) ∈ Z
and xR a y for some y ∈ X , then there exists some y ′ ∈ X ′ such that x ′ R a y ′ and (X ,y)Z(X ′ ,y ′) 3. (Back) if (X ,x,X ′ ,x ′) ∈ Z and x ′ R ′ a y ′ for some y ′ ∈ X ′ , then there exists some y ∈ X such that xR a y and (X ,y)Z(X ′ ,y ′) 4. (N-Forth) if (X ,x,X ′ ,x ′) ∈ Z and xR a y for some y ∈ X ∩N(x), then there exists some y ′ ∈ X ′ ∩ N(x ′) such that x ′ R ′ a y ′ and (X ∩N(x),y)Z(X ′ ∩N(x ′),y ′) 5. (N-Back) if (X ,x,X ′ ,x ′) ∈ Z and x ′ R ′ a y for some y ′ ∈ X ′ ∩N(x ′), then there exists some y ∈ X ∩N(x) such that xR a y and (X ∩N(x),y)Z(X ′ ∩N(x ′),y ′)

We say that two pointed σ LTS (S,w 0) = (W ,(a →) a∈A ,N,V ,w 0) and (S ′ ,w ′ 0) = (W ′ ,(

a ′ →) a∈A , N ′ ,V ′ ,w ′ 0) are (!N,A)-bisimilar (notation: S,w 0 ↔ !N,A S ′ ,w ′ 0)
whenever there is bisimulation Z between S and S ′ such that (W ,w 0 ,W ′ ,w ′ 0) ∈ Z. When A is clear from context, we write σ -bisimilar for (!N,A)-bisimilar. Proposition 4.9 (Hennessy-Milner Theorem)

Let S = (W ,(a →) a∈A ,N,V) and S ′ = W ′ ,(a → ′) a∈A ,N ′ ,V ′ be two image-finite σ LTS. For every w ∈ W and w ′ ∈ W ′ , w L (!σ,A) w ′ iff w ↔ !N,A w ′
Proof. The proof is standard. We just indicate the N-Forth direction of the left to right direction. Assume for contradiction that there are two pointed image-finite σ LTS S,w 0 and S ′ ,w ′ 0 , such that S,w 0 S ′ ,w ′ 0 , w 0 R a w 1 and (0). Now that we have the right notion of bisimulation, a shorter alternative proof for the second part of Proposition 4.1 boils down to showing that M 1 ,w 0 ↔ !N,A M 2 ,w ′ 0 .

w 1 ∈ N[w 0], but there is no state v ′ ∈ S ′ | N(w ′ 0) such that w ′ 0 R a v ′ and S ′ | N(w ′ 0) ,w 1 S ′ | N(w ′ 0) ,v ′ (1). It is easy to see that R a [w ′ 0]∩N(w ′ 0) = ∅. Since S ′ is image-finite, we can enumerate R a [w ′ 0]∩N(w ′ 0) = {v ′ 1 ,...,v ′ n } (for some n ∈ ω). Now by (1), for each v ′ i there is some formula ϕ i such that S| N(w 0) ,v ′ |= ϕ i and S ′ | N(w ′ 0) ,v ′ i |= ϕ i . It follows that that S,w 0 |= [!N] a i∈n+1 ϕ i but S ′ ,w ′ 0 |= [!N] a i∈n+1 ϕ i . Contradicting

A complete axiomatization

In this section, we give an axiom system for the logic L (!σ,A) and prove its completeness.

Existential and universal formulas

In what follows, let a universal formula be defined recursively as follows:

1. if p ∈ prop, then p,¬p are universal 2. if ϕ and ψ are universal, then ϕ ∧ ψ and ϕ ∨ ψ are universal.

3. if ϕ is universal, then [a]ϕ and [!N]ϕ are universal.

Existential formulas are defined symmetrically, using a ϕ instead of [a]ϕ. Clearly, the negation of a universal formula is an existential formula and conversely.

Preliminary observations

We start with some simple observations. Fact 5.1

If |= ϕ → ψ then |= a ϕ → a ψ
We recall the following standard preservation result: Theorem 5.2 (Łoś-Tarski) A first-order formula is preserved under embeddings if, and only if, it is logically equivalent to an existential formula.

if ⊢ ϕ, then ⊢ [a]ϕ K ⊢ [a](ϕ → ψ) → ([a]ϕ → [a]ψ) Dual ⊢ [a]¬ϕ ↔ ¬ a ϕ [!N]-Nec if ⊢ ϕ, then ⊢ [!N]ϕ [!N]-K ⊢ [!N](ϕ → ψ) → ([!N]ϕ → [!N]ψ) [!N]-p ⊢ p ↔ [!N]p [!N]-¬ ⊢ [!N]¬ϕ ↔ ¬[!N]ϕ [!N]-∧ ⊢ [!N](ϕ ∧ ψ) ↔ ([!N]ϕ ∧ [!N]ψ) [!N]-∨ ⊢ [!N](ϕ ∨ ψ) ↔ ([!N]ϕ ∨ [!N]ψ) [!N] a if ϕ is existential, then ⊢ [!N]ϕ → ϕ [!N][!N] ⊢ [!N][!N]ϕ ↔ [!N]ϕ MP if ⊢ ϕ → ψ and ⊢ ϕ, then ⊢ ψ Corollary 5.3 If ϕ is existential, then |= [!N]ϕ → ϕ.
Proof. Let ϕ ∈ L σ . By Proposition 3.5 there is an equivalent FO-formula ST x (ϕ). An easy induction shows that if ϕ is existential then so is ST x (ϕ). The claim follows from the right to left direction of Theorem 5.2

Axiom system

Consider the axiom system !N given in Table 1. In the rest of this section, we drop reference to !N and simply use ⊢ ϕ to mean that ϕ is derivable using the axiom system !N and the term consistency to mean !N-consistency.

Interpretation of the axioms: [!N] axioms over Booleans follow from determinacy of the [!N]

operator. The [!N][!N] axiom indicates that there is no non-trivial immediate nesting of [!N]. This form of introspection for sights, can be interpreted as saying that agents are aware of the continuations they are aware of. The [!N] a axiom is saying that agents never consider as possible, evolutions of the system that are in fact impossible. Or looking, at the converse, those agents are always aware of the necessary evolutions of the system.

Fact 5.4 ⊢ [!N](ϕ → ψ) ↔ ([!N]ϕ → [!N]ψ) Fact 5.5 If ϕ is universal, then ⊢ ϕ → [!N]ϕ

Soundness and completeness

Lemma (Soundness)

If ⊢ ϕ then |= ϕ.
Proof. The only non-trivial case is that of axiom ([!N] a). Its soundness is immediate from Corollary 5.3.

In the next section, we prove the following:

Lemma (Weak completeness)

Every finite !N-consistent sets of L (!σ,A) -formulas is satisfiable.

Theorem (Strong completeness)

Every !N-consistent sets of L (!σ,A) -formulas is satisfiable.

Completeness

The structure of the proof is as follows. We first show how to inductively construct a finite witness model from a finite set of formulas. This model will not be a σ LTS, but rather what we call a pseudoσ LTS (see Section 6.1). We then show that these pseudo-σ LTSs are in some sense good, allowing us to gather them back in a truth-preserving way into σ LTSs. A witness pointed pseudo-σ LTS is constructed from finite maximal consistent sets ('atoms'). A truth lemma shows that membership in the set of formulas labeling a state of the witness pseudo-σ LTS is equivalent to satisfaction at that state. Putting this all together gives us weak completeness, and strong completeness follows from compactness (Corollary 3.10). All of this is fairly abstract at the moment but we need some concepts before we can give the details in Section 6.6. To be able to guarantee that we construct good, yet finite pseudo-σ LTSs, we will use a function associating a subset of our language with each word in a finite tree on A * , the set of finite words on our set of labels. Section 6.3 is dedicated to this. The reader uninterested in the details of the construction might want to skip this section, looking only at Example 6.4.2 to see how this function is defined in a concrete case, and simply refer to it as needed.

Omitted proofs are given in Appendix B, while Appendix A contains an important numbers of intermediate facts that a play a role in some of these proofs. The proofs of these facts are also given in Appendix B.

Pseudo-σ LTS

A pseudo-σ LTS (henceforth often Pσ LTS) is a structure of the form:

W ,C,(R a) a∈A , !N →,Val where, (14
)
-W is a non-empty set and C ⊆ (W ×℘(W))

-for each a ∈ A, R a ⊆ C ×C and

!N →⊆ C ×C -Val : C → ℘(prop).
The finitary witness Pσ LTS will be generated inductively from a consistent set of L σ -formulas, as we will explain below.

Since Pσ LTSs are not σ LTSs, the semantics of L (!σ) on Pσ LTSs is different:

M,w,X |= p iff p ∈ Val(w,X) M,w,X |= a ϕ iff there is s ∈ W with (s,X) ∈ C,(w,X)R a (s,X) and M,s,X |= ϕ M,w,X |= [!N]ϕ iff there is (v,Y) ∈ C with (w,X) !N → (v,Y) and M,v,Y |= ϕ
The semantics of Booleans is as usual. In words, this is a basic modal semantics with C being the state space.

Later in the proof, we will restrict ourselves to a class of well-behaved Pσ LTSs that are more like σ LTSs. As we will explain, our construction ensures that our witness Pσ LTSs are in this well-behaved class. This will allow us to work with a semantics more like our original semantics, but nevertheless equivalent to the one above on the class of proper Pσ LTSs. We return to this in Section 6.7.

Notation and terminology

Henceforth, in this section, we refer to L σ -formulas simply as formulas, unless stated otherwise. Given a set of formumas, let exist() = {ϕ ∈ |ϕ is existential.}. Given a finite set of formulas A = {ϕ 1 ,...,ϕ n } we let A = A = ϕ 1 ∧ ... ∧ ϕ n . Given a formula ϕ, let sub(ϕ) be the set of subformulas of ϕ. In particular ϕ ∈ sub(ϕ). Given a set of formulas A, let Sub(A) = {sub(ϕ)|ϕ ∈ A}.

Linguistic closure: trees and kappas

We build up the witness model by inductively selecting appropriate atoms. We construct atoms from particular finite subsets of the language, which we describe in this section. As will become clear, we associate with each finite subset of L σ based on A, a subtree Tree() of A * . To each word a in A * we will associate a finite set κ(a) ⊆ L σ . Atoms labeling the states in our witness models will be maximal consistent subsets of κ(a) for some a ∈Tree().

Properties of CN-closure

Let be finite a set of formulas, we define CN() as the smallest set of formulas such that:

-Sub() ⊆ CN() -If ϕ ∈ CN() and ϕ is neither of the form ¬ψ, nor of the form [!N]ψ then ¬ϕ ∈ CN() -If ϕ ∈ CN() and ϕ is neither of the form [!N]ψ, nor of the form ¬[!N]ψ then [!N]ϕ ∈ CN()
We sometimes abuse notation and write CN(ϕ) for CN({ϕ}). Note, that we do not allow arbitrary iteration of negation and [!N]. This is necessary to keep the sets we are working with finite. However, we have the following: Given a finite set of formulas, let E(,a) = {ϕ| a ϕ ∈ or ¬ a ϕ ∈ }. Given a set of formulas Ŵ, we also write:

Ŵ(a) = CN(E(Ŵ,a)). (15
)
That is, Ŵ(a) = CN({ϕ| a ϕ ∈ Ŵ or ¬ a ϕ ∈ Ŵ}). Hence, in particular: Corollary 6.5 Let be a finite set. CN()(a) = CN({ϕ| a ϕ ∈ CN()}).

Initial downward cn-labeling and the Tree() tree

Again, throughout this section, is assumed to be finite. Definitions and results are stated under this proviso.

Now we define the following notation, for finite sequences a ∈ A * :

cn()(a) = CN() if a = ǫ cn()(b)(c) if a = b•c. (16
)
Fact 6.6

For every a ∈ A * , cn()(a) is finite.

Fact 6.7

For every a ∈ A * , we have cn()(a) = CN(cn()(a)).

We call a finite sequence a ∈ A * -maximal if for every b ∈ A, cn()(a •b) = ∅ but cn()(a) = ∅. We also call such sequences -leaves. Let tree() = { a ∈ A * |cn()(a) = ∅}. Let ⊑ be the subsequence relation on A * . We also write SubTree(,

a) = { b ∈ A * | a • b ∈ tree()}.
Define a function rank : tree() → ω be defined as follows:

rank (a) = 0 if a is a -leaf n+1 if max({rank(a •b)| a •b ∈ tree()}) = n 6.4.1
The linguistic function κ Definition 6.8 (cj and da) Let Ŵ be finite a set of formulas. Let cj(Ŵ) be defined as follows:

cj(Ŵ) = CN({ S|S ⊆ Ŵ}) (17)
and let da(Ŵ,a) be defined as follows:

da(Ŵ,a) = { a ϕ|ϕ ∈ cj(Ŵ)} (18)
Definition 6.9

We define a function κ : A * → ℘(L σ) recursively:

1. If cn()(a) = ∅, then κ (a) = ∅. 2. If a is a -leaf, then κ (a) = cn()(a). 3. If a is not a -leaf, then κ (a) = CN(b∈A da(κ (a •b),b)∪cn()(a))
The maximum A-modal depth of κ (a) is the same as that of cn()(a).

Lemma 6.10

For every a ∈ tree(), max(dep(κ (a))) = max(dep(cn()(a))) = rank (a).

We observe two facts: sets of the form κ (a) are finite and closed under CN.

Fact 6.11

For each a ∈ A * , κ (a) is finite.

Fact 6.12 For each a ∈ A * , κ (a) = CN(κ (a)).
The following fact states that there is a maximal rank at which a formula ϕ can occur. The following facts illustrate the exact relation between the content κ (a) and the κ content of a's children in the syntactic tree Tree().

Fact 6.14 If ψ ∈ CN({ S|S ⊆ κ (a •b)}), then b ψ ∈ κ (a) . Fact 6.15 If c ϕ ∈ κ (a), then ϕ ∈ CN({ S|S ⊆ κ (a •c)}).

Corollary 6.16

If c ϕ ∈ κ (a), then we are in one the following cases:

-ϕ ∈ κ (a •c) -ϕ = (ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •c), with n ≥ 2 -ϕ = [!N](ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •c), with n ≥ 2 -ϕ = ¬(ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •c), with n ≥ 2 -ϕ = [!N]¬(ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •c), with n ≥ 2

An example

In Appendix C, we illustrate these syntactic concepts, by computing them for

= { a (b p ∧ b ¬p),[!N] a [!N] c q,[!N] a ¬ b ¬p}.

Atoms and their existence

Atoms are the building blocks of our models. They are finitary maximal consistent sets. Given a finite set , κ associates to each a ∈ tree() a non-empty finite subset of L σ . (a)-atoms are maximal consistent subsets of κ (a). In this section, we show that we can find enough of these building blocks and that they can be associated to build a canonical pseudoσ LTS. The actual construction will be discussed in Section 6.9.

(a)-Atoms and their properties

Definition 6.17 ((, a)-Atoms) For each a ∈ A * , let At(, a) be the set of maximally consistent subsets of κ (a). We refer to elements of At(, a) as (, a)-atoms.

First we prove a few properties about the semantic richness our set of atoms.

Existence and uniqueness properties of (a)-atoms

In this section, we show that we have enough atoms, or building blocks, to construct our pointed Pσ LTS of . As usual for such finitary constructions, we will need a finite form of the Lindenbaum lemma.

Ŵ (a •b) = ∅. Let D ∈ At(Ŵ, a). If b ϕ ∈ D, then there is an atom E ∈ At(Ŵ, a •b) such that there are formulas χ 1 ,...,χ n ∈ E such that ⊢ (χ 1 ∧ ... ∧ χ n) → ϕ, and D ∧ b E is consistent.
Proof. By Corollary 6.16 we are in one of the following cases:

1. ϕ ∈ κ (a •b) 2. ϕ = (ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •b), with n ≥ 2 3. ϕ = [!N](ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •b), with n ≥ 2 4. ϕ = ¬(ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •b), with n ≥ 2 5. ϕ = [!N]¬(ψ 1 ∧ ... ∧ ψ n) and ψ 1 ,...,ψ n ∈ κ (a •b), with n ≥ 2
We only prove Case 5 as all other cases are similar. Case 5: By axioms it follows that for some

ψ i ∈ {ψ 1 ,...,ψ n } we have [!N]¬ψ i ∈ D. But since ψ i ∈ κ (a •b) it follows by Fact 6.20 that we have a formula Norm([!N]¬ψ i) ∈ κ (a •b) such that ⊢ Norm([!N]¬ψ i) ↔ [!N]¬ψ i . We define E 0 = {Norm([!N]¬ψ i)}. Assume for contradiction that there is no such ψ i such that D ∧ b E 0 is consistent. It follows that for all ψ i ∈ {ψ 1 ,...,ψ n } we have ⊢ D → ¬Norm([!N]¬ψ i), hence by axioms, ⊢ D → Norm([!N]ψ i). But then ⊢ D → ¬ϕ, contradicting the fact that D is consistent. By reduction it follows that D ∧ b E 0 is consistent (a).
Now enumerate the formulas in κ (a •b) as α 1 ,...,α m . By Fact 6.18, we can define E n inductively as follows:

-E 0 = {Norm([!N]ψ i)}, -E n+1 = E n ∪{α n+1 }, if D ∧ b (E n ∧ α n+1) is consistent, -E n+1 = E n ∪{Norm(¬α n+1)}, otherwise. Finally, define E = E m . We claim that for every k with 0 ≤ k ≤ m we have that D ∧ b E k is consistent.
The proof is by induction on k. The base case follows from (a). For the induction step, assume that E n has been defined and D ∧ b E n is consistent. We have by basic modal logic: Proof. By hypothesis κ (a) = ∅. Hence there is some formula

⊢ b E n ↔ b ((E n ∧ α n+1) ∨ (E n ∧ Norm(¬α n+1))) and thus ⊢ b E n ↔ (b (E n ∧ α n+1) ∨ b E n ∧ Norm(¬α n+1)). Hence either D ∧ b (E n ∧ α n+1) is consistent or D ∧ b (E n ∧ Norm(¬α n+1)) is consistent. It also follows that D ∧ b E
ϕ 0 ∈ D (0). Either D ∧ [!N]ϕ 0 is consistent, and we set E 0 = {ϕ 0 }, or ⊢ (D ∧ [!N]ϕ 0) → ⊥. But then we have by axioms ⊢ D → [!N]¬ϕ 0 . But since D is an atom it follows that D ∧ [!N]¬ϕ 0 is consistent. Moreover, by Fact 6.20 there is some formula Norm([!N]¬ϕ 0) ∈ κ (a) such that ⊢ Norm([!N]¬ϕ) ↔ [!N]¬ϕ 0 .
Moreover by (0) and Fact 6.18 we have some formula Norm(¬ϕ 0) ∈ κ (a) such that ⊢ Norm(¬ϕ) ↔ ¬ϕ 0 , and we set E 0 := {Norm(¬ϕ 0)}. Either way we can define some set

E 0 such that D ∧ [!N] E 0 is consistent (1).
Now enumerate the formulas in κ (a) as α 1 ,...,α m . By (1) and Fact 6.18, we can define E n inductively as follows:

-E 0 , defined as indicated above.

-

E n+1 = E n ∪{α n+1 }, if D ∧ [!N](E n ∧ α n+1) is consistent, -E n+1 = E n ∪{Norm(¬α n+1)}, otherwise. Finally, define E = E m . We claim that of for every k with 0 ≤ k ≤ m we have that D ∧ [!N] E k is consistent.
The proof is by induction on k. Base case follows from [START_REF] Alur | Alternating-time temporal logic[END_REF]. For the induction step, assume that E n has been defined and

D ∧ [!N] E n is consistent. Now we are in one of two cases. Either D ∧ [!N](E n ∧ α n+1) is consistent, and by construction so is D ∧ [!N] E n+1 , or it is not consistent, that is ⊢ (D ∧ [!N](E n ∧ α n+1)) → ⊥. But in this case, we have by axioms [!N]¬ and [!N]∧ that ⊢ D → ([!N] E n → [!N]¬α n+1
). But then by IH, Fact 6.18 and construction we have that D

∧ [!N] E n+1 is consistent. Hence either way D ∧ [!N] E n+1 is consistent. It also follows that D ∧ [!N] E is consistent
and moreover by construction that E is a maximally consistent subset of κ (a).

The following shows that the canonical

!N → relation is deterministic. Proposition 6.25 (Uniqueness) Let a ∈ A * be such that κ (a) = ∅. Let D,E,F be (, a)-atoms. If D ∧ [!N] E is consistent and D ∧ [!N] F is consistent as well, then E = F.
Proof. Assume for contradiction that E = F. Since E and F are (, a)-atoms, it follows that there is some formula ϕ ∈ κ (a) such that either ϕ ∈ E and ϕ ∈ F, or ϕ ∈ E and ϕ ∈ F. But in the first case it follows Fact 6.21 that there is some formula Norm(¬ϕ) ∈ E such that ⊢ Norm(¬ϕ) ↔ ¬ϕ, but then by consistency of atoms it follows that Norm(¬ϕ) ∈ B and clearly we have ⊢ ϕ ↔ ¬Norm(¬ϕ) (1). (And symmetrically in the other case). Hence we can assume that that there are two formulas ϕ,Norm(¬ϕ) ∈ κ (a) such that ϕ ∈ E and Norm(¬ϕ

) ∈ F. But since D ∧ [!N] E is consistent and D ∧ [!N] F is consistent as well, it follows that D ∧ [!N]ϕ is consistent and D ∧ [!N]Norm(¬ϕ) is consistent.
Hence by maximality of D and Corollary A.32 we have some formula

Norm([!N]ϕ) ∈ D with ⊢ Norm([!N]ϕ) ↔ [!N]ϕ and similarly Norm([!N]Norm(¬ϕ)) ∈ D with ⊢ Norm([!N]Norm(¬ϕ)) ↔ [!N]Norm(¬ϕ),

and thus by (1) and axioms

⊢ Norm([!N]Norm(¬ϕ)) ↔ [!N]¬ϕ. But then ⊢ D → ([!N]ϕ ∧ [!N]¬ϕ), hence by [!N]∧, we have ⊢ D → [!N](ϕ ∧ ¬ϕ). But then by axioms D is inconsistent. A contradiction.
We show that the canonical !N → reaches a reflexive sink immediately.

Fact 6.26 Let a ∈ A * be such that κ (a) = ∅. Let D,E be (, a)-atoms. If D ∧ [!N] E is consistent, then E ∧ [!N] E is consistent. Proof. Assume that D ∧ [!N] E (1) is consistent and assume for contradiction that E ∧ [!N] E is inconsistent. It follows that ⊢ E → ¬[!N] E, by axioms it follows that ⊢ [!N](E → ¬ E).
Contradicting (1).

Key lemmas

Before we can sketch the structure of the completeness proof in full detail, we need a few more lemmas that will play a key role in the proof. To do so, it will be handy to have the following piece of notation.

Assume that Ŵ is a finite consistent set and a,(a

•b) ∈ A * . Moreover, assume that κ Ŵ (a) = ∅ and κ Ŵ (a •b) = ∅. -Let D ∈ At(Ŵ, a) and let E ∈ At(Ŵ, a •b). We write D b → E iff D ∧ b E is consistent. -Let D,E ∈ At(Ŵ, a). We write D !N → E iff D ∧ [!N] E is consistent. -Let D,E ∈ At(Ŵ,
.,χ n ∈ E such that ⊢ (χ 1 ∧ ... ∧ χ n) → ϕ.
Proof. The left to right direction follows from Lemma 6.23. For the other direction simply observe that if 1), (2) and maximality of atoms it follows that Norm([!N]ϕ) ∈ D (4). But by (0) and (3) and axioms we have

D b → E, then D ∧ b ϕ is consistent. But since b ϕ ∈ κ Ŵ (a) and D is a maximally consistent subset of κ Ŵ (a) we have b ϕ ∈ D. Lemma 6.28 Let Ŵ be a finite consistent set and a ∈ A * . Moreover, assume that κ Ŵ (a) = ∅. Let D,E ∈ At(Ŵ, a) we have If D !N → E, then D π → E (19) Proof. Assume D !N → E, it follows that D ∧ a E is consistent. Now assume we have some ϕ ∈ E such that ⊢ ϕ ↔ ψ (0) and ψ is existential. We have that ⊢ D ∧ [!N]ϕ is consistent (1). By Corollary A.32 we also have some formula Norm([!N]) ∈ κ Ŵ (a) (2) such that ⊢ Norm([!N]ϕ) ↔ [!N]ϕ (3). By (
⊢ Norm([!N]ϕ) ↔ [!N]ψ (5). Since ψ is existential, we have by axioms, that ⊢ [!N]ψ → ψ (6).
From (5) and (6) we have ⊢ Norm([!N]ϕ) → ϕ [START_REF] Fagin | Reasoning About Knowledge[END_REF]. From (7), (4) and maximality of D it follows that ϕ ∈ D. Concluding the proof.

We are now ready to prove a key commutation lemma. Proof. Define G 0 = {ϕ ∈ F|ϕ is equivalent to an existential formula.} (0). Clearly, G 0 is equivalent to an existential formula and so is a G 0 . Now by Fact A. [START_REF] Van Benthem | Preference logic, conditionals and solution concepts in games[END_REF] we have b G 0 ∈ κ Ŵ (a). Hence, by maximality of

E we have b G 0 ∈ E. Now since D π → E it follows that b G 0 ∈ D. Hence D ∧ b G 0 is consistent. (1) Now since F is atom, G 0 is consistent. Moreover, since F ∈ At(Ŵ, a •b) it follows, that G 0 ⊆ κ Ŵ (a •b) (2).
By Fact 6.11, κ Ŵ (a •b) is finite. Hence we can enumerate it, and let κ Ŵ (a •b) = {ψ 1 ,...,ψ n }. By Fact 6.18 we have for each

ψ i ∈ κ Ŵ (a •b) a corresponding formula Norm(¬ψ i) ∈ κ Ŵ (a •b) such that ⊢ κ Ŵ (a •b) ↔ ¬ψ i (3)
. Hence, we can define a sequence (H i) 0≤i≤n , as follows:

H i =                G 0 if i = 0 H j ∪{ψ n+1 } if i = j +1 and D ∧ b (H j ∧ ψ j+1) is consistent H j ∪{Norm(¬ψ j+1)} if i = j +1 and ⊢ (D ∧ b (H j ∧ ψ j+1)) → ⊥ We claim that D ∧ b H i is consistent for every i with 0 ≤ k ≤ n. The proof is by induction on k. The base case is immediate from (1). Now assume that D ∧ b H k is consistent k (4). By propositional logic we have ⊢ H k ↔ (H k ∧ ψ k+1) ∨ (H k ∧ ¬ψ k+1). By (3) we have thus ⊢ H k ↔ (H k ∧ ψ k+1) ∨ (H k ∧ Norm(¬ψ k+1)). It follows that ⊢ (D ∧ b H k) ↔ (D ∧ b ((H k ∧ ψ k+1) ∨ (H k ∧ Norm(¬ψ k+1)))) (20)
By basic modal logic we have thus 6) is inconsistent, but in this case it follows from (5), (21) and (6) that D ∧ (b (H k ∧ Norm(¬ψ k+1)) is consistent [START_REF] Fagin | Reasoning About Knowledge[END_REF]. But by [START_REF] Dawar | Inflationary fixed points in modal logic[END_REF], construction of H k+1 and (7) it follows that D ∧ b H k+1 is consistent. Concluding the induction step. It follows that D ∧ b H n [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF]. Now it is easy to see that by construction H n is a maximally consistent subset of κ Ŵ (a •b), hence

⊢ (D ∧ b H k) ↔ (D ∧ (b (H k ∧ ψ k+1) ∨ b (H k ∧ Norm(¬ψ k+1))) (21)
By IH D ∧ b H k is consistent (5). Hence we have either that D ∧ (b (H k ∧ ψ k+1) is consistent, but then D ∧ b H k+1 is consistent, or D ∧ (b (H k ∧ ψ k+1) (
H k+1 ∈ At(Ŵ, a •b) (9)
. We can set G = H n . By (0) and [START_REF] Fontaine | Frame definability for classes of trees in the µ-calculus[END_REF]. By [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF] we have D b → G [START_REF] Gerbrandy | Bisimulations on Planet Kripke[END_REF]. (9), (10) and (11) is what we had to prove.

G 0 = H 0 ⊆ H n = G we have G π → F
We have now our main ingredients and can now present the structure of the proof in details (in Section 6.6). Appendix D analyzes the structure of the set of atoms for the specific finite set of formulas considered in Appendix C.

Structure of the proof: details

To construct our finitary canonical Pσ LTS from a finite consistent set Ŵ we proceed as follows. (A formal version of this procedure will be given in Section 6.9.) First we generate the κ Ŵ function. Intuitively κ Ŵ (ǫ) is a finite subset of L σ that has nice closure properties. The sets of the form κ Ŵ (a), for a ∈ tree(Ŵ), will be the sublanguages our witness axioms will be constructed from. Intuitively, these sublanguages allow for less and less modal depth as a becomes longer.

Next, we start generating our finitary canonical Pσ LTS from our set Ŵ. Recall that such structures have the following form

W ,C,(R a) a∈A , !N →,Val (22)
where W is a non-empty set, C ⊆ (W ×℘(W)) -C can be thought of as a set of contexts-and for

each a ∈ A, R a ⊆ C ×C, !N →⊆ C ×C, Val : C → ℘(prop)
. By Fact 6.22 we can construct an atom A ∈ At(Ŵ,ǫ), such that Ŵ ⊆ A. We will use a labeling function δ : C → κ Ŵ (ǫ)-we will be more formal about this later-and we set δ(w 0 ,ǫ) = Ŵ. The procedure will add two types of witness children: a-children and !N-children. Let b ∈ A. b-witnesses of an atom in At(Ŵ, a) will be selected from At(Ŵ, a •b) for some a ∈ A * . !N-witnesses are atoms of the same types as their !N-parent.

Selecting !N-witnesses is easy. Assume that we have a context of the form (w,S) where w ∈ S and δ(w,S) = D ∈ At(Ŵ, a). From Fact 6.25, we know that there will be a unique atom E ∈ At(Ŵ, a) such that D ∧ [!N] E. We take it as our witness and will define δ(w,S ∪{w}) = E.

For a-children, we need to be more careful. First of all, we will need to make sure that we start providing a-children to the right-most context first! Intuitively, if S ⊂ S ′ , then (w,S ′) will be said to be to the right of (w ′ ,S ′). The reason is that for each child a-child (w a ,S ′) of (w,S ′) we need to make sure that we have a corresponding 'related' or 'similar' child (w a ,S) of (w,S). In what sense should they be related or similar? They should be related or similar, in the sense that for each existential formula ϕ ∈ δ(w a ,S ′) we have ϕ ∈ δ(w a ,S). Lemma 6.27 guarantees that we can find suitable children (for our right-most contexts). Lemma 6.29 and Lemma 6.28 guarantee that we can find suitable related children for all (non right-most) parents. This procedure will end after a finite number of steps and the resulting structure will be our finitary canonical Pσ LTS. From here we will proceed as follows:

1. Give a simpler semantics for L (!σ) on proper Pσ LTS (Section 6.7). 2. Define good Pσ LTSs as a subclass of proper Pσ LTSs (Section 6.8). 3. Give a procedure to construct canonical Pσ LTSs, M Ŵ , from a finite consistent set Ŵ (Section 6.9). 4. Show that canonical Pσ LTSs are good Pσ LTSs (Section 6.9) 5. Prove a Truth Lemma with respect to finitary canonical Pσ LTSs. 6. Give a truth-preserving transformation of good Pσ LTSs into σ LTSs

Interpreting L σ on Pσ LTSs

In this section, we show that on a restricted class of Pσ LTSs we can use a semantics that is closer to the original semantics of [!N] on σ LTSs.

We restrict ourselves to a class of well-behaved Pσ LTSs. Call a Pσ LTSs proper if for all x,y ∈ W and (w,X),(y,Y) ∈ C we have that:

1. (w,∅) ∈ C 2. whenever (w,X) ∈ C then (w,X ∪{w}) ∈ C 3. (w,X) !N → (v,Y) iff w = v and Y = X ∪{w}.
Our construction will make sure that our canonical Pσ LTSs are in this class.

Recall that the syntax of the language of L (!σ) over A is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | a ϕ | [!N]ϕ,
where p ranges over prop and a over A. On a proper Pσ LTS we interpret L (σ,A) as follows:

M,w,X |= p iff p ∈ Val(w,X) M,w,X |= a ϕ iff there is s ∈ W with (s,X) ∈ C,(w,X)R a (s,X) and M,s,X |= ϕ M,w,X |= [!N]ϕ iff M,w,X ∪{w} |= ϕ
The semantics of Booleans is defined as usual. This simplifies the semantics for Pσ LTSs in Section 6.1. By restricting ourselves to proper Pσ LTSs the clause for [!N]ϕ is really nothing but that of a basic modal formula. Let us record this fact: Fact 6.30 Let M be a proper Pσ LTSs. The following are equivalent:

1. M,w,X ∪{w} |= ϕ 2. there is some (v,Y) ∈ C with (x,X) !N → (v,Y) and M,v,Y |= ϕ

Good Pσ LTSs

There are good and bad Pσ LTSs. A Pσ LTS is bad iff it is not good. Intuitively a bad Pσ LTS is one that does not behave like a σ LTS. Given a Pσ LTS

M = W ,C,(R a) a∈A , !N →,Val
we say that:

1. C is reflexive if for every w ∈ W we have (w,{w}) ∈ C. 2. C ⊆ (W ×℘(W)
) is locally closed if for every w ∈ W and S 1 ,S 2 ∈ ℘(W) we have (w,S 1),(w,S 2) ∈ C then for every T ⊆ S 1 ∪S 2 , (w,T) ∈ C. 3. a is vertical if for every (w,S),(v,T) ∈ C such that (w,S)R a (v,T) we have S = T . 4. a is grounded if for every w,v ∈ W whenever (w,S)R a (v,S) for some S ∈ ℘(W) then for all S ∈ ℘(W) such that (w,T),(v,T) ∈ C we have (w,T)R a (v,T). 5. Val is W -based if for every p ∈ prop whenever p ∈ Val(w,X) for some w ∈ W and (w,X) ∈ C, then for all (w,Y) ∈ C, p ∈ Val(w,Y). Definition 6.31 (Good Pσ LTSs)

A Pσ LTS M = W ,C,(R a) a∈A , !N →,Val
is good iff it satisfies the following properties:

-M is proper; -C is reflexive and locally closed; -for all a ∈ A, a is vertical and grounded; and

-Val is W -based.
Since a good Pσ LTS is proper, we can take it to be a structure of the form W ,C,(R a) a∈A ,Val , taking

!N
→ as a defined notion. Namely,

!N →:= {(w,X ,v,Y) ∈ C ×C|w = v and Y = X ∪{w}}.

Canonical Pσ LTSs over Ŵ are good

We now give the formal definition of the procedure generating our finitary canonical Pσ LTSs from finite consistent sets. We then show that the resulting Pσ LTSs are good in the sense just defined in the previous section.

Let Ŵ be a finite consistent set of L (σ,A) formulas. During the procedure we will use a number of functions.

-Linguistic function. η : W → A * . It associates to each state a sequence from the Tree.

-Labeling function. δ : C → ℘(L (σ,A)) and δ(w,X) ∈ At(Ŵ,η(w)). It associates to each context in C an atom. -Marking functions. -m 0 : C → {0,1}. If m 0 (C) = 1, we say that C is m 0 -marked. Otherwise we say that C is m 0 -unmarked. -m 1 : C → {0,1}. If m 1 (C) = 1, we say that C is m 1 -marked. Otherwise we say that C is m 1 -unmarked.
Structures and functions will be indexed with natural numbers. The index will be incremented after each run of the procedure until a fixed point is reached. Since Ŵ is a finite consistent set of L (σ,A) formulas, it follows by Fact 6.22 that there is an atom A 0 ∈ At(Ŵ,ǫ) such that Ŵ ⊆ A 0 . We initiate our procedure by setting M 0 := W 0 ,C 0 and η, δ, m 0 and m 1 as follows:

-W 0 = {w 0 }; C 0 = {(w 0 ,∅)} -for each a ∈ A, set R a = ∅ -η(w 0) = ǫ -δ(w 0 ,∅) = A 0
m 0 and m 1 are the constant functions with value 0.

In the procedures below, unless stated otherwise, structures and functions remain stable from k to k +1. Sets and relations are expanded unless stated otherwise. We often simply say that we 'add' an element, to indicate that we define the corresponding set indexed by its immediate successor as the union of that set and of the singleton containing this element. When it is clear we sometimes also drop the subscript k.

The sequence of procedures:

Execute the following procedure until M k+1 = M k . Procedure 1(!N saturation): check if it is necessary to add a !N-witness to any context, that is check if there is some w such that (w,S) ∈ C k , w ∈ S and (w,S ∪{w}).

-If there is such a (w,S), then define C k+1 := C k ∪{(w,S ∪{w})}. By Proposition 6.25, there is a unique (Ŵ,η k (w))-atom B k+1 ∈ such that δ k (w,S)

!N → B k+1 . Set δ k+1 (w,S) := B k+1 .
Increment index of everything else. Repeat the sequence of procedures with procedure 1.

-If there is no such context, move to procedure 2.

Procedure 2: find all the right-most m 0 -unmarked contexts.

-If there is no such context, move to procedure 3.

-If there is such a context, pick one. Say (w,X). Enumerate A as a 1 ,...,a n . For each a i ∈ A, check if there is a formula of the form a i ϕ ∈ δ(w,X).

if there is no such formula, do nothing.

if there is such a formula, enumerate {B ∈ At(Ŵ,(η k (w)•a i))|δ(w,X)

a i
→ B} as B 1 ,...,B m . For each B j add a state w •(a i ,j) to W k+1 and add (w •(a i ,j),X) to C. Add ((w •(a i ,j),X),(w • (a i ,j),X)) to R a . Define δ((w •(a i ,j),X)) = B j m 0 -Mark (w,X). Restart the sequence with procedure 1.

Procedure 3: find all the right-most m 1 -unmarked contexts.

-If there is no such context, move to procedure 4.

-If there is such a context, pick one. Say (w,X). Enumerate {S ∈ ℘(W)\{X }| there is some v ∈ W such that S = X ∪{v}} as S 1 ,...,S m and enumerate A as a 1 ,...,a n . For each each S i and each

a j , check if R a j [w,S i] = ∅. -If R a j [w,S i] = ∅, do nothing.
-Else enumerate R a j [w,S i] as (w •(a j ,1),S i),...,(w •(a j ,q),S i). By Lemma 6.28, Lemma 6.29 and an inductive argument, for each (w

•(a j ,h),S i) there is an atom G ∈ At(Ŵ,η(w •(a j ,h))) such that G π → δ(w •(a j ,h),S i) and δ(w,X) a j → G. We add (w •(a j ,h),X) to C, ((w,X),(w • (a j ,h),X)) to R a j and define δ(w •(a j ,h),X) = G. m 1 -Mark (w,X). Restart the sequence with procedure 1. Procedure 4: For each (w,X) ∈ C, define Val(w,X) = { p ∈ prop | p ∈ δ(w,X)}.

Fact 6.32

The procedure is well defined.

Fact 6.33

The procedure terminates.

We call the structure output by the procedure M Ŵ with

M Ŵ = W Ŵ ,C Ŵ ,(R Ŵ a) a∈A , !N → Ŵ ,Val Ŵ
We also let η Ŵ and δ Ŵ be our output labeling functions.

Fact 6.34

Let Ŵ be a consistent set. M Ŵ is proper.

Proof.

(1) Similar argument as in the proof of Fact 6.35.

(2) Assume that (w,X) ∈ C, either w ∈ S and thus (w,X ∪{w}) ∈ C, or else, Procedure 1 has introduced a context (w,X ∪{w}) in C. Either way we have (w,X ∪{w}) ∈ C.

(3) This fact is hard-wired in the fact that we are not using a !N-relation and will be using instead an alternative semantics. But it is easy to see that Procedure 1 can be adapted by letting it add elements to a relation

!N
→ under the same conditions, hence if by construction ((w,X),(v,Y)) is added only whenever x = v and Y = X ∪{w}.

Fact 6.35

Let Ŵ be a consistent set. C Ŵ is reflexive.

Proof. Let w ∈ W . w is either our starting state, but then {(w 0 ,∅)} ∈ C and by Procedure 1 we have {(w 0 ,{w 0 })} ∈ C, or w has been introduced by Procedure 2 or Procedure 3. In this case, w has been introduced with a context (w,S) ∈ C as a R a -successor to some state v with (v,S) ∈ C for some a ∈ A, with w actually with a name of the form (v •(a,index(w)).

Either w ∈ S or else Procedure 1 has introduced a context (w,S ∪{w}) in C. Hence we have a context of the form (w,{w 1 ...,w n }∪{w}) ∈ C. By recursive application of Procedure 3, Lemma 6.28 and Lemma 6.29 we see that Procedure 3 will add a chain of contexts ((w,{w 1 ...,w n }∪{w}),(w,{w 1 ...,w n-1 }∪{w}),... ...,(w,{w 1 }∪{w}),(w,{w}))

such that δ((w,{w 1 ...,w n }∪{w})) π → δ((w,{w 1 ...,w n-1 }∪{w})) π → ... π → δ((w,{w 1 }∪{w})) π → δ(w,{w}))
It follows in particular that (w,{w}) ∈ C Ŵ . Fact 6.36 Let Ŵ be a consistent set. C Ŵ is locally closed.

Proof. Either w is the starting state, but then by construction if (w,S),(w,T) ∈ C Ŵ then S,T ∈ {∅,{w}}. Local closure at w follows.

Assume instead that w is not the starting state; w was introduced with a context (w,S) ∈ C as a R a -successor to some state v with (v,S) ∈ C for some a ∈ A. We have in particular a chain of contexts ((w,{w 1 ...,w n }∪{w}),(w,{w 1 ...,w n-1 }∪{w}),... ...,(w,{w 1 }∪{w}),(w,{w}))

such that δ((w,{w 1 ...,w n }∪{w})) π → δ((w,{w 1 ...,w n-1 }∪{w})) π → ... π → δ((w,{w 1 }∪{w})) π → δ(w,{w}))
where {w 1 ...,w n } is the context of introduction of w. Now we have (w,X) ∈ C iff X ⊆ {w 1 ...,w n ,w}. Local closure follows. Fact 6.37 Let Ŵ be a consistent set. R Ŵ a is vertical. Proof. Simply observe that the last clauses of Procedure 2 and 3 only add to R a pairs of contexts such that their second components are equal.

Fact 6.38

Let Ŵ be a consistent set. R Ŵ a is grounded. Proof. A state v different from the initial state, is such that v is introduced by procedure 2 in context (v,X) such that there is no Y ∈ ℘(w) with X ∪{v} ⊂ Y and (v,Y) ∈ C Ŵ with (w,X)R a (v,X). Now for each context (v,T) introduced by procedure 3 we have T ⊂ X and δ(w,T) π → (w,X) and procedure 3 will (w,T)R a (v,T), hence R a is grounded for these contexts. Further contexts introduced will be of the form T ∪{v} but then (w,T ∪{v}) ∈ C Ŵ , hence R a is trivially grounded for these contexts.

Fact 6.39

Let Ŵ be a consistent set. Val Ŵ is W -based.

Proof. By selection of atoms in procedures 3 and 1 it is easy to see that if p ∈ δ(w,X) then for every Y such that (w,Y) ∈ C Ŵ then p ∈ δ(w,Y). Lemma 6.40 Let Ŵ be finite consistent set. M Ŵ is good.

Proof. Follows from the previous sequence of facts.

An example

Appendix E shows the procedure at work with a concrete example. For, = {¬ a ¬p, a q,[!N] a ¬q}, the procedure outputs the Pσ LTS M in Figure 3.

Truth Lemma for the canonical Pσ LTSs over

Ŵ Let M Ŵ = W Ŵ ,C Ŵ ,(R Ŵ a) a∈A , !N → Ŵ ,Val Ŵ .
Let η Ŵ and δ Ŵ be our output labeling functions. For each (w,X)

∈ C Ŵ , λ Ŵ (w,X) = {ϕ ∈ cj(κ Ŵ (η(w)))| ⊢ δ Ŵ (w,X) → ϕ}. Lemma 6.41 (Truth Lemma) For every (w,X) ∈ C Ŵ and ϕ ∈ cj(κ Ŵ (η(w))), we have M Ŵ ,w,X |= ϕ iff ϕ ∈ λ Ŵ (w,X)
Proof. The proof is by induction of the complexity of ϕ. Base case: From left to right. Assume that M Ŵ ,w,X |= p. By semantics, it follows that p ∈ Val Ŵ (w,X). Hence by construction p ∈ δ Ŵ (w,X) [START_REF] Alur | Alternating-time temporal logic[END_REF]. By construction we have δ(w,X) ∈ At(Ŵ,η Ŵ (w)) and thus p ∈ cj(κ Ŵ (η(w)) (2). The claim follows from (1) and (2).

From right to left. Assume that p ∈ λ Ŵ (w,X). It follows by definition of λ, that p ∈ κ Ŵ (η(w)) (1) and ⊢ δ Ŵ (w,X) → p (2). From (1), (2) and maximality of atoms we have p ∈ δ Ŵ (w,X). By construction it follows that p ∈ Val Ŵ (w,X). The claim follows from semantics.

Induction step:

Case ¬: From left fo right.Assume M Ŵ ,w,X |= ¬ψ. It follows from semantics that M Ŵ ,w,X |= ψ. By IH we have ψ ∈ λ Ŵ (w,X) (0). But by hypothesis ¬ψ ∈ cj(κ Ŵ (η(w))) (1), hence ψ ∈ cj(κ Ŵ (η(w))) (2). By definition of cj and CN there is a finite subset {χ 1 ,...,χ n } ⊆ κ Ŵ (η(w)) such that ψ = χ 1 ∧ ... ∧ χ n (3). By (0) and (3) it follows that there is some χ i ∈ {χ 1 ,...,χ n } such that χ i ∈ δ(w,X). But then ⊢ δ(w,X) → ¬ψ (4). From (1) and (4) we have thus by definition of λ, ¬ψ ∈ λ Ŵ (w,X).

From right to left. Assume that ¬ψ ∈ λ Ŵ (w,X). From definition of λ, it follows that ¬ψ ∈ cj(κ Ŵ (η(w))) and ⊢ δ Ŵ (w,X) → ¬ψ. By consistency of atoms it follows that ⊢ δ Ŵ (w,X) → ψ, hence ψ ∈ λ Ŵ (w,X). But then by IH, we have M Ŵ ,w,X |= ψ. Hence by semantics M Ŵ ,w,X |= ¬ψ.

Case ∧: From left fo right. Assume M Ŵ ,w,X |= ψ 1 ∧ ψ 2 . It follows from semantics that M Ŵ ,w,X |= ψ 1 and M Ŵ ,w,X |= ψ 2 . By IH we have ψ 1 ,ψ 2 ∈ λ Ŵ (w,X) (1). But by hypothesis ψ 1 ∧ ψ 2 ∈ cj(κ Ŵ (η(w))) (2). The claim follows from (1) and (2). From left fo right. ϕ 1 ∧ ϕ 2 ∈ λ Ŵ (w,X). It follows that ϕ 1 ,ϕ 2 ∈ δ(w,X), hence by definition of λ and IH M Ŵ ,w,X |= ψ 1 and M Ŵ ,w,X |= ψ 2 . The claim follows from semantics. Case a : From left to right. Assume M Ŵ ,w,X |= a ψ. It follows from semantics that there is some s ∈ W Ŵ , (s,X) ∈ C Ŵ such that (w,X)R a (s,X) (1) and M Ŵ ,s,X |= ψ (2). By (1) it follows from construction that δ(w,X) ∧ a δ(s,X) is consistent (3). From (2) by IH we have ψ ∈ λ Ŵ (s,X), it follows that ⊢ δ Ŵ (s,X) → ψ (4). But by hypothesis a ψ ∈ cj(κ Ŵ (η(w))), hence, a ψ ∈ κ Ŵ (η(w)) [START_REF] Clarke | Model checking[END_REF]. From (5), (4), (3) and maximality of atoms it follows that a ψ ∈ δ(w,X) and hence a ψ ∈ λ Ŵ (w,X).

From right to left.Assume that a ψ ∈ λ Ŵ (w,X). By hypothesis we have a ψ ∈ cj(κ Ŵ (η(w))), hence by definition of cj we have a ψ ∈ κ Ŵ (η(w)) (a). By definition of λ, construction and maximality of atoms that a ψ ∈ δ Ŵ (w,X) (b).

It follows by Lemma 6.27 that there is an atom E ∈ At(Ŵ,η Ŵ (w)•a) [START_REF] Dawar | Inflationary fixed points in modal logic[END_REF] such that there are

χ 1 ,...,χ n ∈ E (7) such that δ Ŵ (w,X) ∧ a E is consistent (8) and ⊢ (χ 1 ,...,χ n) → ψ (9). But then by construction there is a state w •(a,index(E)) ∈ W Ŵ and (w •(a,index(E)),X) ∈ C Ŵ with (w,X)R a (w •(a,index(E)),X) (10) and δ(w •(a,index(E)),X) = E (11).
From (a) and Corollary 6.16 we are in one of the following cases:

1. ψ ∈ κ (η(w)•a) 2. ψ = (α 1 ∧ ... ∧ α n) and α 1 ,...,α n ∈ κ (η(w)•a), with n ≥ 2 3. ψ = [!N](α 1 ∧ ... ∧ α n) and α 1 ,...,α n ∈ κ (η(w)•a), with n ≥ 2 4. ψ = ¬(α 1 ∧ ... ∧ α n) and α 1 ,...,α n ∈ κ (η(w)•a), with n ≥ 2 5. ψ = [!N]¬(α 1 ∧ ... ∧ α n) and α 1 ,...,α n ∈ κ (η(w)•a), with n ≥ 2
In either case, ψ ∈ cj(κ Ŵ (η(w)•a)) [START_REF] Grädel | On the restraining power of guards[END_REF]. From (7), (9), (12) and (11) it follows that ψ ∈ λ Ŵ (w • (a,index(E)),X). But then by IH M Ŵ ,w •(a,index(E)),X |= ψ (13). From (13), (10) and semantics we have thus M Ŵ ,w,X |= a ψ.

Case [!N]:

From left fo right. Assume M Ŵ ,w,X |= [!N]ψ. It follows from semantics that M Ŵ ,w,X ∪{w} |= ψ. But then by IH, we have ψ ∈ λ Ŵ (w,X ∪{w}) [START_REF] Alur | Alternating-time temporal logic[END_REF]. It follows by definition of λ that ⊢ δ Ŵ (w,X ∪{w}) → ψ. By axioms we have

⊢ [!N] δ Ŵ (w,X ∪{w}) → [!N]ψ and ⊢ {[!N]χ|χ ∈ δ Ŵ (w,X ∪{w})} → [!N]ψ (2).
By construction δ Ŵ (w,X ∪{w}) is an atom in At(Ŵ,η Ŵ (w)) (3). From construction it follows that δ Ŵ (w,X) ∧ [!N] δ Ŵ (w,X ∪{w}) is consistent (a). But then by Fact 6.26 we have that δ Ŵ (w,X ∪{w}) ∧ [!N] δ Ŵ (w,X ∪{w}) is consistent (4). Moreover by (1), (3) and Fact 6.19, it follows that for every χ ∈ δ Ŵ (w,X ∪{w}), there is a formula Norm [START_REF] Clarke | Model checking[END_REF]. From (a), (5) and maximality of atoms we have that {Norm([!N]χ)|χ ∈ δ Ŵ (w,X ∪{w})} ⊆ δ Ŵ (w,X) [START_REF] Dawar | Inflationary fixed points in modal logic[END_REF]. By hypothesis we have [!N]ψ ∈ cj(κ Ŵ (η(w))) [START_REF] Fagin | Reasoning About Knowledge[END_REF]. But from (7), (2), (5) and (6) it follows that [!N]ψ ∈ λ Ŵ (w,X).

([!N]χ) ∈ κ Ŵ (η Ŵ (w)) such that ⊢ Norm([!N]χ) ↔ [!N]χ
From right to left. Assume that [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF]. By construction we have that δ Ŵ (w,X) ∧ [!N] δ Ŵ (w,X ∪{w}) is consistent [START_REF] Feferman | Persistent and invariant formulas relative to theories of higher order[END_REF].

[!N]ψ ∈ λ Ŵ (w,X). By definition of λ we have δ Ŵ (w,X) → [!N]ψ (7) and [!N]ψ ∈ cj(κ Ŵ (η(w)))
By definition of cj and Fact 6.11 it follows that there is a finite subset {χ 1 ,...,χ n } ⊆ κ Ŵ (η(w)) such that ψ = χ 1 ∧ ... ∧ χ n [START_REF] Fontaine | Frame definability for classes of trees in the µ-calculus[END_REF]. From (7), [START_REF] Fontaine | Frame definability for classes of trees in the µ-calculus[END_REF] and axioms we have for each [START_REF] Gerbrandy | Bisimulations on Planet Kripke[END_REF], and from (10), Fact 6.12 and Fact 6.19 we have a formula Norm([START_REF] Grädel | On the restraining power of guards[END_REF]. But from [START_REF] Gerbrandy | Bisimulations on Planet Kripke[END_REF], [START_REF] Grädel | On the restraining power of guards[END_REF], construction and maximality of atoms we have Norm([!N]χ i) ∈ δ Ŵ (w,X) [START_REF] Grossi | Short sight in extensive games[END_REF]. By [START_REF] Fontaine | Frame definability for classes of trees in the µ-calculus[END_REF], [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF] and Fact 6.12 we have χ i ∈ κ Ŵ (η(w)) (14). From (9), (13), [START_REF] Grädel | On the restraining power of guards[END_REF], construction and maximality of atoms it follows that χ i ∈ δ Ŵ (w,X ∪{w}). But by IH it follows that M Ŵ ,w,X ∪{w} |= χ i . Since this holds for every χ i ∈ {χ 1 ,...,χ n } it follows from semantics that M Ŵ ,w,X ∪{w} |= χ 1 ∧ ... ∧ χ n , that is by [START_REF] Fontaine | Frame definability for classes of trees in the µ-calculus[END_REF], M Ŵ ,w,X ∪{w} |= ψ. But from semantics we have then M Ŵ ,w,X |= [!N]ψ. Proof. For the left to right direction. Assume that v,t ∈ N(w 1)∩...∩N(w n) (1) and (v,t) ∈ a → (2). From (1) and Fact 6.43 it follows that (v,{w 1 ,...,w n }) ∈ C and (t,{w 1 ,...,w n }) ∈ C (3). From (2) and construction, it follows that (w,∅)R a (v,∅) (4). But since a is grounded, it follows from (3) and (4) that (v,{w 1 ,...,w n })R a (t,{w 1 ,...,w n }) [START_REF] Clarke | Model checking[END_REF].

χ i ∈ {χ 1 ,...,χ n }, δ Ŵ (w,X) → [!N]χ i
[!N]χ i) ∈ κ Ŵ (η(w)) such that ⊢ Norm([!N]χ i) ↔ [!N]χ i
• S = W • for each a ∈ A and w,v ∈ W , (w,v) ∈ a → iff (w,∅)R a (v,∅) • for each w ∈ S, N(w) = {v ∈ S|(v,{w}) ∈ C} • for each p ∈ prop, V (p) = {w ∈ S|p ∈ Val(w,∅)} Fact 6.42 If M is a good Pσ LTS, then gather(M) is a well-defined σ LTS. Proof. S = W is non-empty. Assume that w,v ∈ W ,
For the right to left direction. Assume that (v,{w 1 ,...,w n })R a (t,{w 1 ,...,w n }) (1). It follows that (v,{w 1 ,...,w n }),(t,{w 1 ,...,w n }) ∈ C (2). Hence by Fact 6.43 v,t ∈ N(w 1)∩...∩N(w n) (a). Since C is locally closed, it follows from (2), that (v,∅),(t,∅) ∈ C (3). From (1), (3) and the fact that a is grounded, it follows that (v,∅)R a (t,∅). But then by construction (v,t) ∈ a → (4). The claim follows from (4) and (a). 2) and Fact 6.43 it follows that (v,{w 1 ,...,w n }) ∈ C (5) and (t,{w 1 ,...,w n }) ∈ C (6). From (3) and construction it follows that (v,∅)R a (t,∅) [START_REF] Fagin | Reasoning About Knowledge[END_REF]. Since it follows from (5), (6), [START_REF] Fagin | Reasoning About Knowledge[END_REF] and the fact that a is grounded we have (v,{w 1 ,...,w n })R a (t,{w 1 ,...,w n }) [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF]. From (4) and IH it follows that M Ŵ ,t,{w 1 ,...,w n } |= ϕ (9). From (8), [START_REF] Feferman | Persistent and invariant formulas relative to theories of higher order[END_REF] and semantics it follows that M Ŵ ,v,{w 1 ,...,w n } |= a ϕ.

From right to left. Assume that M Ŵ ,v,{w 1 ,...,w n } |= a ϕ, since a is vertical, it follows that v,{w 1 ,...,w n } ∈ C and by semantics it follows that there is some t with t,{w 1 ,...,w n } ∈ C (0), (v,{w 1 ,...,w n })R a (t,{w 1 ,...,w n }) (1) and M Ŵ ,t,{w 1 ,...,w n } |= ϕ (2). Since C is locally closed we have (v,∅) ∈ C and (t,∅) ∈ C, hence since a is grounded it follows from (1) that (v,∅)R a (t,∅). Hence by construction we have v a → t (3). From (0) and Fact 6.43 it follows that t ∈ N(w 1)∩...∩N(w n) (4). From (2) and IH it follows that gather(M)| N(w 1)∩...∩N(w n) ,t |= ϕ. Hence by (4 From right to left. Assume that M Ŵ ,v,{w 1 ,...,w n } |= [!N]ϕ it follows from semantics that (v,{w 1 ,...,w n ,v}) ∈ C (0)-hence since C is locally closed that (v,{v}) ∈ C (1)and that M Ŵ ,v,{w 1 ,...,w n ,v} |= ϕ (2). From (1) and construction it follows that v ∈ N (v) (3) and from (0), by Fact 6.43, that v ∈ N(w 1)∩...∩N(w n) (4). From (3), (4

Example, continued

Gathering our model from the example in Section 6.9.1 (see Figure 4), we get the σ LTS displayed in Figure 5. Proof. Assume that Ŵ is a finite !N-consistent sets of L (!σ,A) -formulas. By Lemma 6.40 and Truth Lemma (Lemma6.41) it follows that there is some good pointed pseudoσ LTS, M Ŵ ,w 0 ,∅ such that for every ϕ ∈ Ŵ we have M Ŵ ,w 0 ,∅ |= ϕ. But then by Fact 6.42 and Lemma 6.45 it follows that we have a pointed σ LTS gather(M Ŵ),w 0 such that for every ϕ ∈ Ŵ, we have gather(M Ŵ),w 0 |= ϕ.

Completeness theorem

Our main result follows: Theorem 6.47 (Strong Completeness) Every !N-consistent sets of L (!σ,A) -formulas is satisfiable. This follows immediately from Lemmas 3.10 and 6.46.

We have already indicated that there exists a polynomial translation from L (!σ,A) into the loosely guarded fragment of first-order logic (Fact 3.3, Proposition 3.8 and Proposition 3.5). It follows that the satisfiability problem of L (!σ,A) is decidable, and in DEXPTIME. But this is certainly not a tight upper bound. In this section, we show that the satisfiability problem of L (!σ,A) is PSPACE-complete. We give an alternating algorithm for checking satisfiability of a formula ϕ in L (!σ,A) and prove that our algorithm runs in time polynomial in the size of the input formula ϕ. This results in a proof of the fact that the decidability of the logic L (!σ,A) is PSPACE-complete.

Algorithm for SAT

We give an alternating algorithm for deciding the satisfiability of a formula ϕ in the logic L (!σ,A) . Recall that Alternating Turing machines (Definition 2.14, see, e.g. [START_REF] Immerman | Descriptive Complexity[END_REF]) generalize non-deterministic Turing machines. An ATM is a Turing machine with both universal states and existential states. An alternating Turing machine in a universal state accepts if there is at least one next configuration and all next configurations are accepting, while an ATM in an existential state accepts if there is at least one next configuration that is accepting. Algorithm 1 is alternating: it has both existential states (step 16) and universal states (step 27). At step 27, 'Universally choose a ϕ ′ ∈ ' means that the algorithm should accept the input if it accepts no matter which formula of the form a ϕ ′ (for some a ∈ A and ϕ ′) is chosen from ′ . At step 16, 'Existentially guess ′ ∈ { 1 , 2 }' means that the algorithm should accept the input if it accepts for at least one of 1 or 2 .

Throughout this section we assume that formulas are in negation normal form. It is easy to see that we can always put a formula ϕ in negation normal form in time polynomial in |ϕ|. Moreover, recall from Section 3.2, that given Z ⊆ |M|, we write N(Z) := w∈Z N(Z). The main procedure is called SAT and it takes three arguments as input:

1. A finite multiset of formulas in L (!σ,A) . 2. A state w of the potential model M of . 3. A function ν which associates to every formula ϕ ∈ , a set of state X ⊆ |M| such that ϕ has to be satisfied at M| N(X) ,w.

Initially the procedure is called with {ϕ},w 0 and ν 0 where ν 0 (ϕ) = ǫ. SAT({ϕ},w 0 ,ν 0) returns 1 if and only if ϕ is satisfiable.

The subprocedures do as their names say. More specifically, is_not_normalized() returns 1 if there is a formula in with the main operator being either ∧,∨ or [!N] and returns 0 otherwise. contains_only_literals() checks if consists of only atomic literals.

is_atomically_inconsistent(,prop) returns 1 if there exist both p and ¬p in for some propositional letter p ∈ prop and returns 0 otherwise. contains_no_diamond() returns 1 if there is no formula of the form a ϕ ′ in and 0 otherwise. Note that is_not_normalized(), contains_only_literals() and contains_no_diamond() runs in time linear in the size of the set while is_atomically_inconsistent(,prop) takes time at most quadratic in the size of .

The procedure States(ν) takes as argument the current function ν and returns its range which is a set of states of the model constructed so far. Note that it runs in time linear in the size of ν.

Lemma 7.1

For any finite set ⊆ L (!σ,A) , w and ν, we have SAT(,w,ν)=1 iff there is a pointed σ LTS, M,w with ran(ν)∪{w} ⊆ |M| such that for each ϕ ∈ , M| N(ν(ϕ)) ,w |= ϕ.

Algorithm 1 SAT(,w,ν)

1: if is_not_normalized() then

2:
for ϕ 1 ∧ϕ 2 ∈ do

3: Let ← \{ϕ 1 ∧ϕ 2 }∪{ϕ 1 ,ϕ 2 } 4: ν(ϕ 1) ← ν(ϕ 1 ∧ϕ 2) 5: ν(ϕ 2) ← ν(ϕ 1 ∧ϕ 2) 6:
return SAT(,w,ν)

7:
end for 8:

for [!N]ϕ ′ ∈ do 9: Let = \{[!N]ϕ ′ }∪{ϕ ′ } 10: Let ν(ϕ ′) = ν([!N]ϕ ′)∪{w} 11:
return SAT(,w,ν)

12:

end for 13:

for ϕ 1 ∨ϕ 2 ∈ do 14:

Let 1 = \{ϕ 1 ∨ϕ 2 }∪{ϕ 1 } 15: Let 2 = \{ϕ 1 ∨ϕ 2 }∪{ϕ 2 } 16: Let ν(ϕ 1) = ν(ϕ 2) = ν(ϕ 1 ∨ϕ 2)
17:

Existentially guess ′ ∈ { 1 , 2 } 18:
return SAT(′ ,w,ν) Universally choose a ϕ ′ ∈ 28:

Let ′ = {ϕ ′ }∪{ϕ ′′ | [a]ϕ ′′ ∈ & ν([a]ϕ ′′) ⊆ ν(a ϕ ′)} 29: Let ν ′ (ϕ ′) = ν(a ϕ ′) 30: Let ν ′ (ϕ ′′) = ν([a]ϕ ′′) 31: Let w ′ / ∈ states(ν) 32:
return SAT(′ ,w ′ ,ν ′) 33: end if Proof. The proof is by induction on the maximum complexity of formulas in .

For the base case, assume that is a set of literals. It is easy to see that for any w and ν, SAT(,w,ν) returns 1 iff it is a consistent set of literals, hence a satisfiable one. The claim follows from the fact that we can simply put w ∈ N(w i) for the relevant w i 's.

We prove the induction step sequentially. ∧-step. Let = Ŵ ∪(ϕ 1 ∧ ϕ 2) with cpx(Ŵ) ≤ n and cpx(ϕ 1 ∧ ϕ 2) = n+1. Now assume that SAT(Ŵ ∪{ϕ 1 ∧ ϕ 2 },w,ν) = 1. By steps (2-6) of the procedure, it follows that SAT(Ŵ,ϕ 1 ,ϕ 2),w,ν) = 1 but by IH and the semantics of ∧, the claim follows. The claim holds for any number of conjunctions of complexity at most n+1.

∨-step. Let = Ŵ 1 ∪Ŵ 2 ∪(ϕ 1 ∨ ϕ 2) with cpx(Ŵ 1)
≤ n and Ŵ 2 = {ψ 1 ∧ χ 1 ,...,ψ n ∧ χ n }, with maxcpx({ψ 1 ,χ 1 ,...,ψ n ,χ n }) = n. Now assume that cpx(ϕ 1 ∨ ϕ 2) = n+1 and assume that SAT(Ŵ 1 ∪Ŵ 2 ∪{ϕ 1 ∨ ϕ 2 },w,ν) = 1. By steps [START_REF] Grädel | On the restraining power of guards[END_REF][START_REF] Grossi | Short sight in extensive games[END_REF](14)(15)[START_REF] Heifetz | Interactive unawareness[END_REF][START_REF] Hodkinson | Loosely guarded fragment of first-order logic has the finite model property[END_REF][START_REF] Immerman | Descriptive Complexity[END_REF] of the procedure, we have either SAT(Ŵ 1 ∪ Ŵ 2 ∪(ϕ 1),w,ν) = 1 or SAT(Ŵ 1 ∪Ŵ 2 ∪(ϕ 1 ∨ ϕ 2),w,ν) = 1. The claim follows front the previous step and semantics of ∨. The claim holds for any number of disjunctions of complexity at most n+1.

[

!N]-step. Let = Ŵ 1 ∪Ŵ 2 ∪Ŵ 3 ∪{[!N]ϕ} with cpx(Ŵ 1) ≤ n, Ŵ 2 = {ψ 1 ∧ χ 1 ,...,ψ n ∧ χ n }, Ŵ 3 = {α 1 ∨ β 1 ,...,α n ∨ β n } with maxcpx({ψ 1 ,χ 1 ,α 1 ,β 1 ...,ψ n ,χ n ,α n ,β n }) = n. Now assume that SAT(Ŵ 1 ∪Ŵ 2 ∪Ŵ 3 ∪{[!N]ϕ},w,ν) = 1. Let ν ′ = ν[ϕ/ν([!N]ϕ)∪{w}]
SAT(i ,w ′ i ,ν ′) = 1 where i = {ϕ i }∪{ψ j |[a]ψ j ∈ and ν([a]ψ j) ⊆ ν(a ϕ i)} and ν ′ (ϕ i) = ν(ϕ i) (0) and for every j with ν([a]ψ j) ⊆ ν(a ϕ i) we have ν ′ (ψ j) = ν([a]ψ j) (1)
. By IH, (0) and (1) there is a pointed model

M i ,w ′ i with ran(ν)∪{w ′ i } ⊆ |M i | and M i | N(ν(ϕ i)) ,w ′ i |= ϕ i and for every j with ν([a]ψ j) ⊆ ν(a ϕ i) we have M i | N(ν(ψ j)) ,w ′ |= ψ j (2).
Now let Rename i (M i) be identical to M i except that we rename all states occurring in M i with names not occurring in M. Let newname i be the natural isomorphism from M i into Rename(M i). From steps (31) of the procedure, newname i (w ′ i) = w ′ i . Now take the {w ′ i }, A-generated submodel of Rename i (M i). Call it N i . By Corollary 4.6 and (2) we have N i | N(newname i (ν(ϕ i))) ,w ′ i |= ϕ i (3) and for every j with ν([a]ψ j) ⊆ ν(a ϕ i) we have N i | N(newname i (ν(ψ j))) ,w ′ i |= ψ j (4). And let P(i N i) be the smallest elementary extension of i N i such that: 3) and construction we have P (N)

1. |P(N i)| = | i N i |∪{States(ν)} 2. R P(N i) a = R | i N i a ∪ i {(w,w ′ i)} 3. For every v ∈ States(ν), N P(N i) (v) = {N(newname i (v))∪{w ′ i }|v ∈ ν(a ϕ i)}∪{w} 4. w ∈ V P(N i) (p) iff p ∈ From (
i | N P(N i) (ν(ϕ i)) ,w ′ i |= ϕ i .
From construction and semantics of a we have P (N)

i | N P(N i) (ν(ϕ i)) ,w |= a ϕ i .
Moreover from (4) and construction we have for every

j with ν([a]ψ j) ⊆ ν(a ϕ i) that P(N) i | N P(N i) (ν(ψ j)) ,w ′ i |= ψ j .
From construction and semantics of [a] we have

P(N) i | N P(N i) (ν(ψ j))
,wM[a]ψ j . Truth of literals is guaranteed by the last part of the preceding construction. The claim follows.

Corollary 7.2

For any finite set ⊆ L (!σ,A) , is satisfiable in a σ LTS iff SAT(,w 0 ,N 0) = 1, for N 0 () = ǫ.

Proof. Immediate from the previous lemma.

The observation that given an initial formula ϕ ∈ L (!σ,A) , an initial state w 0 of the pointed model to be constructed and an initial context fucntion N 0 where N 0 (ϕ) = ǫ, SAT({ϕ},w 0 ,N 0) runs in time polynomial in |ϕ| is also quite straightforward.

Lemma 7.3 SAT({ϕ},w 0 ,N 0) is in APTIME(|ϕ|).
Proof. The If-condition at the beginning checks if the set of formulas is in the required 'normal' form. That is, if the main operator of every formulas is none among ∧,∨ or [!N]. If not, then it manipulates to convert it to the required form. Note that given an initial formula ϕ, |ϕ| recursive calls of the SAT() procedure is sufficient to achieve this normal form.

In each such recursive call, one of the following happens.

-Either the set is not in the normal form and the procedure SAT is called again. This is done after updating the set and/or after updating the context function N. The function N may grow in the process. However, note that for every formula ϕ ′ in the current target set , at most one new state is added to N(ϕ ′). Now since there can be at most |ϕ| recursive calls to SAT, the size of the function N does not exceed |ϕ| 2 . -Or is in the required normal form. In that case the call bypasses the initial If-condition. The second, third and the fourth If-conditions, respectively, check whether is consistent, has only literals or has a formula of the form a ϕ ′ . As we already observed, each of these procedures is polynomial in the size of |ϕ|. The final Else-condition updates to a new set ′ . Note that as the size of was polynomial in |ϕ|, and the constructed ′ is at most as large as , ′ is also polynomial in |ϕ|. The function N changes but does not grow in size. Finally to initialize the fresh state w ′ the procedure States is called which as we observed is linear in the size of N.

Thus, in each recursive call of SAT, the algorithm does only polynomially many operations in the size of the initial formula ϕ. Hence, the overall algorithm runs in time polynomial in |ϕ| which means it is in APTIME(|ϕ|).

Theorem 7.4

The satisfiability problem for the logic L (!σ,A) is PSPACE-complete.

Proof. Corollary 7.2 and Lemma 7.3 shows that the satisfiability problem is in APTIME. Since by [START_REF] Chandra | [END_REF] we know that APTIME = PSPACE we have that the problem is in PSPACE. PSPACEhardness follows from the fact that L (!σ,A) properly embeds the modal system K which is known to be PSPACE-complete [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF].

Model-checking

In this section, we give an algorithm for model-checking a formula ϕ ∈ L (!σ,A) and show that the complexity of the model-checking problem is in time polynomial in the size of the input (the size of the σ LTS and the length of ϕ). Formally, the model-checking problem is the following: given a σ LTS M, a state w ∈ M and a formula ϕ ∈ L (!σ,A) decide if M,w |= ϕ.

Why the bottom-up algorithm will not do

Given a pointed LTS M,w 0 , with M = W ,(a →) a∈A ,V , and w 0 ∈ W and a basic modal formula ϕ, a standard bottom-up algorithm (see, for instance, [START_REF] Clarke | Model checking[END_REF] or [3]) can decide whether M,w |= ϕ recursively as follows. Enumerate the set of subformulas of ϕ, and for each ψ ∈ sub(ϕ), define ||ψ|| M recursively as follows:

1. ||⊤|| M = W w 0 w 1 w 2 a a w 0 w 1 a Figure 6. M 4 . 2. ||p|| M = V (p) for p ∈ prop 3. ||¬ψ|| M = W \||ψ|| M 4. ||ψ ∧ χ || M = ||ψ|| M ∩||χ || M 5. || a ψ|| M = {w ∈ W |(a → [w]∩|||ψ|| M) = ∅} If w 0 ∈ ϕ then M,w |= ϕ, otherwise M,w |= ϕ.
This bottom-up algorithm for model-checking a formula ϕ in the basic modal language in an LTS (see, for instance Boolos et al. [3]) does not work for the logic L (!σ,A) . To see this consider the σ LTS M 4 shown in Figure 6 and the L (!σ,A) formula ϕ := [!N] a a ⊤. We have M 4 ,w 0 |= ϕ. However, the bottom-up algorithm would work as follows. Enumerate, the subformula closure of ϕ, as follows {⊤, a ⊤, a a ⊤,[!N] a a ⊤}. The algorithm computes as follows:

1. ||⊤|| M = {w 0 ,w 1 ,w 2 } 2. || a ⊤|| M = {w ∈ W | a → [w] = ∅} = {w 0 ,w 1 } 3. || a a ⊤|| = {w ∈ W |(a → [w]∩{w 0 ,w 1 }) = ∅} = {w 0 }
However, in the next round the algorithm has to decide whether w 0 ∈ ||[!N] a a ⊤|| M but it cannot decide correctly simply by looking at whether w ∈ ||ψ|| M for each w ∈ N(w 0) and each strict subformula ψ of [!N] a a ⊤, that is for each ψ ∈ (sub([!N] a a ⊤)\{[!N] a a ⊤}).

Model-checking in the logic of sights

We see that a model-checking procedure for the logic L (!σ,A) should, at every iteration, also keep track of the restricted model as dictated by the function N. Algorithm 2 is a recursive algorithm for this purpose. Note that in our recursive algorithm we are making use of the Boolean functions ¬, ∧ and ∨, defined as usual. We also make use of the switch statement, standard in most programming languages, allowing to declare case by case, depending on the main operator of the current formula, what the algorithm has to do.

To prove that the above algorithm is correct, we show the following invariant: return ModelCheck(M,w,ϕ 1) ∨ ModelCheck(M,w,ϕ 2)

w ′ :w a →w ′ ModelCheck(M,w ′ ,ϕ ′) is 1 iff ∃w ′ : w cur a → w ′ ,M cur ,w ′ |= ϕ.
The argument for ϕ cur = [a]ϕ is similar.

We thus have the correctness of Algorithm 2

Corollary 7.6 Given a pointed σ LTS (M,w) and a formula ϕ ∈ L (!σ,A) , ModelCheck(M,w,ϕ) returns 1 if and only if M,w |= ϕ.

From the above algorithm, we also have that the model-checking problem for L (!σ,A) is polynomialtime solvable in the size of the input model and formula. More precisely, let |M| denote the size of the σ LTS M and |ϕ| denote the length of a formula ϕ ∈ L (!σ,A) . We have

Proposition 7.7 ModelCheck(M,w,ϕ) runs in time O(|M|•|ϕ|).
Proof. The proof is rather straightforward. First note that ϕ can have at most |ϕ| subformulas. Every recursive step of ModelCheck(M,w,ϕ) is on a subformula of ϕ which is strictly smaller than the current subformula. Hence there are at most |ϕ| recursive steps. In a recursive step, the current model can be of size at most as large as the original model, that is |M|. The steps other than the recursive calls run in time linear in the size of the current model.

Extensions and relations to other logics

We now turn to some extensions and comparisons to other logics. We discuss multi-agent generalizations of the logic of sights, as well as temporal and epistemic extensions. We discuss how the logic of sights relates to the logic of relativization, and to what extent it can be generalized as a multi-dimensional modal logic.

Minimal multi-agent versions

The simplest extension is a multi-agent logic of sights, which consists in having sights defined for all agents in some finite set N at every state of an LTS. To axiomatize this extension, the only important axiom is the commutativity axiom

[!1][!2]ϕ ↔ [!2][!1]ϕ, for every 1,2 ∈ N .
Checking the soundness of this axiom is straightforward from the semantics and the fact that restriction is associative. We believe that the main change in the completeness proof, will be in the statement of Proposition 6.25, that should be generalized as follows:

Conjecture 8.1 (Commutativity) Let be a finite set and let a ∈ A * be such that κ (a) = ∅. Let D,E,F be (, a)-atoms.

If D ∧ [!N 1] E is consistent and E ∧ [!N 2] F is consistent as well, then there is some (, a)-atom, G, such that D ∧ [!N 2] G is consistent and G ∧ [!N 1] F is consistent.
We will check the details in future work.

Temporal extensions

So far we have considered the logic of sights as an extension of the basic modal language. This is a natural starting point. However extending temporal logics such as Linear-Time Temporal Logic (LTL), Computation Tree Logic (CTL), dynamic logics such as Propositional Dynamic Logic (PDL, [START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF]), or multi-agent temporal logics such as Alternating-Time Temporal Logic (ATL) or STIT, is a next step with natural applications.

We first discuss the question of the extension of PDL with a sight operator and then discuss the question of the extension of ATL with a sight operator.

PDL with sights

If we extend our language with formulas such as a * ϕ with the usual semantics, we believe that the traditional axiomatization of PDL using a least fixed-point axiom and an induction axiom on top of the axiomatization given in Section 5.3 will be complete for PDL with sights on the class σ LTS.

Proving this would require an adaption of our proof. We believe, this can be done as follows. Instead of our CN -closure and of the usual Fisher-Ladner closure used in completeness proofs of PDL, we would need to use a notion of closure that satisfies the richness properties of both, while remaining finite. Next, we need to construct a Pσ LTS as we have done here. The idea is then to define the interpretation of complex programs semantically from the atomic programs. To recover the truth lemma for the α * ϕ case, we need to extend our proof. Precisely, we need to show if there are atoms D,E such that, then D

α * → E then there is a sequence of atoms A 0 α → A 1 α → ... α → A n α → A n+1 with A 0 = D and A n+1 = E.
This should follow from the richness of the set of atoms and axioms. But, we need to check the details in a separate paper.

ATL with sights

Our initial discussion of sights was motivated by examples of strategic interaction. Section 9 says a bit more about the relation between the logic of sights and games. But let us look briefly at a possible extension of ATL [START_REF] Alur | Alternating-time temporal logic[END_REF] with sights. The following definitions are variations on that of [START_REF] Alur | Alternating-time temporal logic[END_REF]. Definition 8.2 (Alternating Transition Systems (ATS), [START_REF] Alur | Alternating-time temporal logic[END_REF]) An ATS is a tuple S = W ,Z,A,Ag,ρ,α,δ,V where W is a non-empty set, Z ⊆ W , A = {a 1 ,...,a m } is a finite set of actions, Ag = {1,...,n} is a finite set of agents, ρ : W → ℘(Ag), with ρ(Z) = {∅}, α : (Ag ×W) → ℘(A)\{∅}, V : prop → ℘(W) and δ : (W ×Ag ×A) → ℘(W).

Let a limitation on α be a function α ′ : (Ag ×W) → ℘(A)\{∅} such that for every (i,w) ∈ dom(α ′), α ′ (i,w) ⊆ α(i,w). An S-choice function c is a function c : (W ×Ag) → A such that for every (w,i) ∈ dom(c) we have c(w,i) ∈ α(i,w).

Definition 8.3 (Safety)

We say that an ATS S = W ,Z,A,Ag,ρ,α,δ,V is safe whenever for every w ∈ W \Z, i ∈ ρ(w) and a ∈ α(i,w) we have δ(w,i,a) = ℘(W) (only agents in ρ(w) have non-trivial power at w) -for every w ∈ Z, i and a ∈ α(i,w) we have δ(w,i,a) = {w} (terminal nodes are safe sink states) -For every w ∈ W and every S-choice function c we have: i∈Ag δ(w,i,c(i)) = ∅ (safety, the transition function is non-blocking)

Definition 8.4 (Coalitions)

Given an ATS, a coalition is a non-empty subset of Ag. Given a limitation α ′ on α, we say that S C is an α ′ -strategy iff for every i ∈ C and w ∈ dom(S C) we have S C (w,i) ∈ α ′ (i,last(w)). Definition 8.8 (Compatible runs) Let a run be a sequence w ∈ (W * ∪W ω). We say that a run w is compatible with a profile of strategies S Ag at a state w 0 -for short compatible with (w 0 ,S Ag)-iff w [START_REF] Alur | Alternating-time temporal logic[END_REF] = w 0 and for every k,k +1 ≤ len(w) we have w[k +1] ∈ i∈Ag δ(w[k],i,S Ag (w| k)). We say that v ∈ W is an eventuality at w 0 iff there is a run w that is compatible with (w 0 ,S Ag) and some k ≤ len(w) such that w

[k] = v.
We say that a run w is compatible with the limitation α ′ at w 0 iff there is some α ′ -strategy S Ag for Ag such that w is compatible with (w 0 ,S Ag). We say that v ∈ W is an α ′ -eventuality at w 0 iff there is a run w that is compatible with the limitation α ′ at w 0 and some k ≤ len(w) such that w[k] = v. Definition 8.9 (Immediately C-achievable sets) Let S = W ,Z,A,Ag,ρ,α,δ,V be an ATS, let C be a non-empty subset of Ag and let w 0 ∈ W . We say that X ⊆ W is an immediately C-achievable next set at w 0 whenever there is a positional strategy for C, S C such that for every positional strategy S -C for Ag \C we have δ(w 0 ,S C ∪S -C) ⊆ X . Definition 8.10 (Locking) Let S = W ,Z,A,Ag,ρ,α,δ,V be an ATS, let C be a non-empty subset of Ag and let w 0 ∈ W . We say that a strategy S C for C locks S in X ⊆ W at w 0 iff for every strategy S -C for Ag \C, and for every run w ∈ W * ∪W ω which is compatible with (w 0 ,S C ∪S -C) and every n ≤ len(w) we have w[n] ∈ X .

We say that C can lock S in X ⊆ W at w 0 whenever there is a strategy S C for C that locks S in X ⊆ W at w 0 .

Definition 8.11 (C-visitable sets)

Let S = W ,Z,A,Ag,ρ,α,δ,V be an ATS, let C be a non-empty subset of Ag and let w 0 ∈ W . We say that X ⊆ W is a C-visitable set at w 0 whenever there is a strategy S C for C such that for every strategy S -C for Ag \C, and for every run w ∈ W * ∪W ω which is compatible with (w 0 ,S C ∪S -C), we have some n ≤ len(w) such that w[n] ∈ X . In such a system, we have operators of the form C ϕ and C Gϕ and C Fϕ, with the intuitive meaning C can enforce that the system moves into a ϕ-state, C can make sure that ϕ holds permanently from now on and C can make sure that ϕ will eventually hold, respectively. These operators have the following semantics:

S,w |= C ϕ iff ||ϕ|| is an immediately C-achievable next set at w S,w |= C Gϕ iff C can lock S in ||ϕ|| at w S,w |= C Fϕ iff ||ϕ|| is a C-visitable set at w
How should safe ATS be expanded with sights? We could simply add sight functions on top of ATS. But in general, the restriction of a safe ATS will not be a safe ATS, since the transition function might fail to be non-blocking (an existential property). Whether or not this form of safety should be preserved under taking sights. We could of course simply add either way.

Consider a safe pointed ATS (S,w 0) with S = W ,Z,A,Ag,ρ,α,δ,V and let α ′ be a limitation on α. We let N α ′ (w 0) be the smallest subset of W containing all α ′ -eventualities and w 0 . This subset need not be a proper subset of W . We refer to N α ′ (w 0) as the (w 0 ,α ′)-induced sight. We show the following: Proposition 8.12 Given a safe pointed ATS (S,w 0) with S = W ,Z,A,Ag,ρ,α,δ,V and a limitation α ′ on α

(S,w 0)[α/α ′]| N α ′ (w 0) is a safe pointed ATS.
Proof. We only give the idea of the proof. Safety requires three properties to be satisfied: that agents not in ρ(w) have trivial power at w, that terminal nodes are safe sink states, and that the transition function is non-blocking. Satisfaction of the first condition follows from the fact that ρ and δ are defined as restrictions. For the second condition, observe that a limitation α ′ of α can never map a pair (i,w) in the original model to the empty set and that it has map (i,w) to a subset of α(i,w). Hence, terminal safe sink states that survive the restriction will still be safe sinks. Moreover, by the same conditions and the fact that N α ′ (w 0) contains all α ′ eventualities (from w 0), the resulting set Z ′ (after restriction) will be a non-empty subset of Z. Finally, the third condition follows from the definition for N α ′ (w 0) just mentioned, and the fact that the new transition function δ is defined as a restriction and that the original δ was non-blocking.

We can now define a safe σ ATS as follows: Definition 8.13 (Safe σ ATS) A safe σ ATS is a structure S = W ,Z,A,Ag,ρ,α,δ,V ,(σ i) i∈Ag such that S\(σ i) i∈Ag is a safe ATS and for each w ∈ W and i ∈ Ag, σ i (w) is a restriction on α. Given a state w 0 and an agent i, we let σ (w 0 ,i,S) = (S,w 0)[α/α ′]| N σ i (w 0) (w 0) .

We can now expand our language with operators of the form [!N i]ϕ with semantics:

S,w |= [!N i]ϕ iff σ (w,i,S),w |= ϕ
We will study σ ATS and its logic in another paper. We simply observe that due to the fact that the semantics of the operator C ϕ contains a non-decomposable quantifier alternation ∃∀, the axiomatization of [!N]+ C

will not follow trivially from the axiomatization of L σ over σ LTS.

Epistemic extensions

We think that sight operators have interesting interactions with epistemic operators. But, before we discuss any extensions of our logic with epistemic operators, we first discuss whether we can give a natural epistemic or doxastic interpretation to [!N] itself. First note that |= [!N]p ↔ p. As an epistemic/doxastic operator, it would mean that the agent is never mistaken about basic facts. Moreover the agent is never mistaken about existential modal facts (e.g., |= [!N] a p ↔ a p, but might be wrong about non-existential formulas. Conversely, the agent is fully knowledgeable of universal facts (e.g.

|= [a]p ↔ [!N][a]p).
We believe these properties are not intuitively plausible as properties of a reasonable epistemic or doxastic operator. They are, however, relatively natural as describing the awareness an agent has of the possible evolution of a system. If I am aware that a could happen, then a could happen. If executing a can only lead to p-states, then I cannot be aware of an a-execution that would lead to non-p state. Of course, agents can be wrong, but this is why it is interesting to expand the logic of sights with epistemic operators, or, as most will think of it, expand an epistemic or doxastic signature with sight operators. Many interesting questions arise when concerned with the interaction of information uncertainty and sights. While we reserve a systematic analysis of these interactions to a follow-up paper, consider, nevertheless, the following example. Is a model, where w 1 is in the sight of w 0 , while w 2 is not, but w 1 ∼ w 2 an acceptable model? (Figure 7 is partial representation of such a situation.)

Note that this is different from a situation in which perfect recall-see [START_REF] Witzel | Perfect recall of imperfect knowledge[END_REF] for a formal discussion of alternative mathematical definitions of the concept and their relation-is violated. The question is essentially whether past sights (or past awareness, or past expectations) should be preserved after actions are executed. Whether we consider the above model as acceptable or not depends on whether an agent can be aware of certain transitions in the system, but yet, when continuations she was considering possible do happen, is not able to distinguish whether one of the unexpected actions has taken place.

We discussed the possibility of treating [!N] as an epistemic operator. But we could also treat our underlying transition systems as an epistemic model. Doing so, however, requires a slightly different approach to the semantics of sights. Consider the following example: Example 8.14 Naive car buyer Georg 1 takes a shiny, clean car (p) to be well kept (q) by its owner and a dusty, dirty (¬p) car to be not so well kept (¬q); skeptical buyer David 2 does not make such an assumption, but is not a car expert and cannot decide whether the car has been well kept or not.

Intuitively, we expect that in the state of the world where the car is not so well kept but shiny and clean, it is common knowledge that the car is well kept in the sight of Georg (i). But this is incompatible with both the assumption that for every w we have w ∈ N(w) and the standard assumption that the epistemic relation is an equivalence relation.

Another intuitive requirement is an uniformity one: whenever w ∼ 1 v then N 1 (w) = N 2 (w) (ii). If we relax the assumption that for every w we have w ∈ N(w) to the fact that for every w we have N(w) = ∅, we could hope to accommodate (i) and (ii) with the model in Figure 8.

But if we leave the semantics of [!N] unchanged, it will not be well defined any longer. For example, whether [!N 1]ϕ is satisfied in the model of Figure 8 at w 2 would be an ill-defined question. At best w 1 : p, q w 2 : p, ¬q

w 3 : ¬p, q w 4 : ¬p, ¬q 1,2 1,2 p :
w 2 1,2 p, q p p, q 1,2

w 4 p Figure 8. Circles represent N 1 Rectangles represent N 2 .
we could try to patch the semantics to have:

w 2 |= [!N 1]⊥
But, clearly, this is not something we would like to have either. Let K i [w] = {v|w ∼ i v}. We also write i ϕ := ¬K i ¬ϕ. In addition to our previous assumptions, we require that for every w we have (N i (w)∩K i [w]) = ∅. Together with uniform sights and the assumption that ∼ i is an equivalence relation, we can use the following semantics:

M,w |= [!N i]ϕ iff for every v ∈ K i [w]∩N i (w) we have M| N i (v) ,v |= ϕ
Now the meaning of [!N i]ϕ is that from agent i's perspective, i knows that ϕ. This is different from a belief operator. For example, we would not have M,w 2 |= B i C 1,2 ϕ with a reasonable belief operator. Moreover, with uniform sights and epistemic equivalence relations we have, with the above semantics, not only

|= [!N i]ϕ → K i [!N i]ϕ, but also |= [!N i]ϕ → [!N i]K i ϕ.
While the first assumption is generally unproblematic for most standard semantics of belief, the second one-usually referred to as positive certainty-is easily shown to be incompatible with having a non-trivial KD45-belief operator, an S5-knowledge operator and the assumption that knowledge implies belief. The reader can consult e.g. Halpern [14] for details.

Our remarks indicate that the details of the relation between knowledge, beliefs, sights and their dynamics will be interesting but complex. We plan to discuss these in a separate paper.

Changes in sights

Sights need not be stable over time. Some events might make agents consider options they did not consider before (sight extension) or it might make them stop considering what they considered before (sight restriction). In either case, we might have:

either have a semantically driven change and ask what happens if this or that subset of the model is added to the sight of the agent, or, -a syntactically driven change and ask what happens if someone makes the agent consider the possibility that ϕ and if someone makes that agent only focused on possibilities that are compatible with ϕ.

We only look at the second case. Assume that we are in the left-hand side model in Figure 9 at state w 0 . Now the agent is being convinced to consider the possibility that a b ⊤. For example, a chess player is being suggested to look at a certain sequence of moves she or he was not paying attention to. Let [+ a b ⊤] be the syntactic counterpart to this yet-to-be-defined operation. What should we expect about the resulting model? We should probably expect that [+ a b ⊤][!N] a b ⊤. Of course, if only the sight of our agent is changing, we either need a precondition to the execution of + a b ⊤ or we need to restrict its success to cases where it is possible to succeed. So what we really would like is something like

a b ⊤ → [+ a b ⊤][!N] a b ⊤.
The right-hand side model in Figure 9 represents one of the satisfying extension of N(w 0). The two other being N(w 0) = {w 0 ,w 03 ,w 01 ,w 01 } and N(w 0) = |M 2 |. The first two are in some sense minimal, but it is hard to argue for either one, without having some form underlying notion of plausibility (or preferences) on either states or subsets of the model. Instead, we could simply require truth in all models M ′ which are isomorphic to M except for N M ′ (w 0) and in which A similar semantics can be given for the other operation, using minimal restrictions instead of minimal extensions.

N M ′ (w 0) is a minimal extension of N M 1 (w 0) such that M ′ | N(w 0) ,
In an epistemic context with sights, we need to restrict the acceptable extensions of N(w 0) to be in some sense compatible with K[w 0]: if K[w 0] encodes the agent's information and a reasonable agent will only expand her sight to 'accommodate suggestions' that are compatible with her information. By contrast, this would not need to be the case with respect to belief sets, but we will not get into that in this article. In epistemic temporal models, we have to be careful about the exact meaning of the previous restrictions. One possible formalization could be that the acceptable extensions of N(w 0) should be subsets of a → * (K[w 0]).

Logic of sights and relativization

There is a natural relation between the logic of sights and relativization. Relativization is the syntactic counterpart to restricting models to the truth set of a formula. Let ϕ,ψ be formulas of the basic modal language. The relativization of ϕ to ψ, written (ϕ) ψ , is a modal formula defined recursively as follows:

p ψ = p ∧ ψ (¬ϕ) ψ = ¬ϕ ψ (ϕ 1 ∧ ϕ 2) ψ = ϕ ψ 1 ∧ ϕ ψ 2 (a ϕ) ψ = a (ψ ∧ ϕ)
Consider a finite σ LTS M with domain {w 0 ,...,w n-1 }. For each, w i , expand the basic modal language with a surjective set of fresh nominals nom M , that is with a set of fresh propositional letters such that for every p i ∈ nom M , |V (p i)| = 1 and V (nom M) = {w 0 ,...,w n-1 }, call the resulting model M +nom . For every w i , define a formula π i := w j ∈N (w i) p j . Note that for basic modal formulas ϕ, we have:

M,w i |= [!N]ϕ iff M +nom ,w i |= ϕ π i
Thus, given a finite σ LTS M, we can recursively define a function f M : L (!σ,A) (prop) → H (A) (prop∪ nom M) giving us for every state w ∈ M and every formula ϕ ∈ L (!σ,A) (prop), a formula f M,w i (ϕ) as follows:

f M,w i (ϕ) = f M,w i (ϕ ⊤)
f M,w i (p ⊤) = p for both propostional letters and nominals.

f M,w i (p ψ) = (p ∧ f M,w i (ψ)) f M,w i ((ϕ ∧ χ) ψ) = f M,w i (ϕ ψ) ∧ f M,w i (χ ψ) f M,w i ((ϕ ∨ χ) ψ) = f M,w i (ϕ ψ) ∨ f M,w i (χ ψ) f M,w i ((¬ϕ) ψ) = ¬f M,w i (ϕ ψ) f M,w i ((a ϕ) ψ) = a w j ∈R a [w i] f M,w j (ψ ∧ ϕ ψ) f M,w i (([!N]ϕ) ψ) = f M,w i (ϕ π i ∧ψ)
We now have to show that this translation can simulate the sight operator over finite models. First let us make a few observations:

Fact 8.15
For any finite pointed LTS M,w and any formula ϕ ∈ L (!σ,A) , f M,w i (ϕ) ∈ H (A) (prop∪nom M).

Proof. Note that ultimately only propositional letters will be exponentiated at which stage it is transformed in a simple conjunction. Moreover, at every stage the exponent ϕ is a conjunction of clauses of nominals. Finiteness of the translation of a ϕ formulas follows from finiteness of the model.

Fact 8.16

For every formula ϕ ∈ L (!σ,A) (prop) and every finite pointed model M,w i , we have

M +nom ,w i |= ϕ iff M,w i |= ϕ Proof. Trivial.
Fact 8.17

For every ϕ ∈ L (!σ,A) (prop∪nom), every finite pointed model M,w i and finite subset W 0 ⊆ |M|, such that w i ∈ w∈W 0 N (w) we have:

M +nom w k ∈W 0 N (w k) ,w i |= ϕ iff M +nom | || w k ∈W 0 π k || ,w i |= ϕ
Proof. Immediate from the definition of π k .

Lemma 8.18

For every formula ϕ ∈ L (!σ,A) (prop∪nom), and every finite pointed model M,w i and finite subset ⊆ nom∪prop with w i ∈ || ||, we have: [START_REF] Feferman | Persistent and invariant formulas for outer extensions[END_REF]. By IH we have thus M +nom ,w j |= f M,w j (ϕ). By (6) and [START_REF] Fagin | Reasoning About Knowledge[END_REF] we have thus

M +nom | || || ,w i |= ϕ iff M +nom ,w i |= f M,w i (ϕ) Proof.
M +nom ,w i |= a f M,w j (ϕ), hence M +nom ,w i |= a w j ∈R a [w i] f M,w j (ϕ), that is, M +nom ,w i |= f M,w i ((a ϕ)
. The converse direction is similar.

Lemma 8.19

For every ϕ ∈ L (!σ,A) (prop), and every finite pointed model M,w i and finite subset W 0 ⊆ |M|, such that w i ∈ w∈W 0 N (w) we have:

M w j ∈W 0 N (w j) ,w i |= ϕ iff M +nom ,w i |= f M,w i (ϕ j∈{k|w k ∈W 0 } π j)
Proof. Immediate from Lemma 8.18 and the two previous facts.

Our main claim follows directly:

Proposition 8.20 For every formula ϕ ∈ L (!σ,A) (prop), and every finite pointed model M,w i we have

M,w i |= ϕ iff M +nom ,w i |= f M,w i (ϕ)
Proof. The proof is by induction on the complexity of ϕ.

|= f M,w i (ϕ π i). But f M,w i ([!N]ϕ) = f M,w i (([!N]ϕ) ⊤) = f M,w i (ϕ π i).
Finally assume that M,w i |= a ϕ, it follows that there is some w j ∈ R a [w i] (0) and M,w j |= ϕ. Hence by IH, M +nom ,w j |= f M,w j (ϕ) [START_REF] Alur | Alternating-time temporal logic[END_REF]. But from (0) and (1) we have: M +nom ,w j |= w j ∈R a [w i] f M,w j (ϕ) and thus

M +nom ,w i |= a w j ∈R a [w i] f M,w j (ϕ). But f M,w i (a ϕ) = f M,w i ((a ϕ) ⊤) = a w j ∈R a [w i] f M,w j (⊤ ∧ ϕ ⊤)= a w j ∈R a [w i] f M,w j (ϕ ⊤)= a w j ∈R a [w i] f M,w j (ϕ).
The notion of bisimilarity corresponding to the basic hybrid language with nominals only is the following: Definition 8.21 (H A -Bisimulation, see, e.g. [START_REF] Cate | Model Theory for Extended Modal Languages[END_REF], ch. 4)

An H A -bisimulation between M = W ,(a →) a∈A ,V and M ′ = W ′ ,(a → ′) a∈A ,V ′ is a bisimulation satisfying: 1. x ∈ V (p i) iff x ′ ∈ V ′ (p i), whenever (x,x ′) ∈ Z, for every p i ∈ nom
H A -bisimilarity does not imply σ -bisimilarity as such. However, consider the basic hybrid language enriched with the N operator discussed at the beginning of Section 4.1. We refer to it as H A,N (nom). Consider two finite pointed LTSs M,w i and M ′ ,w ′ i . We first claim the following: Claim 8.22 Whenever M,w i and M ′ ,w ′ i are H A,N -bisimilar, then for any ϕ ∈ L (!σ,A) , f M,w i (ϕ) is logically equivalent to f M ′ ,w ′ i (ϕ). Proof. First, observe that at every stage of the translation we have an exponentiated formula of the form ϕ ψ , where ψ is a conjunction of the form π i 1 ∧ ... ∧ π i n , where each π i k := w j ∈N (w i) p j . Moreover, it is easy to see that such conjunctions of clauses of nominals are invariant under H A,Nbisimulations.

The proof is by induction on the complexity of ϕ in ϕ ψ . Base case is for formulas of the form p ϕ where ϕ is a Boolean formula over nom and prop, where p ∈ prop. Hence by definition of the translation, its translation in the same in both models. Now for the induction step. First note, that the translation is only model-dependent for [!N] and a clauses. Hence induction steps for Booleans are trivial. Now consider an exponentiated formula of the form (a ϕ) ψ . By definition of the translation f M,w i ((a ϕ) ψ) = a w j ∈R a [w i] f M,w j (ψ ∧ ϕ ψ). Now by definition of a bisimulation, for each w j ∈ R a [w i] there is a state w ′ j ∈ R a [w ′ i] such that w j and w ′ j are themselves H A,N -bisimilar. But then by IH f M,w j (ψ ∧ ϕ ψ) is logically equivalent to f M,w ′ j (ψ ∧ ϕ ψ). And conversely using the other direction in the definition of a bisimulation. By finiteness, it follows that f M,w i ((a ϕ) ψ) and f M,w ′ i ((a ϕ) ψ) are of the form a χ ∈ψ and a χ ′ ∈ ′ ′ , such that and ′ are finite collections of formulas, such that for each formula in one collection, there is a logically equivalent one in the other. Hence the two formulas are logically equivalent.

The [!N]-case is immediate from the definition of the translation f M,w i (([!N]ϕ) ψ) = f M,w i (ϕ π i ∧ψ). It is sufficient to note that if ψ was a Boolean combination of nominals, then so is π i ∧ ψ, and that if π i and π ′ i must be logically equivalent, for otherwise there would be a state in either N (w i) or N (w ′ i) satisfying a nominal, that is not satisfied by any state in the N (w ′ i) or, respectively, in N (w i), contradicting the hypothesis that w i and w ′ i are H A,N -bisimilar. Concluding the proof for this case and the proof of the claim. Now, let C be a class of pointed finite LTSs. We say that nom is surjective with respect to C, provided that for every M ∈ C, V M (nom) = |M|. As a Corollary to Proposition 8.20 we now can observe that:

Corollary 8.23
Let C be a class of finite pointed LTSs and let nom be a set of nominals, surjective with respect to C. We have L (!σ,A) ≤ C H A,N (nom).

Proof. Assume for contradiction that we have two finite pointed LTSs, M,w i and M ′ ,w ′ i that are H A,N -bisimilar and such that we have a formula ϕ ∈ L (!σ,A) with M,w i |= ϕ and M ′ ,w i |= ϕ. By Claim 8.22 it follows that f M,w i (ϕ) is logically equivalent to f M ′ ,w ′ i (ϕ). Since nom is surjective with respect to C, we have by Fact 8.15, that the translation is into H A (nom), hence certainly in H A,N (nom). Take F(ϕ)

:= f M,w i (ϕ) ∧ f M ′ ,w ′ i (ϕ), which is still in H A,N (nom)
. By Proposition 8.20 it follows, that M,w i |= F(ϕ) and M ′ ,w i |= F(ϕ), contradicting the assumption that M,w i and M ′ ,w ′ i are H A,N -bisimilar. By reduction, it follows that M,w i and M ′ ,w ′ i are not H A,N -bisimilar, but since both are finite, they are also H A,N -distinguishable. Concluding our proof.

Logic of sights as a multi-dimensional modal logic

If we look back at our SAT-algorithm, we can see that we have implicitly treated our logic as a multi-dimensional modal logic. But the logic itself is really unidimensional; when we move to a restriction the semantics does not require that we keep track of the original model to interpret the rest of the formula. If we would like, however, to be able to switch back and forth between different perspectives, we would require a truly multi-dimensional modal logic. Consider e.g. the addition of an 'abstract away' unary operator that we call [(!N) -1]ϕ. To accommodate it, we change our original semantics. Our models are still σ LTS of the form:

M := W ,(a →) a∈A ,N ,V
where N : W → ℘(W) where w ∈ N (w), for every w ∈ W .

The syntax of the language of L (!σ,(!σ) -1 ,A) over A is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | a ϕ | [!N]ϕ | [(!N) -1]ϕ,
where p ranges over prop and a over A. Given a model a state w ∈ W and a finite, possibly empty, set X ⊆ W , our semantics is given as follows:

M := W ,(a →) a∈A ,N ,V ,
M,w,X |= a ϕ iff there is s ∈ (t∈X N (t))∩R a [w] with M,s,X |= ϕ M,w,X |= [!N]ϕ iff M,w,X ∪{w} |= ϕ M,w,X |= [(!N) -1]ϕ iff M,w,X \{w} |= ϕ
Note that our two operations are still very restrictive: they only allow us to add or remove the current state from the last part of the context. However, a logic with these operations is strictly more expressive than our logic. First, consider the two models given in Figure 10. There are of course other multi-dimensional modal logics along those lines. L (!σ,A) , the logic of sight we have discussed in this paper, can be said to be internal: [!N]ϕ means that ϕ is true in the restriction to N (w), where further [!N] operators are recursively interpreted in the relevant submodels. If instead we would like an operator, call it [↓N], setting the perspective to be that of the agent at the current state-hence a logic of sight from an external perspective-we can draw on multi-dimensional semantics as explained below.

Our models are still σ LTS of the form:

M := W ,(a →) a∈A ,N ,V
where N : W → ℘(W) where w ∈ N (w), for every w ∈ W . The syntax of the language of L (↓σ,A) over A is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | a ϕ | [↓N]ϕ,
where p ranges over prop and a over A. Given a model

M := W ,(a →) a∈A ,N ,V ,
a pair in (w,v) ∈ W ×W ∪{ǫ}, and defining N (ǫ) := W , our semantics is given as follows: 12 that L (!σ,A) is not as expressive as L (↓σ,A) . Indeed the two w 0 -pointed models are σ -bisimilar, but M 1 ,w

M,w,v |= a ϕ iff there is s ∈ N (v)∩R a [w] with M,s,v |= ϕ M,w,v |= [↓N]ϕ iff M,w,w |= ϕ (a) (b)
0 |= [↓N] a [↓N] b ⊤ while M 2 ,w 0 |= [↓N] a [↓N] b ⊤.
The model-theoretic notion of invariance corresponding to modal invariance for L (↓σ,A) is based on the following notion of bisimulation. (The proof of this correspondence is the usual one.)

Definition 8.24 A (↓N,A)-bisimulation between two σ LTS S = (W ,(a →) a∈A ,N,V) and S ′ = (W ′ ,(a → ′) a∈A ,N ′ ,V ′) is a relation Z ⊆ (W ×(W ∪{ǫ}))×(W ′ ×(W ′ ∪{ǫ})
) such that for some w ∈ W and w ′ ∈ W ′ we have (w,ǫ,w ′ ,ǫ) ∈ Z, and such that the following conditions hold:

1. (Atomic Harmony) if (x,y,x ′ ,y ′) ∈ Z then for every p ∈ prop, we have x ∈ V (p) iff x ′ ∈ V ′ (p) 2. (Forth) if (x,y,x ′ ,y ′) ∈ Z and xR a z for some z ∈ N(y), then there exists some z ′ ∈ N ′ (y ′) such that

x ′ R ′ a z ′ and (z,y)Z(z ′ ,y ′) 3. (Back) if (x,y,x ′ ,y ′) ∈ Z and x ′ R ′ a z ′ for some z ′ ∈ N ′ (y ′), then there exists some z ∈ N(y) such that xR a z and (z,y)Z(z ′ ,y ′) 4. (↓N-Forth) if (x,y,x ′ ,y ′) ∈ Z and xR a z for some z ∈ N(y), then there exists some z ′ ∈ N ′ (y ′) such that x ′ R ′ a z ′ and (z,z)Z(z ′ ,z ′) 5. (↓N-Back) if (x,y,x ′ ,y ′) ∈ Z and x ′ R ′ a z ′ for some z ′ ∈ N ′ (y ′), then there exists some z ∈ N(y) such that xR a z and (z,z)Z(z ′ ,z ′)

We say that two pointed σ LTS (S,w 0) = (W ,(a →) a∈A ,N,V ,w 0) and (S ′ ,w

′ 0) = (W ′ ,(a → ′) a∈A , N ′ ,V ′ ,w ′ 0)
are (↓N,A)-bisimilar (notation S,w 0) ↔ ↓N,A (S ′ ,w ′ 0) whenever there is bisimulation Z between S and S ′ such that (w 0 ,ǫ,w ′ 0 ,ǫ) ∈ Z. When A is clear from context, we write (↓N)-bisimilar for (↓N,A)-bisimilar.

Note the difference with σ -bisimulations. While specific back and forth conditions for σbisimulations are cumulative, the ones for (↓N,A)-bisimulations are reseting the sight to that of the successor. Figure 11 gives an example of two models that are (↓N)-bisimilar, but not σ -bisimilar. Hence, L (↓σ,A) is not as expressive as L (!σ,A) . The expressive power of the two languages are thus incomparable.

Definability of sight-based subgame perfection

We can finally come back to what was one of our original motivations: game-theoretical analysis of strategic situations involving limited sights. We started the article with the example of a chess game, claiming that both human and artificial players will only take into account a limited part of the (sub)game tree into account before deciding which move to take.

Magnus Carlsen, 2013 world No. 1 chess player, claims to read up to 15-20 moves ahead (Spiegel, 19 March 2010). This limit in the depth of his sight, has to be paired not only with a limit in the number of moves considered at each stage, but with the selection of only a small subset of relevant sequences, even assuming an ability to go through positions at blazing speed. In general, both players will have some form of limited sight. In particular a player, say black, might expect another (white) to make decisions within a shorter sight than she (black) is, and try to use that to her advantage. The converse is of course not very helpful, even if white knows that black is able to read deeper, she still has to rely on her own reading ability, that is her own depth of reading.

Sequential game models

We follow the logical analysis of sequential games of perfect information developed in van Benthem and Gheerbrant [START_REF] Van Benthem | Game solution, epistemic dynamics and fixed-point logics[END_REF] and take our models to be finite σ -treeLTSs extended with a turn function ρ and a preference orderings for each player. Concretely we consider structures of the following form:

Definition 9.1 (model of a sequential game with sights (σ SG)) M = W ,Z,Ag,(a →) a∈A ,(N i) i∈Ag ,ρ,(≤ i) i∈Ag ,V where W ,(a →) a∈A ,(N i) i∈Ag ,V is a σTLTS, Z
is the set of leafs, ρ : (W \Z) → Ag and for each i ∈ Zg, ≤ i is a total pre-order on W . We refer to a structure of the previous type as a model of a sequential game with sights, σ SG for short.

Unlike models of sequential games without sights, it is necessary to require agents' preferences to be defined on the whole tree and not only on leaves. To go back to the chess analogy, Carlsen states that he believes the important part (when reading ahead in a chess game) 'is to correctly assess the position at the end of the calculation'. In other words, being able to see ahead is pointless for the purpose of decision-making if you are not able to assess intermediate positions. In general, for arbitrary games, the task is more delicate than for chess, because a player must be able to assess such intermediate stages of the games for other players as well. We let for each i ∈ Ag, turn i be a propositional letter with semantics: M,w |= turn i iff w ∈ Z and ρ(w) = i

We also write end for [→]⊥, that is w ∈ ||end|| iff w ∈ Z.

A strategy for i, is a function

f i : ρ -1 (i) → W with f i (w) ∈ → [w]. A sight-compatible strategy for i is a strategy f i such that f i (w) ∈ N i (w).

Backward induction with sights

A subgame perfect equilibrium (see e.g. [START_REF] Osborne | A Course in Game Theory[END_REF]) is a profile of strategies such that the restriction of the profile to any subgame is still a Nash-equilibrium for that This is the usual solution concept for extensive games of perfect information. We refer to it as an SPE. On generic games, that is games such that there is no indifference for any player between end-nodes, there exists a unique SPE. On the class of generic games, backward induction (henceforth BI) can be seen as a deterministic procedure selecting a unique action at each non-terminal node (or history) in the game. When we allow for indifference, there exists generally more than one SPE and the set of pure SPE is generally not closed under union. In other words, subgame perfection or equivalently backward induction cannot be defined inductively as a relation on arbitrary games. However, this can be done for generic games and this can also be done for some generalizations of backward induction, allowing for FO with fixed points definability, as well as modal definability. The reader is referred to [START_REF] Van Benthem | Game solution, epistemic dynamics and fixed-point logics[END_REF] for details on such definability results. We say that a σ SG is generic iff the preference ordering of each agent is a strict total order. For the sake of simplicity, we will henceforth speak of the BI relation, but the reader is now aware that this expression should be taken with a grain of salt.

In the context of sequential games with sights, [START_REF] Grossi | Short sight in extensive games[END_REF] proposes a concept of solution they refer to as 'sight-compatible' SPE. Definition 9.2 (non-recursive sight-compatible SPE, [START_REF] Grossi | Short sight in extensive games[END_REF]) A profile of strategy is a non-recursive sight-compatible SPE if at every non-terminal stage w the action it prescribes at h is compatible with an SPE of the restriction of the game to N {ρ(w)} (w).

We refer to it as non-recursive sight-compatible SPE, because in this solution concept, as stressed by Grossi and Turrini [START_REF] Grossi | Short sight in extensive games[END_REF], players are not taking into account the sights restrictions under which other players will be making decisions. Given the reader's favorite notion of a BI relation, we define its corresponding non-recursive sight-compatible relational counterpart as follows: Definition 9.3 (non-recursive sight-compatible BI relation) Given a (generic) σ SG, M, the non-recursive sight-compatible BI relation, NRσ BI is the subset of (W \Z)×W such that (x,y) ∈ NRσ BI iff (x,y) ∈ BI(M| σ (ρ(w))).

An important difference with the classical setting, is that we are really dealing with a family of relations {BI(M| σ (ρ(w)))|w ∈ |M|\Z}. Concretely, for non-terminal x we have a backward induction relation BI x defined with respect to the restriction of the game model to σ (ρ(x)).

Modal definability

We will be working with a relational generalization of BI defined in [START_REF] Van Benthem | Game solution, epistemic dynamics and fixed-point logics[END_REF], but a similar recipe can be applied to the reader's favorite modal characterization of the (reader's favorite notion of a) BI relation (see e.g. [START_REF] Van Benthem | Game solution, epistemic dynamics and fixed-point logics[END_REF][START_REF] Van Benthem | Preference logic, conditionals and solution concepts in games[END_REF][START_REF] Van Der Hoek | Modal logic for games and information[END_REF]) in some modal language L BI . Van Benthem and Gheerbrant [START_REF] Van Benthem | Game solution, epistemic dynamics and fixed-point logics[END_REF] characterize the BI relation as follows:

turn i ∧ BI [BI *](end → p) → [→] BI * (end ∧ ≤ i p) (23)
The crucial ingredients are the use of a preference ≤ i modality for each agent and an iteration program construct * . Now the locality of the backward induction relation BI x makes it necessary for modal characterization purposes that the syntax is able to refer to the particular node in the game tree at which this sight-dependent BI relation is being defined. A way to do this is to use a sight modality [!N i] for each agent, defined as previously in the article, in an hybrid setting with binder.

Putting it all together, our language will then be a multi-agent version of L σ expanded with preference modalities ≤ i for each agent, an iteration program construct * , state variables svar := x,y,z,... and a binder ↓x.,↓y.,... which binds state variables to the current state (see [START_REF] Cate | Model Theory for Extended Modal Languages[END_REF], ch. 9, for a complete introduction). Concretely, we have the programs:

α ::= a |→| α * β ::= α |≤ i
and the following formulas:

ϕ ::= p | turn i | x | @ x ϕ | ↓x.ϕ | ¬ϕ | ϕ ∧ϕ | α ϕ | [!N i],
where i ranges over Ag, p over prop and x over svar. We write

[!N ρ]ϕ for i∈Ag (turn i ∧ [!N i]ϕ).
Programs and formulas will be interpreted on pointed σ SG (cf. Definition 9.1) together with assignment functions g : svar → W . Programs are interpreted in the obvious way:

||a|| = a → || → || = a∈A a → ||α * || = ||α|| * || ≤ i || = ≤ i
Now, we give the interesting cases for formulas:

M,w,g |= x iff g(x) = w M,w,g |= turn i iff ρ(x) = i M,w,g |= @ x ϕ iff g(x) ∈ |M| and M,g(x),g |= ϕ M,w,g |= ↓x.ϕ iff M,w,g[g(x) := w] |= ϕ M,w,g |= [!N i]ϕ iff M| N i (w) ,w,g |= ϕ M,w,g |= α ϕ
iff there exists some v with (w,v) ∈ ||α|| M and M,v,g |= ϕ

There are a few subtleties in the above semantics, which have to do with the interaction of assignment functions and model restriction operations. The first question is whether, when we interpret a formula of the form [!N i]ϕ, we should restrict the assignment function as well. We will not restrict the assignment function but instead modify the semantics of formulas of the form @ x ϕ at M| N i (w) ,v,g in the case that g(x) ∈ N i (w). There are two ways to strengthen the semantics of @ x ϕ, making it either an 'existential' modality or a 'universal' modality. In the first case, we would have M| N i (w) ,v,g |= @ x ϕ whenever g(x) ∈ N i (w). This interpretation has our preference. @ x ϕ will then intuitively mean that there is some state currently named x in the domain such that ϕ holds there. The universal interpretation would make such formulas true. It is essentially a matter of preference which of these strengthenings one chooses. Another way of dealing with this issue who be to keep track of the full domain as e.g. a disjoint part of the model, whenever interpreting an [!N i]ϕ modality. But it does not seem natural to us to modify the semantics [!N i] to resolve this issue. Finally, having a subspeficied semantics is not an option we see as desirable either. In general, a systematic analysis of logics allowing for restrictions, binders and hybrid @ operators is interesting, but we leave the complete analysis to another paper.

We are now ready, to come back to the issue of modal definability of sight-dependent concepts of subgame perfection. The following characterize the local character of the BI x relation.

BI x p ↔ ↓y.@ x [!N ρ] → * (y ∧ BI x p ∧ → p) (loc)
Now the counterpart of van Benthem and Gheerbrant's [START_REF] Osborne | A Course in Game Theory[END_REF], for sight-dependent subgame perfection, is the following:

@ x [!N ρ][→ *]((turn i ∧ BI x [BI * x](end → q)) → [→] BI * x (end ∧ ≤ i q)) (opt)
Finally, let us introduce the following axiom corresponding to the global solution concept: R r ↔ ↓x. BI x r (glo)

We can now give a modal characterization of the non-recursive sight-compatible BI relation.

Proposition 9.4

Let M be a finite σ SG, let F = M\ V be the frame of M and let R be a program. The following are equivalent:

1. R is the non-recursive sight-compatible BI relation on F, that is ||R|| F = NRσ BI.

2. F |= (loc) ∧ (opt) ∧ (glo).

We are not including the details of this correspondence. We will provide a systematic exploration of solution concepts for games with sights and their definability in an another paper. A particularly exciting next step is to explore the definability of a fully recursive concept of sight-dependent subgame perfection. By fully recursive, we mean that agents are considering the fact that other agents will make decision within their own sight and will themselves anticipate other agent to make decision within their own sight. The corresponding concept can be certainly be defined by simultaneous inflationary inductions. Their definability in modal languages such as modal µ-calculus [START_REF] Janin | On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic[END_REF] or modal iteration calculus [START_REF] Dawar | Inflationary fixed points in modal logic[END_REF] is something we still need to explore. The results in [START_REF] Fontaine | Frame definability for classes of trees in the µ-calculus[END_REF][START_REF] Van Benthem | Sahlqvist correspondence for modal mucalculus[END_REF] could shed some light on this question.

Conclusion

We began with the problem of representing how a limited agent can reason about games she cannot solve analytically using methods such as backward induction. Following [START_REF] Grossi | Short sight in extensive games[END_REF] and [START_REF] Rêgo | Generalized solution concepts in games with possibly unaware players[END_REF] we considered agents who reason about only a limited part of the game, the part that is in her 'sight'. We have developed this concept in a more general and abstract formal setting, using LTSs with sight functions. We introduced a simple modal language augmenting the classical modal system K with an operator that allows us to consider truth in certain submodels given by the sights.

Our language L (!σ,A) has a translation into the loosely guarded fragment of first-order logic, from which decidability of its satisfiability problem follows. We have gone further, however, and showed that its satisfiability problem is PSPACE-complete and that the combined complexity of its model-checking problem is in PTIME. In terms of expressive power, our language is incomparable with a modal language using a standard unary modal operator to scan sights. We have given an axiomatization for our logic of sights and proved its completeness. In the last sections, we have offered some potential avenues to explore in future research and have indicated relations with other logical formalisms, and with game theory. The Pσ LTS M is lastly gathered (Section 6.11) into a σ LTS (Figure E10).

 For ST x ((ϕ ∧ψ) σ), we have by induction hypothesis (IH) that |ST x (ϕ σ)| and |ST x (ψ σ)| are bounded by polynomials in |ϕ σ | and |ψ σ |, respectively, and hence |ST x ((ϕ ∧ψ) σ)| ≤ |ST x (ϕ σ)|+|ST x (ψ σ)| is bounded by a polynomial in |ST x ((ϕ ∧ψ) σ)|. |ST x (a ϕ σ)| ≤ |ST x (ϕ σ)|+c 1 |σ |+c 2 where c 1 and c 2 are constants and since |ST x (ϕ σ)| is bounded by a polynomial in |ϕ σ |, |ST x (a ϕ σ)| is bounded by a polynomial in | a ϕ σ | as well. The cases for ([!N]ϕ) σ and ϕ σ xx are straightforward.

Fact 3. 6

 6 ST x ([!N] a [!N] b p) is not guarded. Proof. We show that the guards in ST x ([!N] a [!N] b p) are not atomic. ST x ([!N] a [!N] b p) = ST x (a [!N] b p x) = ∃y(N(x,y)∧R a (x,y)∧ST y ([!N] b p x)) = ∃y(N(x,y)∧R a (x,y)∧ST y (b p xy)) = ∃y(N(x,y)∧R a (x,y)∧(∃z(N(y,z)∧R b (y,z) ∧ ST y (p xy))))

Figure 1 .

 1 Figure 1. L (!σ,A) is not invariant under bisimulation.

Figure 2 .

 2 Figure 2. L (!σ,A) is not as expressive as L (N ,A) .

Fact 4. 2 L

 2 (!σ,A) is not invariant under bounded p-morphisms.

Corollary 4. 6 L

 6 (!σ,A) is invariant under A-generated submodels. From Feferman and Kreisel's Theorem 2.13, Corollary 4.6 and Proposition 3.8 it follows that: Corollary 4.7 For every formula ϕ ∈ L (!σ,A) , x ∈ VAR and σ ∈ VAR * , ST x (ϕ σ) is equivalent to a formula in BF(N,A)∩ LGF(N,A).

Fact

Lemma 6 . 13 (

 613 Maximal ϕ-children) If ϕ ∈ κ (a) then there is some, possibly empty, b ∈ A * such that for every prefix c of b we have ϕ ∈ κ (a • c) and for every d ∈ A * such that d = ǫ we have ϕ ∈ κ (a • b• d).

Fact 6. 18

 18 Let a ∈ A * be such that κ (a) = ∅. For each ϕ ∈ κ (a) there is a formula Norm(¬ϕ) such that ⊢ Norm(¬ϕ) ↔ ¬ϕ and Norm(¬ϕ) ∈ κ (a).

Fact 6. 19

 19 Let a ∈ A * be such that κ (a) = ∅. For each ϕ ∈ κ (a) there is a formula Norm([!N]ϕ) such that ⊢ Norm([!N]ϕ) ↔ ¬ϕ and Norm([!N]ϕ) ∈ κ (a).

Fact 6. 20

 20 Let a ∈ A * be such that κ (a) = ∅. For each ϕ ∈ κ (a) there is a formula Norm([!N]¬ϕ) such that ⊢ Norm([!N]¬ϕ) ↔ ¬ϕ and Norm([!N]¬ϕ) ∈ κ (a).

Fact 6. 21

 21 Let a ∈ A * be such that κ (a) = ∅. Now let D ∈ At(, a). For each ϕ ∈ κ (a) we have either ϕ ∈ D or else there is some formula Norm(¬ϕ) such that ⊢ Norm(¬ϕ) ↔ ¬ϕ and Norm(¬ϕ) ∈ D.

Fact 6 . 22 (

 622 Existence of atoms) If is a finite consistent set, then there exists an atom A ∈ At(,ǫ), such that ⊆ A. Next we show that if we an a-atom containing a formula of the form b ϕ, then we have an a •b-atom that can play the role of b →-successor. Lemma 6.23 (Existence Lemma) Let Ŵ be a finite consistent set and a,(a •b) ∈ A * . Moreover, assume that κ Ŵ (a) = ∅ and κ

 is consistent and moreover by construction that E is a maximally consistent subset of κ (a •b). Now, we show an existence lemma for [!N]. Proposition 6.24 (Existence Lemma for [!N]) Let be a finite set and let a ∈ A * be such that κ (a) = ∅. Let D be a (, a)-atoms. There exists some (, a), E, such that D ∧ [!N] E is consistent.

 a). We write D π → E iff for every ϕ with ϕ ∈ E such that ϕ is equivalent to an existential formula, we have ϕ ∈ D. The first two items are self-explanatory. They are the equivalent of the relation between contexts corresponding to the b and [!N] operators in a Pσ LTS. The last relation corresponds to the relation between two contexts based on the same state but within the sight of a richer collection of states. Lemma 6.28 will make this relation precise. But we first prove the following: Lemma 6.27 (Existence of witnesses) Let Ŵ be a finite consistent set and a •b ∈ A * . Let D ∈ At(Ŵ, a) and let b ϕ ∈ κ Ŵ (a). We have a ϕ ∈ D iff there is some E ∈ At(Ŵ, a •b) such that D a → E and such that there are formulas χ 1 ,..

Lemma 6 . 29 (

 629 Simulation Image) Let Ŵ be a finite consistent set and a,(a •b) ∈ A * . Moreover assume that κ Ŵ (a) = ∅ and κ Ŵ (a •b) = ∅. Let D,E ∈ At(Ŵ, a) and F ∈ At(Ŵ, a •b). If D π → E and E b → F. Then there exists G ∈ At(Ŵ, a •b) such that G π → F and D b → G.

Figure 3 .

 3 Figure 3. The Pσ LTS M for = {¬ a ¬p, a q,[!N] a ¬q}.

6. 11

 11 Truth-preserving gathering of good Pσ LTSs into σ LTS Given a good Pσ LTSs M = W ,C,(R a) a∈A , !N →,Val we construct a σ LTS gather(M) = S,(a →) a∈A ,N,V , as follows:

 since C is reflexive it follows that (w,{w}) ∈ C and (v,{v}) ∈ C. Since C is locally closed it follows that we have (w,∅) ∈ C and (v,∅) ∈ C (1). It follows by definition of a →, that it is well defined. By construction N(w) is well defined for each w ∈ S. Finally by (1) it follows that V (p) is well defined for every p ∈ prop. Fact 6.43 Let M = W ,C,(R a) a∈A , !N →,Val be a good Pσ LTS. And let gather(M) = S,(a →) a∈A ,N,V . For every w 1 ,...,w n ,v ∈ S we have v ∈ N(w 1)∩...∩N(w n) iff (v,{w 1 ,...,w n }) ∈ C Proof. For the left to right direction. Assume that v ∈ N(w 1)∩...∩N(w n). It follows by construction that for every w i ∈ {w 1 ,...,w n } we have (v,{w i }) ∈ C. Now since C is locally closed it follows that (v,{w 1 ,...,w n }) ∈ C.For the right to left direction. Assume that (v,{w 1 ,...,w n }) ∈ C. Since C is locally closed it follows that for every w i ∈ {w 1 ,...,w n } we have (v,{w i }) ∈ C. But then by construction we have v ∈ N(w 1),...,v ∈ N(w n). Hence v ∈ N(w 1)∩...∩N(w n). Fact 6.44 Let M = W ,C,(R a) a∈A , !N →,Val be a good Pσ LTS. And let gather(M) = S,(a →) a∈A ,N,V . For every w 1 ,...,w n ,v,t ∈ S and a ∈ A we have v,t ∈ N(w 1)∩...∩N(w n) and (v,t) ∈ a →, iff (v,{w 1 ,...,w n })R a (t,{w 1 ,...,w n }).

Lemma 6 .

 6 45 (Truth Preservation Lemma)Let M be a good Pσ LTS. For every ϕ ∈ L σ and v,w 1 ,...w n ∈ W we have:gather(M)| N(w 1)∩...∩N(w n) ,v |= ϕ iff M Ŵ ,v,{w 1 ,...,w n } |= ϕ Proof. Base case: From left to right. Assume that gather(M)| N(w 1)∩...∩N(w n) ,v |= p (1) and v ∈ N(w 1)∩...∩ N(w n) (2). By semantics it follows from (1) that v ∈ V (p). Hence by construction p ∈ Val(v,∅) (3). From (2) and Fact 6.43 it follows that (v,{w 1 ,...,w n }) ∈ C (4). Since Val is W -based, it follows from (3) and (4), that p ∈ Val(v,{w 1 ,...,w n }). Hence by semantics M Ŵ ,v,{w 1 ,...,w n } |= p. From right to left. Assume that M Ŵ ,v,{w 1 ,...,w n } |= p. It follows by the semantics that p ∈ Val(v,{w 1 ,...,w n }) (1) and (v,{w 1 ,...,w n }) ∈ C (2). Since C is locally closed it follows from (2) that (v,∅) ∈ C, hence since Val is W -based we have from (1) p ∈ Val(v,∅) (3). But from (2) we have by Fact 6.43 that v ∈ N(w 1)∩...∩N(w n) (4). From (3) and construction we have v ∈ V (p), hence by (4) and semantics we have gather(M)| N(w 1)∩...∩N(w n) ,v |= p. Induction Step: Case ¬ and case ∧: Immediate from IH and semantics.

Case a :

 a From left to right. Assume that gather(M)| N(w 1)∩...∩N(w n) ,v |= a ϕ (0). It follows from semantics that there is v,t ∈ N(w 1)∩...∩N(w n) (2) with v a → t (3) and gather(M)| N(w 1)∩...∩N(w n) ,t |= ϕ (4). From (

), (3) and semantics we have gather(M)| N(w 1)∩...∩N(w n) ,v |= a ϕ.Case[!N]: From left to right. Assume that gather(M)| N(w 1)∩...∩N(w n) ,v |= [!N]ϕ (0). It follows that v ∈ N(w 1)∩...∩N(w n) (1) and from semantics that gather(M)| N(w 1)∩...∩N(w n)∩N(v) ,v |= ϕ (2). Since v ∈ N(v) it follows from construction that (v,{v}) ∈ C (3). By (1) and Fact 6.43 it follows that (v,{w 1 ,...,w n }) ∈ C. Hence since C is locally closed we have from (3) that (v,{w 1 ,...,w n ,v}) ∈ C (4). From (4),(2) and IH it follows that M Ŵ ,v,{w 1 ,...,w n ,v} |= ϕ. Hence from semantics we have M Ŵ ,v,{w 1 ,...,w n } |= [!N]ϕ.

), (2) and IH it follows that gather(M)| N(w 1)∩...∩N(w n)∩N(v) ,v |= ϕ. Hence, by semantics, gather(M)| N(w 1)∩...∩N(w n) ,v |= [!N]ϕ.

Figure 4 .

 4 Figure 4. Pσ LTS from the example in Section 6.9.1.

Figure 5 .

 5 Figure 5. σ LTS obtained by gathering the Pσ LTS from Figure 4.

Lemma 6 .

 6 46 (Weak completeness)Every finite !N-consistent sets of L (!σ,A) -formulas is satisfiable.

 be the expansion of ν, with domain dom(ν)∪{ϕ} and ν ′ (ϕ) := ν([!N]ϕ)∪{w}. By steps (7-11) we have SAT(Ŵ 1 ∪Ŵ 2 ∪Ŵ 3 ∪ {ϕ},w,ν ′) = 1. But then by previous step we have a model M such that for every ψ ∈ Ŵ 1 ∪Ŵ 2 ∪Ŵ 3 ∪{ϕ}, we have M| N(ν ′ (ψ)) ,w 0 |= ψ. In particular, we have M| N(ν ′ (ϕ)) ,w 0 |= ϕ. Hence by semantics of [!N] and definition of ν ′ we have M| N(ν(ϕ)) ,w 0 |= [!N]ϕ. The claim holds for any number of [!N]-formulas of complexity at most n+1. a ,[a]-step. When the a ,[a]-step is reached we have = Ŵ 1 ∪Ŵ 2 with Ŵ 1 = { a ϕ 1 ,..., a ϕ n ,[a]ψ 1 ,...,[a]ψ m } and Ŵ 2 = {p 1 ,...,p k ,¬q 1 ,...,¬q r }, with p 1 ,...,p k ,¬q 1 ,...,¬q r being literals. Now assume that SAT(,w,ν) = 1. By steps (27-33), we have for every i = 1,...,n,

Proposition 7. 5 Algorithm 2 3 :case ϕ = ϕ 1 ∧ϕ 2 22 : 23 :

 5232223 Algorithm 2, in every recursive step ModelCheck(M cur ,w cur ,ϕ cur) returns 1 iff M cur ,w cur |= ϕ cur . Proof. The proof is by induction on the structure of ϕ cur . The base case follows from the definition and the Boolean cases are straightforward. Now suppose ϕ cur = [!N]ϕ. By semantics, M cur ,w cur |= [!N]ϕ iff M cur | N(w cur) ,w cur |= ϕ ModelCheck(M cur ,w cur ,ϕ cur) 1: if ϕ cur = [!N]ϕ then 2: M ← M| N(w cur) ModelCheck(M,w cur ,ϕ) 4: else 5: M ← M cur ,w ← w cur ,ϕ ← ϕ cur 6: return ModelCheck(M,w,ϕ 1) ∧ ModelCheck(M,w,ϕ 2) case ϕ = ϕ 1 ∨ϕ 2 24:

Definition 8 . 5 (Fact 8 . 7

 8587 Strategies)Given a coalition C ⊆ Ag, a strategy for C is a function S C : (W + ×C) → A such that for every (w,i) ∈ dom(S C) we have S C (w,i) ∈ α(i,last(w)). Definition 8.6 (Positional Strategies) Given a coalition C ⊆ Ag, a positional strategy for C is a function S C : (W ×C) → A such that for every (w,i) ∈ dom(S C) we have S C (w,i) ∈ α(i,w). Every positional strategy for C induces a strategy for C.

1 Figure 7 .

 17 Figure 7. Interaction between epistemic uncertainty and sights.

Figure 9 .

 9 Figure 9. The agent starts to consider that a b ⊤.

 w 0 |= a b ⊤. We would then have M,w 0 |= [+ a b ⊤][!N] a b q but the same would not be true for a b p or a b ¬p M,w 0 |= [+ a b ⊤][!N] a b p Finally in the preceding model for an unsatisfiable condition we would have M,w 0 |= [+ c ⊤]⊥

Figure 10 .

 10 Figure 10. L (!σ,A) is not as expressive as L (!σ,(!σ) -1 ,A) .

 Note that M 1 ,w 0 ,∅ |= [!N] a [(!N) -1] b ⊤ but M 2 ,w 0 ,∅ |= [!N] a [(!N) -1] b ⊤.But the two are σ -bisimilar. (Showing that L (!σ,(!σ) -1 ,A) is at least as expressive as L (!σ,A) is straightforward.)

Figure 11 .Figure 12 .

 1112 Figure 11. L (↓σ,A) is not as expressive as L (!σ,A) .

2 = 2 2 • 1 •2 0 +2•2 1 +1•2 2 2 = 4 E 0 m 0 (w 0 , ∅) = 0 m 1 (w 0 , ∅) = 0 Figure E1 . 0 m 0 (w 0 , ∅) = 0 m 1 (w 0 , ∅) = 0 !N (w 0 , 0 m 0 (w 0 , ∅) = 0 m 1 (w 0 ,

 22101240000100E100001000000010 Figure C2. Example of a construction tree of κ .

(w 0 0 ,(w 0 • a 1 ,

 0001 Figure E3. Adding

a→(w 0 • a 1 ,

 01 Figure E4. Adding !N-successors.

Figure E5 .

 E5 Figure E5. (w 0 ,∅) is now the rightmost m 0 -unmarked context.

 a→-successors to (w 0 ,∅).

 Figure E7. Adding !N-successors.

 , . . . p, ¬q, . . . p, ¬q, . . . p, q, . . . p, q, . . . p, ¬q, . . . p, q, . . . p, ¬q, . . .

Figure E9 .

 E9 Figure E9.The Pσ LTS M for = {¬ a ¬p, a q,[!N] a ¬q}.

Figure E10 .

 E10 Figure E10. Gathering the Pσ LTS M into a σ LTS.

Table 1

 1

	. !N axiom system	
	PL	⊢ ϕ if ϕ is a substitution instance of
		a tautology of propositional logic
	Nec	

 Lines 1-2 of the algorithm performs the model restriction M cur | N(w cur) . By IH ModelCheck(M cur | N(w cur) ,w cur ,ϕ) returns 1 iff M cur | N(w cur) ,w cur |= ϕ and hence ModelCheck(M cur ,w cur ,ϕ cur) returns 1 iff M cur ,w cur |= [!N]ϕ. By IH, ModelCheck(M cur ,w ′ ,ϕ) returns 1 iff M cur ,w ′ |= ϕ. Hence in line 27,

	27: 28:	return w ′ :w a →w ′ ModelCheck(M,w ′ ,ϕ ′) else
	29:	return 0
	30:	end if
	31:	case ϕ = [a]ϕ ′
	32:	if ∃w ′ ∈ M,w
	33:	return 1
	34:	else
	35: 36:	return w ′ :w a →w ′ ModelCheck(M,w ′ ,ϕ ′) end if
	37:	end switch
	38: end if

25: case ϕ = a ϕ ′ 26: if ∃w ′ ∈ M,w a → w ′ then a → w ′ then Now, let ϕ cur = a ϕ. By semantics M cur ,w cur |= a ϕ iff ∃w ′ : w cur a → w ′ ,M cur ,w ′ |= ϕ

 Proof is by induction on the complexity of ϕ. If ϕ is a propositional letter p, since ⊆ nom∪prop and is finite, we have f M,w i (p) = p ∧ . The argument is the same for nominals. Now for the induction step. Booleans are straightforward from definition. Now assume that M +nom | || || ,w i |= [!N]ϕ (0). First note that we have ||π i ∧ || = ||π i ||∩|| || (1). Note that, by definition of π i , ||π i || = N (w i) (2). Hence we have M +nom | || || | N (w i) = M +nom | ||π i ∧ || . Also note that π i ∧ is equivalent to some formula of the form ′ , where ′ ⊆ nom∪prop and ′ is finite. Hence M +nom | ||π i ∧ || ,w i |= ϕ, and thus by IH we have M +nom ,w i |= f M,w i (ϕ π i ∧) (3). But by definition of f M,w i , we have f M,w i (([!N]ϕ))=f M,w i (ϕ π i ∧) (4). The claim follows. Now assume that M +nom | || || ,w i |= a ϕ (5). It follows that there is some state w j ∈ R a (w i) (6) such that w j ∈ || || (7) and M +nom | || || ,w i |= ϕ (

 The base case is immediate. Booleans are immediate from IH. Now assume that, M,w i |= [!N]ϕ, that is, M| N (w i) ,w i |= ϕ. By Lemma 8.19, we have M +nom ,w i

Acknowledgements

This research was supported by ERC grant No. 269427. The comments of two referees helped us produce a clearer and more complete paper.

Appendix A Preliminary facts towards completeness

In this section we state an important number of intermediate facts that we are using in the completeness proof. The proofs of these facts can be found in Appendix B. All these facts are stated under the assumption that the sets , 1 and 2 are finite.

A.1 Facts about CN

A.3 Facts about cn()(a)

Fact A.12 For every a, a A. [START_REF] Chandra | [END_REF] Facts about tree() Corollary A.17 (Bounded Depth) The depth of tree() is bounded by maxdep().

Fact A.18

If is finite, then tree() is finitely branching.

A.5 Facts about cj and da

A.7 Properties of κ on Tree()

A.8 Important properties of κ

B Proof of preliminary facts to the completeness proof

In this section, we list the proofs that were omitted in either the main part of the article or Appendix A. The proofs are listed in order of occurrence in the papers, hence proofs of facts stated in Appendix A will be given after the proofs of facts stated in the main part of the article.

Proof of Fact 6.1. Assume that ϕ is neither of the form ¬ψ, nor of the form [!N]ψ, then by definition of CN() we have ¬ϕ ∈ CN(). Now assume instead that ϕ = ¬ψ. ψ is a subformula of ϕ, hence we have by construction ϕ ∈ CN(). Finally assume instead that ϕ = [!N]ψ. We are in one of two cases.

Case 1. ψ is neither of the form ¬χ, nor of the form [!N]χ [START_REF] Alur | Alternating-time temporal logic[END_REF]. By construction χ ∈ CN() and hence by [START_REF] Alur | Alternating-time temporal logic[END_REF] we have ¬χ ∈ CN() as well. Case 2. ψ is of the form (¬ * [!N] *) * χ for some χ , where χ is neither of the form ¬χ 2 , nor of the form [!N]χ 2 (2). Note that by axioms 3). Moreover, we have χ ∈ CN() (4). Hence by (2) we have ¬χ ∈ CN() (5). From (3), (4) and (5) the conclusion follows.

Proof of Fact 6.2. Assume that ϕ ∈ CN() and ϕ is neither of the form

Finally assume that ϕ is of the form ¬[!N]ψ. Again it is easy to see that by axioms

Proof of Corollary 6.3. Immediate from the previous two facts.

Proof of Fact 6.4. First observe that the subformula closure of a finite set, is a finite set. Now enumerate the formulas in Sub() = {ψ 1 ,...,ψ n }. Next observe that to satisfy the two last closure conditions we might have to add at most three new formulas for each formula ψ i in Sub(), namely [!N]ψ i , ¬ψ i and [!N]¬ψ i , but it is easy to see that the resulting set is closed under subformulas, and it is also easy to see that the two last closure conditions are satisfied. All conditions are then satisfied by the finite set we have just constructed. But CN is the smallest such set.

Proof of Fact 6.6. Straightforward.

Proof of Fact 6.